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The extensive control of spin makes spintronics a promising candidate for future scalable quantum
devices [1]. For the generation of spin-superfluid systems [2], a detailed understanding of the build-up
of coherence and relaxation is necessary. However, to determine the relevant parameters for robust
coherence properties and faithfully witnessing thermalization, the direct access to space- and time-
resolved spin observables is needed. Here, we study the thermalization of an easy-plane ferromagnet
employing a homogeneous one-dimensional spinor Bose gas [3, 4]. Building on the pristine control
of preparation and readout [5] we demonstrate the dynamic emergence of long-range coherence
[6] for the spin field and verify spin-superfluidity by experimentally testing Landau’s criterion [7].
We reveal the structure of the emergent quasi-particles: one ‘massive´ (Higgs) mode, and two
‘massless´ (Goldstone) modes - a consequence of explicit and spontaneous symmetry breaking,
respectively. Our experiments allow for the first time to observe the thermalization of an easy-
plane ferromagnetic Bose gas; we find agreement for the relevant momentum-resolved observables
with a thermal prediction obtained from an underlying microscopic model within the Bogoliubov
approximation [8–10]. Our methods and results pave the way towards a quantitative understanding
of condensation dynamics in large magnetic spin systems and the study of the role of entanglement
and topological excitations for its thermalization.

In recent years analog quantum simulators with ul-
tracold atoms allowed for unprecedented insights by im-
plementing building blocks of complex condensed mat-
ter systems [11, 12]. This opens up new possibilities for
studying pressing questions concerning quantum many-
body dynamics and thermalization [13–21]. For probing
these phenomena in macroscopic systems often either the
timescales are too short or the control to extract infor-
mation is not given such that direct observation of the
dynamical processes is not possible.

Many dynamical phenomena emerging in the many-
body limit, such as the build-up of long-range coherence,
superfluidity or spontaneous symmetry breaking, can be
studied in Bose-Einstein condensates (BEC) [22]. Here,
the macroscopic occupation of the ground state together
with a spontaneously broken symmetry manifests itself in
a globally well-defined phase of the complex-valued order
parameter in each realization. This phase can be probed
experimentally by interferometric measurements, which
has been demonstrated with different platforms [23–25].
In an easy-plane ferromagnetic system the order param-
eter is characterized by a well-defined magnitude in the
transversal plane whereas all orientations in the plane
are equally likely. Theoretically, this is due to a spatial
anisotropy, breaking the full rotational SO(3) symmet-
ric part of the Hamiltonian down to a transversal SO(2)
symmetry. In condensed matter physics prototype mod-
els include the XXZ model [26], which recently has also
been realized with ultracold atoms in lattice systems [27]
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and Rydberg atoms [28, 29].

Here, we realize a spinor BEC of 87Rb with easy-
plane ferromagnetic properties [3, 30] in a quasi-one-
dimensional box trap [31] (see Fig. 1a). It consists of
three internal states, labelled by their magnetic quan-
tum number m ∈ {0,±1}. The system features ro-
tationally invariant ferromagnetic spin-spin interactions

described by Ĥs = c1
∫

dV F̂
2
/2, where c1 < 0 is the

spin-spin interaction constant and F̂ denotes the spin
operator (see Methods for details). A quadratic Zeeman
shift q induced by the magnetic field plays the role of
the isotropy-breaking term; it shifts the energy of the
m = ±1 levels (see Fig. 1b) and is explicitly given by

Ĥq = q
∫

dV (N̂+1 + N̂−1). We adjust q by using off-
resonant microwave dressing [32] such that the mean-field
ground-state exhibits easy-plane ferromagnetic proper-
ties (0 < q < 2n|c1|; n is the atomic density) and
our initial conditions restrict the dynamics to the spa-
tially averaged longitudinal (z-) spin being zero. In
addition to the spin interactions, our system exhibits
SO(3)-invariant density-density interactions described by

Ĥd = c0
∫

dV N̂2/2, with interaction constant c0 and
|c0/c1| ≈ 200 [3].

The capability to extract the relevant order-parameter
field [5] allows us to study the build-up of long-range co-
herence in a time- and space-resolved fashion; accessing
the full structure factor of the observables defining the
Hamiltonian is the handle to faithfully witness thermal-
ization. We experimentally examine the order parame-
ter, which is the transversal spin degree of freedom, by
acquiring many realizations of the complex-valued field
F⊥(y) = Fx(y) + iFy(y) using spatially resolved joint
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FIG. 1. Homogeneous spinor Bose gas and easy-plane
ferromagnetic properties. a, We realize a homogeneous
spinor BEC of 87Rb in a box-like trapping potential by a com-
bination of an elongated attractive potential (red) and two
repulsive end caps (green; see Methods for details). The total
density (grey shading) is flat over the extent of the cloud. b,
Level structure of the F = 1 hyperfine manifold. We control
the offset energy between the m-states by microwave dressing
(blue shading) such that the system features easy-plane ferro-
magnetic properties in its ground state. c, The spatial degree
of freedom is continuous, however, in the analysis discretized
by the finite pixel size of the camera and the imaging resolu-
tion (≈ 1.2µm). Each imaging volume (boxes) contains ≈ 500
atoms which are described by continuous fields for density and
spin. The spins orient themselves in the (easy-)plane orthog-
onal to the external magnetic field B. d, The transversal spin
features two different types of excitations: A Goldstone mode
and a Higgs mode related to the excitation of the orientation
φL and length |F⊥|, respectively. e, Histogram of the local
spin normalized by the atom number, combining all spatial
points and experimental realizations. In every realization the
phase of the central spatial point is subtracted. The dashed
line indicates |F⊥| = 0.75.

