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Investigation of a Cortical Attractor-Memory Network

When developing neuromorphic hardware, it is of utmost importance to ensure the faithful repre-
sentation of the network models to be emulated. In this thesis a highly complex cortical attractor-
memory network is modiVed as to comply with the neuron and synapse models available on the
FACETS/BrainScaleSWafer-Scale Hardware. It is shown that all major features in the original model
can faithfully be reproduced. These encompass winner-take-all attractor dynamics, pattern comple-
tion as well as pattern rivalry, including the attentional blink phenomenon which has been exten-
sively studied by other groups. Furthermore, the eUects of hardware-speciVc distortions on this
model are investigated and compensation mechanisms are suggested, where feasible. Additionally,
the new model is extended beyond its original structure, with the introduction of non-orthogonal
patterns and an application is presented in the form of retinotopic pattern completion.

Untersuchung eines kortikalen Attraktorspeichernetzwerkes

Bei der Entwicklung neuromorpher Hardware ist es außerordentlich wichtig, eine gewissen-
hafte Repräsentation der zu emulierenden Netzwerkmodelle zu gewährleisten. In dieser Arbeit
wird ein hochkomplexes kortikales Attraktorspeichernetzwerk so angepasst, dass es den auf der
FACETS/BrainScaleS Wafer-Scale Hardware verfügbaren Neuron- und Synapsenmodellen genügt.
Es wird gezeigt, dass alle wesentlichen Charakteristika des Originalmodells getreu reproduziert wer-
den können. Diese umfassen winner-take-all Attraktordynamiken, Mustervervollständigung sowie
Musterrivalität, einschließlich des Phänomens des Aufmerksamkeitsblinzeln, welches von anderen
Gruppen bereits eingehend erforscht wurde. Des Weiteren werden EinWüsse hardwarespeziVscher
Verzerrungen auf das hier vorgestellte Modell untersucht und, soweit realisierbar, Möglichkeiten
zur Kompensation aufgezeigt. Das neue Modell wird außerdem über seine Originalstruktur hinaus
erweitert, zum einen durch die Einführung nicht-orthogonaler Muster, zum anderen durch Vorstel-
lung einer Anwendungsmöglichkeit in Form von retinotopischer Mustervervollständigung.
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1 Introduction

1.1 From Existential Considerations to Computational
Neuroscience

The second law of thermodynamics describes what appears to be a relentlessly destructive princi-
ple of nature: as time passes, the universe becomes increasingly disordered. In light of this con-
sideration (while not violating an overall entropy increase), the birth of life, and eventually the
emergence of consciousness, seems counterintuitive. The more awe-inspiring it then appears that
self-organizing processes inside a single cell, say, a mammalian zygote, give rise to a fully func-
tioning organism gifted with the ability of perceiving and interacting with the surrounding world
through a multitude of channels. The self-organization does not stop at birth, though: through
complex interactions between billions of nerve cells, throughout the lifespan of their hosts, mam-
malian brains develop a multitude of astonishing abilities, culminating in the cognitive capabilities
of humans, which include feats such as speech, abstract thought and the ever mysterious senses of
self and of free will. What we deVne as “self” and all the things that these “selves” do, such as the
writing, reading and understanding of these lines, is the product of – on a cosmic scale – minuscule
lump of highly complex self-organized matter. Is it possible for this amazing device of nature to
hold a complete understanding of itself? At this point, a deVnitive answer remains out of sight,
although huge steps have already been taken towards achieving this goal.

In comparison to other scientiVc Velds, neuroscience is a relatively young discipline. While rather
limited anatomical knowledge can be dated back to ancient Egypt, the Vrst groundbreaking discov-
eries were made possible by the development of microscopy techniques and the invention of the
staining procedure in the late 19th century. Since then, a lot has been discovered about the structure
and functionality of individual neurons and their synaptic connections. Several functional areas
of the brain, including for example components of the sensorimotor pathway, have since been un-
derstood to a large extent. However, despite concentrated eUorts, we have yet to Vnd a conclusive
microscopic theory of more complex functional areas, such as the ones regulating memory forma-
tion and retrieval, inferential reasoning or self-awareness, only to name a few. The reason most
certainly lies in the intricate structural complexity of the networks of neurons responsible for these
feats, where every single component may play an important functional role and therefore can not be
treated with statistical methods alone. It is for this reason that the dawn of the computer age in the
mid 20th century held huge promise for the neuroscientiVc community by oUering the possibility of
actually simulating detailed models of the scrutinized biological systems. This was the birth hour of
computational neuroscience, a discipline which has proVted immensely from the vertiginous tech-
nological advances in raw computational power that have continuously been taking place for the
past decades. Its results are equally impressive, from the design of neural-network controlled robots
to the development of complex models of cortical areas.
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1 Introduction

1.2 Beyond the von Neumann Paradigm: FACETS & BrainScaleS

Even so, the overall computational power of the brain incomparably outmatches even the most
powerful of today’s machines. Similarly, large-scale neural network simulations quickly run into
unsurmountable computational barriers even at sizes several orders of magnitude below a full-scale
mammalian brain. The reason is fairly straightforward: While the inherently serial von Neumann
architecture of standard computer chips has proven highly eXcient from an engineering point of
view, it is fundamentally diUerent, if not to say limited, in comparison to the massively parallel
architecture of the central nervous system. Even with the simplest neuron and synapse models, the
number of computations per unit of time scales quadratically with the size of the network; at the
current development rate of processing power, a time where conventional processors will be able to
handle signiVcant portions of, say, a human brain, remains out of sight.

The microprocessor revolution has, however, intrinsically gone hand in hand with major technolog-
ical advances in microelectronics fabrication. Today this allows, in principle, the eXcient develop-
ment of hardware which diverges from standard chip design, possibly veering towards the direction
of a more brain-like architecture. This is precisely the idea behind the Fast Analog Computing with
Emerging Transient States (FACETS) project, and its successor BrainScaleS (BSS): neuroanatomical
and -physiological Vndings are woven into neural network models which are then emulated on a
novel, massively parallel, analog neuromorphic hardware device. This device implements neurons
and synapses “in silico” – that is, microcircuits which obey dynamic laws similar to those of their
biological archetypes. Together with a great versatility, implemented by design, which allows the
emulation of almost arbitrary network structures, the FACETS/BSS hardware oUers one more, some-
what implicit advantage: due to the minuscule size of the components involved, time constants are
accordingly small, yielding a signiVcant speedup of 104 with respect to biological real time. Along
with its obvious advantages, this neuromorphic approach also comes with several drawbacks, when
compared to conventional simulators. While the latter can be made arbitrarily precise (at the cost of
computation time), analog hardware inherently suUers from both design limitations and manufac-
turing imperfections. Studying the eUects of these so-called distortion mechanisms on the dynamics
and function of various types of to-be-emulated neural networks is of paramount importance for
establishing the adequacy of this landmark approach for neuroscientiVc research.

This thesis describes ongoing research in understanding the eUects of such distortions and, if possi-
ble, Vnding ways of compensating for them. It is concerned with one particular network model and
is structured as follows.

1.3 Thesis Outline

The network model itself along with its logical building blocks is described in chapter 2. Further-
more, methods from the analysis module developed to extract and visualize the more abstract fea-
tures of the network are presented as well. Chapter 3 is concerned with simulation results. It details
regular network dynamics, induced behavior such as pattern completion and pattern rivalry as well
as investigates how the network reacts to hardware-speciVc distortion mechanisms. Additionally, it
showcases an extension of the network dynamics in the form of non-orthogonal patterns as well as
an application in the form of retinotopic pattern completion.
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2 Simulation

2.1 Network Model

The network investigated in this thesis is restricted to the layer 2/3 portion of the neocortex and
is described in full detail in Lundqvist et al. [2006]. It features a twofold columnar structure in
which the neurons are organised. The network is comprised of several hypercolumns (HCs), mu-
tually interconnected via excitatory connections. Every HC in itself contains the same number of
minicolumns (MCs). The MCs consist of 30 interconnected excitatory pyramidal cells, 2 inhibitory
Regular Spiking Non-Pyramidal (RSNP) cells projecting vertically onto the pyramidal cells in the
sameMC and 1 inhibitory basket cell projecting horizontally onto other MCs within the same HC.

2.1.1 Layout

1000 800 600 400 200 0 200 400 600 800
x [µm]

800

600

400

200

0

200

400

600

800

y 
[µ
m

]

(a)
x [µm]

200
0

200
400

y [µ
m

]

400

200

0

200

400

z [µ
m

]

400

600

800

1000

1200

(b)

Figure 2.1: (a) Spatial distribution of network components in a setup with 9 HCs (blue) on a hexagonal grid
with an edge length of 500 µm. Within each HC, the 8 MCs (red) are distributed in the same
manner – the edge length is 60 µm. MCs participating in an exemplary pattern (see 2.1.2 Patterns)
are connected via dotted lines.

(b) Actual 3D distribution of all cells in a smaller network of 6 HCs with 3 MCs each. The cells
in an individual MC are distributed within cylindrical shapes with a radius of 15 µm and varying
height from bottom to top: basket cells (blue, 100 µm), pyramidal cells (yellow, 400 µm) and RSNP
(red, 100 µm). The cylinders of diUerent types of cells are separated by 200 µm. Note that in
vivo, there is no vertical separation of the three types of neurons. They are all distributed in the
complete MC. Hence, the synaptic delays within each MC were taken to be constant (see 2.1.4
Delays).
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2 Simulation

The network represents a subsample from a real cortical network (see Lundqvist et al. [2006]), in
which each HC is comprised of over 100 MCs. The dimensions of the subsample were left un-
changed. Therefore, the HCs are distributed on a hexagonal grid as outlined in Vgure 2.1a. The
distance between the centers of two HCs is 500 µm. Within each HC, the MCs are distributed on
a hexagonal grid as well, with a distance of 60 µm in between. Inside the MCs the cells are uni-
formly distributed within a vertical cylinder (see Vgure 2.1b). The network connectivity is outlined

MC

PMC-MC

PRSNP-PYR

PPYR-BAS

PBAS-PYR

PPYR-PYR

30μm

500μm

Pyramidal Basket RSNP

HCHCHC
MC MC MC MC

Figure 2.2: Layer 2/3 Attractor-Memory schematic. Shown are all connections emerging from a single MC.
Excitatory connections are displayed in red while inhibitory connections are shown in blue. Pat-
terns are represented by corresponding coloring of the MCs. Note that all connections between
MCs are exitatory. Depending on whether two MCs share a common pattern or not, they target
each others pyramidal or RSNP populations.

in Vgure 2.2. In each MC the pyramidal cells are interconnected with a probability of 25 %, while
connections to and from the single basket cell occur with a probability of 70 %. The RSNP cells
project onto the pyramidal cells with a probability of 70 % as well.

Each basket cell receives input from pyramidal cell populations in MCs of close proximity. The
original model employed a single 8 basket cell population per HC receiving local input from all
pyramidal cells in the HC. In the new setup this was translated to each pyramidal population
projecting onto the basket cells in the eight closest MCs with a probability of 70 % – this becomes
important when scaling the network to larger sizes (see 2.1.5 Network Scaling). Each basket cell in
return projects onto all pyramidal cells within the HC with a probability of 70 %.

