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Abstract. In this contribution we will provide the reader with outcomes of the
development of a novel software framework for an unique watatesneuromor-
phic hardware system. The hardware system is described in an alnséiaicer,
followed by its software framework which is in the focus of this paper. Véath
introduce the benchmarks applied for process evaluation and proxéseptes

of the achieved results.

1 Introduction

Several current neuromorphic research projects, suéfastsAnalog Computing with
Emergent Transient States — FACETH or the Spiking Neural Network Simulator —
SpiNNaker[2], aim at the exploration of novel computational aspedttarmge scale,
biologically inspired neural networks with over a millioeurons, simulated in real-
time or even with a speed-up in respect of the biological etsgbes on full custom or
modified general purpose hardware.

The undertaken hardware research of FACETS encompassegvtbmpment of
a novel neuromorphic wafer-scale hardware system in amatadative effort of the
Ruprecht-Karls-Universiit Heidelberg — UHEland theTechnische Universit Dres-
den—TUD The current level of developmei8tage Ancorporates the design of a wafer
element and its dedicated software framework for the mappfmeural architectures
onto the hardware substrate as well as the configuration@mtdot of said system.

The wafer-scale hardware system is first described in gedtib followed by the
details of the software framework in section 2. The benchkmsapplied are presented
in section 3 along with examples. An outlook concludes tbistigbution.

1.1 FACETS Stage 2 Architectural Overview

For the description of the FACETS Stage 2 hardware systemtaluced by [1], [3]
and in the following referred to a552 hardware we will focus on details of the architec-



ture that influence the mapping of given neural networks thedardware. Figure 1 (a)
shows an abstract view of one wafer element of f82 hardware system. The foun-
dation layer of the=S2 hardware is an array of reticles shown as light gray squares,
housingHigh Input Count Analog Neural Network — HICANM HC circuitry that was
developed at UHEI [1] and implements neural functionalitgts as neurons, synapses
and weight adaptation. On top resides a layer of commupica&ircuits calledigital
Network Chip — DNCdeveloped at TUD [3]. The third and topmost layer represents
a regular grid of FPGAS colored dark gray. Disabled or inoperable components are
colored white.
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Fig. 1. Abstract view of a) one wafer from top and b) the communication hibsaftom side.

Figure 1 (b) depicts the communication networks, theirdrighy and connectivity.
Two distinct communication networks can be distinguiskfedasynchronous, address
coded, namedlayer 1 — L1utilized by HCs at wafer level foiintra-wafer communi-
cation and a second one, nameayer 2 — L2utilized by DNCs and FPGAs for syn-
chronous, packet bas@ter-wafercommunication. Host computers are connected via
Ethernetto the FPGAs to handle the mapping, configuration and copnatess de-
scribed in the following.

1.2 TheHICANN

A simplified view of theHC chip following [1], [4] is drawn in figure 2 as a symmetric
array of neural and communication elements. @eedritic membranesor denmems
are the neural core components. Each denmem provides tvaptayrnput circuits
emulating ion channels. Up & denmems can be grouped, i.e. connected together to
form a neuron with a higher synaptic input count or a moreildgtanodel by increasing
the number of conductive time constanB/napsessituated in an adjacerstynapse
array are connected to the denmems. Whether a synapse is conrettedekcitatory
or inhibitory input of a denmem is decided row-wise in gymapse drivepr syndriver

A syndriver is fed from one of x 27 vertical L1 bus lanes viaelect-switchesr from

a neighboring syndriver. It drives the synapsesstiabe linesas depicted as thin lines
in figure 2 leng 1) , and selects the receiving synapse via an address, thelitiésk

® Field Programmable Gate Array



A fixed part of the synapses address determines the strabéolinse and follows the
address pattern shown in lep8) . Each synapse belongs to the denmem located below
the synapse array in the same column. A group of denmems igcted to one o2°
horizontal L1 bus lanes and L2 bypaiority-encoderthat multiplexes and prioritizes
the bus access.

select.switch,

" horizontal L1 bus
dendritic membrane elements

vertical repeater.

Fig. 2. A schematic view of one HICANN [1], [4]

Repeaterandcross-barsare then configured to interconnect the vertical and hori-
zontal buses withunidirectionalconnections. The neural pulses generated by the den-
mems are transmitted asynchronously on L1 as bit sequerceliegy the senders ad-
dress or arbitrarily on L2 encoding the address and the pinhseg.

