
A Modular Framework for the Evolution of Circuits
on Configurable Transistor Array Architectures.

Martin Trefzer, Jörg Langeheine, Karlheinz Meier, Johannes Schemmel
Ruprecht-Karls-University of Heidelberg

Kirchhoff Institute for Physics
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

martin.trefzer@kip.uni-heidelberg.de, +49 (0)6221 54-9838
http://www.kip.uni-heidelberg.de/vision/projects/eh/

Abstract

This paper gives an overview over the progress that has
been made by the Heidelberg FPTA group within the field
of analog evolvable hardware. Achievements are the design
of a CMOS configurable transistor array (FPTA), the de-
velopment of evolutionary algorithms (EAs) for analog cir-
cuit synthesis and the implementation of a modular frame-
work, which makes it possible to use various substrates and
simulation models for evolution experiments. The improve-
ment of the EA is shown by comparing the performance of
three implementations in evolving comparators. Addition-
ally, results, obtained from the FPTA for the evolution of
oscillators from scratch, are presented as an example for
the successful application of the multi-objective Turtle GA.
Finally, it is shown that a simplified software model of the
Heidelberg FPTA is suitable to assess the real hardware,
indicated by the fact that both substrates perform equally
well in finding good solutions for comparators. This work
aims at creating a customizable, modular framework that
facilitates research on the performance and evolvability of
possible FPTA topologies in the future.

1. Introduction

There is a great need for analog circuits carrying out
complex tasks in a great variety of applications ranging
from simple switches to complex DACs, ADCs or OPs.
The classical way of designing suitable circuits for spe-
cific needs is yet to create a schematic and an according
layout, which are conform with an available target tech-
nology. Once the functionality of the designed circuit is
verified with an analog circuit simulator, a corresponding
prototype can be fabricated. Current design flows provide
a very high degree of reliability on the design process and

the outcome, which is a great advantage. Despite this, in
the digital regime, reconfigurable logic chips, namely field
programmable gate arrays (FPGAs), are gaining more and
more of importance with their increasing speed, complexity
and flexibility.

Contrary to that, field programmable analog arrays
(FPAAs) are to date not very elaborated and only a few
analytic solutions for analog design automation are avail-
able [2, 6]. There are three main reasons that make the de-
sign of powerful FPAAs very difficult: First, the lack of an
analytical language in which the behavior of any analog cir-
cuit can be expressed. Second, it is a very challenging task
to design a reconfigurable analog substrate which provides
both, the flexibility to host a great variety of circuits and suf-
ficient control over the influence of parasitic effects. Third,
even if there was yet a substrate fulfilling the latter demands,
it is still challenging to develop algorithms, which are able
to configure or map existing topologies to such a substrate.
As a consequence of this, it is necessary to develop topolo-
gies and algorithms at the same time.

Promising approaches on the algorithmic side are made
by using evolutionary algorithms (EAs) for the—in some
cases—simultaneous synthesis of topology and component
sizing of analog circuits [1, 7, 10–12]. If the focus is set
on the automatic synthesis of complex topologies, develop-
mental strategies like genetic programming (GP) [8,13,16]
or heuristic interconnection of building blocks [9] are suc-
cessfully applied. In addition to that, multi-objective EAs
[3,4] are suitable for taking the numerous variables into ac-
count, that need to be optimized for complex problems like
analog circuit design.

In this paper, the improvements that have been made
by developing more powerful evolutionary algorithms are
pointed out by using a comparator as an example analog
circuit. It is shown that solutions with a fitness compara-
ble to a manually defined circuit can be synthesized on the

FPTA. Additionally, oscillators of different frequenciescan
be evolved from scratch on the chip employing theMO-
Turtle GApresented in [15]. Further, a modular evolution
system is introduced which makes it possible to use dif-
ferent substrates and simulators for evolution experiments.
This provides the possibility of designing software models
of various FPAA architectures, which can be evaluated with
the presented framework before fabricating a chip. Tackling
the evolution of comparators, the system is proven to work
by creating a software model of the FPTA, referred to as the
SimFPTA, and by comparing the results to those obtained
from the chip. The presented customizable modular frame-
work is intended to facilitate research on the performance
and evolvability of future FPAA topologies in hardware.