measurements based on positive operator valued mea-
sures (POVM) [5, 33]. We obtain a value for the transver-
sal spin F⊥(y) = |F⊥|e−iφL with length |F⊥| and orienta-
tion in the plane φL. The position y along the long axis
of the cloud is discretized by our imaging resolution; in
each typical imaging volume we infer the spin from an
average over ∼ 500 atoms which are described by a spin
field, i.e. taking nearly continuous values (see Fig. 1b),
which we identify as the macroscopic order-parameter
field describing the spin condensation.

For studying the condensation dynamics, we initialize
the system far from equilibrium without well-defined spin
length, and fluctuations solely in the plane. We visualize
the emergence of a spin (F⊥) field by evaluating the his-
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FIG. 2. Emergence of long-range coherence and super-
fluidity. a, Absolute value of first order coherence |g1(x, y =
0)| of transversal spin F⊥; reference point (y = 0) is chosen
at the left edge of the cloud with system size L = 74µm. We
observe a build-up of long-range order, i.e. for long times the
system features non-zero coherence over its whole size. (In-
set) Two-dimensional coherence function |g1(x, y)| after 27 s
evolution time. For long times we find the correlations to
be translation-invariant. b, Second order coherence of the
transversal spin showing the evolution and character of spin
length fluctuations. c, Superfluid properties of the spin con-
densate. Standard deviation along the cloud of spin length
(purple) and density (grey) for different speeds v of the local
perturbation. The rapid increase at finite speed indicates su-
perfluid properties of spin and density. Insets show represen-
tative single realizations of the spin length and total density
in the different regimes.

togram of F⊥ taking into account all spatial positions and
realizations (see Fig. 1e). After 5 s, which corresponds to
≈ 10× the typical time scale of the spin interaction en-
ergy ts = h/(n|c1|), the spin is still far from equilibrium
and shows large fluctuations in orientation and length.
After 30 s (≈ 60× ts) of evolution time we find that the
fluctuations settle around a well-defined spin length |F⊥|
and the phase φL becomes well-defined over the whole
sample, i.e. long-range order emerges. This is expected
for a thermal state incorporating spontaneous symme-
try breaking in the transversal spin degree of freedom
and can be intuitively grasped by looking at the under-
lying mexican-hat-like free-energy potential (see Fig. 1d
and [34]).

To test for eventual spin condensation, we char-
acterize the coherence properties of the transver-
sal spin by evaluating first and second order coher-

ence functions [6] with g1(x, y) ∝ 〈F̂ †⊥(x)F̂⊥(y)〉 and
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FIG. 3. Local spin and density control enables probing of quasi-particle properties. a, Schematics of the three
Bogoliubov dispersion relations. b-d, Time evolution of orientation (b,), total density (c,) and spin length (d,) after local
perturbation of the spin condensate. The upper panels show all evolution times and lower panels selected 1D cuts. We find a
splitting of the imprinted wavepacket for phase and total density according to the expected linear dispersion relations (green
and blue); solid lines are Gaussian fits. Strikingly, the speed of sound differs by one order of magnitude reflecting the energy
scales (solid black line corresponds to v = 110µm/s and dashed line to v = 1100µm/s). In contrast, the spin length excitation
disperses. e, Results of Gaussian fits to spin length excitation. 1σ width (circles), the amplitude a (diamonds) and the integral
∝ aσ (squares) are shown. We find an increasing (decreasing) width (amplitude) while the integral stays nearly constant; this
is in accordance with an underlying gapped quadratic dispersion. f, Oscillation of the m = 0 population after perturbing the
k = 0 mode of the spin length. The oscillation frequency is a measure of the gap ∆ of the quadratic mode identified in d. All
shown error bars are 1 s.d. of the mean.

g2(x, y) ∝ 〈F̂ †⊥(x)F̂ †⊥(y)F̂⊥(x)F̂⊥(y)〉, respectively (see
Methods for details). In contrast to earlier experiments
observing the emergence of long-range coherence in one-
component BECs [23, 35, 36], we do not rely on spatial
interference as we access the relevant spin field directly
by joint measurements entailing interference in the inter-
nal degrees of freedom [5, 37]. We find that coherence
is built up dynamically and the system finally features
long-range order, i.e. non-zero |g1(x, y)| over the whole
extent of the atomic cloud (see Fig. 2a). At the same
time the spin length fluctuations, quantified by g2(x, y)
(see Fig. 2b), settle close to unity at zero distance as ex-
pected for a weakly interacting Bose-Einstein condensate
[38–42].