This creates a soft winner-take-all (WTA) situation within the HC, as an active MC will inhibit all
other MCs via the basket cells. The change from Lundqvist et al. [2006] to have a single basket cell
per MC opposed to a Vxed number of basket cells per HC was made in order to naturally scale the
numbers of pyramidal, RSNP and basket cells when increasing the number of MCs (see 2.1.5 Network
Scaling). Long range connections between MCs in diUerent HCs are governed by so-called patterns
(see below).
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2.1 Network Model

2.1.2 Patterns

The logical building blocks of the network are patterns. Each attractor of the network is associated
with exactly one pattern that deVnes which MCs make up the corresponding attractor. They are
comprised of precisely one MC from every HC. Two patterns are said to be orthogonal if no MC in
either pattern partakes in both. Unless otherwise noted all networks are comprised of orthogonal
patterns where all MCs with the same index participate in the same pattern.

Patterns govern the long-range connections between MCs in diUerent HCs. If two MCs participate
in the same pattern, their pyramidal populations will be interconnected with a probability of 70 %
(the MCs excite each other). Whereas, if the two MCs do not share any pattern with each other
there will be excitatory connections from the pyramidal cells of the one MC to the RSNP cells of the
other and vice versa (the MCs inhibit each other).

It is important to note the binary nature of these connections: All MCs from diUerent HCs are
interconnected, either in a purely excitatory (same attractor/pattern) or a purely inhibitory (diUerent
attractor/pattern) manner. Furthermore, all excitatory and all inhibitory connections are of the same
density. As an example, it does not matter if two MCs are participating in one or three patterns
together, the resulting excitatory connection will be the same.

This creates a “strong” WTA situation between all attractors in the network, as an active attractor
will completely suppress all others, while the participating MCs excite each other.

2.1.3 UP-states

UP-states are a result of the intra-attractor stimulation as well as the cross-attractor inhibition. An
attractor (meaning all its constituent pyramidal cells) is in an UP-state when the pyramidal cells
in each MC participating in an attractor pattern are Vring at a signiVcantly elevated rate while all
other attractors are suppressed. Local UP-states have been observed in vivo (Cossart et al. [2003],
Shu et al. [2003]). About 0.5 % of the recorded pyramidal cells enter an UP-state simultaneously
which then lasts several hundred ms (Lundqvist et al. [2006]). Due to neuronal adaptation as well
as synaptic depression the dominating attractor’s activity will eventually decline, making way for
other attractors to enter an UP-state.

2.1.4 Modeling

Neurons

Originally, each neuron was modeled using a Hodgkin-Huxley type model with six compartments
(Lundqvist et al. [2006]), including soma, initial segment, basal dendrite compartment and three
consecutive apical dendrite compartments. In order to make an emulation on the FACETS neuro-
morphic systems possible, the hardware neurons needed to be Vtted accordingly.

The FACETS Wafer-Scale Hardware implements the so called Adaptive Exponential integrate-and-
Vre model (AdEx model) (see Brette and Gerstner [2005]). It is described by the following diUerential
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2 Simulation

equations which are formulated in terms of the parameters deVned in PyNN (see 2.3 Implementa-
tion.

τm
dV

dt
= −(V − EL) + ∆T exp

(
V − VT

∆T

)
− τm
Cm
· w +

τm
Cm
· I (2.1)

τw
dw

dt
= a(V − EL)− w (2.2)

Here, V is the membrane potential, w the adaptation variable, τm the membrane time constant, τw
the adaptation time constant, EL the leak reversal potential, Cm the membrane capacitance, VT
the threshold voltage, I the injection current, ∆T the slope factor and a the adaptation coupling
parameter. Whenever the membrane potential reaches a set value Vspike, a spike is said to occur and
both the membrane potential V as well as the adaptation parameter are updated as follows:

V −→ Vr

w −→ w + b (2.3)

where Vr is the reset value for the membrane potential and b is the spike-triggered adaptation
constant.

The AdEx model was used to describe the behaviour of both pyramidal and RSNP cells. Since in
the original model basket cells are non-adapting, a Leaky integrate-and-Vre (LIF) model was used.
This corresponds to equation (2.1) without the adaptation parameter w and the exponential term
and can easily be accommodated by the hardware neurons as well. The neuron parameters used in
the default network are found in table A.3.

Synapses

The synaptic current I from equation (2.1) is generated via

I(t) =

Nspikes∑
i

gw exp

(
− t− ti
τsyn

)
Θ(t− ti) (Vrev − V (t)) (2.4)

where ti denote the single presynaptic spike times, g the base synaptic conductance (or weight), Θ
the Heaviside step function and Vrev the reversal potential of the respective synapse type (excitatory
or inhibitory).

The synapses between all neurons are modeled as being depressing, according to the Short Term
Plasticity (STP) mechanism proposed by Tsodyks and Markram (Tsodyks and Markram [1997]),
which introduces the concept of synaptic resources. Whenever a presynaptic spike arrives only
a portion U of the active fraction of resources R is accessible. Each spike activates a portion U of
R, which therefore instantly decreases by a factor of (1 − U) and then recovers slowly along an
exponential with time constant τrec. When the (n+ 1)th spike arrives, R and the eUective synaptic
weight ge are determined as

gn+1 = gw,maxRn+1U (2.5)

Rn+1 = 1− (1−Rn(1− U)) exp

(
−∆tn,n+1

τrec

)
(2.6)

where ∆tn,n+1 denotes the time interval between the nth and (n + 1)th presynaptic spike. The
synaptic weights used in the default network are found in table A.3.
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2.1 Network Model

Delays

Each connection was set to have a constant synaptic delay of 0.6 ms which is applied to all con-
nections within the same MC. Additionally, axonal delays were realized for connections between
diUerent MCs by taking their spatial distance and dividing it by an average axonal velocity1 of
0.2 m/s = 200 µm/ms.

2.1.5 Network Scaling

The network allows for scaling in several natural ways which are employed throughout this the-
sis. The size of attractors can be varied evenly by changing the number of HCs, while – in case
of orthogonal patterns (see 2.1.2 Patterns) – the number of attractors can be changed by increas-
ing or decreasing the number of MCs. Furthermore, the number of cells in each MC is open to
modiVcation.

Without additional changes in connectivity, such modiVcations would radically alter the network
dynamics, as the average number of aUerent synapses per cell is changed. A straightforward way to
compensate for this is by adjusting the connection probabilities in a way as to preserve the average
fan-in per neuron, hence not altering single cell dynamics. Since the model parameters were Vtted
using a default network size of 9 HCs with 8 MCs each (see 3.1 Parameter Fit), two general types of
scaling have to be diUerentiated: enlarging as well as shrinking the network.

In the Vrst case, adjusting the probabilities is straightforward, because if the population sizes are
increased, the probabilities have to be decreased in order to keep the number of realized connections
for each cell constant. Accordingly, in the latter case, the probabilities have to be increased, but since
they may not be larger than 1 (corresponding to every possible connection being realized), further
compensation has to be performed via weight increases of the corresponding connection.

An exception is the connectivity from and to basket cells. As the network is shrunk, the total
number of basket cells per HC falls below 8. In order to maintain the level of inhibition when one
MC participates in an UP-state, the density of the remaining basket to pyramidal connections has
to be increased. This is diUerent from the case when the network is enlarged: Since each pyramidal
population projects only onto the closest 8 basket cells – and all basket cells in turn project onto all
pyramidal cells – the level of inhibition during an UP-state is the same regardless of network size.
Hence, no further tuning is required.

All scaling formulae can be found in table A.4.

2.1.6 Stimulus

The network receives two distinct types of stimulus, namely unspeciVc background noise and input
from cortical layer 4.

1Personal correspondence with Mikael Lundqvist
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2 Simulation

Noise

All pyramidal cells in the network receive excitatory unspeciVc input from various other areas and
structures. This is realized via Poisson processes in which all spikes arrive by pure chance and
independently from each other. It follows a Poisson distribution X∆t

P (X∆t = n) = exp (−λ∆t)
(λ∆t)n

n!
(n,λ ≥ 0) (2.7)

which denotes the probability for receiving n spikes during time ∆t. λ is the spike rate of the
Poisson process, so that the expectation value of X∆t is λ∆t.

For each pyramidal cell in the network independent processes with λ = 300 Hz are used. The
synaptic weights are roughly 10 % of regular inter-pyramidal connections. With all further input
blocked, each pyramidal cell spikes with a rate of 3 Hz; if only the inter-pyramidal connections are
blocked, the spike rate depends on the network size, but lies around 1 Hz and below (see Vgure
2.3). This is somewhat lower than the 2.1 Hz (inter-pyramidal connections blocked) and 3.5 Hz (all
further input blocked) spike rates observed in Lundqvist et al. [2006] and might indicate a stronger
inhibition in the new model.
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Figure 2.3: Average spike rate of a pyramidal cell in the network only due to noise. All other excitatory input
to the pyramidal cells was blocked. Each network was simulated for 3000 ms.

Layer 4

Apart from random noise the pyramidal cells further receive input from pyramidal cells in cortical
layer 4. The cells in layer 4 project strongly on layer 2/3, which this model covers. In the brain layer
2/3 itself provides feedforward connections to the layer 4 of the next higher cortical area as well as
project onto deeper layers (Miller [2003]). The input intensity was calculated from the number of
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2.2 Network Behavior Analysis

cells in layer 4 likely to project onto layer 2/3, which was estimated to be around 30 with a rate of
~10 Hz and a connection density of 25 % (Thomson et al. [2002]).

Therefore a Poisson process with 75 Hz was used for each pyramidal cell receiving input. The
weight is the same as for inter-pyramidal connections and static synapses were used. This was
tested against actually realizing 7 to 8 sources per stimulated pyramidal cell with 10 Hz rate and
depressing synapses; the diUerence is negligible since at 10 Hz inter-spike intervals are long enough
to fully recover all synaptic resources.

2.2 Network Behavior Analysis

The investigated attractor-memory network has many interesting properties that Vrst have to be
extracted from the raw data. Therefore, the analysis module was substantially extended. The most
important improvements are discussed in this section.

The basis for all analyses is the data recorded during simulation. It is comprised of spike times from
all cells, to 0.1 ms accuracy, as well as voltage data (again in 0.1 ms intervals) from the RSNP cells
and a subsample of all pyramidal cells, as it was not feasible to record all voltages from all cells due
to memory constraints.

2.2.1 Data Preprocessing

The recorded data needs to be preprocessed before the analysis can proceed. The recorded voltages
from single cells contain gamma rhythm-like oscillations, that have been shown to correlate with the
delay activity in a memory task (Tallon-Baudry et al. [1998]) and are also investigated in Lundqvist
et al. [2006]. This is of lesser concern if the average membrane potential for the entire attractor is
to be inferred. Simply averaging over all recorded participating cells is not enough, as this does not
eliminate the short time oscillations (see Vgure 2.4b); the data needs to be Vltered.

Furthermore, in order to compute actual spike rates from the list of spike times, those have to be
Vltered as well.

If the raw signal recorded is denoted by s(t), we have

s(t) =


∑Nrecords

i N−1
records

∑
i vi(t) for voltage time courses

∑Nspikes
j δ (t− tj) for spike trains

(2.8)

where Nrecords denotes the number of recorded cells, vi(t) are the actual recorded voltage traces,
Nspikes denotes the number of spikes, tj the single spike times, and δ is the Dirac delta function
satisfying

∫
f(x)δ(x− x0)dx = f(x0).

