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Abstract
Modern high-energy physics experiments collect data usingdedicated complex multi-level trigger sys-
tems which perform an online selection of potentially interesting events. In general, this selection
suffers from inefficiencies. A further loss of statistics occurs when the rate of accepted events is arti-
ficially scaled down in order to meet bandwidth constraints.An offline analysis of the recorded data
must correct for the resulting losses in order to determine the original statistics of the analysed data
sample. This is particularly challenging when data samplesrecorded by several triggers are combined.
In this paper we present methods for the calculation of the offline corrections and study their statistical
performance. Implications on building and operating trigger systems are discussed.

1 Introduction

Modern high energy collider experiments operating at high interaction rates rely on complex multi-
level trigger systems (seee.g. [1–6]) which select potentially interesting scattering eventsfrom large
backgrounds. The selection procedures reduce the initial interaction rates, often by several orders of
magnitude, to output rates acceptable for permanent storage. The recorded events are used in subse-
quent physics analyses. The lower level trigger systems aretypically built in custom hardware using
information from different detector components. The higher trigger levels oftenconsist of computer
farms performing partial or complete event reconstructionwhich allows the application of sophisticated
decision algorithms.

At each trigger level, events fulfilling the criteria of one or more independent trigger selections are
chosen. Event losses occur due to inefficiencies of the trigger selections with respect to the offline
analysis. These inefficiencies result from the coarse event reconstruction performed within the limited
time available at each level. In addition, the bandwidth restrictions at the different levels may prevent the
recording of all events accepted by certain selections designed to cover phase space regions with high
rates. The solution applied by the experiments is an artificial downscaling of the corresponding event
rates.

In an offline data analysis, the effects of limited efficiency and rate downscaling must be corrected for,
in order to determine the original statistics of the analysed data sample. This is particularly challenging
for analyses of combined event samples recorded by several independent trigger selections. Such a
combination may be neccessary if the individual trigger selections cover different regions of the analysed
phase space. Typical cases are:

• Trigger selections based on information from different detector components,e.g. a data analysis
relying on trigger selections using signals from barrel andendcap muon chambers;

• Trigger selections designed for different kinematic regions,e.g.an analysis of events accepted by
several trigger selections requiring the energy in a calorimeter to exceed different thresholds;

• Trigger selections sensitive to different objects in the final state,e.g.a study of complex final states
triggered via electron, muon and/or jet selections.

Ideally a particular combination of trigger selections is already foreseen at the design stage of the trigger
configuration before data taking. If a combination providesfull efficiency for a given signal, only the
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downscaling must be corrected for in an offline analysis. However, for many trigger setups full efficiency
cannot be achieved. In particular, this may be true for analyses unforeseen initially, in which the necessity
of the combination becomes apparent only in retrospect.

In this paper we provide recipes for the calculation of the aforementioned corrections. We discuss their
applicability and statistical performance assuming various trigger setups. The aim is to achieve the
smallest statistical uncertainty.

The paper is organised as follows. In Sect.2 basic definitions used throughout the paper are introduced.
Analyses using event samples recorded via a single trigger selection are discussed in Sect.3. Section4
presents several methods to calculate the corrections for combined event samples collected with a one-
level trigger system. The corrections of trigger inefficiencies are considered separately. The recipes
are then extended to multi-level trigger systems in Sect.5. Finally, the implications for the design and
operation of trigger systems are summarized in Sect.6.

2 Basic Ingredients and Definitions

Trigger selections. The decision at each trigger level is based on the fulfillment of requirements imposed
on event properties, such as a minimum energy in a calorimeter, a certain number of tracks in tracking or
muon chambers, or a correct timing of the signals. In this paper these pieces of trigger logic are called
trigger elements. Within one level the trigger elements are combined into logical expressions (using
AND, OR, . . . ) which we calltrigger items1). A trigger item may, of course, simply consist of a single
trigger element. At each level an event is accepted if it fulfills at least one trigger item. The rate of
events collected by a trigger item can be scaled down by adownscale factor d, such that on average
only everyd-th selected event is kept by the system. The corresponding downscale procedures can be
implemented via simple counters leading todeterministicdownscaling, or via more sophisticated random
selection mechanisms (non-deterministicdownscaling). In multi-level systems, individual triggeritems
from several levels are further combined intochains(see Sect.5). Events fulfilling all trigger items within
a chain are finally accepted by the trigger system.

Runs. Data at collider experiments are usually collected in event samples of separateruns, in which
stable detector performance and steady running conditionsare maintained. The trigger setup, in particular
the downscaling factors are kept constant within one run, but may vary from run to run as a reaction to
changing conditions,e.g.instantaneous luminosity and background rates.

Trigger bits . The states of trigger items in the trigger system are encoded in bits. We denote by theraw
trigger item bit:

r i j =















1 if event j is accepted by trigger itemi before downscaling,

0 otherwise,

and by theactual trigger item bit:

ai j =















1 if event j is accepted by trigger itemi after downscaling,

0 otherwise.

For the following discussion we assume that these bits for all trigger levels are stored in the record of
each event and are available for offline data analysis.

Efficiency. For an unbiased event sample fulfilling a given analysis selection the number of events
accepted by a raw trigger item divided by the original numberof events denotes theefficiencyǫ of this
trigger item. By definition the efficiency depends on the offline selection.

1)Some experiments adopt a different nomenclature, calling trigger itemse.g. subtriggersor just triggers.
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Various techniques for the efficiency determination exist, which are often specific to certain experiments
and physics signals. A detailed review of these techniques is beyond the scope of this paper. In general
they rely on an event sample collected by a reference triggeritem based on information independent from
that used by the studied trigger item. Accounting for variations of the efficiency in the phase space, it is
usually determined in bins of certain event parametersq:

ǫ(q) =
number of events selected by both trigger items

number of events selected by reference trigger item
, (1)

where only events fulfilling the offline event selection are used. Theactual bit of the reference trigger
item must be set (ai j = 1) for all events of the reference sample in order to ensure their selection by this
trigger item, thus avoiding any potential bias. In contrast, for the studied trigger item either the raw or
the actual bit can in principle be used. For the latter, downscale factors have to be taken into account.
The usage of the raw trigger item however increases the available statistics by the downscale factord of
this trigger item. This underlines the importance of storing the raw trigger item information in the offline
event record. The obtained efficiency distribution is usually fitted by a smooth function, which can in
principle vary from run to run. In practice, it is determinedoffline for the entire event sample or for large
subsamples with stable running conditions.

The efficiency of an individual trigger element used within a trigger item is defined analogously. For a
trigger item consisting of several not fully efficient trigger elements, the total efficiency can be determined
applying similar considerations as given subsequently in Sect.4.3 for combinations of several trigger
items with inefficiency.

Event weights. The recipes presented in this paper provide aweightw j for each eventj = 1, . . . ,N of
the analysed sample which corrects for the above-mentionedevent losses, such that the original statistics
of the analysed event sample is given by the sum of the weights:

Nori =

N
∑

j=1

w j . (2)

This results in thevisible cross section2) σ given byσ =

∑

w j

L
whereL is the integrated luminosity of

the event sample. A non-trivial requirement for each methodis that the relative statistical uncertainty of
the cross-section determination should improve with luminosity.