2. Evolution System

The entire hardware evolution setup consists of the FPTA
chip, that hosts the programmable transistor array, a stan-
dard PC that runs the evolutionary algorithm (EA) and or-
ganizes the voltage test patterns, and a custom made PCI
interface card which represents a flexible FPGA based con-
roller and interface for the chip. Those components provide
a flexible realtime measuring system for analog hardware
evolution experiments on the FPTA. Since the whole setup
is build in a modular manner, the hardware can be easily
replaced with any analog circuit simulator. Thus, it is pos-
sible to operate various substrates or simulation models of
substrates within the presented evolution system. In these
experiments, a second substrate is represented by a simpli-
fied SPICE model of the current FPTA, referred to as the
SimFPTA throughout the remainder of this paper.

2.1. Modular Evolution Environment

The EA library is implemented in a very flexible way
using the C++ programming language and is based on the
GALib of Matthew Wall [17], although numerous additions
and changes have been made. Polymorphism is used for all
classes representing the evolutionary algorithm, the genome
and the experimental setup which facilitates the implemen-
tation of new structures that inherit EA functionality from
the base classes, i.e. it is easy to add custom genomes
and immediately use them within the existing framework.
All methods, which are operating on the population and
its individuals—namely initialize, mutate, cross, analyze,
evaluate and select—, are implemented in static methods,
hence, they are available at any time and from anywhere
within the application by simply accessing them through
pointers to those methods kept in the respective classes.
This mechanism allows for arbitrary combinations of op-
erations or even for changing them at runtime, if desired.
UML diagrams of the relevant classes are graphed in Fig. 1.

Figure 1. UML diagrams of all relevant
classes of the implemented customizable,
modular evolution framework.

2.1.1 GAAlgorithmBase: The Evolution Framework

The GAAlgorithmBase class is the core of the evolu-
tionary algorithm: It manages the populations and genomes
and carries out the evolutionary loop, hence, all presented
algorithms are derived from this base class. Only two meth-
ods have to be implemented in order to customize a new
algorithm, namely theinitialize() and theevolutionStep()
method, whereas any other functionality is inherited from

the base class.

2.1.2 GACircuitGenome and ComponentBase

TheGACircuitGenome is derived from the more general
classGABaseGenome and is extended with datastructures
that contain the circuit components and with a pointer to
the experimental setup, described in 2.1.3. Additionally,
two new methods (getSimulatorRep(), getHardwareRep())
are added and need to be implemented depending on the
targeted substrate or simulator. The vector containing point-
ers to the ’ComponentBase’ objects—that can be spe-
cialized to any desired circuit component—represents the
actual circuit. In this paper, a representation of the pro-
grammable transistor cells of the FPTA chip is used for the
experiments, thus, transistor circuits can be evolved either
on the FPTA or the SimFPTA.

TheComponentBase class contains a list of external
and internal nodes, respectively. Switches can be config-
ured in order to connect the actual component to either of
those nodes or for directly interconnecting any of the avail-
able nodes. Finally, component parameters can be defined
for the inner components, i.e. W/L in case of transistors.
The external nodes offer the possibility to interconnect mul-
tiple components in order to build large circuits.

2.1.3 EXPSetupBase and TMBase: Using different
Substrates or Target Technologies

TheEXPSetupBase class contains a vector of pointers to
specializedTMBase objects—each representing one test-
mode of the whole experiment—consisting of the input and
the target voltage pattern as well as any information about
how to use the respective evolution platform. An important
feature is the separation of the evaluation process in two
independent steps: measuring (TMBase) and fitness calcu-
lation (EXPSetupBase), which makes it possible to use
multiple substrates in parallel and to parallelize measuring.