9
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Figure 2.4: Comparison between a box Vlter (∆b = 100 ms) and a Gauss Vlter (σ = 20 ms → ∆g = 160 ms)
on data from a single attractor. The network size was 9 HCs with 8 MCs each: (a) The spike times
(blue) and their convolution with box (green) as well as Gauss Vlter (red). (b) Average recorded
voltage (blue) from 18 pyramidal cells (2 per MC) according to (2.8) and its convolution with
both box (green) and Gauss Vlter (red). The large peak at around 1000–1500 ms corresponds to
an active UP-state (see raster plot above). The oscillations still present in the signal correspond
to the competition times between UP-states of single attractors. Small peaks appear when all
attractors compete to be the next one to enter an UP-state, whereas the valleys correspond to the
suppression of another attractor in an UP-state, as can be seen by the fact that a valley is missing
when the attractor observed here enters its UP-state.
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2.2 Network Behavior Analysis

Box Filter

A Vrst implementation made use of a box Vlter

s̃(t) =

∫
1

b
Θ

(
∆b

2
−
∣∣t− t′∣∣) s(t′)dt′ (2.9)

where s(t) is the Vltered signal, Θ is the Heaviside function and ∆b is the width of the box Vlter.
This relatively simple approach allows a very fast implementation: The Vlter is slid along the data
while in each step one data point is added and one is dropped, amounting to a O(ts) run time,
where ts denotes the total biological simulation time. Its main drawback lies in the fact that s̃ is a
discontinuous function of time due to the discontinuous nature of the (Vlter) kernel itself.

Gauss Filter

A possible approach to counter this problem is to convolve the original signal with a Gaussian

s̃(t) =

∫
1√
2πσ

exp

(
− 1

2σ2

(
t− t′

)2)
s(t′)dt′ (2.10)

where σ is the width of the normal distribution. The resulting signal is smoothed without any
discontinuities (see Vgure 2.4 for a comparison). A value of 20 ms was used for σ throughout this
thesis. Since more than 99.99 % of a normal distribution is contained within a ±4σ interval around
the mean, all values with ∆T = |t− t′| > 4σ were omitted when computing the convolved signal
s̃ at time t. The width of the Vlter was hence ∆g = 2 · 4σ. This is important because, as opposed to
the simpler box Vlter, the computational cost for Gauss Vltering is O(ts ·∆g).

2.2.2 Phase Space Trajectory Projection Plots

A very eXcient way of visualizing the dynamics of the network is by virtue of PSTP plots. The
dynamics of the network can be viewed as a trajectory in an abstract feature space, spanned by all
the attractors. Suitable features are the mean voltage or mean spike rate of each attractor. Since
in general, there will be more than three distinct attractors, the feature space will have more than
three dimensions and is therefore not visualizable in a straightforward way.

However, the complete trajectory can be projected onto a hyper-plane perpendicular to the main
diagonal (see Vgure 2.5). Obviously, a lot of information is lost in the process. Still, the network can
clearly be observed entering distinct activity states (see Vgure 2.6).

Additionally, the velocity v of the trajectory is visualized by means of line color and thickness. Both
are scaled exponentially so that the color darkens and the size increases as the velocity decreases.

thickness, color ∝ exp

(
− v

vmax

)
+ oUset (2.11)

where several scaling factors have been omitted which were set to give a good visual representation
of the velocity.
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Attractor 3

Attractor 2

Main Diagonal Point of View

Attractor 1

(a) (b)

Figure 2.5: Illustration as to how PSTP plots are generated: (a) The trajectory in a high-dimensional (here
three-dimensional, taken from a network with 9 HCs and 3 MCs) feature space, spanned by the
attractors of the network, is projected onto a hyper-plane perpendicular to the main diagonal. The
projection is the regular PSTP plot as seen in (b).

(a) (b)

Figure 2.6: Phase Space Trajectory Projection plots of a network with default size (9HCswith 8MCs each). (a)
Mean spike rate trajectory: The distinct UP-states of the network are observed. (b) Mean voltage
trajectory: In contrast to the mean spike rate plot the trajectory is not as aligned with the attrac-
tors. This is due to the fact that in case of an UP-state the other attractors’ spike rates are close
to zero, while their membrane potentials still vary due to constant inhibition through the active
attractor as well as excitation through background stimulus. Note that the blobs corresponding
to a slow phase velocity are usually far from the center, meaning that not many attractors have a
high membrane potential at the same time during an UP-state.
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2.2 Network Behavior Analysis

2.2.3 UP-state Detection

One crucial element of the analysis is the detection of UP-states fromwhich various other properties
such as dwell times, competition times as well as average spike-rates in UP- and DOWN-states are
determined.

Voltage-based

The Vrst implementation was based on recorded voltages. For each attractor a threshold value
Vth = 1

2(Vmax + Vmin) was determined, where Vmax and Vmin were taken from the mean voltage
traces recorded from a Vxed number of pyramidal cells in each MC participating in the pattern.
Whenever the average voltage would go above the threshold, the attractor was said to be in an
UP-state. For small, well-deVned networks, in which all attractors were active at least once and
competition times between attractors were small, this was an acceptable measure.

However, for more general networks investigated in this thesis it had several shortcomings. Firstly,
there was no notion that only one attractor could be in an UP-state at any given time since each
attractor was evaluated separately. This could lead to reduced competition times and even over-
lapping attractors. Secondly, the detection was dependent on each attractor being active at least
once. Otherwise Vmax and Vmin were determined by random membrane oscillations, yielding false-
positive detections of extremely short UP-states. The third and most severe drawback was that it
relied on recorded voltage traces which – because of memory limitations in software – can only be
eXciently recorded from a subset of all pyramidal cells2 and are also only restrictively accessible on
the FACETS hardware (2 out of 512 neurons can be recorded per HICANN, seeMillner et al. [2010]).
Hence the goal was to Vnd a reliable method of detecting UP-states that could work on spike rates
alone if necessary.

Score-based

A new, score-based method was developed which evaluated certain features of both voltage and
spike rate data preprocessed by the method to produce the star plots (see Vgure 2.6 and section 2.2.2
Phase Space Trajectory Projection Plots). The features used were angle and radius of the phase space
projection and its angular velocity in both mean rate and mean voltage phase space, as well as the
mean spike rates of the RSNP cells in each attractor. Each set of data was optional, the method could
also be applied to either voltage or spike rates alone.

For each time step a candidate attractor was generated (corresponding to the attractor with the high-
est voltage or – if available – the highest spike rate at that time), for which it was then determined
whether or not it actually was in an UP-state. Then certain criteria were checked:

• Is the distance of the position in the phase space projection suXciently far away from the
origin? Otherwise this would indicate competition between several attractors.

• Does the angle correspond to the candidate within a certain margin of error?
• Does the angular velocity not exceed a certain value? Note that by inspecting the angular
velocity, rate changes within an active attractor are ignored, because those are aligned with
the attractor and hence correspond to changes in the radius of the PSTP rather than its angle.

2The subset was comprised of 2 randomly chosen pyramidal cells per MC – in larger networks the sample size had to
be reduced to 1.
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(a) (b)

(c) (d)

Figure 2.7: Comparison between score and spike based UP-state detection: PSTP plots from Vgure 2.6 without
velocity information. Instead, colors denote which attractor was detected to be in an UP-state.

Example of score-based UP-state detection on a default sized network (9 HCs by 8 MCs) : (a) Spike
rate phase space, (b) average voltage phase space. Violating angular alignment in voltage phase
space is weighted less than in spike rate phase space. Furthermore each successful UP-state is
more likely to occur far from the origin. Overall this leads to shorter detected UP-states and the
problems mentioned in the text.

The same network is analyzed via the spike-based method described in 2.2.3 Spike-based: (c) spike
rate phase space, (d) average voltage phase space. With much fewer adjustable parameters, the
constraints applied to PSTPs are rather similar.
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2.2 Network Behavior Analysis

• Does the candidate attractor have the lowest spike rate of the RSNP cells? Since only those
RSNP cells receive input which are not participating in an UP-state, the RSNP spike rate of
the active attractor should be lowest.

Each criterion that was not met was penalized with an individually adjustable score. This allowed
a weighting of features based on their importance: An example would be the angular alignment of
the spike rate PSTP plot (see Vgure 2.6a) versus the voltage PSTP plot (see Vgure 2.6b). If the overall
score was lower than an adjustable threshold, the candidate was said to be in an UP-state, otherwise
the complete network was in a state of competition.

While this detection mechanism did allow reliable UP-state detection on spike rates only if desired,
Vnding adequate values for each adjustable parameter proved to be both time consuming and rather
arbitrary. Furthermore, the score-based algorithm had the tendency to detect very short DOWN-
states between prolonged UP-states of the same attractor. This became rather hard to eliminate,
which is why this method was abandoned once the following method was conceived.

Spike-based

The Vnal method for detecting UP-states – and the one which is employed throughout this thesis –
is based on the rather trivial observation that the mean spike rate of an attractor during an UP-state
is much higher than the spike rate in all remaining patterns in their corresponding DOWN-states,
whereas – in times of competition – two or more attractors have elevated but rather similar spike
rates. A measure which quantiVes this relationship is the standard deviation σ of all mean spike
rates at a given time t.

σ(t) =
1

NPat − 1

√√√√NPat∑
i=1

(ri(t)− r̄(t))2 with r̄(t) =
1

NPat

NPat∑
i=1

ri(t) (2.12)

where NPat denotes the number of patterns and ri(t) is the rate of pattern i at time t. The attractor
with index i is then said to be in an UP-state at time t if the following relation holds true

ri(t) > c · σ(t) > r1..NPat\i(t) (2.13)

Where c is a numerical constant which is set to 1 for orthogonal patterns, but has to be increased
in case the spike rates correlate too much in case of non-orthogonal patterns (see section 3.4 Non-
Orthogonal Patterns). An illustration of this principle is outlined in Vgure 2.8.

This method of detection has the advantage that it is based exclusively on spike trains, has a clear
notion of there being – at most – one UP-state at any given time and is a completely local measure,
meaning that a very large value somewhere on the time axis cannot bias the detection at all other
times. Both previous methods had this disadvantage in that they were dependent on extremal values
extracted from the complete data itself. As a test, model networks which have been designed to have
no UP-states at all are analyzed correctly, as long as the total number of (inactive) attractors is
large enough. In too small networks with randomly spiking neurons, it might happen by chance
that all but one spike rate is below the more or less constant standard deviation. However, this
probability decreases exponentially as the number of attractors increases and is eUectively gone
once the network size reaches 6 attractors (see Vgure 2.9). Furthermore, the falsely detected UP-
states are very short and can thus easily be Vltered out if so desired.
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Figure 2.8: Illustrating the working principle of the UP-state detector for a small network (a) and a default
sized network (b). The small network is comprised of 5 HCs with 4 MCs each, while the default
network contains 9 HCs, each with 8 MCs. Shown are the spiking neurons and their correspond-
ing mean spike rate, color coded by pattern. The standard deviation σ (black) and average spike
rate of the whole network (grey) are plotted as well. It can be clearly seen that during an UP-state,
the active attractor’s spike rate is separated from all other attractors’ spike rates by the standard
deviation σ. While the mean rate r̄(t) (gray) has the same property, it lacks variability and is
therefore less sensitive to times of competition. UP states with diUerent spike rates are detected
as well.
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0 1000 2000 3000 4000 5000
Time [ms]

0

200

400

600

800

1000

1200

1400

1600

N
eu

ro
n 

#

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n 
ra

te
 [

H
z]

Figure 2.9: Spike-based classiVcation on a network with 9 HCs by 6 MCs where the excitatory connections
between pyramidal cells have been severed. The important thing to note in this plot is the fact that
since all spike rates are rather similar the standard deviation (black) is small. Hence no UP-states
are being detected, which is the desired outcome.

2.3 Implementation

The complete model is implemented in PyNN (Davison et al. [2008]), which is a back-end-agnostic
Application Programming Interface (API). It provides a library of standard neuron and synapse
models and allows high-level, object-oriented modeling of neuronal networks in the programming
language Python. In principle, the simulator can be switched by changing a single line of code. It
therefore allows simulation of the same neuron models and network architectures with diUerent
backends. These backends include several software simulators as well as the virtual hardware (see
for example Brüderle et al. [2011]).