3 Treatment of a Single Trigger Item

If an event sample selected by a single trigger itemi is used in an analysis,i.e. ai j = 1 for each eventj,
the weight of the event in runk can be calculated with

w j =
dik

ǫik(q j)
, (3)

wheredik is the downscaling factor for trigger itemi in run k, andǫik(q j) is the efficiency of this trigger
item in this run as a function of a set of event parametersq j.

Example. A simple example is given by an analysis using a single trigger item with a constant down-
scale factord and an efficiencyǫ constant over the whole parameter space of the physics process under
investigation. In this case the weights of the eventsj = 1, . . . ,N passing the offline selection criteria,
including the trigger requirementai j = 1, are given byw j = d/ǫ and the respective visible cross section
can be calculated asσ =

(

∑

w j

)

/L = (N/L) × (d/ǫ). •

2)The determination of the true cross section involves further corrections for detector efficiency, acceptance, etc. which are
irrelevant for the present discussion.
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Figure 1: Results of a toy Monte Carlo simulation of an analysis relying on a single trigger item. The original
generated distribution of an example variableX (dashed histogram) is depicted, as well as the distributionof
triggered events reweighted using run-dependent (open circles) and averaged weights (closed triangles) with their
respective statistical errors. Note that the error bars on the most of the triangles are too small to be seen.

If the downscaling factors vary strongly from run to run, events from runs with high downscale factors
in the sample obtain large weights according to Eq. (3). This leads to a low statistical significance of the
result, especially for differential distributions, where large statistical errors may occur in certain regions
of phase space. A higher significance is reached if an averageweight over all runs in the whole event
sample is used. WithN selected events, with the original number of eventsNori and the total cross section
of the triggered processesσ, the event weight is given by

w j =
Nori

N
=

Nori/σ

N/σ
=

∑Nruns
k=1 Lk

∑Nruns
k=1 Lk

ǫik(q j )
dik

, (4)

whereNruns andLk are the total number of runs and the luminosity of the runk, respectively. For a
given original number of eventsNori, i.e. for a given integrated luminosity of the sample, the averaged
weight for a trigger item depends solely on the total number of events collected via this item,N. Hence,
any optimisation of the downscaling factors during data taking which leads to a larger collected statistics
results in smaller weights and consequently in a smaller statistical uncertainty.

Example. In a toy Monte Carlo (MC) experiment we simulate an analysisrelying on a single trigger item
with full efficiency. The simulated data sample corresponds to 20 runs in which the rate of the trigger
item is scaled down by downscale factors varying from run to run. Within each run a non-deterministic
downscaling procedure is used. In half of the runs, good running conditions are assumed, such that the
downscale factors are low – between 1 and 5. The other 10 runs correspond to bad running conditions
affecting the trigger rate, hence the downscale factors are much larger – in this example of the order
of 100. The run luminosity is varied such that each run consists of 1000 to 1500 events. The ratio
of the number of events in each run to its integrated luminosity is smeared using Poissonian statistics.
Figure1 shows the original distribution of an example variableX, as well as the distributions of triggered
events reweighted using the run-dependent weights of Eq. (3) and the averaged weights of Eq. (4) with
their corresponding uncertainties. Both methods are able to reproduce the original distribution but with
different statistical performance. As expected, the application of the averaged weights results in a smaller
statistical uncertainty and thus a much smoother distribution. This is reflected by the total numbers of
events and their uncertainties obtained with the two methods.•
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Statistical uncertainty. With N selected events, the statistical uncertainty on the original number of
eventsNori is given by the standard formula

δNori =

√

√

√ N
∑

j=1

w2
j . (5)

For different sets ofN real numbersw j, all having the same sum3) Nori, the sum of the squares of these
numbers is minimised when all numbers are equal. This can easily be proven using for instance the
method of Lagrange multipliers or mathematical induction.Therefore, the application of averaged event
weights (Eq. (4)) minimises the statistical uncertaintyδNori . For the same reason, weight averaging over
run ranges improves the result for all methods of combining triggers described in this paper (cf. Sect.4
and5).
In case of adeterministicdownscaling procedure,e.g.using hardware counters, eachdk-th event in runk
is accepted and the initial number of eventsNori is exactlyequal to the sum of event weights and the sum
of the counter valuespk at the run ends:Nori =

∑

w j +
∑

pk. Since the second term can be neglected in
the limit of large statistics in individual runs, one might expect a statistical uncertainty ofδNori =

√
Nori.

However, this is only true for the total number of events in the sample accepted by a trigger item. In the
subsequent data analyses, cuts are made and differential distributions are studied, such that the errors are
determined for subsamples of events. In practice, the sum ofevent weights in a subsample,e.g.in one
bin of a differential distribution, isnot exactlyequal to the original number of eventsNori due to statistical
fluctuations of the downscaling procedure from bin to bin. The sum gives, however, a correct statistical
estimate ofNori within the uncertainty given by Eq. (5). Fornon-deterministicdownscaling this equation
is correct in all cases.
Systematic uncertainties. In a deterministic downscaling procedure, selecting the first or last event
within a downscale interval introduces a systematic error if the varying value of the downscale counter at
the end of each run is not considered in the analysis. The relative error for the total number of events is
then of the order ofNrunsd/

(

2ǫ
∑

w j
)

, whered is a typical downscale factor,ǫ is the average efficiency and
∑

w j is the sum of weights of all recorded events. This error is typically negligible except for analyses
using many short runs with large downscale factors. The uncertainty is further reduced if the selection
is performed in the middle of the downscale interval since, on average, the counter values at run ends
are equally spread around the middle value4). The uncertainty can be completely avoided with a non-
deterministic downscaling procedure,e.g.if the downscale system selects events on a random basis, or
if at least a random position of the downscale counter at eachrun start is chosen.

4 Combination of Trigger Items in One-Level Systems

In this section we present methods for the calculation of corrections for event losses in analyses of
combined event samples recorded by several trigger items ina trigger system consisting of only one
level. The methods are also applicable if the higher triggerlevels accept all events preselected by the
first-level trigger items in the analysed phase space. The basic concepts discussed here are extended in
Sect.5 to the general case of multi-level systems.

4.1 Division Method

An obvious approach for a combined analysis on a single trigger level is theDivision Method, in which
the phase space is divided into distinct regions in terms of appropriate kinematic variables, and only

3)The sum of event weights is, of course, not constant but fluctuates aroundNori with the spread given by Eq. (5).
4)Exceptional cases are runs with extremely small statisticsselected by the actual trigger item,e.g. resulting from large

downscale factors, low efficiency or short run time, in which no more than one event per run is selected, and the downscale
counter does not reach on average the middle of the interval.
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events selected by a single actual trigger item are used in each region, while all other events are not
considered. Clearly, for the smallest statistical uncertainty the trigger item which provides the largest
number of events must be used in the corresponding region. This division simplifies the task to an
analysis of separate samples each using one trigger item, asdescribed in Sect.3. The efficiency of the
trigger items must be determined individually in the respective phase space regions, which may introduce
a certain complexity in practice.
Example. The phase space is divided into intervals of energy measured in a calorimeter, in each of
which a separate trigger item is used. However, one of the items includes the requirement of a certain
number of tracks in a tracking chamber. In this case it could be necessary to determine the efficiency of
this trigger item as a function of an appropriate track-related variable,e.g.the number of reconstructed
tracks, for the energy interval in which it is used.•