To characterize the final state, we first test for super-
fluidity of the spin as well as the density; in the spirit of

Landau [7], we drag a well-localised obstacle (see Meth-
ods) coupling to density and spin through the BEC [43–
45] and measure the response of the system. We quantify
the response by evaluating the mean standard deviation
of the total density and the transversal spin length along
the cloud. The breakdown of superfluidity is signalled
by a rapid increase of the response at a non-zero critical
velocity. We find two different critical velocities for spin
and density (see Fig. 2c). While the spin shows superflu-
idity up to vc,s ' 3× 10−2 mm/s, the density tolerates a
moving barrier for up to 10 times faster speeds. This is
consistent with the interaction strengths and the corre-
sponding stiffness of the degrees of freedom.

In the following we address the underlying structure
in more detail. With two spontaneously broken symme-
tries, the U(1) symmetry of the total density and the
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FIG. 4. Structure factors of different observables at late times. We show experimental structure factors (green
diamonds; error bars smaller than plot marker) after 30 s evolution time where the system behaves stationary. Experimental
uncertainties are smaller than marker size. We compare to a thermal prediction within number-conserving Bogoliubov theory
(green line; grey band indicates 68% confidence interval of statistical and systematic uncertainties; for details on the fit and
parameters see Methods). Grey diamonds indicate reference noise level of a coherent spin state prepared from a single component
gas by a global spin rotation.

SO(2) symmetry of the spin orientation, we anticipate
two Goldstone-like modes with linear dispersions in the
infrared. The different energy scales of density and spin
interactions are reflected in two associated sound speeds;
they are theoretically expected to differ by more than an
order of magnitude which is consistent with the observed
critical velocities. Additionally, the symmetry explicitly
broken by Ĥs+Ĥq leads to a Higgs-like gapped mode (see
Fig. 3a). Compared to two-component BECs we find an
additional mode due to the increased number of degrees
of freedom [46, 47].

Experimentally, we probe the three different modes by
applying local perturbations (see Fig. 3 and Methods for
details). After the perturbation we observe and ana-
lyze the temporal evolution to learn about the underlying
structure of the dispersion relations. First, we probe the
linear mode associated with the spin orientation by im-
printing a spatially varying orientation φL pattern onto
the thermalized state. The probing scheme is based on
our capabilities to combine global and local radio fre-
quency spin rotations with fixed relative phases. The ini-
tially imprinted Gaussian wavepacket splits up into two
wavepackets travelling with velocities of ±vs – a clear

indication for a linear dispersion relation. To access the
density degree of freedom we imprint a Gaussian-shaped
density reduction of ∼ 5% and observe again a splitting
of the initially prepared wave packet. The difference in
energy scales of density and spin is reflected in the two
observed sound speeds vd and vs which we find to be
vd/vs = 10 ≈

√
|c0/c1|. Finally, the gapped mode is

associated with excitations of the spin length which we
perturb with a Gaussian length modulation. Strikingly,
we find no splitting but a decaying amplitude and grow-
ing width of the prepared perturbation. Additionally we
measure the gap of this mode; it manifests as a finite
oscillation frequency when exciting the k = 0 mode (see
Fig. 3f). We find a q-dependent, non-zero oscillation fre-
quency consistent with expectations concerning the na-
ture of the underlying Bogoliubov mode in the easy-plane
ferromagnetic phase (see Ext.Data.Fig.1 and Methods for
details).

We now turn to the question if we experimentally re-
alized a thermal ensemble; to ease its realization we pre-
pare an elongated spin initial condition and evolve it
for 30 s. Experimentally, we extensively characterize the
thermalized state of our system by using different struc-
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ture factors, such as those of the spin in transversal as
well as in longitudinal (z-) direction and the densities of
the three m-components. To separate the single compo-
nents we employ a Stern-Gerlach magnetic field gradient
and a short time-of-flight (2 ms). We are able to ex-
tract momentum-resolved structure factors by Fourier-
transforming the spatial profiles. Special care has to
be taken to measure the total density fluctuations since
phase fluctuations are transformed into density fluctua-
tions during any time-of-flight [48]. Therefore we employ
an in-situ imaging of the total density to access the low
level of fluctuations which is in our regime of the order
of atom shot-noise (see Methods for details).

The structure factor (see Fig. 4) as well as the local
fluctuations (see Ext. Data Fig. 2) of all observables are
consistently described using a thermal prediction. The
latter is obtained for the spinor Bose gas with con-
tact interactions within the Bogoliubov approximation
[8, 49] using a single temperature for all three quasi-
particle modes. We thus conclude that the system has
evolved to a thermal state within experimentally acces-
sible timescales. The found temperature is (57 ± 3) Hz
(∼ 3 nK) and thus a factor of ≈ 5× smaller than the
density-density interaction (nc0 = 252±54 Hz) and more
than one order of magnitude larger than the spin-spin
interaction energy scale (|nc1| = 1.17 ± 0.25 Hz). The
temperature is consistent with theoretical estimates for
the critical temperature for the emergence of the easy-
plane ferromagnetic phase [9, 50]. Interestingly, the sin-
gle m-densities feature high fluctuations also in compar-
ison with three independent single-component conden-
sates at corresponding density, interaction and tempera-
ture.