2.2. Implementations of the Evolutionary
Algorithm

In all cases, the genetic operators, namely mutation
and crossover, are implemented with regard to cell-based
(FPTA) architectures. Therefore, the operators consist of
two modules working on cell level and working on array
level, respectively. As a consequence of this, the inner struc-
ture of the components (cells) is transparent to the used evo-
lutionary algorithm.

2.2.1 The Basic GA

TheBasic GAis based on the simple genetic algorithm in-
troduced in [5]. It is straight forward implemented for the

configurable transistor cells:
Mutation. Connections within and between components

are randomly enabled or disabled and the parameters of the
components—W,L in case of transistors—are varied due to
a probability given by themutation rate.

Crossover. The crossover operator works on cell level
and exchanges equally sized rectangular blocks of cells
of two selected crossover partners. Size and position of
the blocks are randomly chosen. The execution of the
crossover operator is controlled by a probability given by
thecrossover rate.

2.2.2 The Turtle GA

Contrary to theBasic GA, theTurtle GA, reported in [14],
produces only circuits that contain no floating nodes or ter-
minals. Consequently, circuits that are synthesized using
the Turtle GA work in simulation as well as on hardware
substrates, thus, can be transferred to various technologies.
The genetic operators are defined as follows:

Random Wires (Mutation). The mutation operator ran-
domly selects a node of an arbitrary cell as starting point for
the algorithm and randomly decides whether to create or to
erase circuit components. Subsequently, the selected node
is connected to (or disconnected from) a random, directly
connectable target node or transistor terminal, which is pro-
vided by the respective substrate. The mutation operator
is carried out recursively by selecting the occurring target
nodes as new starting points for the next iteration, until the
resulting circuit contains no dangling nodes and no float-
ing transistor terminals. The width and length of all active
transistors is mutated due to a configurable probability.

Implanting a Foreign Block of Cells (Crossover). The
implantingcrossover operator is carried out in two stages.
The first stage exchanges randomly sized and positioned
rectangular blocks of transistor cells between two randomly
selected individuals. The size of both blocks has to be
the same for each individual, whereas the positions of the
blocks may differ. Since the crossover operation in general
breaks the layout of both previously intact circuits, the sec-
ond stage fixes the occurring floating nodes by applying the
random wires mutation operator to each of them. Conse-
quently, the resulting circuits contain no floating nodes.

2.2.3 The Multi-Objective Turtle GA

A multi-objective (MO) evolutionary algorithm allows in-
dividuals with a bad over-all performance to survive as long
as they are superior in at least one objective, i.e. they are
partially better than all other individuals within the popula-
tion. The subset of those partially better individuals is called
the non-dominated front (NDF). Hence, an MO approach
is more suitable for assessing candidate solutions than a
single objective approach, since different—sometimes even

W/L

1:6 Analog Mux

1:6 Analog Mux

vdd gnd

Drain

Gate

Source

1:
6

A
na

lo
g

M
ux

gnd

vdd

N

W

S

E

N W S E

vdd gndN W S E

N

W

S

E

S

N

EW

Figure 2. The block diagram of an FPTA and
SimFPTA MOS transistor cell.

contradicting—properties of analog circuits have to be sep-
arately optimized at the same time. Additionally, a great
diversity within the population is inherently provided andit
is possible to harvest a whole set of solutions that features
both, individuals with a good over-all performance and indi-
viduals that are superior in different design corners. Multi-
objective optimization has been first proposed in [5] and the
presented implementation is based on [4]. In case theTur-
tle GA is run in multi-objective mode, as presented in [15],
two additional evaluations have to be carried out for each
evolutionary step:

Non-Dominated Sorting. All individuals are classified
by calculating their level of non-domination, based on their
objective valuespi . An individual p is said to dominateq,
denoted byp � q, if and only if p is partially less thanq
(Eq. 1).