The actual backend used in this thesis is NEURON (see Hines and Carnevale [2006]), a simulation
environment for both single neurons and networks written in C, which was primarily developed by
Michael Hines, John W. Moore, and Ted Carnevale at Yale and Duke.

All simulations were conducted with an Intel Core i5 750 as well as an AMD Phenom II X4 965 CPU.
Both machines were equipped with 8 GB of main memory.

With PyNN as basis it was a straightforward decision to write analysis routines in Python, while –
most prominently – using NumPy (Oliphant [2006]) and Matplotlib (Hunter [2007]).

17



2 Simulation

Model Implementation

An early version of the model with basic functionality was provided prior to this thesis with a
somewhat dissimilar network architecture as well as no way of deVning patterns and stimulus to the
network without changing the source code, which has since been updated to the present network
structure. Also, among other minor things, the stimulus and pattern modules discussed below were
designed and implemented, greatly enhancing the model’s feature range.

Stimulus Module

An essential part of this thesis was the development of the pluggable stimulus module with which
layer 4 input becomes possible. In the earlier implementation of the model only background stim-
ulus was present. Now stimulus to single or logical groups of pyramidal cells is easily conVgurable
without changes to the source code itself. Random sampling is supported as well – the user simply
speciVes a number of HCs/MCs/pyramidal cells to stimulate which causes a sample of the speciVed
size to be drawn randomly for the network/each HCs/each MCs. Furthermore, MCs in a single HC
can be stimulated based on certain properties (see 3.5 Retinotopic Pattern Completion).

It is conVgured via a pluggable conVguration Vle which parses several parameters from the network
parameter conVguration Vle (e.g. number of HCs, MCs or pyramidal cells). This allows one input
conVguration to be used with several network layouts.

The complete input – or only the input diUerent from background noise (see 2.1.6) – to the network
can be recorded. Since the number of spike sources for each individual neuron can diUer (depending
on whether the neuron receives additional layer 4 input or not), a lookup table is saved as well so
that each spike source can be matched to the pyramidal cell it was targeting during simulation.

Pattern Module

Another part of this thesis was the implementation of the pluggable pattern module with which
the network structure can be conVgured freely in terms of which MCs participate in which pattern
(used especially in section 3.4). The only reasonable limitation made was that each pattern consists
of one MC out of every HC (as already outlined in 2.1.2 Patterns).

It follows the same design principle as the stimulus module in that patterns are deVned in a separate
conVguration Vle in which placeholders may be used in order to make it compatible with several
network sizes.

Furthermore, MCs participating in a pattern can be assigned to have a certain property represented
by an integer. Stimulus conVgured with the stimulus module can then be set up to only target
MCs within a HC which possess the speciVed property. With this setup it is possible to conduct
more complex pattern recognition and completion experiments, such as the ones described in 3.5
Retinotopic Pattern Completion.

Analysis

The early version of the model was already accompanied by an analysis script, implemented in
almost pure Python. Since then, the script has been greatly enhanced: Several more features are
evaluated, plotted and saved, such as the preprocessed data, when which pattern is in an UP-state,
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2.3 Implementation

dwell and competition times etc. All this data is then available for another series of scripts that
extract and plot diUerent features over a range of networks3.

Many features of the analysis – such as which UP-state detection to use or whether to plot several
features for each pattern as well as PSTP plots – are conVgurable on a per simulation basis. This
allows batch simulation and analysis of large numbers of networks with diUerent parameters4. All
data plots throughout this thesis were generated this way.

Furthermore, by making use of the array-wide operations oUered in NumPy, the performance of all
analysis scripts could be greatly enhanced (thereby decreasing run time).

Problems

The great Wexibility of Python comes at a performance price, and so several steps had to be taken in
order to achieve acceptable performance for both simulation and analysis of the model. Whenever
possible, array-operations were carried out on NumPy arrays which are implemented in low level
languages such as C or Fortran. More complex computations on even larger arrays of data (prepro-
cessing the data, see 2.2.1 Gauss Filter) were implemented in C-code and plugged into the analysis
script.

Another issue was the fact that the originally used NeuroTools5 module loaded all spike trains and
voltage traces at once, even though that data was only needed once and in serial order for pre-
processing. Especially for voltage data this led to huge amounts of memory being wasted, up to
the point, that the simulation server was brought to a near halt, desperately swapping data in and
out of the main memory. Therefore, a custom implementation of needed functionality from the
NeuroTools.signals.SpikeTrain and NeuroTools.signals.AnalogSignal classes was imple-
mented, thereby greatly reducing the needed memory both during analysis and when saving the
simulation data after a successful run. Furthermore, all spike and voltage data is saved using cus-
tom implementations and NumPy routines, in order to emulate a NeuroTools-written Vle without its
memory overhead.

3these scripts are, for example, used in 3.2.2 Pattern Completion, 3.2.3 Pattern Rivalry and 3.3 Hardware Imperfections
4e.g. with/without recorded voltages, several plots disabled which are not informative for very long biological times
5http://neuralensemble.org/trac/NeuroTools
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3 Results

In this chapter the benchmark network model is systematically investigated. The list of analyzed
features includes regular network dynamics and how they are aUected by diUerent network sizes.
Furthermore, pattern completion and rivalry are investigated as well as how the network responds
to three diUerent kinds of hardware speciVc distortion mechanism. Due to the fact that most of the
time in this thesis was spent developing the network model, the addition of non-orthogonal patterns
as well as retinotopic pattern completion – found at the end of the chapter – are more intended to
be a showcase of what the network is capable of performing, rather than an in-depth analysis.

The reader is also referred to the upcoming publication Petrovici et al. [2011] in which further anal-
yses of the network model will be conducted.

3.1 Parameter Fit

Since there is no straightforward way to transform the parameters of the neuron model employed
in the original network model, in which each neuron is modeled with six compartments, the param-
eters of the AdEx model (see 2.1.4 Neurons) had to be Vtted. Figure 1 in Lundqvist et al. [2006] was
used for reference, the corresponding Post-Synaptic Potentials (PSPs) can be seen in Vgure 3.1.

All further parameters were either taken directly from Lundqvist et al. [2006] or adjusted as to
reproduce roughly the same spiking rates in UP- and DOWN-states as in the original model (see
3.2.1 Background Input).

Since in the original paper the network size was Vxed to a default size of 9 HCs with 8 MCs,
all parameters were Vtted to that network size and then scaled for other network sizes (see 2.1.5
Network Scaling).

One problem during the Vtting process was the occurrence of extreme UP-states, in which the
pyramidal cells would Vre with roughly ten times the regular spike rate (which is observed in 3.2.1
Background Input), greatly reducing their dwell time. The only way to avoid this phenomenon
was to signiVcantly increase the synaptic weight from RSNP and basket to pyramidal cells. This
illustrates some of the diXculties encountered during parameter tweaking.

3.2 Orthogonal Patterns

First, general characteristics of a network with orthogonal patterns are evaluated in order to make a
qualitative comparison between the new network model and the original possible. Orthogonal pat-
terns are comprised of one MC out of each HC where no MC is in two patterns at once. Without loss
of generality all MCs with the same index i are set to participate in the corresponding pattern i.
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3.2 Orthogonal Patterns

Figure 3.2: Original PSP plots in Lundqvist et al. [2006] (Vgure 1) that served as basis for Vtting the parameters
of the AdEx model employed in this thesis.

A to D in this Vgure correspond to (a) to (d) in Vgure 3.1.

3.2.1 Background Input

When stimulating the network with background noise only, it exhibits spontaneous UP-states (see
Vgure 3.3). The dwell time of a single UP-state is roughly inversely proportional to the number
of attractors. This is due to the increased competition between the diUerent patterns, whereas
increasing the number of HCs relative to the number of MCs stabilizes the UP-state since more MCs
are participating in an active attractor (see Vgure 3.5).

Due to the fact that competition increases when the number of MCs is increased, competition times
increase by a large amount in larger networks and spontaneous UP-states become increasingly rare
(see Vgure 3.6). Whereas in the smallest network (6 HCs, 3 MCs) almost 90 % of the time one
attractor was in an UP-state, the percentage decreases to 26 % (8 HCs, 20 MCs) and 17 % (18 HCs,
16 MCs) for larger networks. It is important to note that increasing the number of HCs or MCs both
led to an increase in total competition time, albeit only the latter led to very long DOWN-states.
This can be explained by the fact that either the relative strength of an individual competitor or the
total number of competitors is increased.

Another feature to investigate is the mean spike rate during UP- and DOWN-states (see Vgure
3.7). In most cases the UP-state spike rates lie roughly within the range of 8–12 Hz. Due to the
competitive nature of larger networks, less spontaneous UP-states occur in total. Since UP-states
only last for about 200–250 ms on average, there is an inverse correlation between spike rate and
dwell time: Since τw = 400 ms for pyramidal cells (see table A.2), each pyramidal cell can only Vre
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3 Results

Figure 3.3: The default network: Pyramidal spikes for a default network consisting of 9 HCs with 8 MCs each
stimulated by the noisy background only. The horizontal lines denote UP- (green) and DOWN-
states (red) of the attractors and have been automatically generated by the analysis module. Spon-
taneous UP-states with short competition times in between are observed.

a certain number of spikes before the adaptation variable becomes too large for the pyramidal cell
to spike again with the current input. Hence, the attractor dies out.

Compared to the original model, UP-states in the new model are only half as long (200–250 ms
compared to 500–1000 ms). On the other hand, average spike rates in the range of 8–12 Hz are
nearly double of what was observed for the original model (5.6 Hz). However, the peak spike rate
of 14 Hz during an UP-state observed in the original model could be reproduced (see for example
Vgure 2.4a). This suggests that the current parameters could be optimized to reduce average spike
rate during an UP-state while increasing overall dwell times.

3.2.2 Pattern Completion

Pattern completion is a basic property of associative-memory networks. By only stimulating a
subset of pyramidal cells participating in a pattern, the complete pattern is recalled, as the activity
Vrst spreads within the stimulated MCs, turning them dominant in their corresponding HCs. After
that, the activity spreads further to other HCs – while the already dominating MCs stabilize each
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3.2 Orthogonal Patterns

Figure 3.4: Pyramidal spikes for a larger network consisting of 8 HCs with 20 MCs each stimulated by the
noisy background only. The horizontal lines denote UP- (green) and DOWN-states (red) of the
attractors and have been automatically generated by the analysis module. Spontaneous UP-states
are observed here as well, with much longer competition times (than in Vgure 3.3) in between.

other through mutual stimulation – activating the whole pattern while suppressing all others. The
corresponding attractor hence enters an UP-state.

To verify the existence of pattern completion a series of diUerent1 networks was simulated. In order
to reduce the occurrence of spontaneous UP-states – which would interfere with induced UP-states
– competition within the network was increased. Each network’s size was changed to 8 HCs with
20 MCs with stimulated UP-states. Yet, the number of HCs was not increased in order to achieve
reasonable simulation times on the employed hardware.

For each network, 7 out of the 20 total patterns were chosen at random. Every 700 ms one of those
patterns was stimulated. To avoid bias induced by stimulating only one pattern over and over again,
each pattern in the network is stimulated at most once.

The number of stimulated HCs as well as the duration of the layer 4 stimulus is varied for diUerent
networks. For each stimulated HC 6 pyramidal cells in the MC belonging to the pattern are targeted.

