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Zusammenfassung

Bose Einstein Kondensate sind physikalisch interessant aufgrund ihrer makroskopi-

schen Quanteneigenschaften. Ihr Gleichgewichtsverhalten wird durch Näherungen wie

der Bogoliubov-Theorie gut beschrieben, für Präzisionsmessungen müssen jedoch Quan-

tenkorrekturen höherer Ordnung berücksichtigt werden. Die Zustandssumme von inter-

agierenden Bose Gasen ist jedoch aufgrund des Vorzeichenproblems in ihrer Pfadinte-

gralrepräsentation für normale Monte Carlo Methoden nicht zugänglich. In dieser Arbeit

führen wir Monte Carlo Simulationen für das Spin-1 Bose Gas mit der complex Lange-

vin Methode durch, um das Vorzeichenproblem zu beheben. Wir adaptieren Techniken

aus anderen Monte Carlo Methoden zu complex Langevin und erhöhen dadurch dessen

Effizienz. Mithilfe dieser Techniken berechnen wir aus unserer exakten Simulation Kor-

rekturen zu bekannten Näherungsgrößen. Zuletzt zeigen wir, dass die Berechnung von

Quantenverschränkung durch den Replika-Trick mit der complex Langevin Methode

möglich ist, und messen Verschränkungsmaße im Spin-1 Gas.

Abstract

Bose Einstein condensates are of high physical interest due to their macroscopic

quantum properties. Their equilibrium behavior is well described by approximations

like Bogoliubov theory. However, when making precision measurements at criticality,

higher order quantum corrections have to be taken into account. The partition sum of

interacting Bose gases is however inaccesible to standard Monte Carlo methods, due to a

sign problem in its path integral representation. In this thesis, we perform Monte Carlo

simulations of the spin-1 Bose gas in equilibrium, using the complex Langevin method

to deal with the sign problem. We adapt techniques from other Monte Carlo schemes

to complex Langevin to increase its efficiency. We then use these techniques to measure

the corrections to known approximations that result from out exact method. Finally,

we show that quantum entanglement calculation using the replica trick is possible in

complex Langevin simulations, and extract entanglement measures at and away from

criticality.
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Chapter 1

Summary

In this thesis, we first introduce the formalisms of many body quantum field theory, Monte

Carlo with the Langevin equation, the spin-1 Bose gas, and (quantum) phase transitions.

For many body QFT, we introduce the coherent state path integral, which transforms the

matrix trace quantum partition function into a more useful functional integral. We then

quickly cover the idea behind importance sampling and introduce the Metropolis algorithm,

and demonstrate the sign problem arising due to complex actions. Solutions to the sign

problem are presented, and a more in depth introduction is given for complex Langevin,

which is the focus of this thesis. We then cover the low energy scattering theory of the spin-1

gas, and cover its mean field and Bogoliubov theory. Finally, we give a quick introduction

to scaling and quantum phase transitions, whose properties will be useful later.

We then introduce new numerical methods we adapted to complex Langevin. We start with

kernel acceleration, which helps overcome critical slowing down that plagues Monte Carlo

at phase transition. Next, we adapt histogram reweighting to complex actions. This helps

with reducing compute time when performing simulations of continuous parameter regimes.

Finally we show how to handly measure quantum entanglement in lattice field theory, and

mention the additional problems arising in complex actions.

We then perform complex Langevin analysis on some properties of the spin-1 gas. First,

Bogoliubov theory is confirmed by measuring finite momentum occupation numbers. Next,

we determine the critical line of the thermal phase transition from the Easy Plane into the

polar phase. We find a significant deviation from the best available approximation. We

also determine the shift of the quantum critical point. Finally, we perform entanglement

measurement using the third Renyi negativity, and confirm the entanglement’s area law

scaling. We then determine the differential negativity at and away from the phase transition

and find no significant shift.
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Chapter 2

Introduction

For simplicity, we set the Plank constant ℏ = 1, and the Boltzmann constant kB = 1

throughout the whole thesis.

2.1 Field Theoretical Description of Many Body Systems

2.1.1 Many Body Quantum Theory

In standard quantum mechanics, a quantum system is described by the Schroedinger equa-

tion

Ĥ |ψ⟩ = E |ψ⟩ (2.1)

with |ψ⟩ = ψ(x1, . . . , xn) being an n-particle wavefunction in quantum mechanical Hilbert

space. While the Schroedinger equation successfully describes systems with constant parti-

cle number, it cannot describe a system where particles are created and annihilated. These

processes are common in high energy physics, where particles collide and create others in

particle colliders. It can also happen in low energy scattering, for example through spin

changing collisions, or in statistical physics, where particles can enter and leave the system

in the grand canonical ensemble. To incorporate these processes, one has to upgrade the

Hilbert space to Fock space. The Fock space is a combination of all N-particle Hilbert

spaces [1]

F = S± (C⊕H⊕H⊗H⊕ . . .) (2.2)

with S± being the (anti)symmetrization operator, enforcing indistinguishably between par-

ticles and (anti)commutation relations between bosons (fermions). In the following, we

focus on the case of bosons, which are this thesis’ main concern.

The standard way of practical Fock space construction is by introducing the many particle

vacuum state |0⟩, the unique state of the N = 0 Hilbert space. We also introduce conjugate

creation and annihilation operators a†k, ak for particles with momentum k 1. We introduce

1We assume here a system in a box, making momentum space discrete. For the limit V → ∞, the
operator spectrum would become continuous, ak → a(k), δkq → δ(k − q). It is usually more advantageous
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canonical commutation relations [2]

[ak, aq] =
[
a†k, a

†
q

]
= 0 (2.3)

[
ak, a

†
q

]
= δkq (2.4)

and define the vacuum state as

ak |0⟩ = 0 (2.5)

⟨0|0⟩ = 1 (2.6)

By identifying nk = a†kak as the particle number operator, it becomes clear that

nk(a
†
k)
N |0⟩ = N(a†k)

N |0⟩ (2.7)

We thus find a orthogonal basis of particle number states by defining

|Nk1 , Nk2 , . . .⟩ = (a†k1)
Nk1 (a†k2)

Nk2 . . . |0⟩ . (2.8)

To recover Schroedinger quantum mechanics, we need to express operators acting on the

wave function as operators acting on Fock space. Therefore first define the field operator

ϕ̂(x) =
∑
k

e−ikxϕ(x)a†k (2.9)

with ϕ being the standard Schroedinger wave function. Any N particle operator Ô acting

on the wave function may be expressed in terms of ladder operators in the form [3]

Ô(k, q, ...) =
∑
ijkl...

a†ia
†
j . . . oij...kl...akal . . . (2.10)

If oijkl ̸= 0 for ij ̸= kl, the operator is called non-diagonal (in momentum space). This

can equivalently be done in real space using field operators. For a two body potential

V̂ (x− y) =

∫
x

∫
y
ϕ̂†(x)ϕ̂†(y)V (x− y)ϕ̂(x)ϕ̂(y) (2.11)

the potential is diagonal in real space, but not momentum space.

2.1.2 Coherent State Path Integral

The partition function of a quantum system in thermal equilibrium is given by [3]

Z = Tr
(
e−βĤ

)
(2.12)

to take this limit at the end of the calculation.
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with Hamiltonian Ĥ and inverse temperature β = 1
T . Calculating the quantum partition

function is in general highly nontrivial, especially due to the exponential scaling of Hilbert

space dimension with particle number. The partition function can alternatively be repre-

sented through the coherent state path integral. We derive it here following the notes of

Jarrel [4]

Coherent States

In single particle quantum mechanics the coherent states |α⟩ are defined as eigenstates of

the annihilation operator [4]

â |α⟩ = α |α⟩ (2.13)

with α ∈ C. Similarly, in many body theory, coherent states are defined as

ak |ϕ⟩ = ϕk |ϕ⟩ (2.14)

where ϕk ∈ C is now a different complex number for each momentum. One can show that

this definition results in

|ϕ⟩ = e
∑

k ϕka
†
k . (2.15)

The coherent states are not orthogonal

⟨θ|ϕ⟩ = e
∑

k θ̄kϕk (2.16)

and (in our definition) not normalized

⟨ϕ|ϕ⟩ = e
∑

k ϕ̄kϕk (2.17)

However, they do provide an identity operator∫ ∏
i

dϕ̄idϕi
π

e−
∑

k ϕ̄kϕk |ϕ⟩⟨ϕ| = 1F . (2.18)

This can be proven by Schur’s lemma, showing ak and a
†
k both commute with the expression.

Coherent State Path Integral

The coherent states provide a way of rewriting the partition function. Going forward,

we drop the index k from coherent state numbers and write the scalar product as θ̄ϕ =∑
k θ̄kϕk =

∫
d3xθ̄(x)ϕ(x). We also symbolically write the identity (eq. (2.18)) as 1 =∑

ϕ e
−ϕ̄ϕ |ϕ⟩ ⟨ϕ|. In the same way, we rewrite the trace in (eq. (2.12)) as

Z =
∑
ϕ0

⟨ϕ0|e−βĤ |ϕ0⟩ . (2.19)
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We then split the exponential into M ∈ N pieces, and write

Z =
M∏
i=0

∑
ϕi,ϕi+1

e−ϕ̄iϕi ⟨ϕi+1| e−
β
M
Ĥ |ϕi⟩ . (2.20)

Due to the trace, we identify ϕM = ϕ0. The split into small time steps is valid, since its

error scales quadratically in the step 1/M according to the BCH-Formula [5]

eX̂eŶ = eX̂+Ŷ+ 1
2
[X̂,Ŷ ]+.... (2.21)

If M is large enough, the exponentials in the product eq. (2.20) are quasi-linear, which

means the operators a†k and ak in Ĥ can be replaced with ϕ̄i+1 and ϕi
2. This converts H

from an operator into a function of complex numbers. We can then write

Z =
M∏
i=0

∑
ϕi,ϕi+1

e−ϕ̄iϕi ⟨ϕi+1|ϕi⟩ e−
β
M
H(ϕ̄i+1,ϕi) (2.22)

=
M∏
i=0

∑
ϕi,ϕi+1

e−ϕ̄iϕi+ϕ̄i+1ϕi− β
M
H(ϕ̄i+1,ϕi) (2.23)

=
M∏
i=0

∑
ϕi,ϕi+1

eϕi(ϕ̄i+1−ϕ̄i)− β
M
H(ϕ̄i+1,ϕi) (2.24)

and reintroduce integral notation for the scalar product

Z =

∫ M∏
i=0

∏
x

(
dϕ̄i(x)dϕi(x)

) M∏
i=0

(
e
∫
d3x(ϕi(ϕ̄i+1−ϕ̄i)− β

M
H(ϕ̄i+1,ϕi))

)
(2.25)

dropping π factors appearing in the identity eq. (2.18). The product over x runs over in-

finitely many positions, or a finite number if discretized on a lattice. eq. (2.25) is the coherent

state path integral in its discrete form, which is used for numerics in this thesis. One may

take the continuum limit by introducing ∆ = β
M , identifying the index i with an imaginary

time dimension τ , and introducing path integral notation Dϕ =
∏
x

∏M
i=0

(
dϕ̄idϕi

)
Z =

∫
Dϕ

M∏
i=0

e
∫
d3x(∆(ϕi

(ϕ̄i+1−ϕ̄i)

∆
−H(ϕ̄i+1,ϕi))) (2.26)

=

∫
Dϕe

∫
d3x

∮ β
0 dτ(ϕ∂τ ϕ̄−H(ϕ̄,ϕ)). (2.27)

2This only applies for a Hamiltonian in normal order, i.e. all creation operators are left of all annihilation
operators, which is a trivial transformation for most Hamiltonians. An alternative way of constructing the
CSPI is possible, using the diagonal representation of the Hamiltonian in the coherent states. This is not
as easy to find, especially for many body coherent states. It might have some advantages due to its better
discretization [6].
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This is a functional integral known from high energy physics, and
∮ β
0 dτ(−ϕ∂τ ϕ̄+H(ϕ̄, ϕ))

can be identified as a non-relativistic action S[ϕ]. Although the continuum limit is well

defined, one still has to respect the discretization specified in eq. (2.25) to get correct

results when implementing it in a discretized way.

The path integral expression for observables is found in the same manner

⟨a†a⟩ = Tr(e−βHa†a)/Z (2.28)

= . . .

=
1

Z

∫ { M∏
i=0

∏
x

(
dϕ̄i(x)dϕi(x)

) M∏
i=0

(
e
∫
d3x(ϕi(ϕ̄i+1−ϕ̄i)− β

M
H(ϕ̄i+1,ϕi))

)
ϕ̄MϕM−1

}
(2.29)

evaluating ϕ̄ and ϕ at different time steps. Due to imaginary time translation symmetry,

one may also write

⟨a†a⟩ = 1

Z

∫ { M∏
i=0

∏
x

(
dϕ̄i(x)dϕi(x)

) M∏
i=0

(
e
∫
d3x(ϕi(ϕ̄i+1−ϕ̄i)− β

M
H(ϕ̄i+1,ϕi))

)( 1

M

M∑
n=0

ϕ̄nϕn−1

)}
(2.30)

which is more convenient for Monte Carlo simulations.

Comparison to Real Time

The discussed construction of the coherent state path integral for the equilibrium partition

function is also possible for real time evolution of a state. The amplitude describing the

evolution from state |i⟩ to |f⟩ is then

Mfi = ⟨.⟩ (2.31)

Expanding |f⟩ and |i⟩ in the basis of the coherent states [4]

⟨f | =
∫ ∏

j

dϕ̄j(tf )dϕj(tf )

π
e−

∑
k ϕ̄kϕk ψ̄f (ϕ(tf ))|ϕ⟩ (2.32)

|i⟩ =
∫ ∏

j

dϕ̄j(ti)dϕj(ti)

π
e−

∑
k ϕ̄kϕkψi(ϕ̄(ti))|ϕ⟩ (2.33)

we find the result

⟨ψf |e−iĤt|ψi⟩ =
∫
Dϕei

∫ t
0 dt(iϕ∂tϕ̄−H(ϕ̄,ϕ))×ψ̄f (ϕ(tf ))ψi(ϕ̄(ti))e

1
2
(ϕ̄(tf )ϕ(tf )+ϕ̄(ti)ϕ(ti)). (2.34)

The construction of the CSPI is done analogously, with β replaced by it. For this reason,

the thermal path integral is often called the imaginary time path integral. Only a Wick
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rotation t → −iβ [7] is needed to get the real time version. In a similar manner, using the

Schwinger-Keldysh [7] formalism, it is possible to construct path integrals on general closed

curves in the complex plane. This allows, for example, calculating real time correlators in

thermal equilibrium. However, the real and complex versions of the path integral exhibit a

much stronger sign problem than the imaginary one (see [8][9][10] on ongoing research for

real time simulations). Therefore, this thesis focuses on the imaginary time version.