4.2 Advanced Methods for Fully Efficient Combinations

For analyses in which the individual trigger items provide sufficient statistics in their respective phase
space regions, the Division Method may yield adequate precision. Otherwise, more elaborate approaches
can be used, such as theExclusion Methodand theInclusion Method, described in the following.
For both methods, a correction for the trigger inefficiency is not necessary if the chosen combination of
the trigger items is fully efficient in the analysed kinematic range, as is often the case for combinations
designed before data taking. Note that this does not imply that each individual trigger item is fully
efficient in the whole range, but it is sufficient that each event in the original sample fulfilling the offline
selection is triggered by at least one of the chosen raw trigger items. The event may then still be rejected
by the downscaling procedure.
For this reason we first discuss both methods for the case of full efficiency. These recipes, though not
labelled as in this paper, have been used in data analyses by the H1 collaboration (e.g. in [7–9]) to
correct for downscaling. Afterwards we present newly developed techniques which include efficiency
corrections. Finally, we compare the statistical performance of the various methods.

4.2.1 Exclusion Method for Fully Efficient Combinations

Similarly to the Division Method, the Exclusion Method [10] splits the event sample into subsamples in
which single trigger items are considered. However, the sample is now divided not in terms of kinematic
variables, but according to trigger item bits and downscalefactors. From the set of considered trigger
itemsi, for which the raw trigger has fired (r i j = 1) in event j taken in runk, the trigger itemi∗ with the
smallest downscale factor is chosen:

i∗ : di∗k = min
r i j=1

dik . (6)

The weight for the event is then given by

w jk = di∗k ai∗ j . (7)

Consequently, the event is rejected, if the actual bitai∗j for the trigger item with the smallest downscale
factor is not set.
In case of trigger items with equal downscale factors, the order, in which the status of the actual bits is
checked, is arbitrary, but must not depend on the status itself. A simple solution is to define the order
once for the whole run range. A similar prescription holds for every variation of the Exclusion Method
discussed in the following.
As before, a better statistical significance is reached if weights averaged over all runs are used (cf.
Eq. (4)). In this case, for each considered trigger itemi, the average weight factor

w′i =

∑Nruns
k=1 Lk

∑Nruns
k=1 Lk

1
dik

, (8)
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is calculated once for the whole run range. For all trigger items with the raw bitr i j = 1 in event j, the
smallest weight factor is then assigned as the weight to the event, if the corresponding actual bitai∗ j is
set,i.e.

i∗ : w′i∗ = min
r i j=1
w′i ,

w j = w
′
i∗ ai∗ j .

(9)

Again, the event is rejected, if the corresponding actual bit ai∗j is not set5).
This averaging procedure can only be used if the definitions of all chosen trigger items remain unchanged
during the run range, as it assumes that if the raw bit is set for an event in a certain run, it would
also be set for an identical event in any other run. In practice, trigger items may be redefined within
the running period,e.g. trigger thresholds may be modified. For the calculation of event weights the
corresponding event sample must then be split into subsamples with constant definitions. Consequently,
frequent redefinitions of trigger items should be avoided.

4.2.2 Inclusion Method for Fully Efficient Combinations

In the previously discussed methods the event sample is split into subsamples, in which the weight
calculation for each event is based on a single trigger item.On the contrary, in the Inclusion Method [11,
12] a combinedweight based on all considered trigger items is determined for theentireevent sample.
For each event, at least one actual trigger item bit from the set of considered items is required to be set.
Thus, events only triggered by items not considered in the given analysis are rejected.
The weight calculation is based on the probability to acceptthe event after the downscaling procedure.
For a single trigger itemi with the downscale factordik in run k, this probability for an eventj is

Pi jk =
r i j

dik
. (10)

Assuming all downscaling decisions to be independent of each other, the probability that at least one of
theNitems trigger items accepts the event is given by

P jk = 1−
Nitems
∏

i=1

(

1−
r i j

dik

)

. (11)

The run-dependent weight for eventj is then

w jk =
1

P jk
, (12)

while the weight averaged over runs is given by

w j =

∑Nruns
k=1 Lk

∑Nruns
k=1 LkP jk

. (13)

As for the Exclusion Method, the averaged weight can be used only if the definition of all chosen trig-
ger items remains unchanged during the run range, such that it is possible to calculate the triggering
probability of an event in a run different from the one in which it was recorded.
Note, that the assumption of independent downscaling decisions is not valid in deterministic downscaling
systems containing several (quasi-)identical trigger items6). In this case the above formulae can still be
applied if (i) the downscaling factors for these items are different and(ii) the downscaling factors are
coprime integers, or in general, they are irreducible fractions with coprime enumerators.

5)Note that the average weight factor in Eq. (8) represents an average downscale factor, and therefore theselection of the
minimum in Eq. (9) is an analog of Eq. (6).

6)Since identical trigger items accept the same events their downscaling decisions are made synchronously leading to statis-
tical correlation. Quasi-identical items which select very similar event samples follow a synchronous downscaling procedure
in parts of the data-taking period.
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Figure 2: a) Assumed efficiencies of the three trigger items as a function of an event variableX used in the
toy Monte Carlo simulation; b) Original event distribution(dashed line), as well as the distributions of triggered
events reweighted using the Exclusion Method (open circles) and the Inclusion Method (closed triangles), both
with weights averaged over runs.

4.2.3 Comparison of the Exclusion and Inclusion Methods

While the Division Method and the Exclusion Method only use afraction of the total triggered event
sample, the Inclusion Method offers the advantage of usingall events in the sample and therefore outper-
forms the other methods in statistical precision. For illustration we performed a toy Monte Carlo study
comparing the Exclusion and the Inclusion Methods.

Example. In the MC toy experiment the response of a trigger system with three items is simulated.
The items select events based on the value of an event variable X (this could bee.g. the energy in a
calorimeter). The assumed efficiencies of the trigger items are shown in Fig.2a as a function ofX. Each
part of the analysed phase space is fully covered by at least one trigger item,i.e. the combination is
fully efficient. An event sample is simulated corresponding to 20 runswith varying luminosities and
downscale factors. The run luminosity is varied such that each run consists of 500–600 events. The ratio
of the number of events in each run to its integrated luminosity is spread around a mean value following
Poissonian statistics. The downscale factors are also varied from run to run: for the first (second, third)
trigger item they are spread around 50 (40, 20). In Fig.2b the original event distribution is shown as
well as the distributions of triggered events reweighted using the Exclusion and the Inclusion Method
with weights averaged over runs. Both methods provide similar results which reproduce the original
distribution within the statistical uncertainties. As expected, the Inclusion Method provides a better
statistical significance, as indicated by the error bars andby the error on the total number of events.•
While the Inclusion Method provides by construction a better statistical precision, the relative improve-
ment with respect to the Exclusion Method depends on the concrete experimental set-up and is rather
small in many practical scenarios. The maximum gain is achieved if (i) the overlap of efficient regions
of the trigger items is large and(ii) the items have big downscale factors of similar magnitude such that
the overlap between the event samples actually collected bythe different trigger items is small.