1each network has diUerent seeds for the random number generators
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Figure 3.5: Histogram of UP-state dwell times in net-
works of varying sizes stimulated by noise
only and simulated for 60 s of biological
time: (a) 6 HCs, 3 MCs each, (b) 9 HCs,
8 MCs each, (c) 8 HCs, 20 MCs each, (d)
18 HCs, 8 MCs each, (e) 18 HCs, 16 MCs
each. It can be seen that an increased num-
ber of MCs shortens dwell times, whereas a
large number of HCs (relative to the num-
ber of MCs) stabilizes UP-states and hence
increases dwell times.
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Figure 3.6: Histogram of competition times in which
no attractor is in an UP-state in networks
of varying sizes, stimulated by noise only
and simulated for 60 s of biological time:
(a) 6 HCs, 3 MCs each, (b) 9 HCs, 8 MCs
each, (c) 8 HCs, 20 MCs each, (d) 18 HCs,
8 MCs each, (e) 18 HCs, 16 MCs each.
The more attractors are present within the
network, the longer competition times be-
tween spontaneous UP-states become –
from mere 20 ms in (a) to more than 6 s in
(e).
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Figure 3.7: Histogram of mean pyramidal spike rates
in both UP-states (red) as well as DOWN-
states (blue) in networks of varying sizes,
stimulated by noise only and simulated for
60 s of biological time: (a) 6 HCs, 3 MCs
each, (b) 9 HCs, 8 MCs each, (c) 8 HCs, 20
MCs each, (d) 18 HCs, 8 MCs each, (e) 18
HCs, 16 MCs each. As with dwell times,
increased numbers of competing patterns
lower the average spike rates.
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3.2 Orthogonal Patterns

Figure 3.8: Pattern completion in a network with 8 HCs by 20 MCs. Pyramidal spikes and layer 4 input rate
(colored by stimulated pattern) for the network in which three patterns 1, 2 and 3 are stimulated
in 2, 4 and 6 out of possible 8 HCs in turn for 40 ms. The input rate is calculated over all layer
4 sources and normed to the total number of pyramidal cells in each pattern. This allows the
comparison of total input strengths for diUerent patterns because the stimulus rate is higher the
more pyramidal cells of one pattern are stimulated in total. Since only 6 out of 30 pyramidal cells
are stimulated in each MC that receives layer 4 input, the plotted stimulus rate is much lower
than the 75 Hz set for the spike sources might suggest. Because the input is comprised of Poisson-
distributed spikes (see 2.1.6 Stimulus), its total actual rate varies.

It is observed that stimulating either 2, 4 or 6 HCs for 40 ms is indeed enough to recall the whole
pattern. Also, it can already be seen somewhat in this network that the probability of success is
dependent on the number of stimulated HCs.

Note that this network is shown for demonstrating purposes only and was not included in the
statistics gathered for Vgures 3.9 and 3.10.

Each conVguration (HCs/ duration) is simulated in 4 diUerent networks, amounting to 384 simulated
networks in total.

The dynamics of such a network can be observed in Vgure 3.8. For easier visualization, only three
patterns are stimulated repeatedly.

Afterwards, each network is analyzed. An activation attempt is said to be successful if the stimulated
pattern is detected to be in an UP-state within 200 ms after the stimulus started. If another pattern
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Figure 3.9: Pattern completion in a network of 8 HCs by 20 MCs. Success ratio for activating a speciVc pattern
as described in the text. The color of each rectangle corresponds to the success ratio at the lower
left corner. See also Vgure 3.10.

It is observed that once half of all HCs are stimulated for 30 ms or longer, pattern can be recalled
quite reliably. On the other hand, stimulating only 1 out of 8 HCs or only for 10 ms is not enough
to activate the attractor in most cases. Note that even in the case of 8 stimulated HCs pattern
completion is performed, since only 6 out of 30 pyramidal cells per participating MC receive layer
4 stimulus.

is active during that time or if the stimulated pattern already was active up to 500 ms prior to
activation the attempt is deemed invalid and ignored for calculating success ratios. This is done
because it is far less likely to activate a pattern when another one is already active (see next section)
or when the stimulated pattern is still suUering from adaption because it was active recently. Out
of the 28 total attempts for each parameter combination, between 15 and 27 were valid. The rise
time is deVned as the time diUerence from the start of the stimulus until the Vrst time the pattern is
detected to be in an UP-state.

Both success ratios (Vgure 3.9) as well as average rise times (Vgure 3.10) are plotted. It can be safely
concluded that the network is fully capable of pattern completion.

3.2.3 Pattern Rivalry

Another important feature is the inability of one pattern, stimulated by layer 4 input, to terminate
another already active pattern and enter an UP-state itself. This phenomenon is the so-called atten-
tional blink, studied by experimental psychologists (Shapiro et al. [1994], Marois and IvanoU [2005]).
When subjects are looking at diUerent letters in rapid succession, if one letter is followed by an-
other after a short enough interval, the second one is not perceived. Lundqvist et al. [2006] suggests
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Figure 3.10: Average rise time for pattern completion in a network with 8 HCs by MCs (solid lines) for diUer-
ent numbers of stimulated HCs and stimulation lengths. The success ratio (dotted line) indicate
from how many values averages and standard deviation (error bars) were computed and should
not be confused with success ratios shown in Vgure 3.9. The data suggests that the average rise
time is constant once patterns are reliable activated (half of HCs being stimulated for 30 ms or
more) since there is a constant time that is needed for the activity to spread within each HC
and throughout the pattern. Stimulating too few HCs leads to additional delays because the
activity has to spread further (to more than half of all MCs); whereas too short stimulation is
highly dependent on there being enough spikes in total and furthermore relies on advantageous
background stimulation in order to achieve entering an UP-state.
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3 Results

Figure 3.11: Demonstrating the reliable UP-state initiation of a network with 8 HCs by 20 MCs. Pyramidal
spikes and layer 4 input rate (colored by stimulated pattern) are shown. Patterns 1, 3 and 5 are
stimulated in the way described for pattern A in the text. The immediate onset of UP-states
for this kind of stimulus can be seen. Already active spontaneous UP-states are successfully
terminated. Note that because of Vltering with a Gaussian (see 2.2.1 Gauss Filter) the very short
input appears to be wider than it actually is. Also see Vgure 3.12.

Note that this network is only for demonstrating purposes and was not included in the statistics
gathered for Vgure 3.13.

that this is due to the Vrst letter triggering an attractor state which cannot be terminated by layer 4
stimulus corresponding to the second pattern (which in turn corresponds to the second letter).

This phenomenon is again investigated through a series of diUerent networks of same size as in 3.2.2
Pattern Completion (8 HCs by 20 MCs). For each network, all 20 patterns are randomly assigned
in pairs of two in shuYed order. Then, again in 700 ms intervals, 10 pattern rivalry attempts are
made.

Let the two patterns in each pair be denoted A and B. In order to nearly guarantee an immediate
UP-state of pattern A, all pyramidal cell receive stimulus with layer 4 like weights at 100 Hz for
only 10 ms which amounts to one layer 4 spike per pyramidal cell on average. This provides a
reliable way to have an UP-state start a deVned point in time, which is all the more important,
because UP-states are only about 200–250 ms long. Then, after a certain delay ∆T , pattern B is
stimulated regularly, which means that 6 out of 30 pyramidal cells receive layer 4 input at 75 Hz for
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3.2 Orthogonal Patterns

Figure 3.12: Network dynamics of the same network as in Vgure 3.11 where additionally patterns 2, 4 and 6
receive pattern B like stimuli (see text) to 5 HCs after 40 ms, 80 ms and 120 ms. The input rate
is calculated over all layer 4 sources and normed to the total number of pyramidal cells in each
pattern. This allows for the visualization of diUerent input strengths.

It is clearly observed that even though the stimulus in itself is governed by the same parameters
in each case, the time delay to the onset of the UP-state has a great inWuence as to whether
the competing attractor succeeds. For 40 ms it is not possible, for 80 ms only one out of three
attempts succeeds and for 120 ms all three attempts succeed. See Vgure 3.13 for more extensive
statistics.

Note that this network is only for demonstrating purposes and was not included in statistics
gathered for Vgures 3.13.

40 ms. The duration was chosen to be roughly 1/5 of the average attractor dwell time, corresponding
to the 120 ms stimulus while observing 500–1000 ms long UP-states (Lundqvist et al. [2006]). The
number of stimulated HCs as well as the delay ∆T are varied for each network. Each combination
of parameters is realized in two networks, totaling up to 336 separate simulations.

The same way as in 3.2.2 Pattern Completion, each network is then analyzed as to whether patternB
was successfully activated or not. If the competing pattern B was activated within 200 ms after the
stimulus started, the attempt is counted as successful – otherwise it is deemed unsuccessful. Fur-
thermore, the rise time from the beginning of the stimulus until the onset of the UP-state is recorded
for each successful attempt. As before, attempts during which spontaneously activated patterns in-
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Figure 3.13: (a) Pattern rivalry in a network of 8 HCs by 20 MCs. Success ratio for activating a speciVc
pattern B when pattern A is already active as described in the text. The color of each rectangle
corresponds to the success ratio at the (x,y) values of its lower left corner. See also Vgure 3.14.
(b) Pattern rivalry as observed in the original model (Vgure 7 from Lundqvist et al. [2006]).

It is observed that roughly within the Vrst 70–80 ms after pattern A was activated, stimulus for
pattern B is highly unlikely to terminate pattern A’s UP-state. For larger ∆T success is more
likely the more HCs are stimulated, as would be expected. Finally, when the stimulus of 40 ms
is still active when an UP-state decays on its own (which is the case when its onset is roughly
at 175 ms), the probability of activating pattern B returns to the value observed in Vgure 3.9,
because same as when no pattern is active, the stimulated pattern B gets a head start once
pattern A decays regularly.

Compared to the original model the observed time span of attentional blink is somewhat shorter
with a steeper falling edge. This can be explained with the dwell times of UP-states which are
shorter than in the original model in general.
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Figure 3.14: Average rise time for pattern rivalry in a network with 8 HCs by MCs (solid lines) for diUerent
numbers of stimulated HCs and delays ∆T between active pattern A and competing pattern B
(see text). The success ratio (dotted line) indicate from how many values averages and standard
deviation (error bars) were computed and should not be confused with success ratios shown in
Vgure 3.13. If the success ratio was below 20 %, the corresponding rise times have been omitted.

It is observed that for low ∆T rise times are high and vary a lot, if they exist at all. This is
due to the fact that the layer 4 stimulus alone is generally not enough to terminate the pattern.
Therefore the UP-state is only terminated if by chance pattern A is weak and the stimulus to
pattern B is concentrated enough. Furthermore, high rise times indicate that pattern B only
became active after patternA decayed regularly, since it had an advantage over all other patterns
due to the received additional stimulus. The latter point also explains why rise times approach
their regular pattern completion counterparts (observed in Vgure 3.10) for large ∆T .
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3 Results

tervene are ignored and therefore not counted as unsuccessful activation attempts. Overall between
16 and 20 valid attempts were recorded for each parameter combination. From all successful and
unsuccessful attempts, the success ratios are calculated and plotted in Vgure 3.13. Rise times are
plotted in Vgure 3.14. Both Vgures show that attentional blink is clearly present in the investigated
network.

3.3 Hardware Imperfections

When porting the model to neuromorphic hardware, one has to deal with diUerent constraints.
With regular CPU-based architecture one is limited by the processing power, which means that the
time needed to complete a network simulation scales with the size of the network. This is diUerent
in neuromorphic hardware – since it is inherently parallel, computational time does not scale with
network size. However there are several other limitations to consider. These include the number of
possible hardware neurons and synapses as well as the parameter ranges being physically limited.
Furthermore, long range connectivity is limited by bandwidth accompanied by a possible loss of
spikes. Also – as is the case with all analog circuitry – all components suUer from process variations
which can be countered with calibration only to a certain extend.