2.2 Complex Langevin Simulation

2.2.1 Monte Carlo and Importance Sampling

In classical mechanics, a statistical system in equilibrium is described by its partition func-

tion

Z =
∑
x

e−βH(x) (2.35)

where the sum goes over all possible states of the system, and H is a classical Hamiltonian.

The partition function is the normalization of the probability density function

P (x) =
e−βH(x)∑
y e

−βH(y)
=
e−βH

Z
. (2.36)

Often the expectation values of macroscopic observables are more important than the prob-

ability of single configuration. They are defined as

⟨O⟩ =
∑
x

P (x)O(x) (2.37)

with x again running over all possible states. For finite discrete systems, performing this

sum numerically is possible, as long as the system is small. However, the amount of possible

states of most systems scales exponentially with their size; for example, the Ising model has

a total state space size of 2#lattice sites.3 In some cases, it might be possible to evaluate this

sum analytically. Examples include the 1D and 2D Ising model, or the ideal gas. In this

work we are interested in approximating the sum numerically. One possible way of doing

that is to uniformly sample M random states yi from the possible states in the state space

and calculate [11]

⟨O⟩ ≈
∑M

i=0 P (yi)O(yi)∑M
i=0 P (yi)

. (2.38)

For large enough M, this will approximate the observable. Performing averages over uni-

formly sampled states to compute an observable like eq. (2.38) is the simplest form of a

Monte Carlo algorithm. However, this approximation converges towards the true value ⟨O⟩
very slowly. The slow convergence is quite easy to understand: For most systems in equilib-

3It also has a number of symmetries reducing the relevant state space, which allows for analytic solutions.
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rium, most states are highly unlikely. An Ising magnet for example only experiences small

thermal fluctuations around its average magnetization. It is very unlikely to drift far away

from it, which means most states have a probability of almost zero. Thus, the states that

actually occur in the physical system with a reasonable probability are very unlikely to be

sampled.

The aim of importance sampling [11] is to not sample from the system uniformly, but instead

according to the probability distribution P (x). We may rewrite the sum in (eq. (2.37))

⟨O⟩ =
∑
x

O(x)
P (x)

Q(x)
Q(x) (2.39)

with another probability density Q. When sampling from the density Q instead of a uniform

density, eq. (2.38) becomes

⟨O⟩ ≈
∑M

i=0
P (yi)
Q(yi)

O(yi)∑M
i=0

P (yi)
Q(yi)

. (2.40)

The obvious choice of Q to optimize sampling seems to be Q = P . Observables are then

calculated as

⟨O⟩ ≈ 1

M

∑
y

O(y) (2.41)

eliminating the probability from the average, since it is already accounted for by the sam-

pling process. The states sampled are now also those that practically occur in the system,

making the averaging much more efficient. However, sampling from an arbitrary probability

distribution is nontrivial. There most important algorithms to perform this sampling are

so called Markov chain Monte Carlo algorithms [12], which work by transitioning from a

sampled state Yt to Yt+1 with probability P (Yt → Yt+1). They transition from state to state

repeatedly, generating a Markov chain of states Yt. The observable in the t→ ∞ limit is

⟨O⟩ = lim
M→∞

1

M

M∑
t=0

O(Yt). (2.42)

In practice, the process is to first run the algorithm to a fixed number of steps to reach

the equilibrium distribution, and then to sample states until sufficient statistical accuracy is

reached. To sample from a probability density, the process then has to fulfill two properties:

Ergodicity and detailed balance. Following [12], we show how these properties lead us to

the Metropolis algorithm.

Ergodicity means that the sampling process must be able to reach any state in the system

from any other state; there may not be any impassible barriers. This makes sense from a

physical perspective: A gas cannot pass through walls to equilibrate. Walls that the gas

has to go around are still possible.

Detailed balance is what guarantees that we sample from the given probability distribution

17



(a) Three states with a limit cycle. There is a
nonzero probability flow in direction A → B →
C

(b) The same three states with detailed balance
enforced. The net probability flow is zero

Figure 2.1: A system with and without detailed balance. Both systems can share the same
equilibrium distribution, but the left one may not converge towards it.

Q, rather than any other one. To have Q as an equilibrium distribution, the Markov process

must fulfill [12] ∑
Y

Q(X)P (X → Y ) =
∑
Y

Q(Y )P (Y → X). (2.43)

If we assume P (X → Y ) to be normalized over target states Y , this becomes

Q(X) =
∑
Y

Q(Y )P (Y → X). (2.44)

However, the system does not have to converge to the equilibrium distribution, as it may get

stuck in a limit cycle, a set of states that it may fall into and cycle around, see fig. 2.1. This

leads to a dynamic equilibrium, where the PDF doesn’t converge but periodically changes.

To prevent limit cycles, we need to enforce the detailed balance condition

Q(X)P (X → Y ) = Q(Y )P (Y → X) (2.45)

from which also directly follows eq. (2.43) by summing over both sides. This condition

breaks the possibility of cycles, since the overall number of transitions X → Y happening

must be equal to those Y → X happening. In a cycle, one direction must be preferred.

The detailed balance conditions leads us to the simplest implementation of a Monte Carlo

algorithm, the Metropolis algorithm. Rearranging eq. (2.45) gives us

P (X → Y )

P (Y → X)
=
Q(Y )

Q(X)
. (2.46)

We can now implement a selection-acceptance scheme, where we randomly sample a transi-

tion with a probability distribution g(X → Y ) that is known well, and then accept this tran-

sition with acceptance probability A(X → Y ). Then P (X → Y ) = g(X → Y )A(X → Y ).

Consider a simple Ising model with N sites. We, at each step, choose one site k where the
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spin is flipped, and leave the rest as is. The transition probabilities are then

g(X → Y ) =
1

N
. (2.47)

This means that
P (X → Y )

P (Y → X)
=
A(X → Y )

A(Y → X)
=
Q(Y )

Q(X)
. (2.48)

It can be seen that the choice

A(X → Y ) =


Q(Y )
Q(X) if Q(Y )

Q(X) < 1

1 otherwise.
(2.49)

fulfills this condition. This choice is not unique, but it is the choice that maximizes accep-

tance rates [12], which is crucial for algorithm runtime. Since being invented by Metropolis

et al in 1953 [13], any algorithm with acceptance probabilities in the form of eq. (2.49)

is called a Metropolis algorithm. In this thesis, we actually use a non-Metropolis sam-

pling scheme by using the Langevin equation. In systems without a sign problem, even

the Langevin method is usually coupled with a Metropolis style accept/reject step, with

Langevin steps instead of random sampling yielding higher acceptance rates. This is called

hybrid or Hamiltonian Monte Carlo (HMC)[14].

2.2.2 The Sign Problem

Sampling from quantum systems is generally not as simple. The partition function (eq. (2.12)),

is now given by a matrix trace [3] and observables are calculated through Tr(Ôe−βĤ). Sam-

pling from this partition function is still possible, using so called Quantum Monte Carlo

algorithms. These usually work directly with the many-particle wavefunction, making them

constrained in the number of particles [15]. An alternative is using a field theoretic path in-

tegral representation of the partition function, as introduced in the section 2.1.2. For many

systems in equilibrium, using the path integral allows Monte Carlo sampling in the same

way as for classical systems. Examples include lattice quantum chromodynamics (QCD)

[16] without chemical potential, scalar ϕ4 theory [17], and some quantum spin models [18].

There are however systems for which the partition function is not positive definite, i.e. the

probability of a state can become complex [19]. This is called the sign problem [19]. One

such example has already been introduced with the CSPI (eq. (2.27)), where the first order

derivative ϕ∂τ ϕ̄ is imaginary, easiest seen by rewriting it as iωϕϕ̄ in Fourier space. While

such complex probability density functions are not PDFs in the strict sense, it can be shown

that, for all physical observables, it holds that [19]

⟨O⟩ =
∑
x

P (x)O(x) ∈ R. (2.50)
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Thus, while the probabilities of single states might be complex, for every real observable, the

expectation value averages to be real. This averaging can be compared to Wigner functions

in Wigner quantization [20], where the Wigner function W (X,P ) might be complex, but

the marginals W (X) =
∫
P W (X,P ), W (P ) =

∫
XW (X,P ) are positive definite and proper

PDFs. One may interpret that while these complex probabilities exist, they are protected

from being observed by Heisenberg’s uncertainty principle.

2.2.3 Approaches to the Sign Problem

Since the Metropolis algorithm relies on comparison of probabilities, it cannot be applied

to systems with complex probabilities, for which there is no ordering. Other approaches to

sampling from complex PDFs exist (for a review see [21],[19]), some of which are briefly

discussed before focusing on this thesis’ method of choice, complex Langevin. We follow

here [21].

Reweighting

The obvious and simplest solution to enable Monte Carlo sampling on complex PDFs is

reweighting. Often, the sign problem results from a single imaginary term in the La-

grangian, like the first order time derivative in the CSPI. This term is then absorbed into

the observable, and the sampling is done on the remainder of the PDF. For example, for

the CSPI

⟨O⟩ = 1

Z

∑
ϕ

O(ϕ)e
∮ β
0 dτ(ϕ∂τ ϕ̄−H(ϕ̄,ϕ)) (2.51)

=
1

Z

∑
ϕ

(
O(ϕ)e

∮ β
0 dτϕ∂τ ϕ̄

)
e−

∮ β
0 dτH(ϕ̄,ϕ) (2.52)

=
1

Z

∑
ϕ

O′(ϕ)e−
∮ β
0 dτH(ϕ̄,ϕ). (2.53)

The remainder PDF e−
∮ β
0 dτH(ϕ̄,ϕ) is now purely real and standard Monte Carlo algorithms

can be used. The observable O′ gains an imaginary part in single realizations that averages

out in the expectation value. While reweighting technically enables the use of Monte Carlo

algorithms, it also makes them more inefficient. Since only a remainder of the PDF is used

for sampling, the time complexity of the algorithm is increased. It can easily be seen that

for the ”most severe” sign problem, a purely imaginary term in the exponential, the whole

PDF would have to be absorbed into the observable, which would mean

⟨O⟩ = 1

Z

∑
ϕ

(O(ϕ)e−iS[ϕ])× 1 (2.54)
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Figure 2.2: A contour deformation of a real integral from −∞ to ∞. As long as the deformation
doesn’t cross the poles (marked as dots), the value of the integral won’t change.

with a remainder PDF P (ϕ) = 1
Z . This reduces importance sampling to uniform sampling.

Therefore, reweighting can only be used when the sign problem is minor, i.e. the complex

term is very small in comparison to the rest of the Langrangian.

Alternative Variables

In some cases, the sign problem might merely be an algebraic problem, solved by rewriting

the partition function in terms of new variables. This may be by introducing auxiliary

fields in a Hubbard-Stratonovich transformation, or by rewriting the imaginary part of the

partition function as a constraint on new, discrete variables. This can solve the sign problem

in a lot of bosonic systems.

Lefshetz Thimbles

Another idea is to change the integration contour instead of the variables themselves. For

example, for a one-site model, we may deform the integration boundaries

Z =

∫ ∞

−∞
e−S[ϕ]dϕ (2.55)

=

∫
C
e−S[ϕ]dϕ (2.56)

where the new contour C is now a continuous deformation of the real line into complex space,

and ϕ is complexified (fig. 2.2). If the integrand is analytic, this doesn’t change the physics.

A Lefshetz Thimble is a contour on which the imaginary part of S[ϕ] is (approximately)

constant. If such a contour can be found, it is then possible to determine the partition

function with standard Monte Carlo methods on the thimble, maybe using reweighting if

21



the thimble is approximate. These thimbles are usually found by a gradient descent method

dϕ

dt
= −

(
δS

δϕ

)∗
(2.57)

towards stationary points in the imaginary part of S[ϕ]. Some problems remain, like the

residual sign problem on a numerically found thimble, and the global sign problem due to

contributions from multiple thimbles. Nevertheless, Lefshetz Thimbles have been applied

to a variety of problems e.g. in lattice QCD and Hubbard models.

2.2.4 Complex Langevin

Complex Langevin is another approach to the sign problem employing complexified vari-

ables. However, instead of trying to minimize the sign problem like Lefshetz Thimbles, it

uses the complex variables to perform stochastic Langevin evolution of the fields.

Classical Langevin

The Langevin equation originally stems from stochastic dynamics like Brownian motion,

modeling the motion of a small particle under random molecular collisions [22]. The prob-

ability distribution of the particle’s position may be derived from the stochastic differential

equation describing its motion. We make use of the inverse mapping, starting out with a

probability density and deriving a stochastic differential equation describing it. For a real

field ϕ, the Langevin equation reads [21]

dϕ

dθ
= −δS

δϕ
+ η (2.58)

where we introduced a new Langevin time θ in which the field evolves stochastically. The

first term on the RHS of eq. (2.58) is called the drift term. It drives the system towards

its classical solution, where the action is minimized. The second term is the noise term. It

consists of stochastic Wigner noise, i.e. white noise with correlation η(θ)η(θ′) ∝ δ(θ − θ′).

The stochastic noise can more easily be quantified in the discretized equation

ϕθ+∆θ(x) = ϕθ −∆θ
δS

δϕθ(x)
+
√
2∆θη(x) (2.59)

where η(x) is now usually chosen as Gaussian noise with ⟨η(x)η(y)⟩ = δ(x − y). Uniform

noise is possible but rarely used [23].