1.3 Parameter Space

Every denmem implements the dynamics of Agaptive Exponential Integrate-and-
Fire — AdExmodel [5] including model’s mechanisms such as spike fraquadaption
and active spike generation. A total of 24 parameters déterthe behavior of a den-
mem, some of which correspond directly to the AdEx modelerttare of technical
naturd.

The synaptic weight of a synapse is determined by an indaidigital weight
value of4-bit resolution and a fixed maximum conductamggy, Which can be set for
every synapse row by a programmable analog parameter. Flapsy circuit generates
a square current pulse, which is injected into one of the @yménput circuits of the
denmem, where it modulates a transient synaptic conduetdie amplitude of this
square current pulse iseight x gmaxand its length isstpr, Whererstpr is modulated
by the short term depression or facilitation — STOB] plasticity mechanism in the
synapse driver.

We assume a hardware model setup for configuration df8#hardware follow-
ing [1], [4]. With an8 x 8 HCreticle array oB HCs per reticle and8 functioning reticles

4 As configurable parameters allow to vary time constants of neural araptyg dynamics it is
possible to operate tHeS2 hardware system with a speed-up fra? to 10° compared to
biological scale, depending on the system’s load, as excessive-spardy lead to pulse loss
due to limited bandwidth.



per wafer, thus a total ¢f12 HCs. Furthermore§ HCs per DNC result int8 DNCs and
4 DNCs per FPGA give a total of2 FPGAs. WithNyja,me € {2%,2%,...,28}° a
maximum neurons pefC the total number of available neurons is given®Byy, =
H x Nyawrc, WhereH denotes the number 6fCs available for mappirfg The num-
ber of synapses available on the hardwsiggy = H x Sy, with Sgc being number
of synapses pefC, which for the used configuration is constant wizh: 2562 and the
number of dendritic elements peIC D which equal®2 x 256. With 26 denmems per
priority encoder this results i priority encoders and thustabit L1 address.

2 TheFACETS Stage 2 Software Framework

The FS2 software framework provides the functionality to map a givetwork onto
the hardware, configure it, control the simulation and exantihe results of the map-
ping and simulation process.

2.1 PyNN & Hardware Abstraction Layer

For the FACETS hardware systems, a user interface is novablaithat provides a
novel way to bridge the gap between the domains of pure sadtaienulators and neu-
romorphic hardware devices [7], [8]. The Python-based alewatwork modeling lan-
guage PyNN [9], see Figure 3 has been developed by FACETS erenibrepresents
a simulator-independent set of functions, classes andiatds for units and random
number generation that can be used to describe complex snofdettworks of spiking
neurons using a biological terminology - either in an int&xe or in a scripting fashion.
Models written with the PyNN API can be executed with variestablished software
simulation tools such as NEURON [10], NEST [11], Brian [12]RCSIM [13]. For all
supported back-ends a specific Python module automatitatglates the PyNN code
into the native scripting language of the individual simataand re-translates the re-
sulting output into the domain of PyNN. Thus, PyNN allows &siéy port experiments
between all supported simulators and to directly and gtegtiviely compare the results.
Among many other benefits, this unification approach careame the reproducibility
of experiments and decreases code redundancy.
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Fig. 3. PyNN framework following [9] and th&€S2 HAL

> Nuazmc is held constant for a network and determined by the detail level of theoneu
model [1] or the synaptic input count of a neuron [4].
6 H is not necessarily equal to the total numbeHas available in the system.



The integration of the FACETS hardware systems into the Pglihtept adopts
these benefits. Additionally, the PyNN hardware modulerefégtransparent method via
which the communities of computational neuroscience angameorphic engineering
can exchange experiments and results. With the novel agipraan-hardware-experts
can be provided with a well documented interface that is wémjlar to interfaces of
most established software simulators [14].

While PyNN itself represents a precise definition of the uskrface, thédardware
Abstraction Layer — HAImodule actuallymplementshe automated translation of any
given network setup into the data model described in theviatlg, which performs the
mapping of the experiment onto the available hardware resswand into the hardware
parameter domain. The said translation process also ctaithéctransition between the
Python domain of PyNN and the C++ objects of the mapping freonle and all lower
software layers.