∀i ∈ (1, . . . ,n), pi ≤ qi ∧ ∃i ∈ (1, . . . ,n) : pi < qi (1)

NDF := {p∈ P | ∄p′ ∈ P : p′ � p} (2)

All p satisfying Eq. 1, 2 provide the first non-dom. front
NDF1. The succeeding NDFs are found by removing the
individuals of NDFk from the populationP′ = P\NDFk and
by recalculating Eq. 1, 2 for the new populationP′ until
NDFk+1 is empty.

Crowding Distance. The crowding distancecdist is a
measure for the distribution of the solutions within the fit-
ness landscape. All objective values are considered for cal-
culating the quantitycdist, which represents an average dis-
tance to the nearest neighbors ofp and is assigned to each
individual of the population. Thereforecdist is used to steer
the evolution towards a uniform distribution of the individ-
uals over the NDF.

2.3. Evolvable Substrates

In this paper, two substrates are employed for circuit evo-
lution: First, the current FPTA [10] and second, a simplified
simulation model of the chip, referred to as the SimFPTA.
Configurations for both substrates are represented by suit-
able data structures in software, as can be seen from Fig. 1.
In principle, the component classes of the software library
can be used to model any FPTA (or circuit) architecture and
use it for evolution experiments. Thus, possible new topolo-
gies can be tested in simulation and, if a promising archi-
tecture is found, a new chip can be manufactured in order
to exploit the speed of real hardware, which is significantly
faster than simulation.

2.3.1 The FPTA

The FPTA consists of 16x16 configurable CMOS transistor
cells (Fig. 2). Hence, a total of 256 programmable tran-
sistor cells are available, half of them designed as NMOS
and PMOS, respectively. TheW/L ratio of those transistor
cells can be configured in wide ranges (W = 1,2,4,8µm,
L = 0.6,1,2,4,8µm) and each cell is connected to the four
nearest neighbors (N,S,W,E). All four external connections
can either be directly connected or linked to one of the three
transistor terminals (gate, source, drain). Consequently, a
great variety of CMOS transistor circuits can be realized
on the configurable transistor array and are represented by
a corresponding configuration bit string. The cut-off fre-
quency of the circuits on the FPTA is about 4 MHz. A de-
tailed description of the FPTA is given in [10].

2.3.2 FPTA Simulation Model: The SimFPTA

The configurable cells of the SimFPTA feature identical
configuration options as the original FPTA, described in
the previous subsection, although there are important dif-
ferences between hardware and SPICE simulation. Most
important are the implications of the FPTA’s architecture
where each programmable transistor is in fact represented
by an array of 4x5 plain transistors with different sizes that
can be turned on and off, respectively. As a consequence
of this, the effectiveW/L ratio of the resulting transistor is
changed. Contrary to that, in the simulation model, a plain
transistor with the accordingW/L is inserted into the circuit.
Further, the connectivity is realized by using transmission
gates on the FPTA whereas lossless lines could be used in
case of the SimFPTA. In this case, the transmission gates
have been replaced by resistors with the mean on-resistance
of the transmission gates, which is aboutR = 330Ω [10].
Hereby, the trade-off is to create a model in SPICE which
behaves comparable to the FPTA but is less complex, in or-
der to save simulation time.

3. Experimental Setup

The experimental setup is independent of the used sub-
strate. In all experiments, the mutation rate is adapted to the
performance of the best individual and takes on values in
the range ofpmut = 0.02..0.1, whereas the crossover rate is
constantly set topcross= 0.2. A total of 30 evolution runs is
carried out for both, the evolution of comparators and oscil-
lators. In all cases, the task is to minimize the fitness.