We want to show that the stochastic process eq. (2.58) samples from the PDF P [ϕ] ∝
e−S[ϕ]. We therefore need to look at the process’ Fokker-Planck equation. The Fokker-

Planck equation is an equation describing the evolution of the probability density P (ϕ, θ)

corresponding to a stochastic process on ϕ. In the following derivation we assume, for

simplicity, a one component, 0+1d real scalar field ϕ. It is easily possible to generalize to
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any number of variables. The Fokker-Planck equation corresponding to eq. (2.58) is given

by [24]

∂P (ϕ, θ)

∂θ
=

∂

∂ϕ

[
∂S[ϕ]

∂ϕ
P (ϕ, θ)

]
+
∂2P (ϕ, θ)

∂ϕ2
. (2.60)

A steady state, equilibrium distribution thus requires

∂

∂ϕ

[
∂S[ϕ]

∂ϕ
P (ϕ, θ) +

∂P (ϕ, θ)

∂ϕ

]
= 0. (2.61)

We can impose as a boundary term for the term in square brackets (the ”probability flux”)

to vanish at infinity. Since it is constant, it also vanishes everywhere else. Then

∂S[ϕ]

∂ϕ
P (ϕ, θ) +

∂P (ϕ, θ)

∂ϕ
= 0 (2.62)

is solved by

P (ϕ) ∝ e−S[ϕ]. (2.63)

Thus, the Langevin equation in equilibrium samples from the PDF given by e−S[ϕ]. Ob-

servables may be calculated as

⟨O⟩ =
∫ ∞

θeq

dθO(ϕ(θ)) (2.64)

where θeq is the time the Langevin dynamics need to reach the stationary distribution.

Using the discretized eq. (2.59), the integral is replaced by a sum

⟨O⟩ = ∆θ

θf − θeq

θf∑
θ=θeq

O(ϕ(θ)) (2.65)

which is the same as for the calculation of Monte Carlo expectation values. This makes the

Langevin equation a Monte Carlo scheme.

Complexification

The complexification of the Langevin equation was first suggested in the 1980s by Parisi

and Klauder [25], after the completion of the stochastic quantization program [26], with

limited success in applications due to its problems discussed further below. Since some

of the problems have now been solved, and computing resources increased, it has seen a

resurgence.

For a complex action and a real field, the Langevin equation (eq. (2.58)) cannot be used,

since the drift term is complex while the field is real. Even for complex fields, the update is

not well defined, since S[ϕ] will usually not be holomorphic and contain terms such as ϕ∗ϕ,
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so that the Wirtinger derivative cannot be taken. Complex Langevin solves this problem

by complexifying the fields, doubling the degrees of freedom; A real field will then have two

components, ϕ = ϕR + iϕI . The Langevin equation reads

∂ϕR
∂θ

= −Re
δS

δϕR
+ η (2.66)

∂ϕI
∂θ

= −Im
δS

δϕI
. (2.67)

The noise term can theoretically be spread between real and imaginary update, but it

almost always benefits stability if it is purely real [27], a notable exception being real time

dynamics on Schwinger-Keldysh contours [9].

The corresponding Fokker-Planck equation reads

∂P (ϕR, ϕI , θ)

∂θ
=

∂

∂ϕR

[
Re

(
∂S[ϕ]

∂ϕ

)
P (ϕ, θ)

]
+
∂2P (ϕ, θ)

∂ϕ2R

+
∂

∂ϕI

[
Im

(
∂S[ϕ]

∂ϕ

)
P (ϕ, θ)

]
. (2.68)

For observables that admit the extension O(ϕ) → O(ϕR + iϕI), it can, under mild assump-

tions, be shown [28] that there exists a complex function ρ(ϕ) satisfying∫
DϕIDϕRO(ϕR + iϕI)P (ϕR, ϕI) =

∫
DϕO(ϕ)ρ(ϕ). (2.69)

The complex function ρ(ϕ) formally obeys the Fokker-Planck equation (eq. (2.61)). There-

fore, we can calculate observables in the form

⟨O⟩ =
∫
DϕIDϕRO(ϕR + iϕI)P (ϕR, ϕI) (2.70)

from a real PDF P (ϕR, ϕI). Since ρ(ϕ) follows the same Fokker-Planck equation as a real

P (ϕ) would in case of a real PDF, we can interpret it as the ”complex PDF” corresponding

to the complex action S(ϕ), The Langevin process (eq. (2.67)) therefore samples from

P (ϕR, ϕI) and we infer that

⟨O⟩ =
∫
DϕO(ϕ)e−S[ϕ] (2.71)

=

∫
DϕO(ϕ)ρ(ϕ) (2.72)

=

∫
DϕRDϕIO(ϕR + iϕI)P (ϕR, ϕI) (2.73)

=

∫ ∞

0
dθO(ϕR(θ) + iϕI(θ)). (2.74)
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For a complex field ψ = ϕ + iξ, both ϕ and ξ are complexified, yielding four total compo-

nents. The updates for all four variables ϕR,ϕI ,ξR,ξI look like eq. (2.67). An alternative

formulation for complex scalar fields is treating ψ and its conjugate ψ∗ as independent. This

is completely equivalent, since even in the previous formulation ψ = ϕ+ iξ ⇒ ψ∗ = ϕ− iξ

does not hold anymore. We call the ”independent conjugate” variables ψ and ψ̄, while

marking ”real conjugate” variables with a star ∗. Since most actions break holomorphy

by using conjugates, instead of equivalently using the real and imaginary functions, the

independent conjugate formulation is usually more convenient. Its updates simply read

∂ψ

∂θ
= −δS

δψ̄
+ η (2.75)

∂ψ̄

∂θ
= −δS

δψ
+ η∗ (2.76)

where η is now a complex noise with real and imaginary part both being Gaussian white

noise. Using the conjugate noise in eq. (2.76) is equivalent to the noise in eq. (2.67) being

purely real. These updates are well defined, since S is now holomorphic in the complexified

variables.

2.2.5 Limitations

The above derivation skips over a lot of mathematical intricacies, and therefore hides that

the theory of Complex Langevin is not worked out completely. Specifically uniqueness and

well-definedness of the stochastic process has not been shown. Neither do we know whether

the process will converge towards an equilibrium measure. These issues have already been

remarked by Klauder and Petersen in 1985 [29], and mostly remain unsolved. However, in

practice, this does not seem to pose an issue, and rather practical problems become relevant.

Instability

Already early on, it was noted that the CL equations may permit trajectories for ϕ that

reach infinity in finite time. While these are usually zero measure, these runaways still

pose a practical problem in the implementation of CL simulations, leading to the process

to diverge, or assume highly incorrect values. With increased computing power, it was

noticed that these runaways are apparently caused by a coarse discretization in Langevin

time. Today, almost all implementations of CL mitigate this using an adaptive time step

[30]. It varies the time step depending on the maximum of the drift, usually in the form of

∆θ = ∆θ0 ×
⟨maxx

∂S
∂ψ ⟩

maxx
∂S
∂ψ

. (2.77)
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This shrinks the time step when the system comes close to a runaway trajectory, prevent-

ing a drift into unphysical regions for simple numerical reasons. The mean value of the

drift is either known beforehand, found during equilibration, or kept as a running aver-

age. Runaways may still happen for extremely unstable systems, if the drift doesn’t stop

increasing.

Incorrect Convergence

While runaways are an issue easily noticed, another problem of the CL method is that the

solution is not guaranteed to be correct. This is mainly caused by boundary conditions

at infinity and poles in the probability distribution, which are assumed to not play a role

during the derivation of the CL process. It is hard to know a priori if the correct values

can be obtained, but a posteriori, there exist methods to verify the results. Specifically, in

[31], it is shown that if the probability distribution of the drift term P (∂S∂ψ ) is suppressed

exponentially at large ψ, then the CL method has converged to the correct value. We can

easily save the drift size values and plot their histogram after a simulation. If the histogram

is exponentially decaying, then the CL method converged towards the correct value. For

the systems reviewed in this thesis, we usually do not have convergence issues.

Fundamental Limitations

In general, the complex Langevin method is more likely to fail the larger the complex part

of the PDF becomes. This is seen in its extreme by the difficulties of even short real

time simulations. It can be shown that NP-hard problems can be mapped onto quantum

mechanical systems with a sign problem [32], so a generally efficient method of evading

the sign problem would mean P = NP , that all problems of nondeterministic-polynomial

complexity could actually be solved in polynomial time. Also, intuitively, it should not

be possible to solve every quantum system efficiently. Since the physical quantum Hilbert

space dimension scales exponentially in the number of particles, any method that can still

efficiently sample from it might be considered a trick, making use of some symmetry of the

problem to limit the amount of states to be considered. For systems with too large of a sign

problem, there is no way around finding new ways to efficiently sample and approximate

them, or eventually going beyond classical computing with quantum algorithms [33].

2.3 Theory of the Spin-1 Bose Gas

2.3.1 Low Energy Scattering Theory of the Spin-1 Gas

In the following, we derive the theory of low energy scattering of the spin-1 gas, summarized

from Ho [34].

Since the creation of the first Bose-Einstein Condensate (BEC) using a magnetic trap, it
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has been made possible to trap ultracold gases using purely optical means, preserving their

hyperfine spin structure. In this thesis, we specifically consider gases with hyperfine spin

f = 1, such as 23Na, 39K and 87Rb. For spinor gases, there are multiple scattering channels

allowed. Due to their symmetry, colliding bosons need to have total spin of either 0 or 2,

leading to a total of two scattering lengths, a0 and a2, which describe the s-wave scattering

behavior. The interaction is then well approximated by a contact potential

V (r1 − r2) = δ(r1 − r2)(g0P0 + g2P2) (2.78)

with gi = 4πai/M . PF is the projection operator onto the total spin F state. We may

define the spin vector from the wavefunction

Fν = ψ†
a(x)σ

ν
abψb(x) (2.79)

where σν are the Pauli matrices in the Spin-1 representation

σx =

0 1 0

1 0 1

0 1 0

 , σy = i

0 −1 0

1 0 −1

0 1 0

 , σz =

1 0 0

0 0 0

0 0 −1

 . (2.80)

We know the relations

F1 · F2 =

2f∑
F=0

1

2
[F (F + 1)− f(f + 1)]PF (2.81)

and

1 =

2f∑
F

PF (2.82)

or, for f = 1 specifically

F1 · F2 = P2 − 2P0 (2.83)

1 = P2 + P2. (2.84)

With this, we can rewrite the potential (eq. (2.78)) in the form

V (r1 − r2) = δ(r1 − r2)[c01+ c1F1 · F2]. (2.85)

The interaction Hamiltonian in the second quantized form then becomes

Ĥint = −c0
2
ψ†
aψ

†
bψbψa −

c1
2
ψ†
a′ψ

†
aσ

ν
abσ

ν
a′b′ψbψb′ . (2.86)
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Figure 2.3: The quadratic Zeeman effect shifts the energy of the ±1 energy levels.

with spin interaction and density interaction constants

c1 =
g0 + 2g2

3
(2.87)

c0 =
g2 − g0

3
(2.88)

The interaction term proportional to c0 describes spin preserving collisions, where particles

emerge with the same spin they started in. It is spin independent, and may be rewritten as

the O(N) interaction

Hdensity =
c0
2
|n|2 (2.89)

with density ni = ψ†
iψi. The spin changing interaction describes collisions where total spin

is preserved, but the individual particles may change their state, i.e. a f1 = −1, f2 = 1 →
f1 = 0, f2 = 0 collision. It can be written as

Hspin =
c1
2
|F |2 (2.90)

with spin density Fν = ψ†
aσνabψb.

The non-interacting Hamiltonian is given by[35]

Ĥ0 =
1∑

m=−1

1

2M
∇ψ†

m∇ψm − µψ†
mψm + qm2ψ†

mψm (2.91)

with particle mass M , chemical potential µ and quadratic Zeeman effect q. The Zeeman

effect is the result of an external magnetic field shifting the energy levels of the magnetized

hyperfine states. It has a linear and quadratic order, i.e. HZe = pmψ†
mψm+qm2ψ†

mψm. The

linear Zeeman effect shifts the +1 and −1 states in different directions, while the quadratic

one shifts them the same way, upwards or downwards in energy. In low energy scattering,

the total magnetization of the condensate is preserved during collisions. Therefore, the

mean field population difference between the +1 and −1 states caused by a linear Zeeman
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effect can be ignored. The remaining energy level shift leads to phase rotations in the −1

and 1 component, which can be included by shifting to the phase rotating frame [36]. This

way, although the linear Zeeman shift is much larger than the quadratic one, it does not

need to be included in the Hamiltonian.

The most important dimensionless quantity in the BEC is the diluteness

η =
√
ρa3. (2.92)

If we interpret a3 as the space taken up by one particle, then η describes the fraction of space

filled with particles. As η → 1, the theory becomes non-perturbative. When the diluteness

is small enough, many beyond mean field corrections can be expressed as a power series

in η, such as the shift of the critical temperature [37]. For the spin-1 gas, there are two

diluteness parameters for the two available scattering lengths. This allows for interesting

systems which are dense in density but dilute in spin density. The analytic expansion of

quantum corrections in these dilutenesses is out of scope for this thesis.

2.3.2 Mean Field Theory

We describe the mean field theory of the spin-1 Bose gas, adapting from Kawaguchi and

Ueda [35]. In zeroth order mean field theory, we consider the field ψ(x) and Hamiltonian

H to be classical, and simply find the state ψ(x) that minimizes H. Without an external

potential, this leads to a constant three component vector, which we call the mean field

ground state. The influence of both spin changing collisions and the quadratic Zeeman

effect leads to a rich zero temperature phase diagram of the condensate. The full diagram

can be seen in fig. 2.4. It contains four main phases, determined by the parameters c1 and

q. When both c1 < 0 and q < 0, c1 favors the condensate being polarized, and q favors it

being in the m = ±1 states. This leads to the ferromagnetic phase F , where the system

spontaneously chooses a ground state ψ =

1

0

0

 or ψ =

0

0

1

. It is then polarized fully in

the z direction, i.e. the direction of the magnetic field4.