We repeat our measurement close to the phase bound-
ary at q = 0 and find structures beyond thermal Bo-
goliubov theory in that case (see Ext.Data Fig. 3). The
observed enhanced fluctuations can be associated with
long-lived non-linear excitations of the spin [51] which

are energetically less suppressed for lower q.
In conclusion, the high degree of control allows us to

experimentally observe the thermalization process of an
easy-plane ferromagnet. This sets the foundations for
studies in quantum field settings addressing the micro-
scopic processes for thermalization as well as its absence
due to e.g. long-lived topological defects. The robust
generation of a spin superfluid is a prerequisite for spin
Josephson junctions where finite temperature effects and
spin-density separation can now be studied on a new
quantitative level due to the direct access to the order
parameter.
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Methods

A. Experimental details

We prepare a spinor Bose-Einstein condensate of 87Rb in a quasi-one-dimensional trapping geometry. Details
concerning the preparation and readout of the transversal spin can be found in [5, 33, 37, 52]

Here, we employ a box-like trapping potential. We use a weakly focused red-detuned laser beam creating to a
quasi-one-dimensional trapping potential with ωl ≈ 2π × 1.7 Hz and ωr ≈ 2π × 170 Hz; repulsive potential walls are
created by two blue-detuned laser beams which results in a trapping volume of adjustable size around the centre of the
harmonic trap. The longitudinal harmonic potential is in good approximation constant over the employed sizes and,
thus, effectively leads to a 1D box-like confinement for the atomic cloud. For the measurements of the thermalized
state shown in Fig. 4 we utilize a box size of ∼ 100µm.
Initial conditions: For the detailed observation of the emergence of coherence we prepare the atoms in the state

|F,m〉 = |1, 0〉, the so-called polar state. To allow for thermalization for shorter times, we initially prepare a coherent
spin state with maximal length. For this we apply a π/2-rf rotation with the atoms initially prepared in the state
|F,m〉 = |1,−1〉. As a reference noise level (grey diamonds in Fig. 4 and Ext. Data Fig. 3) for the thermalized structure
factor, we prepare this coherent spin state by performing the rotation after holding the atoms in |1,−1〉 for 30 s.
Readout: After the evolution time t we image the atomic densities using spatially resolved absorption imaging.

Employing a Stern-Gerlach magnetic field gradient followed by a short time-of-flight (TOF; 2 ms), we are able to
image the atomic densities of all 8 magnetic sublevels of the F = 1 and F = 2 hyperfine manifolds of the electronic
ground state. Additional coherent microwave and radio-frequency manipulations before the imaging allow us to map
the two spin projections, Fx and Fy, of the transversal spin [33] onto measureable densities. With this we infer the

complex-valued transversal spin F⊥(y) = Fx(y) + iFy(y) = |F⊥|(y)e−iφL(y) as a function of position y. The position
y is the centre of a spatial bin which contains ∼ 500 atoms and has a spatial extension of ∼ 1.2µm along the cloud
(we bin three adjacent camera pixels where each pixel corresponds to 420 nm in the atom plane).

For the measurement of the density fluctuations |Ntot|2(k) we take in-situ images without spin resolution (without
Stern-Gerlach separation). This is important since any free propagation will transform phase fluctuation to density
fluctuations leading to strongly enhanced structure factor [53]. It is important to note that the observed increased
fluctuations compared to the spin coherent state by a factor of two can be a result of only one particle per k-mode. For
the spin observables and the single densities we checked that the enhanced fluctuations due to the TOF are negligible.

B. Local perturbation

To access the superfluid properties of the spin and density degrees of freedom we use a localized perturbation (r.m.s
width ∼ 5µm) that we drag through the thermalized system. Specifically we use a blue detuned, steerable laser beam
(760 nm) which position is controlled by an acusto-optical deflector. Using a linear frequency ramp we implement a
sweep over the cloud with fixed velocity which we change over two orders of magnitude. The density is probed after
35 s and the spin after 20 s evolution time. The ramp duration for the lowest speed is ≈ 18 s.
Local perturbation of the Larmor phase: We use a combination of global and local rf rotations (see [54] for details

on local rf rotations). A first global π/2-rf rotation around the x-axis maps the z-axis onto the y-axis. Using a
local rotation with a well-defined phase with respect to the global rotation we perform a rotation with variable angle
around the y-axis. Because of the performed mapping this effectively leads to rotation around the z-axis in the original
coordinate system. At time ∆τ = 210µs after the first global rf pulse we apply a global rf π-pulse followed by a second
global rf π/2-pulse after another time delay of ∆τ , where all pulses rotate around the same axis. This constitutes a
spin echo sequence which additionally executes a full 2π spin rotation which ensures that the global rotation pulses
do not excite the system. The last π/2-pulse maps the local rotation axis back to the z-axis in the original system.
The perturbation has an approximate Gaussian shape with a r. m. s. width of ∼ 5µm according to the shape of the
used laser beam.

Local perturbation of the total density: We reduce the total density locally by ≈ 5% by shining a blue detuned
laser beam (760 nm) onto the centre of the cloud. We adiabatically ramp up the potential in 100 ms such that we
get no further excitations in the density; after the ramp the potential is instantaneously switched off to generate the
wavepacket.