3.1. Setup for the Comparators

Two test-modes (TMs) are used for the evolution of com-
parators. The input voltage pattern of the first test-mode
consists of a set of seven curves, each a voltage sweep of
Vin = 0..5 V in 100 samples at one of the switching points
Vset= 1,1.5,2, . . . ,4 V. Hence, the output target voltage has
to beVout = 0 V if Vin <VsetandVout = 5 V if Vin >Vset. Ow-
ing to the symmetry of comparators, the circuit’s inputs are
exchanged for the second test-mode and consequently the
output target voltage has to beVout = 0 V if Vin > Vset and
Vout = 5 V if Vin < Vset. The GA is allowed to use an area of
8x8 programmable transistor cells and the population size
is 50 individuals that are processed for 5000 generations on
the FPTA and 2000 generations on the SimFPTA.

3.2. Fitness Calculation for the Compara-
tors

Considering the presence of noise and fluctuations of the
analog output, a discrete fitness function is used for the evo-
lution of comparators. Since a precision of±10 mV can
be assumed for the hardware measurements, an offset of
20 mV is taken into account in equation 3. Although not
necessary for the output obtained from simulation (SimF-
PTA), the same fitness function (Eqns. 3,4) is used in order
to make the results comparable. Fitness is separately calcu-
lated for each test-mode and simply summed up in case of
single-objective evaluation.

In addition to the two test-modes, minimization of used
resources is included in the fitness by adding extra penalties
of 1× no. of used routes + 2× no. of used transistors. Since,
in the phase of exploration, minimizing the resources would
be counterproductive, the penalty for maximum ressource
consumption is added until the fitness value drops below
500, which already stands for a reasonably good compara-
tor. Thus, a total of 3 independent fitness values is used for
the evolution of comparators.

∆Vi = |Vtargeti −Vmeasuredi |−20 mV (3)

fitness =
#sam

∑
i=1

50

∑
j=1

{

j · 11
1275 ∆Vi > 0.1 · (j −1)

0 ∆Vi ≤ 0.1 · (j −1)
(4)

3.3. Experimental Setup for the Oscillators

A truly multi-objective task is the evolution of an oscil-
lator from scratch. One testmode, containing 480 samples
with a sampling frequency of 10 MHz, is used to achieve
this, hence, the range of the possible output frequencies is
20kHzkHz..4.8 MHz. Crucial for this setup is the fact, that
there is no input and only one output present in the evolving
circuit and further, the output is not bound to fixed con-
straints, in terms of a target voltage pattern. Merely the out-
put voltage behavior instead of a fixed output voltage pat-
tern is assessed by the fitness function. An area of 10×10
transistor cells is provided to the evolving circuit and the
population size is 100 individuals which are evolved for
5000 generations.

3.4. Fitness Calculation for the Oscillators

The fitness measure does not constrain the frequency,
phase and signal shape of the circuit’s output to fixed val-
ues, since it is supposed that this would implicitly exclude
usefull pathways for evolution towards oscillating circuits.
Consequently, a total of 6 more open and phenomenological
fitness criteria are used for the experiments and are listed in
Tab. 1

objective description

1. DC offset |V̄out−2.5 V|
2. dev. fromV̄out maximize RMS error
3. amplitude span maximizeVout,max−Vout,min

4. no. of zero crossings #upwards+#downwards
5. inflection points #not alternating +/-
6. std. dev of periods std. dev of occurring periods
7. used ressources sum of used transistors

Table 1. An list of all objectives that are used
for the multi-objective evolution of oscilla-
tors from scratch. Zero crossings and am-
plitudes are always measured relative to the
mean output voltage. Occurring periods are
calculated from those zero crossings.

3.5. Selection Scheme

Tournament selection with a tournament size of 3 is
used for all presented experiments. In case of the single-
objective evolutions, the aggregated fitness value of all eval-
uations is considered, whereas in the multiobjective exper-
iments the individual’s level of non-domination is consid-
ered for selection. In case the scores of both competitors

are equal, the convergence of their fitness is taken into ac-
count, which is calculated from their previous fitness values

using conv.= ∑objectives
fitness(geni)

fitness(geni−5)
.