In order to give an estimate as to how the network model presented here will react under vari-
ous kinds of distortions, the three most important ones are investigated here via manipulation of
parameters along with methods of compensation.

The network used for investigations was of default network size, 9 HCs by 8 MCs, in order to study
the change in spontaneous network behaviour (no layer 4 input was applied). Each distorted net-
work shown in the following sections, was simulated for 120 s of biological time. Since, as before
mentioned in 2.3 Implementation, recording voltage traces is very memory consuming (compared to
spike data), each network was again simulated for 5 s while recording voltages. Overall 99 conVgu-
rations of the network are simulated in these two ways.

3.3.1 Neuron Loss

Since the number of hardware neurons is known in advance, it is an obvious for networks to be
emulated to not exceed this number. However, if one needs to have a certain number of HCs
and MCs which would to a violation of this restriction or the attractor-memory is part of a larger
network to be emulated, it might be necessary to decrease the number of neurons residing in each
MC. Since in the default setup pyramidal cells make up almost 91 % of all cells in the network, it is
easiest to homogeneously reduce their numbers.

First, the decrease is not compensated (plotted in red in Vgure 3.16), whereas in another simulation
run the connection probabilities as well as the weights were increased according to table A.4 in
which Npyr represents the reduced count of pyramidal cells per MC (plotted in blue). It can be seen
that up to a loss of 20 % compensation is not really necessary as all investigated features remain
quite similar (note that the diUerence in membrane potential could still be explained due to the
short simulated biological time as well as the fact that only a small subsample of all pyramidal
cells was recorded). Beyond that, regular network dynamics in the uncompensated case break
down, evidenced by the increase in competition time, a decrease in dwell time as well as an overall
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3.3 Hardware Imperfections

increase in DOWN-state spike rates (the increase in detected UP-states for 80 % and 90 % is merely
an artifact of the UP-state detection method because overall spike rates are too low).

(a) (b)

Figure 3.15: Network dynamics in a network of default size with 90 % neuron loss simulated for 5 s of biolog-
ical time: Both the uncompensated (a) as well as the compensated case (b) are shown. Amazingly,
even with a mere 3 pyramidal cells per MC, regular network dynamics are observed, whereas in
comparison it is obvious that the slight concentrations of spikes in the uncompensated case can
hardly be regarded as UP-states. The horizontal lines denote UP- (green) and DOWN-states (red)
of the attractors and have been automatically generated by the analysis module.

By compensating for the lower neuron number, it is possible to preserve network dynamics for even
as much as 90 % loss – see Vgure 3.15 for a comparison of network dynamics in that case. Because
connection probability and synaptic weights are increased, both excitation during UP-states and
inhibition during DOWN-states of a single cell increase, as evidenced by lower average membrane
potentials during DOWN-states as well as higher average membrane potentials and spike rates
during UP-states. The latter therefore lead to somewhat shorter UP-states, because the neuron
parameters – including the ones governing adaption – were left unchanged.

It can thus be concluded that the network is very resilient to neuron loss when properly compen-
sated for. Since a reduction of neurons is always accompanied by a reduction of synapses, it is a
viable strategy when compensating for the eUects of synapse loss, discussed in the next section.
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(a) Average attractor dwell time
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(b) Average competition time
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(c) Average pyramidal spike rate during DOWN-states
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(d) Average pyramidal spike rate during UP-states
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(e) Average membrane potential during DOWN-states
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(f) Average membrane potential during UP-states

Figure 3.16: Network of default size for varying degrees of pyramidal neuron loss. Neurons were lost ho-
mogeneously across all MCs. Both the uncompensated case (red, all other parameters are left
untouched) as well as rescaling according to the rules in table A.4 (blue) are shown. In order
to give a sense of how many data points were used for computing the plotted values, the total
number of UP-states (dotted line) is plotted as well. Stimulation time was 120 s for (a) to (d) and
5 s for (e) and (f). Refer to the text for further information.

38



3.3 Hardware Imperfections

3.3.2 Synapse Loss

DiUerent than for neuron loss, it is not completely known prior to the process of mapping a given
network onto the hardware how many synapses a given model may have. Furthermore, if synapses
cannot be placed, they will most likely not omitted homogeneously throughout the whole network.
Still, because all processes concerning synapse loss are too complex to eUectively simulate during
this thesis, a severe simpliVcation was made in that all synapse loss was taken to be homogeneously
across all connection types. Therefore synapse loss was simulated by

p̃ = p · (1− f) (3.1)

where p is the original connection probability, p̃ the connection probability after synapse loss and
f the fraction of loss.

Again, as with neuron loss, the results of compensation (blue) as compared to the uncompensated
case (red) were investigated in Vgure 3.17. Compensation was achieved by increasing the weights
of all connections as to keep the synaptic input of each cell the same.

w̃ =
w

1− f
(3.2)

where w is the original and w̃ is the increased synaptic weight.

As is observed in Vgure 3.17, synapse loss – when uncompensated – is even more harmful to net-
work dynamics than neuron loss. Already at 40–50 %, no dominant UP-states are observed though
there are faint remnants (see Vgure 3.18a). At 90 % synapse loss no structure whatsoever can be
identiVed (see Vgure 3.19a).

When compensated for, synapse loss of up to 40 % can be eUectively countered with only minor
distortions in the network behavior, such as the total number of UP-states which goes along with
longer competition times (see Vgures 3.17 as well as 3.18b). Beyond that, the network structure
remains recognizable but its characteristics become severely altered, such as dwindling dwell times.
This can be explained by the fact that even though connection weights are increased, there are
simply too few synapses in total for activity to spread and patterns to interact with each other.
This leads to a situation where several patterns are in a semi-UP-state but none has the strength to
completely suppress all others. Regular UP-states are only observed for very short times. Never-
theless, it is quite impressive that – when compensated for – the network activity pattern remains
recognizable even with only 10 % of the normal synapses (see Vgure 3.19).

Therefore it can be concluded that, while not as resilient as to neuron loss, the network is capable
of withstanding small to medium fractions of synapse loss.
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(a) Average attractor dwell time
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(b) Average competition time
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(c) Average pyramidal spike rate during DOWN-states
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(d) Average pyramidal spike rate during UP-states
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(e) Average membrane potential during DOWN-states
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(f) Average membrane potential during UP-states

Figure 3.17: Network of default size for varying degrees of total synapse loss. Synapses were lost homoge-
neously among all connections by reducing connection probabilities according to p̃ = (1− f) · p
where f is the fraction of loss. Both the uncompensated case (red) as well as increasing the
weights according to w̃ = w · (1− f)−1 (blue) are shown. The total number of UP-states (dotted
line) is plotted as well. Stimulation time was 120 s for (a) to (d) and 5 s for (e) and (f). Refer to the
text for further information.
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3.3 Hardware Imperfections

(a)

(b)

Figure 3.18: Network dynamics in a network of default size with 40 % synapse loss simulated for 5 s of bi-
ological time: Both the uncompensated (a) as well as the compensated case (b) are shown. In
the uncompensated case network dynamics are suppressed to the point that they fail to satisfy
the set criteria for UP-states, but are still visible as slightly elevated spike rates. Furthermore,
it can be seen that by means of compensation the regular network dynamics can be restored.
The horizontal lines denote UP- (green) and DOWN-states (red) of the attractors and have been
automatically generated by the analysis module.
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3 Results

(a)

(b)

Figure 3.19: Network dynamics in a network of default size with 90 % synapse loss simulated for 5 s of bio-
logical time: Both the uncompensated (a) as well as the compensated case (b) are shown. While
the uncompensated case bears no resemblance to the original model whatsoever, network dy-
namics can be somewhat restored via compensation yet the observed periods of elevated spike
rates within each pattern do not satisfy the set criteria for UP-states. See the text for further
discussion. The horizontal lines denote UP- (green) and DOWN-states (red) of the attractors and
have been automatically generated by the analysis module.
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3.3 Hardware Imperfections

3.3.3 Fixed Pattern Noise

Fixed pattern noise in the distribution of synaptic weights is diUerent from the previous two types
of distortion in that it is not compensable as easily, because even though designed with the same
speciVcations, analog circuitry is always subject to the tiniest variations which – even when cal-
ibrated – cause synaptic weights to be subject to variation as well. For an estimation of synaptic
weight noise on an uncalibrated “Spikey” system, see Müller [2011]. While possible compensation
mechanisms – such as increasing the average weights – do exist, they were not part of the inves-
tigations conducted in this thesis. It is therefore analyzed, how susceptible the network model is
to varying connection weights. When simulating the eUect of Vxed pattern noise the actual weight
of each single synapse present in the network was normally distributed around its regular value
µ with certain width σ proportional to µ. Several diUerent coeXcients of variation cv = σ/µ are
explored. For improved statistics each cv is simulated in four diUerently seeded networks.

From the data plotted in Vgure 3.20, it is seen that even noise up to cv = 20 % does not impede net-
work operation signiVcantly (see also Vgure 3.21a). Only the total number of UP-states is somewhat
reduced and hence competition times increased which also causes average DOWN-state spike rates
to rise – as one would otherwise see in a larger network (see Vgure 3.4 for comparison). Larger
coeXcients of variation bring the network dynamics to a near hold. Already at cv = 40 % only very
few, rather short and low spiking UP-states occur.

It can therefore be concluded that small amounts of noise are tolerable. Further simulations in
smaller networks show a size dependence of the inWuence on the network dynamics by hardware
imperfections. As it turns out, smaller networks are more resilient than the network of default size
investigated here. See the appendix B.1 for further data.
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(a) Average attractor dwell time
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(b) Average competition time
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(c) Average pyramidal spike rate during DOWN-states
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(d) Average pyramidal spike rate during UP-states
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(e) Average membrane potential during DOWN-states
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(f) Average membrane potential during UP-states

Figure 3.20: Network of default size for varying degrees of synaptic weight Vxed pattern noise. Synaptic
weights for all connections are distributed normally around their original values with varying
widths σ. For each fraction of jitter σ/µ four diUerent networks were simulated. In order to give
a sense how many data points were used for computing the plotted values, the total number of
UP-states (dotted line) is plotted as well. Stimulation time was 120 s for (a) to (d) and 5 s for (e)
and (f). Refer to the text for further information.
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3.3 Hardware Imperfections

(a)

(b)

Figure 3.21: Network dynamics in a network of default size with (a) σ/µ = 20 % and (b) σ/µ = 40 % normally
distributed synaptic weights simulated for 5 s of biological time: It is observed that the network
is capable of tolerating 20 % noise with only minor distortions (see text), while 40 % almost fully
suppress spontaneous activation. The horizontal lines denote UP- (green) and DOWN-states (red)
of the attractors and have been automatically generated by the analysis module.
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3 Results

3.4 Non-Orthogonal Patterns

Up to this point, all networks consisted of orthogonal patterns. Every MC took part in a single
pattern. Now this restriction is lifted and the consequences observed.

The simplest way of introducing additional patterns is to take one MC from each original pattern.
These pattern can be aligned diagonally as shown in table 3.1, and are hence forth called diagonal
patterns.

MC: 1 2 3 4

HC: 1 1,5 2,6 3,7 4,8
2 1,8 2,5 3,6 4,7
3 1,7 2,8 3,5 4,6
4 1,6 2,7 3,8 4,5

Table 3.1: Illustration of diagonal patterns. In a network of
4 HCs by 4 MCs, the patterns in which each MC
participates are noted. In addition to the regular
orthogonal patterns in which the index of the MC
within the HC coincides, diagonal patterns are in-
troduced in which the participating MC’s index is
advanced by one per HC.