Example. Two trigger items with downscale factorsd1 andd2 ≥ d1 are both fully efficient in the analysed
phase space,i.e. both raw trigger items fired in all events. The number of events with the actual trigger
item bit 1 or 2 set is given byn1 = Nori/d1 andn2 = Nori/d2, respectively7), whereNori is the original

7)Statistical fluctuations and end-of-run corrections are neglected.
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number of events. In total,N ≤ n1 + n2 events are recorded. With the Exclusion Method, the relative
statistical error onNori is then given by

δexcl
Nori

Nori
=

√

n1d2
1

n1d1
=

1
√

n1
=

√
d1√

Nori
, (14)

while with the Inclusion Method we get

δincl
Nori

Nori
=

√
Nw2

Nw
=

1
√

N
=

√
w

√
Nori

with the weight w =
1

1
d1
+ 1

d2
− 1

d1d2

. (15)

The ratio of the two errors is thus:

δexcl
Nori

δincl
Nori

=

√
d1√
w
=

√

1+
d1

d2
− 1

d2
. (16)

The maximum ratio of∼
√

2 is reached if both downscale factors are large andd2 = d1 (noted2 ≥ d1 in
this example). ForNitems trigger items the maximum ratio is

√
Nitems. •

4.3 Additional Corrections for Trigger Inefficiencies

In the general case of not fully efficient trigger combinations additional corrections must beperformed.
Basically, two conceptually different approaches are possible. One approach is based on the determi-
nation of a singleglobal efficiency for the combination of all involved trigger items in the whole phase
space. This approach has however several drawbacks:

• Since different trigger items depend in general on different event properties, a global correction will
typically be non-universal but specific for the given data sample with given selection cuts. Therefore
any change of the analysis selection requires a new determination of the global efficiency correction,
as the mixture of data samples taken by different trigger items may vary both with cuts and from run
to run.

• The efficiency correction is applied on top of the correction for downscaling, and therefore must be
determined for the combination ofnot downscaledtrigger items. If the efficiency is determined from
data, a proper event subsample must be selected in which the relative contributions of subsamples
collected by different trigger items are the same as for the combination of thenot downscaled items.

• A determination of the global efficiency from data may be unfeasible if no trigger item exists which
is orthogonal to all involved trigger items and provides sufficient statistics.

For these reasons the determination of a global trigger efficiency is in many cases only possible using
Monte Carlo simulations. This implies a high level of understanding of the detector and of the trigger
system to be available in such simulations, which, if at all,is usually reached only after several years of
data taking.

An alternative approach for efficiency corrections is based on aseparatedetermination of the efficiency
for each trigger item. This requires modifications of the procedures of weight calculation, as described in
the following. For the further discussion we assume the efficiency correction functionǫik(q) to be known
for each trigger itemi in run k.

4.3.1 Efficiency Correlations

For the modification of the trigger combination methods withseparate efficiency functions, correlations
between trigger efficiencies must be considered. Contrary to the downscaling, trigger efficiencies are not
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a priori independent,i.e. the efficiencyǫi|m(q) of the trigger itemi for events in which a different raw
trigger itemmhas fired is not necessarily the same as the efficiencyǫi(q) for all events. Correlations can
result from technical/instrumental effects or physical/kinematic event properties.

Example of technical effects. The efficiencies are certainly correlated if the trigger items include the
same inefficient trigger element. They can be correlated if trigger elements of different trigger items
are implemented in the same electronics. For instance, several trigger items which include elements
triggering on the jet energy differ in the energy thresholds or in the required number of jets.•
Example of kinematic effects. For a trigger item 1 requiring a certain value of energy in a calorimeter
and a trigger item 2 demanding a certain number of tracks in a tracking chamber, an efficiency correlation
arises from the physical correlation between the number of tracks and the energy. In such cases the
efficiencies can often be defined in an independent way if they aredetermined as functions of proper
kinematic variables. In this example, the efficiencies determined as a function of the calorimeter energy
E for the first trigger item and as a function of the number of tracks N for the second one may be
uncorrelated, such thatǫ1|2(E) = ǫ1(E), ǫ2|1(N) = ǫ2(N). The first relation holds if the efficiency of the
calorimeter trigger depends solely on the energy but is independent of the type of particles depositing the
energy. In this case the efficiency in each energy bin is independent of the fraction of charged particles
in the signal and therefore on the number of tracks. Similarly, the second relation holds if the efficiency
of the track trigger is a function of the track multiplicity only and is unaffected by the track momenta.•

4.3.2 Expected Trigger Item Bit

In Eq. (1) the trigger efficiency is defined with respect to the offline selection. For each trigger item we
introduce theexpected trigger item bitwhich is set to one if the offline reconstructed event falls into a
specifically chosen region of phase space with significant trigger efficiency,i.e. for which the trigger item
is expected to fire with sufficiently high probability:

xi j =















1 if event j lies inside the chosen phase space region for trigger itemi,

0 otherwise.

Example. A trigger itemi is designed to fire if the energy in a calorimeter exceeds a certain thresholdEi.
Due to the coarse determination of the energy in the trigger,the efficiency measured as a function of the
offline reconstructed energy is not a step function atEi but a smoothly rising Fermi function as shown
in Fig.3. Since the usage of a trigger item in phase space regions where its efficiency is very small may
lead to large event weights (Eq.3 or 4), one might decide to use this trigger item only at energiesE > E0

where its efficiency exceeds a certain value,e.g.10%. The expected trigger bitxi j is thus set to one for
events withE > E0 and to zero otherwise.•
In practice, a trigger item may consist of a number of triggerelements which are fully efficient for the
analysed signal and of one or a few trigger elements for whichefficiency corrections are determined as
functions of some kinematic variables. The trigger item is expected to fire if the fully efficient trigger
requirements are fulfilled and the kinematic variables lie in the range for which the efficiency correction
functions are applied in the analysis.

The introduction of the expected trigger bitxi j allows rather straightforward extensions of the trigger
combination methods, where the raw trigger bitr i j plays nearly the same role with respect toxi j as the
actual trigger bitai j with respect tor i j . However, while ther i j andai j bits are set by the trigger system,
the xi j bits are defined in the physics analysis. As a result, it can happen that the raw and actual trigger
bits r i j andai j are set, whilexi j is not. Therefore, instead ofr i j andai j , one must usexi j and xi j ai j ,
respectively. In the above example this means artificially settingai j = 0 for all events withE < E0.
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Figure 3: Efficiency correction function for an example calorimeter trigger item with the thresholdEi . Also
indicated are the two chosen phase space regions which differ in the value set for the expected trigger item bitxi j .

4.3.3 Exclusion Method for Combinations of Trigger Items with Inefficiencies

With the above definitions the Exclusion Method is easily modified to take efficiencies into account. The
run-dependent weight factor of eventj in runk for each chosen trigger itemi, for which the expected bit
xi j is set, is given by

w′i j =
dik

ǫik(q j)
. (17)

Then the trigger itemi∗ with the smallest weight factor is chosen and this factor is assigned as the weight
to the event if the actual bitai∗ j for the trigger item is set:

i∗ : w′i∗j = min
xi j=1
w′i j ,

w j = w
′
i∗j ai∗ j .