4. Results

Three issues are targeted with the presented experiments:
First, the development of an EA which produces circuits
that are independent from the substrate on which they are
evolved and which more likely delivers solutions that are
reduced to relevant components. Second, the achievements
of the multi-objective approach can be nicely seen from the
results for the oscillators, where it is possible to harvest
oscillating circuits of various frequencies from one single
evolutionary run. Third, the performance of the FPTA is
compared with the performance of the SimFPTA. In all ex-
periments, except for the oscillators, the task is to evolvea
comparator.

4.1. Improving Results on the FPTA by De-
veloping the Evolutionary Algorithm

no. used transistors

fit
ne

ss
[×

10
3] reference

basic
turtle
turtle mo

0 10 20 30 40 50 60
0

0.5

1

1.5

2

individual no.

turtle mo

basic
turtle

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Figure 3. Left: Comparison of the fitness over
the no. of used transistors for the three GAs:
Basic GA, Turtle GA, MO-Turtle GA. The po-
sition of a manually made reference design
within the fitness landscape is marked with a
cross. Right: Distributions of the fitness val-
ues of example results off all three GAs.

The task is to evolve a comparator with three different
evolutionary algorithms: TheBasic GA, TheTurtle GAand
theMO-Turtle GA. As can be seen from Fig. 3, the results
are spread over equal ranges of fitness, independent of the
used EA. Opposite to that, theTurtle GAand theMO-Turtle
GA are extensively resource preserving compared with the
Basic GAand are performing equally well compared with
each other. It is assumed that theMO-Turtle GAwill outper-
form theTurtle GA, with increasing number of objectives.
Examples for the latter are given in Sec. 4.2 and in [15]. As
can be seen from Fig. 3, the MO approach achieves the most

V
o

ut

0

0.5

1

1.5

2

2.5

Vsweep

V
o

ut

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Vsweep

0 1 2 3 4 5

Figure 4. Comparison of voltage characteris-
tics of the best solutions (straight line) with
the simulation results (dashed line). De-
picted are example measuring for the Basic
GA (upper left), the Turtle GA (lower right)
and the MO-Turtle GA (lower left). Example
for an extracted schematic (upper right).

uniform distribution of fitness, hence, the greatest diversity
within the resulting populations.

Example voltage characteristics of solutions with a good
(best) performance are shown in Fig. 4. In the case of the
Turtle GAs, the circuits are extracted into netlists and the
output obtained from the FPTA is compared with the re-
sults from simulation. For the simulation, the resistance of
the transmission gates is approximated with a mean value of
330Ω and this is the reason for the observed offsets ofVset.
In cases where the parasitic effects are negligible, netlists
with plain transistors are extracted from the resulting in-
dividual, thus, schematics for further analysis of the solu-
tions can be drawn. An example schematic of the solution
with the lowest resource consumption is shown in Fig. 4,
although in this case, the resistors have to be considered for
successful simulation.

4.2. A Truly Multi-Objective Result: Oscil-
lators from Scratch

A truly multi-objective result is obtained from the evolu-
tion of oscillators from scratch, which has not been achieved
yet with any single-objective approach on the FPTA. Addi-
tionally, the resulting populations feature numerous oscilla-
tor circuits with different frequencies, ranging from 20 kHz
to 4.8 MHz. The non-dominated front of a successful evolu-

no. zero crossings

m
a

x.
a

m
p

lit
u

d
e

sp
a

n
non-dom. front

6 8 10 12 14 16
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5. The NDF of a successful evolution-
ary run is recalculated considering 2 objec-
tives out of 7, namely the no. of zero crossings
and the max. amplitude span

tionary run, which is recalculated considering 2 objectives
out of 7, namely theno. of zero crossingsand themax.
amplitude span, is graphed in Fig. 5. The output voltage
characteristics of the individuals which are marked with a
circle in Fig. 5, are graphed in Fig. 6. Each of the 4 re-
sulting circuits oscillates with a different frequency, namely
100 kHz, 200 kHz, 350 kHz and 450 kHz.