When c1 > 0 and q < 0, the system favors being unpolarized in the ±1 states. This leads

to the antiferromagnetic phase AF , where the system is in the ground state ψ =


1√
2

0
1√
2

.

If instead q > 0 and c1 > 0, the system is in the polar phase P with ψ =

0

1

0

. In both of

these phases, the total magnetization of the condensate is zero.

4Using only magnetization preserving collisions, this ground state cannot be reached, and instead large
domains of positive and negative magnetization in space will form [39].
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Figure 2.4: The phase diagram of the spin-1 Bose gas at zero temperature, adapted from [38].
The broken-axisymmetric (BA) phase is also called the easy-plane (EP) phase. θ is given by
sin θ =

√
1/2 + 1/(4nc1)
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Figure 2.5: The finite temperature phase diagram of the ferromagnetic spin-1 Bose gas, adapted
from [40]. In the BA phase, there is a two step condensation.

The most region of our interest in the phase diagram is reached when q > 0 and c1 < 0,

i.e. c1 favors being polarized, but q favors the m = 0 sublevel. If q > 2nc1, with density

n, the Zeeman effect dominates, and the system remains in the polar phase P . However,

for q < 2nc1, the system polarizes perpendicularly to the magnetic field, and spontaneously

chooses a magnetization in the XY plane. This is called the Easy Plane phase EP , with

ground state ψ =


√
1−q̄
2√
1+q̄
2√

1−q̄
2

, q̄ = −q/(2nc1). The system is partially polarized, now in the

XY plane, with total magnetization F⊥ =
√
1− q̄2.

2.3.3 Finite Temperature

The finite temperature phase diagram of a Bose gas usually consists of a normal, disordered

phase, and a condensed BEC phase. The same is the case for the spinor Bose gas. Its

condensation temperature is generally lower due to multiple particle species, with Tc1 = (13)
2
3

for the O(N) gas [40]. In the broken-axisymmetric phase, there is the additional feature

of two step condensation (fig. 2.5). In the EP ground state, all hyperfine sublevels are

macroscopically occupied, but, due to the quadratic Zeeman effect, have a different effective

chemical potential. This means that the sublevel m = 0 condenses first, at temperature Tc1,

equal to the critical temperature for the O(N) gas (13)
2
3Tc0. The system is then in the polar

phase, with the m = 0 state condensed and m = ±1 only thermally occupied. At a lower

temperature Tc2, the m = ±1 states condense as well, and the system enters the EP phase.

This critical temperature Tc2 is dependent on q and nontrivial to determine. We calculate

the polar-EP phase boundary in an exact way using complex Langevin in section 4.7.
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2.3.4 Bogoliubov Theory

To gain analytical insight into ultracold gases, we employ Bogoliubov Theory. We sum-

marize here results from Wen [3] and Phuc, Kawaguchi, and Ueda [40]. It involves the

application of a Bogoliubov transformation to transform the creation and annihilation op-

erators a† and a to quasiparticle operators b† and b. As the simplest example of Bogoliubov

theory, we first consider the Fock space Hamiltonian of an interacting single component

Bose gas

H =

∫
x
ϕ†(x)(

∇2

2m
− µ)ϕ(x) +

∫
x

∫
y
V (x, y)ϕ†(x)ϕ†(y)ϕ(y)ϕ(x) (2.93)

or in momentum space with ϵk =
k2

2m

H =
∑
k

(ϵk − µ)a†kak +
∑
k,k′,q

Vqa
†
k−qa

†
k′+qak′ak. (2.94)

This Hamiltonian is non-diagonal, since the first term couples different locations in real

space, and the second term couples different momenta in momentum space. In a BEC,

the k = 0 mode is macroscopically occupied, while the other modes are assumed to be only

sparsely occupied. Letting |ϕ⟩ be a BEC state, the approximation a0 |ϕ⟩ ≈ a†0 |ϕ⟩ ≈
√
N0 |ϕ⟩

is therefore valid. One can insert this approximation and expand to order N0, leaving the

ground state energy GSE as an arbitrary shift

H = GSE +
∑
k

(ϵk − µ+ ρ0V0 + ρ0Vk) +
1

2
ρ0
∑
k

Vk(a−kak + a†ka
†
−k). (2.95)

To diagonalize this Hamiltonian, we write it in matrix form

H = GSE +
∑
k ̸=0

(
a†k a−k

)(Lk Mk

Mk Lk

)(
ak

a†−k

)
. (2.96)

with

Lk = (ϵk − µ+ ρ0V0 + ρ0Vk) (2.97)

Mk = ρ0Vk. (2.98)

The transformation we are looking for is the symplectic transform(
ak

a†−k

)
= U(k)

(
bk

b†−k

)
(2.99)
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that diagonalizes the matrix in eq. (2.96) and preserves the commutation relations [a†k, ak′ ] =

[b†k, bk′ ] = 1. Such a transform is given by a matrix [41]

U(k) =

(
uk v∗k
−vk −u∗k

)
(2.100)

with |uk|2 − |vk|2 = 1. The transform is then

ak = ukbk − v∗kb
†
−k. (2.101)

More generally, a there might be multiple particle species, like the three spin states in a

spin-1 gas, with nontrivial interactions. Nevertheless, we can always write the interacting

Hamiltonian (expanded to second order) in the form

Hint =
∑
k=0

ak†i A
k
ija

k
j +

1

2
(ak†i B

k
ija

k†
j + akiB

k∗
ij a

k
j ) (2.102)

with i, j running over the N particle species. The Bogoliubov-de Gennes eigenvalue equa-

tions are given for each k as(
Aij Bij

−B∗
ij −A∗

ij

)(
uj

vj

)
= ϵ

(
ui

vi

)
(2.103)

with normalization condition ∑
i

(|ui|2 − |vi|2) = 1 (2.104)

There are 2N possible solution to the block-matrix equation, with only the positive eigenval-

ues ϵ > 0 being physical solutions. We introduce the transformation matrices Uij = (ui)j ,

Vij = (vi)j . The transformation from quasiparticles to real particles is then given by

Ak = UkBk − VkB
†
k (2.105)

where BK =

b1,kb2,k

. . .

, AK =

a1,ka2,k

. . .

.

2.3.5 Bogoliubov Observables

The Bogoliubov approximation allows for an easy way to calculate the quantum depletion

of the condensate. The quasiparticle vacuum is given by the relation

bi |Ω⟩ = 0 (2.106)
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for each mode i. In the quasiparticle ground state, real particles can still be excited.To find

their occupation numbers, consider the particle basis operators acting on the quasiparticle

vaccum state [40]

Fquant(k) = ⟨Ω|A†
kAk|Ω⟩ (2.107)

= ⟨Ω|B†
kU

†
kUkBk +B−kV

†
k VkB

†
−k +B†

kUkV
†
kB

†
−k +B−kVkU

†
kBk |Ω⟩ (2.108)

= Tr(V †
k Vk). (2.109)

Other vacuum observables may be calculated in a similar fashion.

For thermal observables, one can use the Bose-Einstein distribution

⟨T |b†i,kbi,k|T ⟩ =
1

eβωi(k) − 1
(2.110)

for thermal state |T ⟩ and β = 1/T . Since the quasiparticles are also bosonic, one can read off

their dispersion from the diagonalized Hamiltonian, which has the form H =
∑

k ω(k)b
†
kbk.

We may replace the vacuum state |Ω⟩ in eq. (2.107) with a thermal state |T ⟩ and find

F (k) = Ftherm(k) + Fquant(k) (2.111)

= Tr(U †
kUkTk) + Tr(V †

k VkTk) + Tr(V †
k Vk) (2.112)

with matrix Tk = diag
(

1
eβω1(k)−1

, 1
eβω2(k)−1

, . . .
)
. Again, other observables may also be

calculated using the presented method.

2.3.6 Bogoliubov Theory of the Spin-1 Bose Gas

For the Spin-1 Bose Gas, the Bogoliubov transformations necessary depend on the phase of

the system. The full transformations for all phases are given in [41]. For completeness, we

give the transformations for the easy-plane phase, which is the one that is mostly examined

in this thesis. We later use a more involved, numerical Bogoliubov ansatz for the finite

temperature phase diagram [40].

We first perform a basis change of particle operators

âk,d =
sin θ√

2
(âk,1 + âk,−1) + cos θâk,0 (2.113)

âk,fz =
1√
2
(âk,1 − âk,−1) (2.114)

âk,θ =
cos θ√

2
(âk,1 + âk,−1)− sin θâk,0 (2.115)
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with sin θ =
√
1/2 + 1/(4nc1). We define

Ek,fz =
√
ϵk (ϵk + q) (2.116)

Ek,± =

√
ϵ2k + n

(
c
(1)
0 − c

(1)
1

)
ϵk + 2n2c

(1)
1

(
c
(1)
1 − c

(1)
q

)
± E1(k) (2.117)

X1±(k) = −n
(
c
(1)
0 + 3c

(1)
1 − 2c(1)q

)
ϵk + 2n2c

(1)
1

(
c
(1)
1 − c(1)q

)
± E1(k) (2.118)

E1(k) =

{[(
n2
(
c
(1)
0 + 3c

(1)
1

)2
− 4n2c(1)q

(
c
(1)
0 + 2c

(1)
1

)]
ϵ2k − 4n3c

(1)
1

(
c
(1)
0 + 3c

(1)
1

)(
c
(1)
1 − c(1)q

)
ϵk

+
[
2n2c

(1)
1

(
c
(1)
1 − c(1)q

)]2}1/2

(2.119)

C1±(k) =
Ek±

X2
1∓(k)ϵk + q2ϵ2k

(
ϵk − 2nc

(1)
1

)
sin2 2θ

(2.120)

The full transformation matrices are given as

U(k) =
1

2


√

ϵk+q/2+Ek,f2

2Ek,f2
0 0

0 1
2C1(k)E1(k)

+ C1−(k)X1+(k) qϵkC1−(k) sin 2θ − X1−(k)
2qϵkC1−(k)E1(k) sin 2θ

0 − 1
2C1+(k)E1(k)

+ C1+(k)X1−(k) qϵkC1+(k) sin 2θ +
X1(k)

2qϵkC1+(k)E1(k) sin 2θ


(2.121)

V (k) =
1

2


√

ϵk+q/2−Ek,f2

2Ek,f2
0 0

0 − 1
2C1−(k)E1(k)

+ C1−(k)X1+(k) qϵkC1−(k) sin 2θ +
X1−(k)

2qϵkC1−(k)E1(k) sin 2θ

0 1
2C1+(k)E1(k)

+ C1+(k)X1−(k) −qϵkC1+(k) sin 2θ − X1(k)
2qϵkC1+(k)E1(k) sin 2θ


(2.122)

For vectors Bk = (bkz , b
k
+, b

k
−), Ak = (akfz , a

k
d, a

k
θ). The transform is then given by

Bk = U(k)Ak + V (k)A†
k (2.123)

The dispersion of the modes is given by the energies eq. (2.116) and eq. (2.117). We show

examples of thermal and quantum occupation in fig. 2.6.

2.3.7 Renormalization of parameters

In complex Langevin simulations, the parameters plugged into the simulation describe the

physics at a microscopic level, the scale of the lattice spacing. However, at a macroscopic

level, they are modified by quantum fluctuations. These renormalized parameters are what

is measured in experiment, and for correct comparisons have to be calculated from the

bare parameters supplied to the simulation. We show here how renormalization corrects

the parameters supplied to complex Langevin simulations, following Heinen [42] and Phuc,

Kawaguchi, and Ueda [40]

The renormalized parameters are given by a series expansion, with the expansion parameter

being the bare coupling g. In the spin-1 gas, we have two coupling constants g0 and g2,
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Figure 2.6: The full and quantum depletion of the condensate. Parameters given in 6.1

Figure 2.7: The first order correction and some higher order power series corrections to the
coupling. These diagrams can be rewritten as a geometric series to infinite order

Figure 2.8: A higher order diagram not included in the infinite sum shown in fig. 2.7
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given by eq. (2.88), which have to be renormalized individually, but independently [40]. We

focus on the first order expansion, summarizing mostly [42]. The renormalized coupling

reads

g = g̃ − g̃2

Ω

∑
k

1

2ϵ0k
(2.124)

with bare coupling g̃ and renormalized coupling g. The energy is given by ϵk = k2

2M .

Alternatively, by series inversion we can write

g̃ = g +
g2

Ω

∑
k

1

2ϵ0k
(2.125)

Typically, these sums are UV divergent in 3 dimensions, with renormalization ”absorbing”

the infinities. In lattice field theory, there is natural ultraviolet cutoff given by the length

scale as. It is chosen much larger than the ”problematic” scattering length a, where the

theory becomes invalid. Therefore the sums only result in a finite correction proportional

to a/as. Setting as a cutoff Λ = πa−1
s and evaluating the sum as a continuous integral

g = g̃ −mg̃2
∫ Λ

0

d3p

(2π)3
1

p2
= g̃ − mg̃2

2πas
(2.126)

results
g̃ − g

g̃
= 2

a

as
(2.127)

For lattice simulations, the momenta are not being cut off on a circle, but instead component

wise. Additionally, the momenta are separated by a finite distance depending on the extent

of the lattice. To get the correct renormalization, we perform the momentum sum in

eq. (2.124) numerically over the momentum grid used in the lattice simulation.

An additional factor influencing the renormalization is the finite lattice spacing in imaginary

time direction. It produces a correction to the propagator, which can be incorporated into

the renormalized coupling by writing [42]

g = g̃ − g̃2

Ω

∑
k

1

2ϵk

1

1− aτ
k2

4M

(2.128)

This correction diverges when aτ = 4M
k2max

, and thus confirms the maximum stable momentum

determined in eq. (4.11).