(18)

If the actual bit is not set, the event is rejected. For weights averaged over runs the expression

w′i j =

∑Nruns
k=1 Lk

∑Nruns
k=1 Lk

ǫik(q j )
dik

(19)

is used instead of Eq. (17). Contrary to the original Exclusion Method (Eq. (8)), the averaged weights
must be calculated for each event since the efficiencyǫik is in general a function of event propertiesq j.
Furthermore, the modified method allows the usage of the averaged weights even if the definitions of the
chosen trigger items change during the run range, provided the definitions of the expected bits remain
unchanged.

In many cases the modified Exclusion Method is a variant of theDivision Method since it divides the
phase space into kinematic regions in each of which one trigger item is used.

Example. The analysed data sample is collected by two trigger items based on the energyE in a
calorimeter with different thresholds. The trigger item with the higher threshold has a smaller down-
scaling factor. In Fig.4 the assumed efficiency functions for both trigger items divided by the respective
downscaling factors are shown. The expected bits for both trigger items are set to one in the whole en-
ergy range depicted in the figure. The crossing pointEc of the two curves divides the phase space, such
that for events withE > Ec (E < Ec) only the trigger item with the higher (lower) threshold is used.
Since the downscale factors and the efficiencies may vary from run to run, theEc value may also vary.•
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items based on the calorimeter energy.

For this method, possible kinematic correlations of the efficiencies must be taken into account. In partic-
ular, it might be necessary to redetermine the efficiency functions for the individual phase space regions,
if the efficiencies of the respective trigger items depend on other variables than those used for the phase
space division.
Example. Two trigger items, as given in the example of kinematic effects from Sect.4.3.1, are used in
the analysis. As a result of the comparison of the ratiosǫ1(E)/d1 andǫ2(N)/d2, the phase space is split
into two energy intervals, such that for energies above (below) a certain valueEc, only events selected
by the calorimeter (tracker) trigger item are used. Due to a possible kinematic correlation between the
calorimeter energy and the number of tracks, the efficiency of the tracker trigger item may have to be
redetermined for the energy rangeE < Ec. Thus for this trigger item, one efficiency functionǫ2(N)
is used to determine the boundaryEc and another oneǫ2|E<Ec(N) to calculate the event weight. The
procedure might be improved by iterative redetermination of the boundary and of the efficiency. Ideally,
no redetermination is needed if the efficiencies for both trigger items are determined as a two-dimensional
function of bothE andN. •

4.3.4 Inclusion Method for Combinations of Trigger Items with Inefficiencies

For the Inclusion Method the cases of uncorrelated and correlated trigger item efficiencies must be dis-
tinguished. For the former the original procedure can easily be extended. For each eventj in the sample,
it is required that from the chosen list of trigger items, at least one expected trigger item bitxi j and its
corresponding actual trigger item bitai j are set,i.e. xi j ai j = 1.

The probability that at least one ofNitems trigger items accepts the event is given by

P jk = 1−
Nitems
∏

i=1

(

1−
xi j ǫik(q j)

dik

)

. (20)

The run-dependent and run-averaged weights are then calculated using Eq. (12) and Eq.(13), respectively.

The method for correlated efficiencies is more involved. For the case of only two trigger items Eq. (20)
reads

P jk = 1−
2

∏

i=1

(

1−
xi j ǫi j

dik

)

=
x1 jǫ1 j

d1k
+

x2 jǫ2 j

d2k
−

x1 jǫ1 j

d1k

x2 jǫ2 j

d2k
, (21)

where we use the short-hand notationǫi j = ǫik(q j). The first two terms correspond to the respective prob-
abilities for each of the two trigger items to accept the event. The last term gives the overlap probability

12



that both trigger items accept the event. This term must be modified to correct for a possible correlation
of the efficiencies:

P jk =
x1 jǫ1 j

d1k
+

x2 jǫ2 j

d2k
−

x1 jǫ1 j

d1k

x2 jǫ2|1 j

d2k
, (22)

whereǫ2|1 j is the efficiency of trigger item 2 in eventj provided that (raw or actual) trigger item 1
accepted the event. Note, that according to Bayes’ ruleǫ1 jǫ2|1 j = ǫ2 jǫ1|2 j .

Example. Two trigger items with downscale factorsd1 andd2 have the same efficiencyǫ and the expected
bits of both items are set for all events in the analysed data sample. For uncorrelated efficiencies Eq. (21)
results inP jk = ǫ

(

1
d1
+ 1

d2
− ǫ

d1d2

)

. For fully correlated efficiencies, which would occur if both trigger

items include the same trigger element with efficiencyǫ, the result of Eq. (22) is P jk = ǫ
(

1
d1
+ 1

d2
− 1

d1d2

)

,
since in this caseǫ1|2 j = ǫ2|1 j = 1 obviously holds. As expected for the latter case, the weight calculation
factorises into the correction for downscaling (Eq. (11)) and the global efficiency correction.•
With a dedicated treatment of the overlap probabilities forcorrelated efficiencies, the recipe can easily
be extended to any number of trigger items.

4.4 Comparison of Methods with and without Efficiency Corrections

Though not strictly needed, the recipes including efficiency corrections can also be used for trigger item
combinations with full efficiency. This introduces an additional systematic error dueto the limited preci-
sion of each efficiency correction, while for the methods without efficiency corrections, it is sufficient to
include only the uncertainty of the efficiency of one trigger item which is assumed to be fully efficient.
However, if this additional uncertainty is small, the methods with efficiency corrections may provide a
significant gain of statistical precision.

Example. An analysis using the Inclusion Method is based on data samples collected by two trigger
items with the downscale factorsd1 = 10 andd2 = 1, respectively. The first trigger item is fully efficient;
i.e. each event in the analysed phase space has its raw bit set, while the second one has an efficiency
ǫ = 0.5. In practice, such a trigger setup may appear if two triggeritems are based on the same event
property with different thresholds. The trigger item with the lower thresholdis more efficient but has a
higher prescale factor.

In the Inclusion Method without efficiency corrections,Na events which are accepted only by the actual
trigger item 1 and rejected by the raw trigger item 2 obtain the weightwa = d1, while Nb events which
have both raw trigger item bits set and are accepted by at least one of the actual trigger items obtain the
weightwb = 1/

(

1
d1
+ 1

d2
− 1

d1d2

)

. The statistical uncertainty on the original number of events Nori is then
given by

δincl
nocorr=

√

Naw
2
a + Nbw

2
b ≈ 2.35

√

Nori , (23)

where for this particular example,Na andNb have been estimated using their expectation values,Na =

Nori(1− ǫ)/d1 andNb = Noriǫ
(

1
d1
+ 1

d2
− 1

d1d2

)

.

On the other hand, if the efficiency corrections are included into the weight calculation, the expected bits
can be set to one for allNc analysed events,Nc = Na + Nb, and thus all events obtain the same weight
wc = 1/

(

1
d1
+ ǫd2
− ǫ

d1d2

)

. The statistical uncertainty is then given by

δincl
corr =

√

Ncw
2
c ≈ 1.35

√

Nori . (24)

The statistical precision is thus improved by a factor of 1.74.•
The reason for the improved performance of the Inclusion Method is the assignment of equal weights to
all events, leading to the minimisation of the statistical error, as discussed in Sect.3.