4.3. Comparison of Results from the FPTA
and the SimFPTA

The evolvability of the FPTA and the SimFPTA is com-
pared by tackling the synthesis of comparators. As can be
nicely seen from Fig. 7, the evolutionary runs end up in
equal ranges of fitness values and resource consumption for
both substrates. Consequently, the SimFPTA is a suitable
model for evaluating the evolvability of the real hardware,
although the behavior is different in the beginning of evolu-
tion, due to the fact that individuals which do not work at all
in simulation, nevertheless produce an output on the chip.
The latter effect becomes less important, if, as presented
here, a GA like theTurtle GA is used for the evolution ex-
periments, since a valid circuit is crucial for carrying out
a successful simulation. Output voltage characteristics for
both test-modes of an individual with a good performance
is graphed in Fig. 8.

5. Conclusion and Remarks for Future Exper-
iments

The presented experiments show the progress that is
made towards a comprehensive modular evolution frame-
work, which significantly facilitates the development, im-
plementation and immediate application of any module of

V
o

ut
[V

]

0

0.5

1

1.5

2

2.5

time[µs]

V
o

ut
[V

]

0 10 20 30 40
0

0.5

1

1.5

2

2.5

time[µs]
0 10 20 30 40 50

Figure 6. The voltage output of 4 example
circuits, obtained from one single evolution-
ary run and featuring 4 different frequencies
(100 kHz, 200 kHz, 350 kHzand 450 kHz), are de-
picted above.

an evolutionary algorithm. Further, it is possible to sup-
port and use different hardware substrates as well as dif-
ferent simulation models for evaluating various custom ar-
chitectures. In this case, the results obtained from the
FPTA and the SimFPTA—a simplified model of the real
hardware—show equal performance for the task of synthe-
sizing comparators. Hereby, it is observed that, generally,
all circuits that are evolved on the SimFPTA perform sim-
ilar on the FPTA, however, since a simplified simulation
model cannot cope with any parasitic effect of the chip,
the inverse is not necessarily true. Regardless of the sup-
ported view—avoiding or extensively exploiting parasitic
effects—the aim should be to understand or even control the
influence of those effects. TheMO-Turtle GAsucceeded in
evolving oscillators, comparators and amplifiers [15], there-
fore, a multi-objective strategy is suggested for the synthe-
sis of complex analog circuits. If the aim is to synthesize
circuits that are—mostly in the case of real hardware—not
bound to one single substrate, the variation operators have
to be designed to produce transferable circuits, as it is real-
ized in theTurtle GA. Since evolution on real hardware is
significantly faster than in simulation, it is on the one hand
an advantage to use a real chip in order to quickly evalu-
ate the performance of the used algorithm. On the other
hand, the architecture of the chip cannot be changed unless
a new version is designed and fabricated. Thus, a future
step for this work is the improvement of the FPTA architec-
ture, based on the experience with the current chip. Once a

x06
resource consumption

fit
n

e
ss

FPTA
SimFPTA

0 500 1000 1500 2000
0

200

400

600

800

Figure 7. The fitness over resource consump-
tion for 30 evolutionary runs on the FPTA and
the SimFPTA, respectively, is graphed above.

Vsweep

V
o

ut

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Vsweep
0 1 2 3 4 5

Figure 8. Output voltage characteristics of a
good solution obtained from the SimFPTA.

software model of an architecture with a good performance
is found, it will be possible to realize a more powerful hard-
ware implementation.

References

[1] V. Aggarwal. Evolving Sinusoidal Oscillators Using Genetic
Algorithms. In 5th NASA / DoD Workshop on Evolvable
Hardware (EH 2003), pages 67–76, Chicago, IL, USA, 9-
11 July 2003. IEEE Computer Society.