Local perturbation of the transversal spin length |F⊥|: We induce a local density reduction by applying the same
blue-detuned laser beam. During the evolution time of 30 s we let the system thermalize subject to the local density
reduction. This effectively leads to a spatially dependent mean-field ground state spin length. We linearly ramp down
the potential over 50 ms; this implements an adiabatic ramp for the total density and a rapid switch off for the spin.
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For experimentally accessing the gap we excite the k = 0 mode of the spin length by changing the phase of the
m = 0 component (spinor phase) globally. For this we use two microwave π-pulses between |1, 0〉 and |2, 0〉, where
the second pulse is phase shifted by ∆φ. We record the subsequent oscillations of the m = 0 population and fit a
sinusoidal function to extract the frequency. The theoretical prediction for the gap ∆, deduced from the oscillation,
and the m = 0 ground state population n0 in the easy-plane ferromagnetic phase is [8]:

∆ =
√

4n2c21 − q2 and n0 =
1

2
− q

4nc1
. (1)

Assuming n+1 = n−1 these formulae hold also true for 0 > q > 2nc1 (dashed lines in Ext. Data Fig. 1).

C. Experimental coherence functions and structure factor

In every experimental realization (i) we measure atomic densities from which we infer single shot realizations O(i)

of different observables Ô. The quantum expectation value is approximated by averaging over many realizations as

O = 〈Ô〉 =
1

NS

NS∑
i=1

O(i) , (2)

where NS is the number of realizations.
The coherence functions of the transversal spin are explicitly given by:

g1(x, y) =
〈F̂ †⊥(x)F̂⊥(y)〉√

〈F̂ †⊥(x)F̂⊥(x)〉 〈F̂ †⊥(y)F̂⊥(y)〉
(3)

and

g2(x, y) =
〈F̂ †⊥(x)F̂ †⊥(y)F̂⊥(x)F̂⊥(y)〉
〈F̂ †⊥(x)F̂⊥(x)〉 〈F̂ †⊥(y)F̂⊥(y)〉

. (4)

For the inferred single shot results of the transversal spin F⊥(x) the † is treated as the complex conjugate.
The structure factors as a function of the spatial momentum k are defined as

〈|Ô(k)|2〉 = |O(k)|2 =
1

Ntot

1

NS

NS∑
i=1

|DFTx→k
(
O(i)(x)−O(x)

)
|2 , (5)

where DFTx→k is the discrete Fourier transform, k = 1/λ the spatial momentum. All structure factors are normalized
by the mean total atom number Ntot to obtain an atom number independent measure for the fluctuations and allow
comparison between theory and experiment; for the total density structure factor a value of one corresponds to the
atomic shot noise level.

D. Bogoliubov transformations in the easy-plane ferromagnetic phase

We explicitely derive the Bogoliubov transformations in the easy-plane ferromagnetic phase (0 < q/(n|c1|) < 2).
Here we set ~ = 1.

In terms of total density and spin operators

N̂(x) =

1∑
m=−1

N̂m(x) =

1∑
m=−1

ψ̂†m(x)ψ̂m(x), F̂ν(x) =

1∑
m,m′=−1

ψ̂†m(x)(fν)mm′ ψ̂m′(x), (6)

with the spin-1 matrices

fx =
1√
2

0 1 0
1 0 1
0 1 0

 , fy =
i√
2

0 −1 0
1 0 −1
0 1 0

 , fz =

1 0 0
0 0 0
0 0 −1

 , (7)
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the system Hamiltonian reads

Ĥ =

∫
d3x

[ 1∑
m=−1

ψ̂†m(x)

(
− ∇

2

2M
+ qm2

)
ψ̂m(x) +

c0
2

: N̂2(x) : +
c1
2

∑
ν=x,y,z

: F̂ 2
ν (x) :

]
. (8)

With momentum-space creation and annihilation operators

â†k,m =
1√
V

∫
d3x ψ̂†m(x)eikx, âk,m =

1√
V

∫
d3x ψ̂m(x)e−ikx, (9)

the Hamiltonian in the number-conserving Bogoliubov approximation becomes [34]

ĤB =E0 +
∑

k6=0,m

(εk + qm2 − µ)n̂k,m

+
N

V

∑
j,j′,m,m′

∑
k6=0

(Γjj′,m′m + Γjm,m′j′)ζj′ζ
∗
m′ â
†
k,j âk,m

+
N

2V

∑
j,j′,m,m′

∑
k6=0

Γjj′,mm′
(
ζ∗j ζ
∗
mâ−k,m′ âk,j′ + ζm′ζj′ â

†
k,j â

†
−k,m

)
. (10)

with εk = k2/(2M), atom mass M , total atom number N and n̂k,m = â†k,mâk,m. Theoretically, momentum |k|
corresponds to wavelength λ = 2π/|k|. The spinor (ζm) specifies the normalized condensate configuration and we set

âk=0,m =
√
Nζm. Γjj′,mm′ denotes density and spin interactions,

Γjj′,mm′ ≡ c0δjj′δmm′ + c1
∑

ν=x,y,z

fνjj′f
ν
mm′ . (11)