For the Exclusion Method, the introduction of the efficiency corrections may lead to a gain or loss of
statistical precision depending on the trigger setup.
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Example. In the above example, the Exclusion Method without efficiency corrections provides a statis-
tical uncertainty of

δexcl
nocorr=

√

Nbd2
2 + Nad2

1 ≈ 2.35
√

Nori , (25)

while the application of the efficiency corrections gives a smaller uncertainty

δexcl
corr =

√

Nori
d2

ǫ
≈ 1.41

√

Nori . (26)

However, ford1 = 2 instead of 10, the uncertaintyδexcl
corr would be larger thanδexcl

nocorr. •
The impact on the statistical precision of the Exclusion Method depends on the interplay of two opposite
effects. On the one hand, the inclusion of the efficiency corrections increases the weights for individual
trigger items and reduces the statistics. On the other hand,the rejected events may have had even bigger
weights in the calculation without the corrections.

The recipes including efficiency corrections do not require the knowledge of raw trigger bits and hence
might be the only solutions in case the raw trigger bits are inaccessible in the data analysis. However this
should not be considered as a motivation for skipping the rawtrigger bits in the data aquisition or offline
reprocessing steps, since the efficiency corrections determined from data can become significantly less
accurate (see Sect.2).

5 Combination of Trigger Items in Multi-Level Systems

In multi-level trigger systems each trigger item on a particular trigger level uses as input events accepted
by certain trigger items of the previous level. In the most general case, each lower level trigger item
provides accepted events as input to a number of trigger items on the subsequent trigger level, and each
higher level trigger item accepts events from several trigger items on the lower level. In the following,
a sequence of trigger items withexactlyone item on each trigger level is referred to as achain8). The
general case then corresponds to a collection of many chains, with potentially large overlap between
incorporated trigger items.

All methods described above can be extended to multi-level trigger systems provided all bits are known
at the analysis step for all chosen trigger items at all trigger levels. This is not necessarily guaranteed
in modern trigger systems where higher trigger levels run asfilter processes on computer farms. For
a better use of the available computing power and a faster execution on the filter farms, the following
mechanisms are often used:

• Early-reject mechanism. Chains are evaluated in parallel, and the processing of a chain is stopped
as soon as it is clear that the event cannot be accepted by thischain. In particular, the corresponding
algorithms of the chain on the higher levels are not run if an actual trigger item bit is not set on a
lower trigger level.

• Early-accept mechanism. At the last trigger level, trigger items are processed sequentially, and as
soon as the decision to accept the event by one item is reached, the remaining part of the code is
not executed. The downscaling is then either not performed at the last level or the trigger items are
checked in the order of increasing downscale factors.

In such systems the state of the raw and actual bits at the higher levels remains unknown. Therefore for
early-accept systems the missing trigger information mustbe calculated in the offline data processing,
where the selection code, the event parameters and conditions data, such as the alignment and calibration
constants used in the online processing of the event filter, must be available. For early-reject systems, the
information must be calculated either in the trigger systemafter a positive trigger decision or likewise in
the offline data processing.

8)In the nomenclature of some experiments, chains are termedtrigger paths.
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5.1 Division Method

The Division Method can easily be extended to multi-level trigger systems. The analysed phase space
is divided into distinct regions in each of which events are selected by a single trigger chain. The phase
space regions should be chosen such that the highest statistical significance is reached. Weight factors
for each of the levels involved can be calculated using Eq. (4). The total event weight is then given by
the product of the weight factors for all trigger levels.

5.2 Exclusion Method

5.2.1 Exclusion Method for Fully Efficient Combinations

In the Exclusion Method for fully efficient configurations the run-dependent weight factors for each chain
I in event j in run k are given by

w′I j =

Nlevels
∏

l=1

dl
ikr l

i j (i ∈ I ) , (27)

whereNlevels is the number of trigger levels, andr l
i j anddl

ik are the raw bits and downscale factors for
the trigger itemi on trigger levell belonging to the chainI , respectively. The chainI ∗ with the smallest
non-zero weight factor is chosen, and this factor is assigned as the weight to the event, if all actual bits
al

i∗j belonging to this chain are set:

I ∗ : w′I∗j = min
w′I j,0
w′I j ,

w j = w
′
I∗j

Nlevels
∏

l=1

ai∗j (i∗ ∈ I ∗) .
(28)

The event is rejected if one of the actual bitsal
i∗j is not set. For weight factors averaged over runs, Eq. (27)

is replaced by

w′I j =

∑Nruns
k=1 Lk

∑Nruns
k=1 Lk

∏Nlevels
l=1

1
dl

ik

Nlevels
∏

l=1

r l
i j (i ∈ I ) . (29)

While the raw trigger item bits are set separately for each event, the ratio in front of the product can be
calculated once for the whole run range.

As in the one-level case, frequent redefinitions of trigger items at all trigger levels should be avoided. In
particular, changes of the setups at different levels should be done simultaneously in order to keep the
number of different run ranges considered in the analysis as small as possible.

5.2.2 Exclusion Method for Combinations with Inefficiencies

For an extension of the Exclusion Method with limited efficiencies, efficiency correlations between trig-
ger items not only within one trigger level but also between different levels must be taken into account.
For example, algorithms on a higher level may not use the fulldetector information, but only “regions
of interest” in the detector identified by the lower trigger level. For such correlations we introduce the
conditional efficiencyǫ lik|L(q j) which is the efficiency of the trigger itemi in run k on level l under the
condition that the actual trigger items on certain lower levelsL forming the given chain are set.

The run-dependent weight factor for each chainI is then calculated using

w′I j =

Nlevels
∏

l=1

dl
ik

ǫ lik|(l−1)...1(q j)
xl

i j (i ∈ I ) , (30)
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Figure 5: Example trigger setup of two levels with two trigger items oneach level, forming three chains.

wherexl
i j is the expected bit for the trigger itemi at levell, while ǫ lik|(l−1)...1 indicates the efficiency under

the condition that all corresponding actual trigger items from the lower levels (l − 1) . . . 1 fired. Weight
factors averaged over runs are given by

w′I j =

∑Nruns
k=1 Lk

∑Nruns
k=1 Lk

∏Nlevels
l=1

ǫ lik|(l−1)...1(q j )

dl
ik

Nlevels
∏

l=1

xl
i j (i ∈ I ) . (31)

With the chain weight factors defined according to Eq. (30) or (31), the event weight is then calculated
using Eq. (28).

Example. In the simplest non-trivial example depicted in Fig.5, events in one run are selected by two
trigger itemssL1

1 and sL1
2 on level 1 (L1) and subsequently by two trigger itemssL2

1 and sL2
2 on level 2

(L2). Events accepted by the actual trigger itemssL1
1 andsL1

2 are processed bysL2
1 , while sL2

2 processes
only events accepted bysL1

2 . Depending on the products of the respective expected bitsxL1
1 , xL1

2 , xL2
1 , xL2

2 ,
the setup can be considered as three chains:I1 = {sL1

1 sL2
1 }, I2 = {sL1

2 sL2
2 }, andI3 = {sL1

2 sL2
1 }. The weight

factors for these chains are given by the respective downscale factors and conditional probabilities with
obvious notation:w1 = (dL1

1 dL2
1 )/(ǫL1

1 ǫ
L2
1|L1-1), w2 = (dL1

2 dL2
2 )/(ǫL1

2 ǫ
L2
2|L1-2), andw3 = (dL1

2 dL2
1 )/(ǫL1

2 ǫ
L2
1|L1-2).