We find that one can get some higher order corrections without further calculations by

looking at diagram summations (See fig. 2.7). The vertex+loop can be seen as a unit,

giving the first order correction

g(1) = − g̃

Ω

∑
k

1

2ϵk

1

1− aτ
k2

4m

(2.129)
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A higher order diagram is composed of one vertex and n vertex+loop combinations. This

can be written as a geometric sum

g = g̃(1 + g(1) + (g(1))2 + . . .) =
g̃

1− g(1)
(2.130)

This is similar to the one-particle-irreducible summations common in renormalization of

propagators [2]. Obviously, at higher orders additional diagrams appear, like fig. 2.8. These

would have to be calculated independently and are not included in the summation scheme.

When comparing results from complex Langevin simulations to other, non-microscopic sim-

ulations or experiment, we should always compare to the renormalized parameters for the

CL simulation to have a correct comparison.

2.4 Scaling at Phase Transitions

Classical phase transitions are characterized by a change in a materials macroscopical prop-

erties when varying the temperature, for example water freezing at 0°C, or a ferromagnet

magnetizing at its Curie temperature [43]. In contrast, a quantum phase transition can

by definition only happen at 0K [44]. It is then controlled not by temperature, but by an

external parameter, like a magnetic field strength. We show that many properties which

hold for classical phase transitions, in a similar way hold for quantum ones. For a more

in-depth introduction, see Sachdev [44], which we mostly summarize.

2.4.1 Classical Phase Transitions

Classical phases are usually characterized by an order parameter, which is 0 above the crit-

ical temperature Tc (the disordered phase) and nonzero below Tc. If there is a sharp jump

in the order parameter, the phase transition is called first order. In the case that the order

parameter only has a kink at T = Tc, and the jump happens only in its derivative, the

phase transition is called second order.

We now turn to the theory of scaling at phase transitions. From renormalization group the-

ory, it can be shown that the system has to be scale invariant at a critical point. Therefore,

its correlation length must become infinite. Close to a second order phase transition, the

correlation length then diverges with a critical exponent ν [44]

ξc ∝ |T − Tc|ν (2.131)

This exponent is called universal, since it only depends on the macroscopic properties of

the system, e.g. its symmetries, and not its microscopic parameters.

To analyze quantum phase transitions, we use the imaginary time formalism, describing a

QFT at zero temperature as d + 1 dimensional. Close to a phase transition with critical
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parameter qc, we also find a diverging correlation length in imaginary time ξτ .

ξc ∝ |q − qc|ν (2.132)

ξτ ∝ ξzc (2.133)

z is known as the dynamical critical exponent, also appearing in phenomena of critical

slowing down.

The word quantum in quantum phase transitions can be misleading, since for Bose-Einstein

condensation, quantum effects are needed to occur, yet the phase transition is classical.

While quantum fluctuations control the microscopic physics, at scales d ∼ 1/T thermal

fluctuations begin to dominate and control the macroscopic fluctuations. This is always true

for any temperature except T = 0, at least while the volume is infinite. Quantum critical

effects may still be observed experimentally, since the quantum critical point controls even

finite temperature physics close to it.

2.4.2 Finite Temperature Regime

Sharp phase transitions only exist in the thermodynamic limit with V → ∞. For quantum

phase transitions, the same holds, but in d + 1 dimensions; the imaginary time extent

has to be infinite. Therefore, finite temperature physics close to a quantum critical point

corresponds to a finite-size imaginary time dimension. We encounter one of the scenarios

described in fig. 2.9. The critical behavior of systems with finite extent is well known from

classical phase transitions, and is described by the theory of finite-size scaling. In essence,

it amounts to adding the inverse size of the system 1/L as a scaling variable to observables.

In the case of a QPT, we have Lτ = β, and observables scale as [45]

O(k, ω, q, T ) = βdO/zO(kβ1/z, ωβ, β/ξτ ) (2.134)

Where dO is the variables scaling dimension. This means that, in general, extrapolations

can be done using a power law fit in T . Similarly, finite-size corrections in space also follow

a power law in 1/L.

The width of the phase transition also scales as ( 1L)
1/ν [46]. However, finite-size scaling also

provides a more accurate way of finding the transition, with a accuracy of ( 1L)
1/ν+ω, where

ω is another critical exponent associated with the ”irrelevant” corrections. This is done

using the Binder cumulant [47]. We use here the definition

B =
⟨O4⟩
⟨O2⟩2

(2.135)

where O is the order parameter describing the phase transition. In the V → ∞, T → 0 limit,

the cumulant makes a jump at a second order phase transition, while in the finite-size regime,

there is a crossover. At the critical point, the cumulant must take a critical value Bc. Finite-
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Figure 2.9: The two possibilities for the finite temperature behavior around quantum critical
points. In the upper graph, the behavior at finite temperatures is completely analytic and
described by scaling close to the critical point. In the lower graph the QCP is the end of a
line of classical critical points, so that the shaded region is described by the theory of classical
phase transitions. Close to the quantum critical point, additional quantum effects complement
the classical behavior. Adapted from [44]

size scaling theory tells us that the first order finite-size corrections of the expectation values,

proportional to ( 1L)
1/ν , cancel each other [48]. Additionally, the value of the cumulant itself

is universal, that is, it only depends on the type of system and not its exact parameters. We

can therefore determine the critical parameter by simulating the system on two lattices of

different size Ld1 and L
d
2, and determining the point where B(L1, q) = B(L2, q). Additionally,

since Bc is universal, once the value of the critical cumulant is known, the system only needs

be simulated for one size, and the point B(L, q) = Bc determined. This technique can be

used both for finite and zero temperature phase transitions, by either increasing L only or

both L and β.
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Chapter 3

Complex Langevin Methods

3.1 Kernel Acceleration

As discussed in section 2.4, at phase transitions, the characteristic correlation length ξc of

the system is not well described by mean field theory, and instead diverges with a critical

exponent ν. In a finite-size system, this leads to a slowing down of the lattice dynamics.

While updates of the lattice are local (except for the Laplacian), correlation at a phase

transition spans the whole lattice. This increases the Monte Carlo autocorrelation time,

and thus decreases the speed at which we gain statistics.

The simplest example for critical slowing down is seen in a free scalar field theory with

momentum space Lagrangian

Lfree =
1

2
ψ(p2 +m2)ψ (3.1)

The relevant length scale is ξ = 1
m . We see that the Langevin drift is given by

∂S

∂ψ
= (p2 +m2)ψ (3.2)

For small masses m, the evolution of high momenta is a lot faster compared to lower ones,

with the slowing down becoming infinitely large at the phase transition point m = 0.

However, the Langevin process naturally offers a way to alleviate this problem.

3.1.1 Kernel Freedom

As mentioned before, the stochastic process eq. (2.58)

dϕ(x)

dθ
= − δS[ϕ]

δϕ(x)
+ η (3.3)
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Figure 3.1: Free part of the potential without (left) and with (right) spontaneous symmetry
breaking. The free part µ of the potential might be different when expanding from the new
minimum. There is also be a massless Goldstone boson along the valley of the potential.
Modified and adapted from [49]

corresponds to a Fokker Plank equation

∂P (ϕ, θ)

∂θ
=

∂

∂ϕ

[
∂S[ϕ]

∂ϕ
P (ϕ, θ)

]
+
∂2P (ϕ, θ)

∂ϕ2
. (3.4)

It can be shown that, more generally, we may add a positive definite matrix K(x, y) [50][51],

also known as a kernel, such that

dϕ(x)

dθ
= −K(x, y)

δS[ϕ]

δϕ(y)
+
√
K(x, y)η(y). (3.5)

The equilibrium distribution of the new Fokker Plank equation will be the same one as

eq. (3.4). This fact is called kernel freedom. Returning to the example of the free scalar

field (eq. (3.2)), we can introduce a kernel that is local in momentum space

K(p) =
1

p2 +m2
. (3.6)

The Langevin drift is then

∂S

∂ϕ
=

1

p2 +m2
(p2 +m2)ϕ = ϕ (3.7)

while the noise terms modified to √
1

p2 +m2
η(p). (3.8)
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This completely eliminates critical slowing down from the Langevin process. For interacting

fields, an exact kernel cannot be found, since the action is not local in momentum space.

However, a kernel can anyway be constructed by considering just the free part of the action.

We show that this still accelerates Langevin dynamics substantially, especially at phase

transitions.

For the coherent state path integral, the free update in momentum space is given by eq. (4.9),

such that the optimal kernel is given by

K(k) =

∣∣∣∣1− (1− aτ
k2

2M
+ aτµ)e

−2πij/Nτ

∣∣∣∣−1

. (3.9)

In theory, this is only stable for µ < 0, since otherwise K → ∞. However, in the symmetry

broken phase, we have to replace µ by a new expansion parameter µeff which describes the

quadratic behavior in the true vacuum. In theory, we have two components, one massless

and one massive, see fig. 3.1. Since the decomposition would be dependent on the state of

the system, this proves infeasible, and we therefore simply choose a µeff in the range [1/L, µ].

While this cannot cancel critical slowing down to the same degree as in the unbroken theory,

we still see a substantial speedup. In fig. 3.2, we show the autocorrelation Langevin time

depending on momentum for a single component gas. One can see that without a kernel,

Figure 3.2: Autocorrelation time of the Langevin process depending on the momentum mode.
The autocorrelation has been determined by fitting f(t) = exp(− t

τ ) to the autocorrelation
curve (fig. 3.3) for each lattice momentum k. For low momenta the process is accelerated by
two orders of magnitude using a kernel. The curve is considerably flattened, resulting in a
speed up of more than two orders of magnitude for low momenta. A power law fit to the
unaccelerated autocorrelation time shows τ ∼ k−1.86, justifying the assumption of a roughly
quadratic behavior. Full parameters in appendix

the autocorrelation decays much slower for low momentum modes. In fig. 3.3 we specifically
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Figure 3.3: The autocorrelation with or without a kernel. The high momentum mode is ac-
celerated slightly, the low one considerably. Autocorrelation time τ are obtained from fitting
f(t) = exp(− t

τ ).

visualize the difference for two modes. A possible problem of kernel acceleration might be

introduction of bias, in the same way as bias is introduced for large time steps. We perform

a comparative study for a specific parameter set between accelerated and non-accelerated

simulations, and compare the resulting density ρ =
∫
dxψψ̄ and its standard deviation

(fig. 3.4). Standard deviation is smaller for the accelerated simulations (as expected), and

Figure 3.4: Comparison of the mean and
standard deviation of the density with and
without kernel acceleration. Both simulations
were run 10 times each for 12 hours. While
the accelerated dynamics outperforms in con-
vergence by a big margin, the mean values are
within one standard deviation of each other,
showing no bias larger than statistical error.

the values correctly lie within the confidence interval of the kernel-free simulation, meaning

the bias is lower than the statistical error typical for a 24h simulation. When performing

a simulation with very high kernel acceleration, bias might still be introduced through the
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noise when time steps are large. To prevent this, we keep the effective µeff reasonably high

and the time step sufficiently low.

Lastly, kernel acceleration is only effective when a quadratic approximation is valid. If

higher order terms in the interaction play a nonperturbative role, the accelerated dynamics

might cause the simulation to diverge. We therefore only apply kernel acceleration to dilute

systems with a diluteness (eq. (2.92)) η ≤ 10−3. A further topic of research might be to

slow down the dynamics instead of accelerating them, to make simulations more stable and

access higher diluteness regions.
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3.2 Histogram Reweighting

Phase transitions in finite-size systems are not sharp, but instead smooth crossovers. One

usually wants to scan the parameter regime around the transition with multiple Monte

Carlo simulations, and then interpolate between the measurements to find the parameters

of interest. The error of this procedure is directly dependent both on statistics for every

single data point, as well as the parameter spacing between each simulation. For good

statistics at a phase transition, using large lattices, typical simulation times are on the

order of days (even with kernel acceleration and using high-end GPUs), so one would like

to make the interpolation process as efficient as possible. In [52], Ferrenberg and Swendsen

invented a data analysis technique for Monte Carlo sampling that is here adapted to complex

Langevin: histogram reweighting.

As an example, consider the ϕ4 action

S =

∫
ddx[mϕ2 + λϕ4] (3.10)

The corresponding probability density function is

P (ϕ) =
e−S[ϕ]∫
Dϕ′e−S[ϕ′]

(3.11)

Suppose we have done Monte Carlo sampling to find an observable O(ϕ) for given values

m = m0, λ = λ0. Given another value λ1, we can relate the PDFs by

Pλ1(ϕ) = Pλ0(ϕ)e
∫
ddx(λ0−λ1)ϕ4

∫
Dϕ′e−S[ϕ

′]∫
Dϕ′e−S[ϕ′]e

∫
ddx(λ0−λ1)ϕ′4

(3.12)

Although seemingly complicated, the fraction, independent of ϕ, plays the role of a nor-

malization factor. It is practically calculated by simply normalizing the new probability

distribution. An observable for λ1 evaluates as

⟨O⟩λ1 =

∫
DϕO(ϕ)Pλ0(ϕ)e

∫
ddx(λ0−λ1)ϕ4

∫
Dϕ′e−S[ϕ

′]∫
Dϕ′e−S[ϕ′]e

∫
ddx(λ0−λ1)ϕ′4

(3.13)

If we had an explicit estimate for Pλ0(ϕ), this would be possible to evaluate. Getting

an estimate would require saving every configuration of ϕ obtained during Monte Carlo

sampling. Since ϕ is functional, and therefore very high-dimensional when discretized on a

lattice, this would require large amounts of storage space. Therefore, instead of saving the
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Figure 3.5: A example of a distribution for parameter βc, reweighted to new β with diminishing
quality. Adapted from [53]

whole field ϕ, notice it is sufficient to save the marginal distribution

P (K) =

∫
Dϕδ(K −

∫
ddxϕ4)e−S[ϕ]∫

Dϕe−S[ϕ]
(3.14)

This distribution may be found by Monte Carlo sampling. One can create a histogram over

the range of possible K =
∫
ddxϕ4, and count the number of configurations

Ni = NtotalPi = Ntotal

∫
bi

dK

∫
DϕP (ϕ)δ(

∫
ddxϕ4 −K) (3.15)

that fall into each bin bi = [Ki −∆K/2,Ki + ∆K/2], i ∈ [0, N ]. The smaller the bin size

∆K, the better the estimate, but the more storage is required. To evaluate observables this

way requires knowing their marginal dependence on
∫
ddxϕ4. This means we also need to

know

O(K) =

∫
Dϕδ(

∫
ddxϕ4 −K)O(ϕ)e−S[ϕ]∫

Dϕδ(
∫
ddxϕ4 −K)e−S[ϕ]

(3.16)

In practice, this is done using a second histogram with the same size, summing the observ-

able O(ϕ) in the same bin that
∫
ddxϕ4 fell into

⟨Oi⟩ =
∫
bi

dK

∫
DϕP (ϕ)O(ϕ)δ(

∫
ddxϕ4 −K) (3.17)

Oi(ϕ) =
∫
bi
dKO(ϕ)δ(

∫
ddxϕ4 −K) and Pi(ϕ) =

∫
bi
dKδ(

∫
ddxϕ4 −K) are then practically

2N additional observables which are calculated during Monte Carlo sampling.