The ground state energy is given by

E0 ≡ N
[∑

m

qm2|ζm|2 +
N − 1

2V

∑
j,j′,m,m′

Γjj′,mm′ζ
∗
j ζ
∗
mζm′ζj′

]
, (12)

the chemical potential reads

µ ≡
∑
m

qm2|ζm|2 +
2N − 1

2V

∑
j,j′,m,m′

Γjj′,mm′ζ
∗
j ζ
∗
mζm′ζj′ . (13)

We set sin θ =
√

1/2− q/(4n|c1|), such that the mean-field ground state reads ζ = (sin θ/
√

2, cos θ, sin θ/
√

2) [8].
The initial orthogonal transformation, given by âk,d

âk,θ
âk,fz

 =

sin θ/
√

2 cos θ sin θ/
√

2

cos θ/
√

2 − sin θ cos θ/
√

2

1/
√

2 0 −1/
√

2

 âk,1
âk,0
âk,−1

 ≡ A(θ)

 âk,1
âk,0
âk,−1

 , (14)

leads to a description of the system in terms of longitudinal and transversal spin fluctuations.
The longitudinal (z-) spin fluctuations can be diagonalized using the Bogoliubov transformation [8]

b̂k,fz = uk,fz âk,fz + vk,fz â
†
−k,fz , (15)

where

uk,fz ≡

√
εk + q/2 + Ek,fz

2Ek,fz

, vk,fz ≡

√
εk + q/2− Ek,fz

2Ek,fz

, (16)

with the dispersion

Ek,fz =
√
εk(εk + q). (17)
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To diagonalize transversal spin fluctuations we follow the diagonalization procedure outlined in [34]. We obtain
mode energies ±Ek,+ and ±Ek,− as in [34], explicitely given by

Ek,± =
√
ε2k + n(c0 − c1)εk + 2n2c1(c1 − cq)± E1(k), (18)

with

E1(k) =
√

[n2(c0 + 3c1)2 + 4n2cq(c0 + 2c1)]ε2k − 4n3c1(c0 + 3c1)(c1 − cq)εk + [2n2c1(c1 − cq)]2. (19)

Defining

h00 ≡ n(c0 + c1 − c1), h01 ≡ q sin(2θ)/2, h11 ≡ −2nc1 + ncq, h211 ≡ ncq (20)

and

uk,±,1 = −
(
h01
[
± 2E1 + 4ε2k + 2εk(2Ek,± + h00 + 2h11 − h211)

+ (h11 − h211)(2Ek,± + h11 + h211)
])/(

4εkh
2
01 + 2εk(h11 − h00)h211

+ h211(±2E1 + h211 − h2211)
)
, (21)

uk,±,2 =
(
4ε2k(h00 − h11)− 2(Ek,± + h11)(±2E1 + h211 − h2211)

− 2εk(±2E1 + 4h201 − 2Ek,±(h00 − h11)− 2h00h11 + 3h211

− h2211)
)/(

8εkh
2
01 + 4εk(h11 − h00)h211 + 2h211(±2E1 + h211 − h2211)

)
, (22)

vk,±,1 =
h01
[
± 2E1 + 2εk(h00 + h211) + (h11 − h211)(2Ek,± + h11 + h211)

]
4εkh201 + 2εk(h11 − h00)h211 + h211(±2E1 + h211 − h2211)

, (23)

vk,±,2 = 1, (24)

together with normalization factors

Nk,± ≡
√
u2k,±,1 + u2k,±,2 − v2k,±,1 − v2k,±,2 (25)

we find Bogoliubov transformation matrices (in the parametrization of [8])

Uk,dθ =

(
uk,+,1/Nk,+ uk,+,2/Nk,+

uk,−,1/Nk,− uk,−,2/Nk,−

)
, Vk,dθ =

(
−vk,+,1/Nk,+ −vk,+,2/Nk,+

−vk,−,1/Nk,− −vk,−,2/Nk,−

)
. (26)

These fulfil the identities

Uk,dθU
†
k,dθ − Vk,dθV

†
k,dθ = 1, U∗k,dθV

†
k,dθ − V

∗
k,dθU

†
k,dθ = 0, (27)

as required for the transformations to preserve canonical commutation relations. This requirement is not fulfilled for
the transformations given in [8].

The complete transformation matrices diagonalizing the Bogoliubov Hamiltonian (10) read

Uk =

(
Uk,dθ 0

0 uk,fz

)
A(θ), Vk =

(
Vk,dθ 0

0 vk,fz

)
A(θ). (28)

E. Thermal structure factors from Bogoliubov theory

We provide analytical computations of thermal structure factors in the spinor Bose gas from Bogoliubov theory.
We are interested in correlators of the form

〈Ĉ†(x)Ĉ(y)〉β,s (29)

for a composite field Ĉ(x) given by

Ĉ(x) =

+1∑
m,m′=−1

ψ̂†m(x)cmm′ ψ̂m′(x) (30)
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with cmm′ a 3×3 matrix corresponding to the type of spectrum under investigation; c = fx+ify leads to the transversal
magnetization spectrum, c = fz describes the spectrum of magnetization in z-direction, c = diag(1, 1, 1) describes the
total density spectrum. In Eq. (29) 〈·〉β,s indicates the thermal expectation value at inverse temperature β = 1/(kBT )
with symmetrically (Weyl-) ordered arguments. We compare with symmetrically ordered predictions since expectation
values of experimental observables are inferred from realizations of observables O(i) given by polynomials of complex
numbers (cf. [10] for a similar normal-ordered computation). Fourier-transforming Eq. (29) with respect to the
relative coordinate x− y, we obtain the structure factor