A network with one diagonal pattern introduced is investigated in Vgure 3.22. The Vrst and most
important observation is the fact that regular network dynamics are preserved: It is still a single
pattern that is in an UP-state rather than two patterns that overlap at the same time. However, the
dwell time for the newly introduced pattern is signiVcantly lower.

When patterns overlap, the network principles are changed in a signiVcant way: In the orthogonal
case, whenever an attractor is in an UP-state, all pyramidal cells in the other MCs are actively
suppressed and receive no excitatory input except for noise and potential layer 4 stimulus. This
changes in the non-orthogonal case. Since excitatory connections exist between any two MCs that
share at least one pattern, MCs that are not part of the active attractor still receive excitatory input.
However, as the majority of active MCs do not share a pattern with any given MC, the majority
of input for any non-active MCs is still mostly inhibitory, hence the UP-state is able to emerge. If
each MC is in several patterns, the ratio of inhibitory to excitatory connections between MCs for
networks with the same number of HCs and MCs is constant, whereas, for other network sizes the
ratio depends on which pattern is active and on the non-active MC in question.

If a network is made up of non-orthogonal patterns, MCs in the active pattern participate in other
patterns as well. Since this increases the average spike rate, it lowers the standard deviation between
all patterns’ spike rates σ and hence distorts the UP-state detection mechanism presented in 2.2.3
Spike-based. A heuristic solution is to adjust the numerical constant c in equation (2.13) by the
average pattern overlap (e.g. if all MCs participate in 2 patterns, c = 2). This is obviously only a
solution for relatively small, evenly distributed overlap and increases the number of false-positive
UP-state detections2.

An interesting feature to look at are the transition probabilities governing the order in which attrac-
tors enter UP-states. For networks in which the number of HCs is an integer multiple of the number
of MCs with 2 evenly distributed3 patterns, one observes that the network spends long periods of
time in one of two subspaces (see Vgure 3.24). One set consists of the original, orthogonal patterns
while the other one is made up of the newly introduced diagonal patterns (which in themselves are

2As noted in 2.2.3 Spike-based, these can be Vltered out since they are very short compared to regular UP-states.
3No two MCs share more than one pattern, see section B.2 for examples.
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3.4 Non-Orthogonal Patterns
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Figure 3.22: (a) Network dynamics of a network of
9 HCs by 9 MCs which had one diago-
nal pattern (index 10) introduced. The
horizontal lines denote UP- (green) and
DOWN-states (red) of the attractors and
have been automatically generated by the
analysis module. As one can see, the
newly introduced pattern enters UP-states
just like any other. Since it shares a MC
with every other pattern, it is subject to
far greater competition, limiting the dwell
time of its UP-states in comparison to the
other patterns. This is further evidenced
by the total attractor dwell times for the
same network simulated for 120 s shown
in (b) where the newly introduced pattern
(index 10) is active signiVcantly less in to-
tal.

orthogonal as well). If the network is in an UP-state of either pattern, the next UP-state is far more
likely to be of the same subset of patterns (see Vgure 3.24b).

This can be explained with the way patterns are set up here. Let the two subspaces be denoted by
A and B. If a pattern of A is active, one MC of each pattern of B is active as well. Due to synaptic
adaption, all these MCs need a refractory period until they can be activated once again. This means
that all patterns of B have one MC less to compete for activation within the HCs while all other
patterns from A are, in a sense, fully rested – hence they have an advantage in competition. This
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3 Results
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Figure 3.23: Average attractor dwell time for a net-
work with 8 HCs with 8 MCs each simu-
lated for 120 s of biological time. MCs par-
ticipate in diUerent numbers of patterns
according to the tables in section B.2. It
becomes apparent that the increased com-
petition as well as stimulation of other
patterns during an UP-state (see text) re-
sults in a shortening of attractor dwell
times. All four networks were analyzed
with a scaling factor of c = 2.5 for UP-
state detection; competition times under
50 ms were ignored.

results in a higher transition probability to patterns within the same subset. Although not shown
here, it was possible to control which meta-attractor the network was in by stimulating one of the
corresponding patterns.
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Figure 3.24: Network with 6 HCs by 6 MCs in which each MC participates in 2 patterns. (a) Active attractors
denoted by horizontal lines over 60 s of biological time. One observes meta-attractors in which
primarily patterns from one orthogonal subspace are activated. (b) Transition rates in the same
network, simulated for 300 s of biological time. A transition was said to occur if UP-state n
follows UP-state n + 1 within 500 ms. One clearly observes that transitions within the same
orthogonal subspace are preferred.

3.5 Retinotopic Pattern Completion

Retinotopy describes the spatial organization of the neuronal responses to visual stimuli. Visual
patterns observed correspond to the spatial pattern of activated neurons. So called retinotopic maps
are found in several parts of the brain (Wandell et al. [2005]).
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3.5 Retinotopic Pattern Completion

In order to implement retinotopic pattern completion, very simple images are encoded onto the
diUerent – now again orthogonal – patterns of the network. Each HC in this very simpliVed retino-
topic map is said to represent a pixel in a picture. The MCs in each HC are then assigned the color
(black/white) that the corresponding picture has in the respective pixel. This principle is illustrated
in Vgure 3.25 with a sample encoding of digits. The network structure is changed from the original
hexagonal to a rectangular grid with 500 µm between nearest neighbours, representing the shape of
the picture4.

Layer 4 stimulus is applied to the network in terms of pictures as well. Since each HC represents
a pixel, it is assigned the color of the corresponding pixel in the input image. The stimulus then
targets again 6 out of 30 pyramidal cells in all MCs whose previously assigned color coincides with
the color of the HC they reside in. This leads to several patterns receiving layer 4 input at the same
time. The aim then is to recall the pattern corresponding to the image observed.
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Figure 3.25: Exemplary retinotopic encoding (a) of the
10 digits in a network of 15 HCs by 10
MCs. Each HC represents a pixel of the
picture. They are aligned on a 5 × 3 grid,
on which numbers can be drawn (b). Each
digit is encoded in an orthogonal pattern.
Which MC belongs to which pattern can
be identiVed via the dashed circle. One
notices that the black and white coloring
of the digits in (b) corresponds to the col-
oring of the MCs in (a). During simula-
tion, stimulus is applied to HCs on a color
basis, meaning that all MCs with the right
color receive layer 4 input.

While the encoding of digits serves well as an intuitive example, it has several drawbacks when
actually simulated in small networks such as those discussed in this thesis: Apart from digit 1, all
other 9 digits share 6 pixels with each other5 and are overall quite similar (e.g. except for digit 4,
all other digits share the middle black pixel in the topmost row). All this adds up to the fact that if

4This inWuences delays within the network, see 2.1.4 Delays
5They share all black corners except for the lower left, the middle black pixel in the rightmost column and the two white
pixels from digit eight.
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3 Results

one digit is stimulated, several others will receive almost equal amounts of stimulus (e.g. digits 8
and 9, who only diUer in a single pixel). One observes that for activating patterns in a retinotopic
way, whether or not one pattern is activated instead of another is far more dependent on the ratio
of stimulated MCs than the actual diUerence (e.g. the one MC diUerence between digits 8 and 9 is
not enough when 14 and 15 MCs are stimulated in total). A Vrst attempt at investigating this is
made in Vgure 3.26.
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Figure 3.26: Total time spent in UP-states for each pattern in a network of 15 HCs by 10 MCs simulated for
60 s of biological time. The network was stimulated for 80 ms every 500 ms with an input image
corresponding to the lower three rows of the digit 8 (the upper two rows receive no input at all).
The number of MCs in each pattern that overlap with the input image (i.e. that receive stimulus)
are denoted by crosses. It can be seen that while there is no exact one-to-one correlation between
stimulated number of MCs and total dwell times, all patterns that have less than 7MCs stimulated
are signiVcantly less active in total than those with 8 or more MCs stimulated.

Instead of digits, it is far more practical for small networks to encode more dissimilar. In order to
simulate with a network of default size – and thereby shortening the time needed to complete a
simulation – the switch to a 3 × 3 grid is made on which 8 images are encoded that diUer in at
least two pixels (see Vgure 3.27b). As seen in Vgure 3.27, the images are indeed dissimilar enough to
recall the pattern corresponding to the input image.

While a more systematic investigation is currently being performed, it was shown here that the
network is capable of retinotopic pattern completion.
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3.5 Retinotopic Pattern Completion

(a)

(b)

Figure 3.27: Retinotopic pattern completion on a separate set of images. (a) The dynamics of a network of
size 9 HCs by 20 MCs where the Vrst 8 of the 20 orthogonal patterns were encoded with the
3 × 3 images shown in (b). In contrast to the encoded digits (see Vgure 3.25) the images in this
set are relatively more dissimilar to one another. Besides the encoded 8 patterns in (b), 12 other
patterns that receive no layer 4 input at all were introduced in order to reduce the occurrence of
spontaneous UP-states.

The patterns 1–5 (corresponding in (b) to the top row plus the Vrst on the left in the second) were
stimulated in ascending order for 60 ms in 500 ms intervals – the whole procedure was repeated
twice. As one can see, stimulating an image results in several of the patterns receiving layer 4
input proportional to their similarity with the presented image to 6 out of 30 pyramidal cells. It
is also observed,that most of the stimulated patterns are recalled. However, when the Vrst image
is stimulated for the second time, pattern 8 is activated, which is – as seen in (b) in the lower
right corner – quite similar to the stimulated image 1.

51





4 Discussion and Outlook

The aim of this thesis was the investigation of a cortical attractor-memory network. It was shown
that a neuromorphic hardware-compatible, modiVed version of the model proposed in Lundqvist
et al. [2006] is indeed exhibiting the same phenomena as the original model. Both elevated spike
rates in one attractor during an UP-state and almost no spikes in all other attractors are observed.
For spontaneous activity, network features such as attractor dwell time and pyramidal spike rates
in both UP- and DOWN-states are rather well preserved when the network size is changed and
connection probabilities are scaled accordingly. When increasing the network size, competition
times increase and spontaneous UP-states become less frequent, which is a desired eUect when
investigating the following features.

Both pattern completion as well as pattern rivalry in the network were examined. If no attractor
is active, small amounts of layer 4 stimulus (20 % of all pyramidal cells stimulated for roughly 1/8
of the average attractor dwell time in half of all MCs) are already enough to reliably induce an
UP-state. When dealing with competing patterns, the so-called attentional blink phenomenon was
successfully observed.

Furthermore, the inWuence of several distortion mechanisms relevant for the emulation on neuro-
morphic hardware were investigated. It was shown that the network can tolerate neuron loss very
well with proper rescaling. Therefore, neuron loss could be used to counter the eUects of synaptic
loss which was shown to be compensable by weight adjustments only up to a certain point. The
most severe threat to network dynamics is synaptic weight noise, at least for a network of default
size and only for spontaneous UP-states. Further simulations revealed that its eUect was far less
pronounced in smaller networks.

By introducing non-orthogonal patterns, the memory capacity of the network was expanded. It
was observed that the network is indeed capable of regular UP-state dynamics while each MC par-
ticipates in more than one pattern. Of particular interest were the transition probabilities between
UP-states, which should be investigated further. They provoke the emergence of meta-attractors
during which the network – in which each MC participates in two patterns – is primarily in an UP-
state of one of two orthogonal subspaces. So far, the concept has not been extended to more than
two orthogonal subgroups. Also, connections between MCs in diUerent HCs so far remained binary
in nature (either purely excitatory or purely inhibitory) – if the number of patterns per MC was
increased signiVcantly, the strength of their connections could be made dependable on the number
of patterns they share.