2.2 DataMod€

To cope with the hierarchical structure of the hardwareesyst data model resembling
a hierarchical hyper graph was developed [15]. The grapheinozhsists ofvertices
representing data objects aadgesas relationships among them. Where a vertex holds
atomic data, an edge can beherarchical a namedor a hyper edge. Hierarchical
edges model a parent-child relationship, thus structutiegnodel. Named edges form
a directed and named relation between two vertices frormydacation in the model
and hyper edges assign a vertex to a named edge, charagietiai more detail. Its
flexibility allows to store every information during the dayuration process, i.e. the
models itself as well as the placement, routing and pararreresformation data.

2.3 Datalnterface

To overcome the access of nodes and edges or subsets of s gtaments by navi-
gating the native data structure we provide a ngpath-based query-languageamed
GWPat h. Via GMPath, along with its corresponding API as describethe accompa-
nying publication [16] data can be retrieved from or stor@the models by a program
via static or dynamically created queries.

2.4 TheMapping Process

With regard to topology constraints between hardware dscikch as connectivity, con-
nection counts, priorities and distances as well as sdarget counts the mapping
determines a network configuration and parameter set fdrdhsdware. This is accom-
plished in the three steps pfacementrouting andparameter transformatian
During placement, the mapping process assigns neural ptsriike neurons or

synapses to distinct hardware elements. As placement ¢csespdifferent optimiza-

tion objectives, it can be characterized as a multi-catgroblem the solution quality
of which influences the overall mapping results significarflossible objectives are,
e.g. to minimize the neural input/output variability clesstise, to minimize the neural



connection count, also clusterwise, or to minimize routiiglances while maintaining
compliance with constraints such as parameter limitat@rsardware element capac-
ities. As the optimization problem is NP-complete a foresdd optimization heuristic
with user-defined weightings, namBEC, was developed to achieve these objectives in
acceptable computation time. This algorithm balancesc#st, the implementation of
said optimization objectives in an n-dimensional spacé antequilibrium is reached.

In a subsequent separation step it assigns its data objedtssters with affine proper-
ties. We distinguish between the simple algorithms desdrib [17] and theNFC.

The routing subsequently determines a configuration fosyimaptic connections
on L1 and L2 and can be split into the two subsequent stepstraf iand inter-wafer
routing. The intra-wafer routing algorithms [4] route cewtivity exclusively on L1
and reserve L2 for inter-wafer routing which is inactive &owafer-scale system.

Parameter transformation finally maps the model parametagiven neurons and
synapses, such as weights, types or thresholds into haggvaaameter space. As not
every biological parameter, or its corresponding modehpeater in the PyNN descrip-
tion, has its individual counterpart in hardware but is o#enulated by a set of correlat-
ing parameters, an adequate biology-to-hardware paratnatslation has to be found,
e.g for the membrane circuits a transformation from 18 lgjilal parameters of the
PyNN AdEx neuron model description into a configuration ofa24justable electrical
hardware parameters.

The desired speedup factor betwaép to 10> which is determined by the temporal
dynamics of the membrane and synaptic circuitry is finaltyoseadjusting parameters
as the size of the membrane capacitances, conductancessése for charging it or
the current controlling the synaptic conductance.

25 Analysis

A new standalone application nam@&daph Visualization Tool — GraViTaids the user
with the analysis and debugging of mapping data. GraViTorparateenvi si oNN
andH3 graph viewer [18] modules that display graph models in @ixé&und graphical
form and gathers statistical data. One can selectivelysaaiagle nodes inside the data
structure and visualize its context, dependency and oalativith other nodes in the
system.

Views of GraViTo are shown in figure 4, such as thee viewto browse the hierar-
chical structure of the graph model, the GMPgtlery viewand the3D view The 3D
view is specialized on renderirgMand HM and the mapping between them in three
dimensional form to provide a contextual view over the megdgieir components and
connectivity. It also provides a global overview over thedweare components and the
networks. To support the analysis of the mapping resulisvairstatistics are gathered
and displayed, e.g. as histograms for utilization of thessbars, th&iC blocks or the
synaptic connection lengths.

3 Benchmarks

Benchmarks aid in evaluating the mapping process. Firstthaarks concerning map-
ping efficiency with focus on intra-wafer routing and hardevatilization were car-
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Fig. 4. Screenshot of GraViTo’s viewers

ried out at UHEI [4] with random networks, macrocolumns amehlly dense/globally
sparse connected networks in order to explore the systersigml space. New bench-
marks are listed in table 1. The new benchmarks are implesdéntPyNN and were
provided from FACETS project partners but also from the omarphic research com-
munity outside of FACETS.