〈Ĉ†(k)Ĉ(k)〉β,s =

∫
d(x− y) 〈Ĉ†(x)Ĉ(y)〉β,s e−ik(x−y) (31)

=
1

V

∑
m,m′,n,n′

c†mm′cnn′
∑
p,q

〈â†p+k,mâp,m′ â
†
q,nâq+k,n′〉β,s. (32)

To total density structure factors a photon shot noise level of 0.6 after normalization is added.
In the Bogoliubov approximation Eq. (32) simplifies as follows. We replace zero modes of creation and annihilation

operators by numbers, â0,m =
√
Ncondζm, Ncond the total number of condensate atoms. Contributions from fluctuating

modes âk6=0,m are computed via Wick’s theorem. Symmetrically ordered propagators are defined as

G11
mm′(k) ≡ 〈âk,mâ†k,m′〉β,s, G22

mm′(k) ≡ 〈â†k,mâk,m′〉β,s, (33)

G12
mm′(k) ≡ 〈âk,mâ−k,m′〉β,s, G21

mm′(k) ≡ 〈â†k,mâ
†
−k,m′〉β,s. (34)

The first two of these we refer to as normal propagators, the second two as anomalous propagators. Any normal

propagator evaluated for non-diagonal momenta such as 〈â†k,mâk′,m′〉β,s for k′ 6= k and any anomalous propagator

evaluated for non-anti-diagonal momenta such as 〈âk,mâ−k′,m′〉β,s for k′ 6= k equates to zero. We then find for k = 0,

〈Ĉ†(0)Ĉ(0)〉β,s =
Ncond(Ncond − 1)

V

∑
m,m′,n,n′

c†mm′cnn′ζ
∗
mζ
∗
nζm′ζn′ +O(Ncond), (35)

and for non-zero modes k 6= 0,

〈Ĉ†(k)Ĉ(k)〉β,s =
Ncond

V

∑
m,m′,n,n′

c†mm′cnn′

[
ζ∗mζ

∗
nG

12
m′n′(k) + ζ∗mζn′G

11
m′n(k)

+ ζ∗nζm′G
22
mn′(k) + ζm′ζn′G

21
mn(k)

]
+O(1), (36)

where we have used that the propagators Gabmm′(k) only depend on the absolute value of the momentum, |k|. Exper-

imental structure factors, normalized analogously, are compared to 〈Ĉ†(k)Ĉ(k)〉β,s/ncond, ncond the total condensate
atom density. The photon shot noise of the absorption imaging is determined to be 0.6 after normalization and is
added on the thermal prediction of the total density fluctuations.

In the easy-plane ferromagnetic phase thermal propagators Gabmm′(k 6= 0) can be computed from the Bogoliubov
transformations derived in Methods Sec. D. Bogoliubov quasiparticle excitations fz and ± are expressed in terms of
fundamental magnetic sublevel excitations as(

b̂k,j
b̂†−k,j

)
=

+1∑
m=−1

(
Uk,jm Vk,jm
V ∗−k,jm U∗−k,jm

)(
âk,m
â†−k,m

)
, (37)

for j ∈ {fz,±}. Inverting this, we obtain [34](
âk,m
â†−k,m

)
=

∑
j∈{fz,±}

(
U†k,mj −V Tk,mj
−V †−k,mj UT−k,mj

)(
b̂k,j
b̂†−k,j

)
. (38)

The propagators can now efficiently be computed from the tensor product(
G12
mm′(k) G11

mm′(k)
G22
mm′(−k) G21

mm′(−k)

)
= 〈
(
âk,m
â†−k,m

)
⊗
(
â−k,m′ , â

†
k,m′

)
〉β,s (39)

=
∑

j,j′∈{fz,±}

(
U†k,mj −V Tk,mj
−V †−k,mj UT−k,mj

)(
〈b̂k,j b̂−k,j′〉β,s 〈b̂k,j b̂†k,j′〉β,s
〈b̂†−k,j b̂−k,j′〉β,s 〈b̂

†
−k,j b̂

†
k,j′〉β,s

)(
U∗−k,j′m′ −V ∗−k,j′m′
−Vk,j′m′ Uk,j′m′

)
. (40)
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The Bogoliubov quasiparticle modes b̂k,j are occupied thermally,

〈b̂†k,j b̂k,j′〉β = δjj′nβ(Ek,j), 〈b̂k,j b̂†k,j′〉β = δjj′(nβ(Ek,j) + 1), (41)

with the Bose-Einstein distribution nβ(Ek,j) ≡ 1/(exp(βEk,j) − 1). Anomalous propagators of b̂k,j-modes are zero.
Insertion of (41) into (40) and using that Uk,mj and Vk,mj only depend on |k| leads to