Events withxL1
1 xL2

1 = 1 and with the other productsxL1
2 xL2

2 = xL1
2 xL2

1 = 0 get the weightw1. Similarly,
events with onlyxL1

2 xL2
2 = 1 get the weightw2, and events with onlyxL1

2 xL2
1 = 1 obtain the weightw3.

Events with onlyxL1
1 xL2

2 = 1 are excluded from the analysis, since the corresponding chain is not defined.
For events withxL1

1 xL2
1 xL1

2 = 1 andxL2
2 = 0, the weight factorsw1 andw3 are compared. The smallest

weight factor is chosen as the event weight, and only events with the proper combination of actual trigger
items (aL1

1 aL2
1 for w1 < w3, or aL1

2 aL2
1 for w3 < w1) remain in the analysis sample. In a similar way, events

with xL1
1 xL2

1 xL1
2 xL2

2 = 1 are selected or rejected based on the smallest of all three weight factors.•
For the treatment of kinematic correlations, considerations similar to those discussed in Sect.4.3.3apply.
For each chain the efficienciesǫ lik|(l−1)...1(q j) may have to be redetermined for the corresponding phase
space regions.

5.3 Inclusion Method

5.3.1 Inclusion Method for Fully Efficient Combinations

The Inclusion Method for fully efficient combinations of chains is described here following [11] for the
case of only two trigger levels. It can be extended to any number of levels in a straightforward way.

In general, the definition of chains between two trigger levels, L1 and L2, can be described by the
following matrix:

Mim =















1 if L1 trigger itemi forms a chain with L2 trigger itemm,

0 otherwise.

Event j is accepted by the trigger system, if at least one of the productsaL1
i j MimaL2

m j is equal to one. The
probability for the event to be accepted by the downscaling procedure then depends on the combination
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of the fired raw trigger itemsrL1
i j MimrL2

m j. Before discussing the general case of an arbitrary number of
items on each level, we begin with two simple, often occuringand instructive configurations:
• All-to-1 configuration.In an analysis based on a single L2 trigger itemm the probability for an event

j in run k to be accepted by L2 trigger itemm is given by

PL2
m jk =

rL2
m j

dL2
mk

, (32)

whererL2
m j is the raw bit anddL2

mk the downscaling factor for the L2 trigger itemm. The probability for

the system to select the event is given by the product ofPL2
m jk and the probability of at least one actual

L1 trigger item having fired, which forms a chain with the L2 trigger item in question (cf. Eq. (11)):

PL12
m jk =

















1−
NL1
∏

i=1

















1−
rL1
i j Mim

dL1
ik

































rL2
m j

dL2
mk

, (33)

whererL1
i j anddL1

ik are the raw bit and the downscale factor for the L1 trigger item i, respectively, and
NL1 is the number of L1 trigger items.

• 1-to-all configuration.In an analysis based on a single L1 trigger itemi forming chains with several
L2 trigger items, the triggering probability factorises ina similar manner as in Eq. (33):

PL12
i jk =

rL1
i j

dL1
ik

















1−
NL2
∏

m=1

















1−
MimrL2

m j

dL2
mk

































, (34)

with NL2 representing the number of L2 trigger items.
In the most general case of trigger items entering several chains on both levels, the calculation becomes
rather involved, since the weight is calculated based on theraw trigger item bits independently of the
actual trigger item which accepted the event. However, withthe definition of chains (according to the
matrix Mim), the actual L1 trigger item bits after downscaling influence the decision to accept the event
via an L2 trigger item, and therefore the selection probabilities of L1 and L2 are correlated and do not
factorise. The total probability is given by the sum of probabilities for all combinations (patterns)SL1 of
actual L1 trigger item bits that are possible for the raw L1 trigger item setting of the eventj:

PL12
jk =

∑

SL1

















∏

i∈SL1

rL1
i j

dL1
ik

































∏

i<SL1

















1−
rL1
i j

dL1
ik

































·



















1−
NL2
∏

m=1

















1−
















1−
∏

i∈SL1

(1− Mim)

















rL2
m j

dL2
mk



































. (35)

Here, the expression inside the curly braces gives the probability that an event with a given L1 actual trig-
ger item bit pattern is kept by L2, while the two products in front give the probability that this L1 actual
bit pattern occurs. In general, the sum runs over 2NL1 − 1 terms, which may be a large number. However,
in practice, individual analyses use only a small number of trigger items at each level which makes the
usage of Eq. (35) feasible. In addition Eq. (35) is simplified for the following two configurations:
• All-to-all configuration.If several L2 trigger items form chains with the same set of L1trigger items

(i.e. Mim = Mi independent onm) the probabilities factorise:

PL12
jk =

















1−
NL1
∏

i=1

















1−
rL1
i j

dL1
ik

















































1−
NL2
∏

m=1

















1−
rL2
m j

dL2
mk












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. (36)

• All-1-to-1-only configuration.For parallel chains, having one separate trigger item on each trigger
level, the matrixMim can be expressed as an identity matrix and Eq. (35) simplifies to

PL12
jk = 1−

Nitems
∏

i=1

















1−
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i j
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ik

















, (37)

which is similar to Eq. (11) for one-level systems.
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Using the total probability from one of the equations (33)–(37), the event weight is calculated similarly
to the case of one-level systems (c.f. Eq. (12) or (13)). The weight is assigned to the eventj if at least
one productaL1

i j MimaL2
m j for the considered trigger items is equal to one. Otherwise the event is rejected.

For the Inclusion Method with fully efficient trigger configurations the algorithm of an L2 trigger item
must not make use of theactual L1 trigger item bits, since otherwise the L1 downscaling enters as an
inefficiency of the L2 trigger item and the configuration is not fully efficient. In particular, in trigger
systems with early-reject mechanism, one may be tempted to set the higher level raw trigger bit to zero if
the corresponding actual bits at the lower level are unset. This leads however to wrong weight calculation
since this is equivalent to the inclusion of the lower level actual bits into the algorithm of the higher level.
On the contrary, the usage of theraw L1 trigger item bits in L2 algorithms is allowed.

5.3.2 Inclusion Method for Combinations with Inefficiencies

Uncorrelated inefficiencies can be included in the same way as for the one-level system. In Eq. (33)–
(37) the L1 and L2 raw trigger bits must be replaced by the products of the respective expected bits and
efficiencies.E.g.the general expression (35) is modified to

PL12
jk =

∑

SL1

















∏

i∈SL1

xL1
i j ǫ

L1
ik (q j)

dL1
ik

































∏

i<SL1

















1−
xL1

i j ǫ
L1
ik (q j)

dL1
ik

































·



















1−
NL2
∏

m=1

















1−
















1−
∏

i∈SL1

(1− Mim)

















xL2
m jǫ

L2
mk(q j)

dL2
mk



































,

(38)

wherexL1
i j , xL2

m j are the expected trigger item bits, andǫL1
ik (q j), ǫL2

mk(q j) are the efficiency correction func-
tions for L1 trigger itemi and L2 trigger itemm, respectively. Only such events are selected for the
analysis in which at least one of the productsxL1

i j aL1
i j MimxL2

m ja
L2
m j is equal to one.