The relation eq. (3.13) is evaluated as
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⟨O⟩λ1 =

∫
ϕ
O(ϕ)Pλ0(ϕ)e

∫
ddx(λ0−λ1)ϕ4

∫
Dϕe−S[ϕ]∫

Dϕe−S[ϕ]e
∫
ddx(λ0−λ1)ϕ4

(3.18)

≈
∑
i

OiPie
Ki(λ0−λ1)

∑
i Pi∑

i Pie
Ki(λ0−λ1)

(3.19)

=

∑
iOiPie

Ki(λ0−λ1)∑
i Pie

Ki(λ0−λ1)
(3.20)

While in theory, there is no limit to the difference λ0 − λ1, in practice, the extrapolation

results in an exponential amplification of data points that were sampled with exponentially

suppressed probability in the Monte Carlo process. This leads to rapidly growing errors.

The macroscopic averages
∫
ddxϕn also do not vary in the thermodynamic limit V → ∞,

such that histogram reweighting becomes less powerful for larger system sizes. In general,

the parameter range in which we can extrapolate scales as ∆λ ∝ 1/
√
V , and ∆λ ∝ 1/V ν at

phase transitions, with critical exponent ν [53]. Since the phase transition sharpens with

the same exponent (see section 2.4.2), histogram reweighting always maintains its usefulness

for scanning the critical region.

For complex probabilities, the situation is similar. While the CL probability density

P (ϕR, ϕI) is not explicitly known, the complex PDF ρ(ϕ) ∝ exp(−S[ϕ]) is. We may treat

Oλi as an observable on ρ by reweighting eSλ0
−Sλ1 into O, i.e.

Oλ1(ϕ) = O(ϕ)eSλ0
[ϕ]−Sλ1

[ϕ] (3.21)

This observable is holomorphic, and can be complexified the same way as any other observ-

able. Going back to the explicit example of action eq. (3.10), we can write

Oλ1(ϕ) = O(ϕ)e
∫
ddxϕ4(λ0−λ1) (3.22)

This is once again dependent only on
∫
ddxϕ4, now with the complexified ϕ = ϕR + ϕI . In

[54] CL trajectories are reweighted. The aim is choosing λ1 in a regime where CL does not

converge correctly, while for λ0, it gives correct results. The reweighting factor is computed

at each configuration and directly absorbed into the averaged observable, discarding the

original values at Sλ0 .

Here we are instead interested in the continuum of parameters around λ0, and again use

histograms. The only difference is the necessity of knowing both K = Re
∫
ddxϕ4 and Q =

Im
∫
ddxϕ4, which results in 2D histograms Pij and Oij , with bins bij = [Ki −∆K/2,Ki +

∆K/2]× [Qj −∆Q/2, Qj +∆Q/2]. Observables are computed equivalently to eq. (3.20)

O =

∑
ij OijPije

(Ki+iQj)(λ0−λ1)∑
ij Pije

(Ki+iQj)(λ0−λ1)
(3.23)
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The seemingly complex denominator actually turns out to be real if reweighting a real

parameter: Pij in the N → ∞ limit will be exactly equal for positive and negative Q,

since the action is symmetric in ϕI . Therefore, the imaginary part cancels and we have a

proper normalization. In addition to the exponential suppression discussed earlier, complex

reweighting now also suffers from a sign problem resulting due to the complex factors in the

exponent. Generally, even more caution is necessary when using reweighting for complex

actions, but it still proves very helpful at phase transitions. In Figure 4.2, we use it to find

the Binder cumulant (eq. (2.135)) around the easy-plane to polar phase transition.

3.3 Entanglement Detection

Due to its intrinsic quantum nature, accessibility of entanglement is diminished the more

quantum effects are ignored in approximations. At the same time, it is something becoming

increasingly useful with the rise of e.g. entanglement enhanced measurement [55], and is

also vital to the theoretical description of some systems. This also makes it an interesting

topic to study in field theories. There are Bogoliubov approaches to entanglement where

the second order approximation holds [56][57], which are however limited to specific states.

Analytic results can be found for conformal field theories, i.e. quantum critical points,

where one can find that the entanglement exhibits log scaling, meaning it is not described

by local terms [58][59][60]. For classical phase transitions, the quantum correlation length

remains finite [60], confirming even BEC type transitions are indeed classical. Quantum

Monte Carlo studies have been done for zero temperature quantum field theories [61] and

finite temperature quantum lattice models [60]. Here, we present the quantum field theoretic

methods commonly used in lattice QFT to quantify entanglement, which are trivial to adapt

to complex Langevin with minor inconveniences.

3.3.1 Entanglement Measures

The following entanglement metrics are adapted from [62]. A quantum state is defined as

entangled if it cannot be represented as a tensor product of its substates. The state

|ψ1⟩ =
|00⟩+ |01⟩√

2
(3.24)

can be represented as

|ψ1⟩ = |0⟩ ⊗ (|0⟩+ |1⟩)√
2

(3.25)

while for the Bell state

|ψ2⟩ =
|01⟩+ |10⟩√

2
(3.26)
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this is not possible. The second state is therefore entangled, while the first isn’t. In the

same way, a density matrix is considered entangled if it cannot be represented as

ρAB = ρA ⊗ ρB (3.27)

with subsystems A and B. A good measure of entanglement for pure states is the entangle-

ment entropy. For a system consisting of subsystems A and B, the reduced density matrix

is the partial trace

ρB = TrAρAB (3.28)

which is defined as

TrAρAB =
∑
ϕA

⟨ϕA|ρAB|ϕA⟩ (3.29)

and ϕA being a basis set spanning subsystem A. For a separable state, it holds that

TrB(ρA ⊗ ρB) = ρA (3.30)

This means that if ρAB is unentangled and pure, then ρA must also be pure. For an entangled

state, ρA is generally mixed. A measure of the purity of a state is the von Neumann entropy,

defined as

S = −Trρ log ρ (3.31)

which is zero for pure states and nonzero for mixed ones. It can therefore be used as an

entanglement measure by calculating

SA = −TrρA log ρA (3.32)

which is the larger the more entangled a state is. However, entanglement entropy is not a

useful measure for mixed states, since it is already finite without entanglement. Instead,

one might use the partial transpose. Writing ρAB as a general combination

ρAB =
∑
ijkl

pijkl |i⟩ ⟨j| ⊗ |k⟩ ⟨l| (3.33)

the partial transpose is defined as

ρTBAB =
∑
ijkl

pijkl |i⟩ ⟨j| ⊗ |l⟩ ⟨k| (3.34)

The state is guaranteed to be entangled if ρTBAB has a negative eigenvalue. One may define

the entanglement negativity

N(ρAB) =
||ρTB ||1 − 1

2
(3.35)
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as another entanglement measure. Finally, the moments of these measures might be more

accessible. For example, the nth Renyi negativity

Rn =
Tr((ρTB )n)

Tr(ρn)
(3.36)

can, with some constraints, also serve as an entanglement measure.

3.3.2 Entanglement Measures in Quantum Field Theory

In many body simulations, reconstructing the entire density matrix is infeasible. There-

fore, one must find ways to extract entanglement measures from Monte Carlo simulations

implicitly. This is usually done through the replica trick, which we briefly described here.

Entanglement measurement through the replica trick was first proposed by Calabrese and

Cardy [58]. The replica trick for negativity was developed later in a similar manner, we

adapt here Wu et al. [60].

The elements of the density matrix ρ of a thermal system are given by

ρ(ϕ′, ϕ′′) = ⟨ϕ′|e−βH |ϕ′′⟩ (3.37)

which can be rewritten as a path integral as elaborated in section 2.1.2. We here consider

a lattice theory only, although the continuum limit may be taken

ρ(ϕ′, ϕ′′) = Z−1

∫
dϕ(x, t)

∏
x

δ(ϕ(x, 0)− ϕ′(x))δ(ϕ(x, β)− ϕ′′(x))e−S[ϕ] (3.38)

Taking the trace Trρ amounts to setting ψ′(x) = ψ′′(x) for all x and integrating over their

values. This can be seen as sewing together these points on the lattice. A partial trace may

be taken by sewing together only the endpoints in the region to be traced out.

ρA(ϕ
′, ϕ′′) = Z−1TrBρ =

∫
dϕ(x, t)

∏
x∈A

δ(ϕ(x, 0)− ϕ′(x))δ(ϕ(x, β)− ϕ′′(x))

×
∏
x∈B

δ(ϕ(x, 0)− ϕ(x, β))e−S[ϕ] (3.39)

Now, moments TrρnA may be calculated by connecting n copies of ρA in imaginary time

along the open points in A, and finally taking the trace by setting global periodic boundary

conditions between the first and last copy. This is visualized in fig. 3.6. For example, in the

case of n = 2

Tr ρ2A =
∑
ijk

⟨ϕiA| ⟨ϕ
j
B| e

−βĤ |ϕjB⟩ ⟨ϕ
k
B| e−βĤ |ϕkB⟩ |ϕiA⟩ (3.40)

=
∑
ijkl

⟨ϕiA| ⟨ϕ
j
B| e

−βĤ |ϕjB⟩ |ϕ
l
A⟩ ⟨ϕlA| ⟨ϕkB| e−βĤ |ϕkB⟩ |ϕiA⟩ (3.41)
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Figure 3.6: The connectivity of Tr ρ2A in imaginary time. Region B is already traced out before
taking the square, region A is connected globally

where ϕiA, ϕ
i
B are complete basis sets for the respective regions, such that we can insert

them as identity matrices. As a result, taking these moments amounts to changing the

topology of the space into one with multiple Riemann sheets.

For entanglement negativity, a different change of topology is necessary. The elements of

the transposed density matrix are

ρTB (ϕ′A, ϕ
′
B, ϕ

′′
A, ϕ

′′
B) = ⟨ϕ′A| ⟨ϕ′B| (e−βH)TB |ϕ′′A⟩ |ϕ′′B⟩ (3.42)

= ⟨ϕ′A| ⟨ϕ′′B| e−βH |ϕ′′A⟩ |ϕ′B⟩ (3.43)

When taking moments of ρTB , one has to stitch the segments as ϕ′′A,k = ϕ′A,k+1, ϕ
′′
B,k =

ϕ′B,k+1 as before. Since for the transposed parts, positions of ϕ′ and ϕ′′ are swapped, this

again results in new topologies, visualized in fig. 3.8. For n = 1 and n = 2, the topology is

trivial (fig. 3.7), so we focus on the n = 3 case. Looking only at region B, it reads

Tr (ρTB )3 =
∑
ijk

⟨ϕi| (e−βH)TB |ϕj⟩ ⟨ϕj | (e−βH)TB |ϕk⟩ ⟨ϕk| (e−βH)TB |ϕi⟩ (3.44)

=
∑
ijk

⟨ϕj | e−βH |ϕi⟩ ⟨ϕk| e−βH |ϕj⟩ ⟨ϕi| e−βH |ϕk⟩ (3.45)

While the connectivity is 1-2-3 in region A, it is clearly visible that in region B, the regions

connect in order 1-3-2.

With a path integral representation of the reduced and partial transposed density matrix

available, we now have to find observables to extract the corresponding entanglement mea-

sures. For some Markov chain Monte Carlo methods, one can directly compute partition

sum ratios by allowing transitions between topological configurations [63]. For complex

Langevin, this is not possible, so we adopt the derivative approach developed by Nakagawa
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Figure 3.7: The second moment of the partial transposed matrix Tr (ρTB )2. Its topology is
unchanged from Tr (ρ)2 and can therefore not contain any new information about entanglement.

Figure 3.8: The third moment of the partial transposed matrix Tr (ρTB )3 has a nontrivial
topology.
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et al. [61].

To measure entanglement entropy directly, we have to lower the temperature close enough

to zero to find an almost pure state, which requires a large temporal extent of the lattice.

The entanglement entropy can be written as the limit

SA = −TrρA log ρA = − lim
n→1

∂

∂n
log TrρnA = − lim

n→1

∂

∂n
log

(
Z(l, n)

Zn

)
(3.46)

with Z(l, n) being the partition function with the topology described in eq. (3.41) imposed,

with B having spatial extent l. Even without the limit, this expression describes the nth

Renyi entropy [58], a quantity sometimes useful and more accessible than the standard

entropy. We make use of Renyi generalizations for the negativity, since taking the n → 1

limit is not possible for a matrix one norm the same way it is for the entropy.

The entropy itself is generally UV divergent, so we focus on the derivative

∂SA
∂l

= − lim
n→1

∂

∂n

∂

∂l
logZ(l, n) = − lim

n→1

∂

∂n

∂

∂l
F (l, n) (3.47)

with free energy F (l, n) = logZ(l, n). We now approximate the derivative in n to be discrete

∂SA
∂l

≈ − lim
n→1

∂

∂l
[F (l, n+ 1)− F (l, n)] (3.48)

The free energy with n = 1 is just the partition function with standard topology, which is

independent of l, so its derivative is zero. We can then also discretize the l derivative of the

remaining term
∂SA
∂l

≈ −F (l + a, 2)− F (l, 2)

a
. (3.49)

To calculate this ratio, we can define an interpolating action, which works similar to a

generating functional. The action reads

Sα = (1− α)Sl[ϕ] + αSl+a[ϕ]. (3.50)

With Sl representing the action with extent of A equal to l. The difference in eq. (3.49)

can now be written as

F (l + a, 2)− F (l, 2) =

∫ 1

0
dα

∂

∂α
logZ(l, α) =

∫ 1

0
dα⟨Sl+a[ϕ]− Sl[ϕ]⟩Sα . (3.51)

After the integral is discretized, this is a sum of expectation values we can evaluate using

the Langevin process.