Besides that, non-orthogonal patterns also pose the Vrst real challenge to the otherwise quite reli-
ably working UP-state detection mechanism developed. Though the heuristic compensation pro-
posed works adequately, an extension to the UP-state detection mechanism for non-orthogonal
patterns could be developed.

Finally, retinotopic pattern completion as a particular application was investigated. It could be seen
that as long as the encoded images were dissimilar enough, the activation of the corresponding
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4 Discussion and Outlook

pattern was possible. However, if two images were very similar, the resulting small diUerence in
stimulated MCs in the corresponding patterns is insuXcient to activate one pattern over the other
in a reliable way. A more systematic analysis is currently being performed. Another interesting
approach would be the integration of the investigated network model into a full visual pathway
with the aim of creating a very fast visual classiVer.

Comparing the hardware-compatible model to the original model, the most prominent diUerences
are the short dwell times (roughly half as long as in the original model) combined with too high
average spike rates during UP-states (roughly twice as high as in the original model). Since the
parameters in this model were Vtted in essence by hand with only limited reference data (Vgure 3.2)
available, it is likely that a more thorough Vtting procedure with further reference data obtained
from of the original model will yield more accurate results. Because of neuronal adaption, the
maximum duration for eUective layer 4 input is limited by the average dwell time – longer stimulus
makes no sense because heightened adaption constants will prohibit any further activity. Longer
average dwell times would hence allow for longer periods of layer 4 stimulation which in turn
could help to investigate retinotopic pattern completion, because stimulation times in which several
patterns are stimulated at the same time can be increased.

Since all scripts in this thesis were developed with modularity in mind, all series of simulations con-
ducted in this thesis can easily be regenerated, simulated and analyzed with new sets of parameters
at practically no development cost. Furthermore, since simulation and analysis of single networks
as well as evaluation and feature extraction of large sets of networks are handled by disjunct scripts
which write all important derived data to disk, the range of features of the analysis suite can easily
be extended. For example, the complete range of simulations for pattern completion and rivalry
could be set up for every distorted network state examined in 3.3 Hardware Imperfections. The
limiting factor is the simulation hardware available.

The main technical issue while carrying out this thesis which came up repeatedly was the fact that
the earlier used NeuroTools as well as PyNN do not scale well when network size or simulation
time are signiVcantly increased. Especially the way of handling voltage traces and spike trains in
NeuroTools Vnally led to its complete dismissal and emulation of needed functionality via custom
routines to increase performance dramatically (see 2.3 Problems). All read and write operations of
simulation data is not handled by PyNN. The code could be used by PyNN/NeuroTools to provide an
alternate way of handling large sets of data that is only read once and then processed further – as
was the case during this thesis (see 2.2.1 Data Preprocessing).

A large portion of the problems introduced by large networks or long simulation times could be
somewhat mitigated by the introduction of a custom container Vle format designed speciVcally for
storing voltage traces and spike trains. In the current state, voltage traces and spike trains are
saved as simple text Vles which, when read again, need to be parsed and converted back to the
corresponding data types. This is Vne for small networks and short simulation times, but can get
very tedious when the Vles in question are beyond 1 GB in size (which is, for instance, already the
case for the spike data Vle when simulating a network with 6 HCs by 6 MCs for 300 s of biological
time). Further improvements such as noting at which Vle position the diUerent cells’ signals are
stored – a feature which is already present in the custom implementation of the needed NeuroTools
functionality – could be stored directly at the beginning of the Vle when the Vle is created.
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A Simulation Parameters

A.1 Neuron Model

Cell type Used PyNN model

Pyramidal EIF_cond_exp_isfa_ista
RSNP EIF_cond_exp_isfa_ista
Basket IF_cond_exp

Table A.1: Standardized PyNN models used,
see http://neuralensemble.org/trac/PyNN/wiki/StandardModels

Parameter Pyramidal RSNP Basket Unit

Cm 0.0692 0.007 69 0.007 nF
Erev,E 0.0 0.0 0.0 mV
Erev,I −85.0 −85.0 −85.0 mV
IoUset 0.0 0.0 0.0 nA
τm 13.5 22.7 22.7 ms
τrefrac 2.0 1.0 1.0 ms
τsyn,E 28.0 28.0 6.0 ms
τsyn,I 6.0 6.0 6.0 ms
Vreset −75.0 −85.0 −80.0 mV
Vrest −75.0 −75.0 −75.0 mV
a 0.0 0.0 – nS
b 0.024 0.0012 – nA
∆T 2.0 2.0 – mV
τw 400.0 200.0 – ms
Vspike −57.0 −66.5 – mV
Vthresh −62.0 −71.5 −69.5 mV

Table A.2: Used neuron parameters in simulation
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A.2 Synapses

Connection Probability Weight [nS] U (TSO!) τrec [ms] (TSO!)

Pyr −→ Pyr (same MC) 0.25 1.10 0.25 575
Pyr −→ Pyr (diUerent MC) 0.30 0.19 0.25 575
Pyr −→ RSNP 0.17 0.04 0.5 28
Pyr −→ Basket 0.70 0.10 0.5 6
RSNP −→ Pyr 0.70 3.80 1.0 4
Basket −→ Pyr 0.70 3.00 1.0 4
Background −→ Pyr – 0.13 – –
Layer 4 −→ Pyr – 1.10 – –

Table A.3: Used parameters for neurons in simulation, weights Vtted to default network size of 9 HCs by 8
MCs.

A.3 Scaling Formulae

Connection Scaled connection probability p̃

Pyr −→ Pyr (same MC) p̃ = 29
NPyr−1 · p

Pyr −→ Pyr (diUerent MC) p̃ = 30
NHC
· 8
NPyr−1 · p

Pyr −→ RSNP p̃ = 8
NHC−1 ·

30
NPyr
· 7
NMC−1 · p

Pyr −→ Basket p̃ = 30
NPyr
· p

RSNP −→ Pyr p̃ = 2
NRSNP

· p
Basket −→ Pyr (Enlarging) p̃ = 1

Nbasket
· p

Basket −→ Pyr (Shrinking) p̃ = 1
Nbasket

· 8
NMC
· p

Table A.4: Scaling rules for the connection densities p employed whenever a network deviated from the
default size (for which each scaling factor amounts to 1). Nx represents the number of units of
type x in the network to be scaled. p represents the original connection densities found in table
A.3. Note that whenever a scaled probability p̃ exceeded 1 it was kept at one and the weight of the
corresponding synapses increased by w̃ = w · p̃.
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B Further Information

B.1 Hardware Imperfections in a smaller Network

The following plots depict the same hardware imperfections as present in 3.3 Hardware Imperfec-
tions, but with a smaller network of 6 HCs by 4 MCs which illustrates the size-dependence of
hardware imperfections’ inWuence on the network as well as the increased robustness of smaller
networks.
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(c) Average pyramidal spike rate during DOWN-states
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(d) Average pyramidal spike rate during UP-states
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(e) Average membrane potential during DOWN-states
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(f) Average membrane potential during UP-states

Figure B.1: Small sized network (6 HCs by 4 MCs) for varying degrees of pyramidal neuron loss. Neurons
were lost homogeneously across all MCs. Both the uncompensated case (red, all other parameters
are left untouched) as well as rescaling according to the rules in table A.4 (blue) are shown. In
order to give a sense from how many data points the plotted values were computed, the total
number of UP-states (dotted line) is plotted as well. Stimulation time was 60 s for (a) to (d) and 5 s
for (e) and (f).
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(d) Average pyramidal spike rate during UP-states
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(e) Average membrane potential during DOWN-states
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(f) Average membrane potential during UP-states

Figure B.2: Small sized network (6 HCs by 4 MCs) for varying degrees of total synapse loss. Synapses were
lost homogeneously among all connections by reducing connection probabilities according to
p̃ = (1 − f) · p where f is the fraction of loss. Both the uncompensated case (red) as well as
increasing the weights according to w̃ = w · (1 − f)−1 (blue) are shown. The total number of
UP-states (dotted line) is plotted as well. Stimulation time was 60 s for (a) to (d) and 5 s for (e) and
(f).
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(c) Average pyramidal spike rate during DOWN-states
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(d) Average pyramidal spike rate during UP-states
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(f) Average membrane potential during UP-states

Figure B.3: Small sized network (6 HCs by 4 MCs) for varying degrees of synaptic jitter. Synaptic weights for
all connections are distributed normally around their original values and varying widths σ. For
each fraction of jitter σ/µ four diUerent networks were simulated. In order to give a sense from
how many data points the plotted values were computed, the total number of UP-states (dotted
line) is plotted as well. Stimulation time was 60 s for (a) to (d) and 5 s for (e) and (f).
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B.2 Diagonal Pattern Distribution Examples

B.2 Diagonal Pattern Distribution Examples

Here are several examples of how non-orthogonal patterns may be distributed to allow a certain
number of patterns per MC. The network is possesses 4 HCs with 8 MCs each.

MC: 1 2 3 4 5 6 7 8

HC: 1 1, 9 2,10 3,11 4,12 5,13 6,14 7,15 8,16
2 1,16 2, 9 3,10 4,11 5,12 6,13 7,14 8,15
3 1,15 2,16 3, 9 4,10 5,11 6,12 7,13 8,14
4 1,14 2,15 3,16 4, 9 5,10 6,11 7,12 8,13

Table B.1: Diagonal patterns in a network of 4 HCs by 8 MCs: The patterns in which each MC participates are
noted. Each MC participates in two patterns at once and each combination of patterns is unique.

MC: 1 2 3 4 5 6 7 8

HC: 1 1, 9,17 2,10,18 3,11,19 4,12,20 5,13,21 6,14,22 7,15,23 8,16,24
2 1,16,18 2, 9,19 3,10,20 4,11,21 5,12,22 6,13,23 7,14,24 8,15,17
3 1,15,19 2,16,20 3, 9,21 4,10,22 5,11,23 6,12,24 7,13,17 8,14,18
4 1,14,21 2,15,22 3,16,23 4, 9,24 5,10,17 6,11,18 7,12,19 8,13,20

Table B.2: Diagonal patterns in a network of 4 HCs by 8 MCs: The patterns in which each MC participates
are noted. Each MC participates in three patterns at once and each combination is unique.

1 2 3 4 5 6 7 8

1, 9,17,25 2,10,18,26 3,11,19,27 4,12,20,28 5,13,21,29 6,14,22,30 7,15,23,31 8,16,24,32
1,16,18,31 2, 9,19,32 3,10,20,25 4,11,21,26 5,12,22,27 6,13,23,28 7,14,24,29 8,15,17,30
1,15,19,29 2,16,20,30 3, 9,21,31 4,10,22,32 5,11,23,25 6,12,24,26 7,13,17,27 8,14,18,28
1,14,21,27 2,15,22,28 3,16,23,29 4, 9,24,30 5,10,17,31 6,11,18,32 7,12,19,25 8,13,20,26

Table B.3: Diagonal patterns in a network of 4 HCs by 8 MCs: The patterns in which each MC participates
are noted. Each MC participates in four patterns at once and each combination is unique.
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C Acronyms and Technical Terms

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
AdEx model Adaptive Exponential integrate-and-Vre model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
BSS BrainScaleS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
FACETS Fast Analog Computing with Emerging Transient States . . . . . . . . . . . . . . . . . . . . 2
HC hypercolumn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LIF Leaky integrate-and-Vre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MC minicolumn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
PSP Post-Synaptic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PSTP Phase Space Trajectory Projection
RSNP Regular Spiking Non-Pyramidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
STP Short Term Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
WTA winner-take-all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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