[2] T. T. Arpad Buermen, Janez Puhan. Robust Design and Op-
timization of Operating Amplifiers. pages 745–750, Decem-
ber 2003.

[3] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. La-
mont. Evolutionary Algorithms for Solving Multi-Objective
Problems. Kluwer Academic Publishers, New York, 2002.

[4] K. Deb and T. Goel. Controlled Elitist Non-dominated Sort-
ing Genetic Algorithms for Better Convergence. In E. Zit-
zler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, edi-
tors,First International Conference on Evolutionary Multi-
Criterion Optimization, pages 67–81. Springer-Verlag. Lec-
ture Notes in Computer Science No. 1993, 2001.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, 1989.

[6] M. Hershenson, S. Boyd, and T. H. Lee. Optimal design
of a CMOS op-amp via geometric programming. InIEEE
Transactions on Computer-Aided Design, pages 1–21, 2001.

[7] L. Huelsbergen, E. A. Rietman, and R. Slous. Evolving os-
cillators in silico. volume 3, pages 197–204, 1999.

[8] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane.
Genetic Programming III: Darwinian Invention and Prob-
lem Solving. Morgan Kaufmann Publishers, 1999.

[9] W. Kruiskamp and D. Leenaerts. DARWIN: CMOS opamp
Synthesis by means of a Genetic Algorithm. InDAC ’95:
Proceedings of the 32nd ACM/IEEE Conference on Design
Automation, pages 433–438, New York, NY, USA, 1995.
ACM Press.

[10] J. Langeheine.Intrinsic Hardware Evolution on the Tran-
sistor Level. PhD thesis, Rupertus Carola University of Hei-
delberg, Seminarstrasse 2, 69120 Heidelberg, July 2005.

[11] L. Sekanina and R. S. Zebulum. Intrinsic Evolution of Con-
trollable Oscillators in FPTA-2. In J. M. Moreno, J. Ma-
drenas, and J. Cosp, editors,Evolvable Systems: From Bi-
ology to Hardware, Sixth International Conference, ICES
2005, number 3637 in LNCS, pages 98–107, Sitges, Spain,
September 2005. Springer-Verlag.

[12] H. Shibata. Computer-Aided Design of Analog Circuits
Based on Genetic Algorithm. PhD thesis, Tokyo Institute
of Technology, 2001.

[13] T. Sripramong and C. Toumazou. The Invention of CMOS
Amplifiers Using Genetic Programming and Current-Flow
Analysis. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 21(11):1237–1252,
November 2002.

[14] M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier. New
Genetic Operators to Facilitate Understanding of Evolved
Transistor Circuits. In R. S. Zebulum, D. Gwaltney,
G. Hornby, D. Keymeulen, J. Lohn, and A. Stoica, editors,
Proceedings of the 2004 NASA/DoD Conference on Evolv-
able Hardware, pages 217–224. IEEE Computer Society
Press, 2004.

[15] M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier. Op-
erational Amplifiers: An Example for Multi-Objective Op-
timization on an Analog Evolvable Hardware Platform. In
J. M. Moreno, J. Madrenas, and J. Cosp, editors,Evolvable
Systems: From Biology to Hardware, Sixth International
Conference, ICES 2005, number 3637 in LNCS, pages 86–
97, Sitges, Spain, September 2005. Springer-Verlag.

[16] P. F. Vieira, L. B. Botelho, and A. Mesquita. Evolutionary
Synthesis of Analog Circuits Using Only MOS Transistors.
In Zebulum, Ricardo S., Gwaltney, David, Hornby, Gregory,
Keymeulen, Didier Lohn, Jason, and Stoica, Adrian, editor,
Proceedings of the 2004 NASA/DoD Conference on Evolv-
able Hardware, pages 38–45, Los Alamitos, 2004. IEEE
Computer Society Press.

[17] M. Wall. C++ Genetic Algorithm Library, GALib 2.4.6.
Massachusetts Institute of Technology, MIT, 1999.