This is a very expensive calculation. Multiple simulations are required to evaluate the

integral for one value of l. There are multiple sign problems: For a complex action, the

action expectation value has an imaginary part that is canceled out, and in the integral, there

is a cancellation between positive and negative parts (see fig. 4.7 for an applied example).
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This makes the integral quite hard to calculate, but using kernel acceleration it remains in

the range of possibilities for medium size lattices.

For the negativity, we perform the same trick, except looking at

∂R3

∂l
= − ∂

∂l
log(ZT (l)) (3.52)

where ZT is the partition function with an area A of size l transposed. Since no limit in n

is taken, this calculation should generally be more accurate. We can directly discretize in

the same way
∂R3

∂l
= −FT (l + a)− FT (l)

a
(3.53)

and calculate this difference with a crossover action completely analogous to eq. (3.50). As

said before, the negativity has the advantage of being meaningful for nonzero temperatures

where less analytical calculations are possible, which is why it is the main object of our

studies.

55



Chapter 4

Application of Complex Langevin

to the Spin-1 Bose Gas

The application of complex Langevin to the fied of ultracold gases is still in its infancy.

Until now, simulation of single component BECs in 3D [37], the BKT transition [64] and

dipolar gases has been possible. Here we analyze a multicomponent system, the spin-1 gas.

We present the results of our multiple studies. The explicit parameters used are given in

6.1

4.1 Complex Langevin Simulation of a Spin-1 Gas

The Hamiltonian of a spin-1 gas, as derived in section 2.3, is given by

H =
1

2M
∇ψ†

m∇ψm + µψ†
mψm + qm2ψ†

mψm +
c0
2
ψ†
aψ

†
bψbψa +

c1
2
ψ†
a′ψ

†
aσ

ν
abσ

ν
a′b′ψbψb′ . (4.1)

This can be transformed into an action using the coherent state path integral formalism,

resulting in

S =

∮ β

0
dτ(−ψ∂τ ψ̄ +H(ψ, ψ̄)) (4.2)

which as discussed results in a sign problem due to the first order time derivative. We aim

to use complex Langevin simulations to overcome this sign problem, and show quantum

corrections to the mean field and Bogoliubov approximations.
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m = −1 m = 0 m = 1

labc a b c labc a b c labc a b c

1 0 0 0 1 0 0 1 -1 0 0 2
1 1 0 1 2 1 0 2 1 0 1 1
-1 2 0 2 1 2 1 2 1 1 1 2
1 2 1 1 1 2 2 2

Table 4.1: The multiplicators for each component m of the spin derivative, used in eq. (4.3)

4.2 Implementation

The Langevin equations are given by

∂ϕiτ,x
∂θ

= −∂S[ϕ, ϕ̄]
∂ϕ̄iτ,x

+ η = η + a3s

{
(ϕiτ−1,x − ϕiτ,x) +

aτ

1/2M∆ϕiτ−1,x + (µ− qm2)ϕiτ−1,x − c0ϕ
i
τ−1,x

∑
j

ϕ̄jτ,xϕ
j
τ−1,x + c1

∑
abc∈Ki

labcϕ̄
a
τ,xϕ

b
τ−1,xϕ

c
τ−1,x

}
(4.3)

∂ϕ̄iτ,x
∂θ

= −∂S[ϕ, ϕ̄]
∂ϕiτ,x

+ η∗ = η∗ + a3s

{
(ϕ̄iτ+1,x − ϕ̄iτ,x) +

aτ

1/2M∆ϕ̄iτ+1,x + (µ− qm2)ϕ̄iτ+1,x − c0ϕ̄
i
τ+1,x

∑
j

ϕ̄jτ+1,xϕ
j
τ,x + c1

∑
abc∈Ki

labcϕ
a
τ,xϕ̄

b
τ+1,xϕ̄

c
τ+1,x

}.
(4.4)

Calculating the derivative of the spin-spin interaction term using Pauli matrix multiplication

and lookup involves a lot of multiplication by zero and therefore wastes runtime. We instead

precalculate the multipliers labc and nonzero index combinations abc for each index i in the

set Ki. They are explicitly given in table 4.1. The different indices in imaginary time result

from the particular discretization of the CSPI, see eq. (2.25). Simulations are done in lattice

units. Apart from setting ℏ = 1, kB = 1, which we have already assumed before, we also

set 2M = a−1
s = 1. This way, all other constants are implicitly given in units of the lattice

spacing as.

For the Laplacian ∆, there are multiple implementations. The simplest discretization is

given by an O(a2) lattice second derivative, i.e. in 1D

∆Ai,n = Ai,n+1 − 2Ai,n +Ai,n−1. (4.5)

However, the corresponding momenta in Fourier space are given by a crystal-like dispersion

[37]

k2i =
4

a2s
sin2(

πji
Ns

), (4.6)
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with momentum lattice points ji in dimension i. Instead, we opt for a spectral implemen-

tation [64]

∆An = − 1

Ns

Ns−1∑
mn′=0

exp

(
i
2π

Ns
m(n− n′)

) ∣∣∣∣ 2πmNsas

∣∣∣∣2An′ . (4.7)

This form seems to involve O(N2
s ) multiplications (with amount of lattice sites Ns), in

contrast to the O(Ns) multiplications in the simple discretization. However, implemented

using using the Fast Fourier Transform (FFT), it only has O(N logN) complexity. It is

then simply ∆Ai,n ∼ FFT−1(−k2 × FFT (Ai,n)). This makes this implementation viable,

since its resulting spectrum is identical to the continuum spectrum.

k2i =
4π2

a2s

j2i
N2
s

. (4.8)

The update of the free part of the action can be calculated analytically in momentum space

[65]
∂Sfree
∂ϕ

= [1− (1− aτ
k2

2M
+ aτµ)e

−2πij/Nτ ]ϕ (4.9)

with imaginary time step aτ , and Matsubara frequencies ωj = 2πj/β. For ∂ϕ
∂θ = −∂S

∂ϕ to be

stable, it has to hold

0 < aτ (
k2max
2M

− µ) < 2. (4.10)

This gives a maximum imaginary time step

aτ <
2

k2

2M − µ
. (4.11)

Since we are in a symmetry broken phase, we approximate µ = 0. The maximum kinetic

energy on a d-dimensional lattice, with spectral Laplacian and in lattice units as = 1,

2M = 1, is k2max = dπ2. The maximum time step in three dimensions is then

amax
τ =

2

3π2
≈ 0.0675. (4.12)

This puts a practical limit on the imaginary time step size, and therefore the maximum

extent of the imaginary time direction and the lowest temperatures that can be reached for

a given lattice size. There might be a possibility to construct the CSPI in a way where this

limit doesn’t exist [6], but to our knowledge this formulation has not been investigated for

quantum fields. Since the discretization error scales linearly in time due to the first order

derivative, it is anyways advisable to keep the time step as low as possible.
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Atom a0 [a.u.] a2 [a.u.]
23Na 52.98± 0.4 47.36± 0.8
87Rb 100.4± 0.1 101.8± 0.2

Table 4.2: Scattering lengths of sodium-23 and rubidium-87. They lie closely together, leading
to a separation |c0| ≈ 102|c1|

4.3 Length Scales

QFT on a lattice explicitly implements two scales: The lattice spacing as, and the lattice size

L = Nsas. In Bose-Einstein condensates, there are multiple intrinsic physical length scales

which are relevant to the behavior of the system. The s-wave scattering length a, described

in section 2.3.1, quantifies the interaction strength between the particles. To assume a

contact interaction, we have to leave a << as. Otherwise, the microscopic structure of the

interaction potential would have to be taken into account.

The healing length ξ = 1√
2Mnc

specifies the distance in which the condensate phase heals

from defects and becomes coherent. In the spin-1 condensate, we observe two different

healing lengths: One for global phase coherence, ξd =
1√

2Mnc0
, and one for coherence of the

transverse polarization, ξs =
1√

2Mnc1
. Both ξd and ξs should be above the lattice spacing as,

but well below the system size L to avoid finite-size effects. Lastly, the thermal wavelength

λT =
√

2π
MT should be above as and below L if one wants to observe finite temperature

effects, but can be larger than L if more interested in the zero temperature limit.

4.4 Choice of Parameters

Our standard set of parameters is µ = 0.25a−1
s , c0 = 0.05a2s, c1 = 0.02a2s. This is a toy set of

parameters and does not directly correspond to any real gas, see table 4.2. For values in the

range of rubidium’s, the ferromagnetic choice, the small value of |c1| ≈ 10−2|c0| results in

numerical problems: The evolution in the spin changing collisions is very slow in comparison

to the density. Additionally, the resulting spin healing length is a factor 10 larger than the

density healing length, resulting in increased finite-size effects. This makes good simulations

of rubidium in 3D difficult. Simulations in 1D or 2D might be more feasible, but are out

of scope for this thesis. The chosen parameters, however, lie in the typical diluteness range

η ≈ 10−3 − 10−4 of an experimentally realized rubidium BEC. The diluteness also places a

limit on the accessible parameter regime, with CL becoming unstable at around η ≥ 10−2.

Another choice of atom would be potassium, whose interactions are weak but highly tunable

using Feshbach resonances, which is a topic of current experimental research.
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Figure 4.1: The Bogoliubov occupation numbers determined from theory and from CL simula-
tion. They are well recovered for low momenta, while statistical noise strongly shows for high
momenta that are occupied to a low level and mainly due to quantum fluctuations. Still, we
converge to the correct solution for long enough runs.

4.5 Confirmation of Bogoliubov Theory

Bogoliubov theory makes explicit predictions about the average occupation numbers of

different momentum modes k. It is usually very accurate while away from phase transitions

and at sufficiently low temperatures. We can calculate the occupation of momentum modes

in CL simulations by Fourier transforming the field ϕki (k) =
∫
e−ikxϕi(x), ϕ̄

k
i =

∫
eikxϕ̄i(x)

(this is an FFT in implementation) and calculating

F (p) =
∑
p=|p|

ϕ̄k(p)ϕk(p) (4.13)

summing over modes with equal momentum, on the same spherical surface. The results

are shown in fig. 4.1. The agreement is very good at low momenta, but decreases at high

momenta mainly due to numerical noise. The noise appears due to the multiple orders

of magnitude of occupation numbers covered by the spectrum. It is less severe for higher

temperature occupations, which we mainly consider here.
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Figure 4.2: Determination of the Binder cumulant from histogram reweighting. We find Bc =
1.378± 0.019. The error is estimated from the distance of the extrapolations from each other.

4.6 Determination of the critical Binder cumulant

We perform two complex Langevin Simulations close to the EP-Polar finite temperature

phase transition for two different lattice sizes. We extrapolate the results using histogram

reweighting, and determine the critical Binder cumulant as the crossing of the average

extrapolations (see fig. 4.2). We find

Bc = 1.378± 0.019, (4.14)

with error estimated from difference of extrapolations. This is not in agreement with the

known 3D O(2) model Binder cumulant from [46]

Bc = 1.2430± 0.0005 (4.15)

More accurate investigations are required to determine if this is due to a different universal-

ity class, numerical bias, or additional effects. For now, we work with the Binder cumulant

determined here.
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4.7 Finite Temperature Phase Diagram

The effects of finite temperature on the phase diagram of the spin-1 gas have been studied in

various ways [40][66]. Until now, no exact quantum simulation has been done to determine

it. However, there exist very accurate approximations. Away from the QCP, the self

consistent second-order approximation, developed in [40], should be quite accurate. We

briefly present it here and use it as a comparison to our studies, with a full description

including the explicit approximations found in [40].

We make a background field ansatz, writing

ψ̂(r) = ϕ+ δ̂(r) (4.16)

Inserting this into the Hamiltonian, we end up with higher order terms in δ. These terms

are reduced to second order by making a mean field approximation

δ†l δ̂jδk ≃ ñijδk + ñikδ̂j + δ̂†l m̃jk,

δ̂†jδ
†
jδkδl ≃ ñikδ̂

†
j δ̂l + ñjlδ̂

†
j δ̂k − ñikñjl + ñilδ̂

†
j δ̂k

+ñjkδ
†
l δl − ñilñjk + m̃∗

ijδkδ̂l

+m̃klδ
†
l δ

†
j − m̃∗

ijm̃kl,

(4.17)

with classical non-condensate density ñij = ⟨δ†i δj⟩ and anomalous density m̃ij = ⟨δiδj⟩.
In classical Bogoliubov theory, we set ñij = m̃ij = 0. Here, instead we solve the model

self-consistently in a numerical way, making it accurate up to higher temperatures, where a

large part of the condensate is depleted. We start with ñij = 0. First, we perform gradient

descent in ϕ to minimize the Hamiltonian

∂H

∂ϕ
= 0 (4.18)

such that terms linear in δ vanish. We then perform a Bogoliubov calculation, rewriting

the terms containing δ as

Ĥ(2) =
∑
k

∑
ij

[
δ†iA

k
ijδj +

1

2

(
δ†jB

k
ijδ

†
j + δi(B

k
ij)

∗δj

)]
, (4.19)

and finding the eigenvectors and eigenvalues to the Bogoliubov-de Gennes equation for each

momentum k (
Akij Bk

ij

−Bk∗
ij −Ak∗ij

)(
u
(k,α)
j

v
(k,α)
j

)
= ϵ(k,α)

(
u
(k,α)
i

v
(k,α)
i

)
(4.20)
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with mode number α. Performing these steps once recovers the spectrum found analytically

in section 2.3.6. We can now calculate the depletion

ñij =
∑
k,α

{
u
(k,α)∗
i u

(k,α)
j f

(
ϵ(k,α)

)
+v

(k,α)
i v

(k,α)∗
j

[
f
(
ϵ(k,α)

)
+ 1
]}

.