Table 1. Selected Benchmarks

Benchmark  Description
INCM ALUF Synfire Chain based on [19], provided by
L'Institut de Neurosciences Cognitives de |&@ddiiterraree
—INCM, Marseille, Francén cooperation with
Albert-Ludwigs-Universit Freiburg — ALUF, Freiburg, Germany
KTH Layer 2/3 Attractor Memory following [20], provided by
Kungliga Tekniska Bgskolan - KTH, Stockholm, Sweden
UNIC Model of Self-Sustained Al States following [21], provided by the

Integrative and Computational Neuroscience Unit — UNiiChe
Centre national de la recherche scientifique — CNRS, Gif-sur-Yvettec€ra

As an example we apply the mapping process to the scaled tvamksin at x 4 ret-
icle configuration with aV ;.. rc = 2° to evaluate the mappirguality. As a measure
of the overall mapping quality the parameters as defined imgly. Therouting quality
GRoute = SMap/SB10, With S)r4, Deing the number of mapped synapses @&gro,
which is the number of synapses in BBl Thus,(1 — groute) IS therelative synapse



loss The hardware efficiencys described byeyw = Sarap/Saw. WhereSyy de-
notes the synapses available on #82 hardware for mapping. As a further parameter
for network classification we define the connection density, = SBIO/NJ%IO.
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Fig. 5. Connection matrices of the (a) INCM, (b) KTH and (c) UNIC networks

Connection matrices for networks o neurons as shown in figure 5 illustrate the
benchmarks synaptic connectivity types. Darker areagsepit groups of neurons with
anpg,, above average.

As stated in [2] the worst scenario are randomly connectagarks with a constant
psyn due to their absent locality. In case of a0 above the configureHWIlimit
one may reduce the neurons p€, provide more synapses and thus improwe, .
at the expense of lesg;yy, but an expanded distribution of neurons and thus longer
connections may consume even more routing resources imt@certain point again
reducingqroute-

The pg,, of the benchmarks however decrease with apprgx, see 6 (a) leading
to an almost constant or only slightly increasing averageptic input count. Never-
theless the mapping results for networks witg ;o abovel0® show a clear decrease in
qroute DY exceedind 5% compared to fully routed which may be caused by intra-wafer
routing resources utilized to capacity, invigorated by beeyvation of the steepest de-
cline ingroute for UNIC, the network with the lowest avgg,, .

Tests also showed that thEC algorithm can minimize the routing losses compared
to the simple algorithms up t20% for networks with a higher locality, such as the
INCM, the more efficient the larger the network.

As a second major requirement for the usability of &2 hardware simulator
platform a fast configuration and reprogramming is ineVéao we use the scaling test
also to determine the software processalabilityin terms of time and space.

Figure 6 (b) shows that tH&Mgraph grows almost linearly depending on the number
of neurons and the synaptic density. So for the given bendtsrthe model sizes for
networks with a neuron count d¥z;0 < 10° and an approximate average,, <
10% stay within a acceptable limt DG B. The simpler algorithms runtime scales with
O(n) and remains within an upper bound of approximately 3 hoursrads the NFC
algorithms, in spite of the cubical problem, grows below:?), as can bee seen in 6 (c)
fulfilling the requirement of a resonable runtime for conxaheapping problems.

Test where carried out und&ed Hat4.1.2 running on anAMD Qpt er on™ 875
Dual Core CPUQ2.2G H =z quad processor system witBG Byte of RAM.
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4 Conclusion

Although theFS2 hardware system is on a higher level of abstraction similather
reconfigurable hardware architectures it is unique in bistfunctionality and the sys-
tems dimension. So new algorithms and heuristics are nagesst take into account
the peculiarities of such a system. We presented outcomesenrthmark examples of
the completd=S2 software framework which seamlessly integratesRB2 hardware
system into PyNN.

As shown by the benchmarks, a mapping is found in a reasotiat@ehowever, the
networks structure of larger networks is modified by thewgafe process and through
hardware resource limitations. To examine the impact cd¢Hesses on the networks
behavior comparative simulations with pre- and post- magpietlists are carried out
on simulators introduced in section 3. As a further consegeave consider the incor-
poration of L2 into intra-wafer communication as esserdmit will alleviate the L1
losses. Iterative optimization of the mapping results thién trade-off between simula-
tion speedup, hardware efficiency and routing quality bysititig the software process
parameters.

An in depth evaluation of the benchmark results will follovittwthe upcoming
publication of the NFC algorithm.
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