Efficiencies correlated between trigger items of one level and between different levels can be treated in a
way similar to Sect.4.3.4. However, the treatment of correlations between different levels must take into
account, whether the conditional efficiencies depend on the raw or actual trigger items from lowerlevels.
In case of a dependence on the raw bits, each pattern of actualtrigger items has to be split into the sum
of subpatterns with all possible raw trigger item configurations and conditional efficiencies specific for
each subpattern have to be applied.

Example. The example setup of 2×2 trigger items forming three chains discussed in Sect.5.2.2and
depicted in Fig.5 cannot be reduced to an all-to-1, 1-to-all, all-to-all or all-1-to-1-only configuration.
Hence, Eq. (38) has to be applied giving the probability

PL12 =
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
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
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.

(39)

The first summand gives the probability that the L1 actual trigger itemsL1
1 accepts the event, while the

L1 actual trigger itemsL1
2 rejects it, and multiplied by the probability that the eventis then accepted by

the L2 actual trigger itemsL2
1 . If the efficiencies of the itemssL1

1 andsL1
2 on level 1 are correlated,ǫL1

2 in
this summand must be replaced by the correlated efficiencyǫL1

2|1 for the L1 trigger itemsL1
2 to accept the

event, provided the L1 trigger itemsL1
1 also accepts the event. If the efficiency of the L2 trigger itemsL2

1
is conditional and depends on the raw trigger item bitsrL1

1 andrL1
2 , then this summand has to be split into

two terms corresponding to the cases that the L1 raw trigger item sL2
1 should or should not have fired in
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the event:
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(40)

In the first summand the efficiencyǫL2
1 has to be replaced by the conditional efficiencyǫL2

1|L1-12 of the L2

trigger itemsL2
1 for the case that both L1 raw trigger items fired. Similarly inthe second summand,ǫL2

1
has to be replaced by the conditional efficiencyǫL2

1|L1-162 of the L2 trigger itemsL2
1 for the case that only

the L1 raw trigger itemsL1
1 fired.

The second summand in Eq. (39) can be treated similarly. It gives the probability that theL1 actual
trigger itemsL1

2 and subsequently at least one of the two L2 actual trigger items accept the event. If the
efficiencies of the L2 trigger items depend on the raw trigger item bit rL1

1 , this summand again has to be
split into two terms corresponding to the probabilities that this bit is set or not set in the event:
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(41)

In each term of the sum the efficiencies of the L2 trigger items have to be replaced by the respective
conditional ones. If the L2 trigger item efficiencies are correlated to each other, the expressions in
parentheses have to be modified, as shown in Eq. (22). •
In general, if the efficiencies are correlated both within one level and between different levels, a signif-
icant number of different correction functions may have to be determined for each trigger item. One
should note that even if some of the used trigger items from different trigger levels are not combined into
a chain, their decisions may be correlated and hence conditional efficiencies may have to be used. For
instance, the trigger itemssL1

1 andsL2
2 in the above example may be correlated and thus the conditional

efficienciesǫL2
2|L1-12 andǫL2

2|L1- 612 may differ.

6 Implications for Design and Operation of Trigger Systems

The various methods presented in this paper have consequences for the design and operation of trigger
systems. Some non-trivial rules are summarised in the following:
1. The raw trigger item bits should be stored in the event record available for the data analysis(i) to

reduce the statistical uncertainty of the efficiency determination (Sect.2) and(ii) to allow the weight
calculation for fully efficient trigger combinations (Sect.4.2).

2. The optimum downscaling procedure should select events on a random basis, to avoid end-of-run
uncertainties (Sect.3) and statistical dependencies of (quasi-)identical trigger items (Sect.4.2.2).

3. For deterministic downscaling systems, several optionsto minimise the end-of-run correction exist:
(i) the status of the downscale counters at the end-of-run should be recorded;(ii) a randomly chosen
position should be used for the selection in all downscale intervals of one run;(iii) the event in the
middle of the downscale interval should be selected (Sect.3).

4. The Inclusion Method assumes no correlation of the downscaling decisions of different trigger items.
For deterministic downscaling systems, configurations with several (quasi-)identical trigger items
should be avoided. Alternatively the downscaling factors must fulfill certain constraints (Sect.4.2.2).
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5. While downscale factors can be changed arbitrarily, frequent redefinitions of trigger items should
be avoided. Every redefinition limits the run range in which the efficiency correction for the re-
spective trigger item must be determined (Sect.2) and in which weight averaging for fully efficient
combinations of trigger items can be applied (Sect.4.2).

6. For an optimised trigger selection of events, sophisticated definitions of trigger items combining
many trigger elements might seem to be advantageous. However, very complex definitions should
be avoided since the determination of their efficiency corrections and correlations with other trigger
items may be challenging (Sect.4.3).

7. For multi-level trigger systems, the simplest configuration for data analysis consists of parallel 1-to-1
chains (all-1-to-1-only). If the assignment of several trigger items on one level to the same trigger
item on another level is unavoidable, it should be restricted to separate 1-to-all, all-to-1 or all-to-all
configurations (Sect.5, especially5.3.1).

8. Although the final trigger decisions are based on the products of actual trigger bits from different
trigger levels, the algorithms determining the raw triggerbits at higher levels must not use the actual
trigger bits from lower levels; otherwise the Exclusion andInclusion Methods for fully efficient
trigger combinations which involve raw trigger bits are inapplicable (Sect.5).

9. On all trigger levels the raw and actual bits of all triggeritems used to select the analysed events
should be available for the analysis (see also Item 1). For early-accept systems this implies that the
trigger information should be calculated in the offline data processing where the selection code and
the event parameters must be accessible to reproduce all trigger decisions. For early-reject systems
the information should be calculated either in the trigger system after a positive trigger decision or
likewise in the offline data processing (Sect.5).

7 Summary and Conclusions

We have presented calculation methods for offline corrections of event losses in trigger systems of par-
ticle collider experiments. Emphasis has been put on the corrections of prescale factors and trigger
inefficiencies for combinations of event samples collected by different trigger items. Each method pro-
vides event weights, the sum of which reproduces the original number of events that occured in the
detector. The methods have been discussed both for single-level and multi-level trigger systems with
and without considering uncorrelated and correlated trigger inefficiencies. We have studied the statistical
performance of all methods and considered implications fordesign and operation of trigger systems.

In detail, three conceptually different methods with increasing complexity have been studied. The Divi-
sion Method can provide sufficient statistical precision if the individual trigger items have low downscale
factors and high efficiencies in their respective phase space regions. The accuracy can be improved us-
ing the Exclusion Method which is adequate for many analyses. The optimum performance is however
provided by the more complicated Inclusion Method which alone makes use of all selected events in the
combined sample. For all methods the application of event weights averaged over run ranges can yield a
significant gain in the statistical precision of the result.

Acknowledgments

This paper was inspired by work within the H1 collaboration.Special acknowledgments belong to the
authors of the reports [11,12] who introduced the Inclusion Method for fully efficient trigger combina-
tions, as well as to V. Shekelyan who proposed the basic Exclusion Method for one-level trigger systems.
We thank E. Elsen for useful comments and M. Medinnis for proofreading this manuscript. K. Krüger is
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