. (4.21)

This can now be reinserted into the Hamiltonian, and the steps (eq. (4.18) - eq. (4.21)) are

iterated with the new ñij until convergence. In this approximation, only the anomalous

average m̃ij is set to zero, corresponding to no phase coherence in the thermal cloud.

Higher order interactions are not neglected, but considered as quadratic interactions with

the thermal cloud. We choose the momentum modes k to be the same as those on the

lattice used for complex Langevin simulations. In contrast to [40], we do enforce the particle

number N to be constant, since we are comparing to simulations in the grand canonical

ensemble.

We are interested in the thermal transition from the polar to the easy-plane phase, which

Figure 4.3: The procedure of finding the corrected critical point. The Binder cumulant at the
approximated critical coupling (marked by a dot) is extrapolated across the phase transition
using histogram reweighting. The phase transition is located where the cumulant takes its
critical value. Values close to q = 0 are influenced by the phase transition to the ferromagnetic
phase and ignored for later analysis. Values close to the critical coupling are sampled more
densely due to the rapidly decreasing critical temperature.

is at low temperatures also controlled by a quantum critical point. To find the critical line

Tc(q) in the self consistent approximation, we determine the phase of the system using the

order parameter FT =
√
F 2
x + F 2

y , the transverse polarization. It is only nonzero in the

symmetry-broken EP phase. We then use a bisection algorithm [67] to find the critical

temperature to arbitrary accuracy for any given coupling q. Since Langevin simulations
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are a lot more computationally expensive, we use the approximation as an ansatz, and

run CL simulations at the critical parameters found by it. It is important to perform the

Bogoliubov calculation using the renormalized parameters. Using histogram reweighting,

we extrapolate the Binder cumulant across the phase transition and determine the critical

value qc (see fig. 4.3). This way, only one Langevin simulation is needed per temperature,

greatly reducing the amount of compute time needed. We find that the critical coupling is

reduced in the medium temperature regime, while receiving little correction for high and

low temperatures (fig. 4.4). This might be due to the thermal cloud being magnetized

oppositely to the condensate due to higher order interactions. Further investigations could

be performed measuring condensate and non-condensate polarization separately to confirm

this.

Figure 4.4: The finite temperature critical line from self consistent approximation and CL
simulation. Running averaging is applied to both curves to filter out statistical noise. We find
that the shift becomes maximal around q = nc1.
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4.8 Shift of the Critical Coupling

Figure 4.5: Determination of the critical coupling shift from mean field theory (qc = 1). We
find a shift of the critical coupling of less than one percent in direction of the EP phase. This is
in contrast to the strong shift in the opposite direction found in [66] with different parameters.
Further investigation is required to find the behavior of the quantum corrections to the critical
coupling for any parameters.

In [66], at T = 0, a shift of the critical coupling into the polar phase is found. Extrapo-

lating to T = 0 in CL simulations involves increasing a four-dimensional volume. Together

with the limit on the imaginary time step eq. (4.11), this sets computational limits on the

quality of the extrapolation. Kawaguchi, Phuc, and Blakie [66] also predict a qualitative

difference of the thermal clouds effect on the condensate around T = Tc/100, making an

extrapolation from higher temperatures impossible1. To make a reasonable approximation,

we simulate on a small spatial lattice with a large temporal extent and determine the critical

coupling through the critical Binder cumulant. It is different from the finite temperature

cumulant since the universality class generally changes [44], and we increase both spatial

and imaginary time dimension for correct comparison. We find

Bc = 1.24 (no error determined) (4.22)

and deviation from the mean field coupling

qc,MF − qc,CL
qc,MF

= 6.8× 10−3 (no error determined) (4.23)

1We do not find this shift with the parameters chosen in this thesis.
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We did not track exact error values but may infer an error of around 10% from the amount

of statistics generated. The Binder cumulant agrees with the literature value of the O(2)

Binder cumulant (eq. (4.15)), suggesting the quantum phase transition is indeed part of

a different universality class. Since the Binder cumulant for small lattices includes non-

universal corrections in general, we do not interpret our result as quantitatively accurate.

We do however not find a strong, multiple percent shift of the coupling into the polar phase,

as Phuc, Kawaguchi, and Ueda [40] find with a different set of parameters. Other quantum

Monte Carlo methods that specifically find the zero temperature ground state might be

better equipped for determination of zero temperature properties [15].

4.9 Entanglement Negativity Scaling with Lattice Size

Figure 4.6: The derivative of the third Renyi negativity depending on lattice size. We find a
quadratic scaling, confirming theory.

In theory, entanglement between two regions is proportional to the area separating the

regions [58]. For our straight cut through a 3D lattice, this results in a scaling with L2. In

fig. 4.6, we show the differential of the third Renyi negativity depending on lattice size. We

find it fits a quadratic function reasonably well, confirming that Renyi negativity quantifies

entanglement.
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Figure 4.7: The calculation of the Renyi Negativity. We plot the difference in action for each
crossover action Sα. The negativity derivative is then given by the integral over all points. Each
point amounts to a 24 h simulation, making this calculation very expensive.

4.10 Entanglement Negativity at the Classical Phase Tran-

sition

We perform a finite temperature simulation for a quantum field theory with a sign problem,

which to our knowledge is the first time entanglement measures have been obtained from

a complex Langevin simulation. This is especially interesting since there are connections

between Berry phases and entanglement [68], which might in the future be investigated

further using CL. We find no increased range of Renyi negativity at the polar to easy plane

condensation away from the critical point (fig. 4.8), suggesting the phase transition is still

completely classical without imaginary time scaling. Further studies should be conducted

for lower temperature systems in the critical scaling regime.
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Figure 4.8: The derivative of the third Renyi negativity ∂R3

∂l at the classical phase transition (q =
0.18) vs away from the phase transition (q = 0.15), error bars are estimated by removing values
from the numerical integrals. The negativity is larger for lower l, showing local entanglement
as expected. No significant difference can be seen between the different parameters.
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Chapter 5

Conclusion and Outlook

In the growing field of ultracold Bose gases, CL provides a unique exact way of calculating

equilibrium properties numerically. While CL is routinely applied in the field of lattice

QCD with large success, its application is still in its infancy for the field of Bose gases.

A full quantum field theoretical simulation of Bose gases is not just interesting as another

approach to test their general properties, but also beneficial to further the study of quantum

field theories using BECs as a testing ground. In this thesis, we have shown the viability of

complex Langevin being applied to a gas with a complex interaction structure: the spinor

Bose gas. We found a significant deviation of the critical line from the best available approx-

imation even at finite temperatures, which could be detectable in experiments. Confirming

our results for entanglement experimentally might be possible, but is considerably more

complex.

We have also adapted multiple methods from standard lattice QFT to complex Langevin

simulations. The complexification only requires small adjustments to the methods. Kernel

acceleration has been used for Langevin simulation of QFTs without a sign problem in the

past [51]. It is also a staple in Hamiltonian Monte Carlo algorithms today, where the kernel

is known as a mass matrix [14]. Kernels themselves are used for stabilization of diverging

complex Langevin trajectories [9], but not for acceleration. We bring complex Langevin up

to the level of standard Monte Carlo methods, by using kernels for accelerating the Langevin

dynamics. This technique should be adaptable to lattice gauge theories, and might be used

to explore the phase diagram of high-density QCD in the future.

Histogram reweighting is easily adaptable to CL. We show that it is effective at extrapolat-

ing parameters, even when confronted with a sign problem from complexified fields. This

makes scanning large parts of a parameter space much more feasible.

The possibility of entanglement calculation for ultracold Bose systems is an exciting prospect,

since it allows finding highly entangled equilibrium states even at finite temperature. These

highly entangled states might be practically useful [69], and complex Langevin analysis

could provide more insight into their physics. Our current results do not show an entangle-

ment increase at the finite-temperature phase transition, so further studies are required to
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find if there is any entanglement increase in the spin-1 gas.

In the future, complex Langevin can hopefully be applied to more systems in the realm of

ultracold gases. 1D-gases in a finite volume exhibit special coherence properties and phase

diagrams, with a larger influence from quantum effects than their 3D counterparts. With the

1D Lieb-Liniger model being integrable [70], 1D systems would also be useful for complex

Langevin to test against. Other interaction structures might also be analyzed, like spin-2

gases [35] and particle mixtures of both bosons and fermions. More, setups like black hole

analogues [71] in BECs might be accessible. Successfully entending the validity of complex

Langevin into the high density, non-perturbative regime, where it could be used to describe

superfluid helium [72], would be a great advancement. While complex Langevin seems to be

highly divergent for real-time fields [73], it might be possible to simulate strongly dissipative

systems for short real-time scales. These real-time simulations could be used, for example,

for the computation of vortex dynamics.

Methodically, there are some advances in the Hamiltonian/Hybrid Monte Carlo community

not yet common in complex Langevin simulations. Apart from kernel acceleration, which

we introduced in this thesis, the underdamped Langevin equation [74], an equivalent formu-

lation to the overdamped Langevin equation in thesis, is commonly used in HMC and uses

an additional momentum variable for its dynamics[14]. Using the underdamped Langevin

equation can be compared to using momentum for gradient descent in machine learning,

and also allows for pseudo-symplectic integrators. This might provide more stability and

accelerated dynamics for certain systems. Other techniques used in HMC, even if not di-

rectly applicable in CL due to the missing Metropolis step, might prove adaptable for the

stochastic dynamics of complex Langevin.

We see complex Langevin as a way of overcoming the sign problem which still has a lot of

room for exploration, and might provide great insights into new systems in the future.

70



Chapter 6

Appendix

6.1 Appendix A: Implementation and Parameter Details of

the Simulation

All Langevin simulations are done using the cupy [75] package for GPU accelerated com-

puting. Calculations are done on the bwUniCluster 2.0 high performance cluster, and each

job is run on a single NVIDIA V100, A100 or H100 GPU. All jobs for final results run for

24 hours wall time, and all lattice sizes are 32× 32× 32, unless mentioned otherwise.

Figure µ[a−s 1] c0[a
2
s] c1[a

2
s] T [a−s 1] dθ µeff

3.2, 3.3 0.001 0.1 0.00 0.625 3× 10−4 1/32
2.6 0.25 0.05 0.02 0.5 - -
4.1 0.25 0.05 0.02 0.5 3× 10−4 0.25

4.3,4.4,4.2 0.25 0.05 0.02 varies 3× 10−4 0.25
4.5 0.25 0.05 0.02 in Fig 3× 10−4 0.25
4.6 0.25 0.05 0.02 0.625 3× 10−4 0.25

4.7, 4.8 0.25 0.5 0.2 0.625 3× 10−3 0.251

Table 6.1: The parameters for the different simulations, sorted by the figures in which they
appear. Note that these are the bare parameters supplied to the CL simulation

6.2 Appendix B: Code

Code will be made available at https://github.com/julianmayr1/BoseGasCL

1Kernel applied in spatial dimension only
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Acronyms

BEC Bose-Einstein condensate. 26, 31, 32, 49, 56, 69

CL complex Langevin. 25, 26, 38, 48, 59, 60, 64, 65, 67, 69–71

CSPI coherent state path integral. 10, 14, 15, 19, 20, 57, 58

EP easy plane. 30, 31, 61, 63, 65

FFT fast fourier transform. 58, 60

GPU graphics processing unit. 46, 71

HMC Hamiltonian/Hybrid Monte Carlo. 19, 70

PDF probability density function. 18–24, 26, 46, 48

QCD quantum chromodynamics. 19, 22, 69

QCP quantum critical point. 40, 62

QFT quantum field theory. 10, 38, 49, 59, 69

QPT quantum phase transition. 39
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[74] Pierre Monmarché. High-dimensional MCMC with a standard splitting scheme for the

underdamped Langevin diffusion. en. arXiv:2007.05455 [math, stat]. June 2021. url:

http://arxiv.org/abs/2007.05455 (visited on 02/05/2024).

[75] Ryosuke Okuta et al. “CuPy: A NumPy-Compatible Library for NVIDIA GPU Cal-

culations”. In: Proceedings of Workshop on Machine Learning Systems (LearningSys)

in The Thirty-first Annual Conference on Neural Information Processing Systems

(NIPS). 2017. url: http://learningsys.org/nips17/assets/papers/paper_16.

pdf.

82

http://arxiv.org/abs/2212.07985
http://arxiv.org/abs/2007.05455
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf

	Summary
	Introduction
	Field Theoretical Description of Many Body Systems
	Many Body Quantum Theory
	Coherent State Path Integral

	Complex Langevin Simulation
	Monte Carlo and Importance Sampling
	The Sign Problem
	Approaches to the Sign Problem
	Complex Langevin
	Limitations

	Theory of the Spin-1 Bose Gas
	Low Energy Scattering Theory of the Spin-1 Gas
	Mean Field Theory
	Finite Temperature
	Bogoliubov Theory
	Bogoliubov Observables
	Bogoliubov Theory of the Spin-1 Bose Gas
	Renormalization of parameters

	Scaling at Phase Transitions
	Classical Phase Transitions
	Finite Temperature Regime


	Complex Langevin Methods
	Kernel Acceleration
	Kernel Freedom

	Histogram Reweighting
	Entanglement Detection
	Entanglement Measures
	Entanglement Measures in Quantum Field Theory


	Application of Complex Langevin to the Spin-1 Bose Gas
	Complex Langevin Simulation of a Spin-1 Gas
	Implementation
	Length Scales
	Choice of Parameters
	Confirmation of Bogoliubov Theory
	Determination of the critical Binder cumulant
	Finite Temperature Phase Diagram
	Shift of the Critical Coupling
	Entanglement Negativity Scaling with Lattice Size
	Entanglement Negativity at the Classical Phase Transition

	Conclusion and Outlook
	Appendix
	Appendix A: Implementation and Parameter Details of the Simulation
	Appendix B: Code