G11
mm′(k) =

∑
j∈{fz,±}

[
U†k,mj

(
nβ(Ek,j) +

1

2

)
Uk,jm′ + V Tk,mj

(
nβ(Ek,j) +

1

2

)
V ∗k,jm′

]
, (42)

G22
mm′(k) =

∑
j∈{fz,±}

[
V †k,mj

(
nβ(Ek,j) +

1

2

)
Vk,jm′ + UTk,mj

(
nβ(Ek,j) +

1

2

)
U∗k,jm′

]
, (43)

G12
mm′(k) = −

∑
j∈{fz,±}

[
U†k,mj

(
nβ(Ek,j) +

1

2

)
Vk,jm′ + V Tk,mj

(
nβ(Ek,j) +

1

2

)
U∗k,jm′

]
, (44)

G21
mm′(k) = −

∑
j∈{fz,±}

[
V †k,mj

(
nβ(Ek,j) +

1

2

)
Uk,jm′ + UTk,mj

(
nβ(Ek,j) +

1

2

)
V ∗k,jm′

]
. (45)

With these expressions thermal structure factors can be readily computed from Eq. (36).

F. Fitting thermal Bogoliubov theory structure factors

Using a least-squares fitting procedure and Gibbs sampling, systematic as well as statistical uncertainties on the
optimal set of parameters are estimated. Given experimental structure factors SĈ,exp(k) = 〈Ĉ†(k)Ĉ(k)〉 with Ĉ ∈
S := {N̂+1, N̂0, N̂−1, F̂z, F̂⊥}, we determine an optimal set of parameters T, q, nc1 by minimizing

χ2(T, q, nc1; kmax) =
∑
Ĉ∈S

kmax∑
k

(SĈ,exp(k)− SĈ,Bog(k;T, q, nc1))2

∆SĈ,exp(k)2
, (46)

with SĈ,Bog(k;T, q, nc1) = 〈Ĉ†(k)Ĉ(k)〉1/(kBT ),s the Bogoliubov theory structure factor computed for parameters

T, q, nc1, and ∆SĈ,exp(k) the standard deviation of SĈ,exp(k) computed from experimental realizations. Technical
correlations of the absorption imaging are described by real-space signals convoluted with a Gaussian of r. m. s. width
w = 5.0µm, taken into account by the multiplication of momentum-space structure factors with a Gaussian of width
2π/w [55]. Throughout the fitting procedure we set c0/c1 ' −216 in accordance with [3]. In the definition of χ2 we
did not include the structure factor of the total density.

We define a distribution of parameters for specific kmax,

W (T, q, nc1; kmax) ∼ exp
(
−χ2(T, q, nc1; kmax)/2

)
. (47)

We exploit Gibbs sampling to draw i = 1, . . . , 100 approximately i.i.d. samples (T (i)(kmax), q(i)(kmax), nc
(i)
1 (kmax))

from W (T, q, nc1; kmax), which only requires corresponding conditional distributions normalized individually. For
each kmax we compute their mean (T (kmax), q(kmax), nc1(kmax)). We repeat this for 5 values of kmax evenly spaced
between 0.1 · 2π/µm and 0.2 · 2π/µm. Collecting all 5 · 100 samples in a single array, we take the mean values
T , q, nc1 of all samples as final parameter estimates and their distances to the boundaries of 68% confidence intervals
as corresponding error estimates. Errors include systematic fit uncertainties. We obtain the final fit parameters

T = (57.4± 2.9) Hz, q = (0.30± 0.08) Hz, nc1 = (−1.17± 0.25) Hz, (48)

such that nc0 = (252± 54) Hz and q/(nc1) = (−0.26± 0.09).

G. Drawing Bogoliubov theory samples

Bogoliubov theory being quadratic in fluctuating field creation and annihilation operators, it is fully described by
zero modes and a suitable covariance matrix of fluctuations. The latter can be constructed from the propagators
Gijmm′(k).
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Given a one-dimensional real-space lattice {−N , . . . ,N} · a with lattice spacing a = L/(2N ), the corresponding
momentum-space lattice reads {−N , . . . ,N} · π/(Na). With ∆z = z1 − z2 ∈ {−2N , . . . , 2N} for zi ∈ {−N , . . . ,N}
we compute real-space propagators via

G̃ijmm′(∆z) =
1

L

N∑
p=−N

Gijmm′(p) exp

(
2πip∆z

2N + 1

)
. (49)

We assemble these into magnetic sublevel-specific covariance matrices,

Cov
mm′ = 〈



ψ̂m(−N)

.

.

.

ψ̂m(N)

ψ̂
†
m(−N)

.

.

.

ψ̂
†
m(N)



(
ψ̂
m′ (−N), . . . , ψ̂

m′ (N), ψ̂
†
m′

(−N), . . . , ψ̂
†
m′

(N)
)
〉β,s (50)

=



G̃12
mm′ (0) G̃12

mm′ (−1) . . . G̃12
mm′ (−2N) G̃11

mm′ (0) G̃11
mm′ (−1) . . . G̃11

mm′ (−2N)

G̃12
mm′ (1) G̃12

mm′ (0) . . . G̃12
mm′ (−2N + 1) G̃11

mm′ (1) G̃11
mm′ (0) . . . G̃11

mm′ (−2N + 1)

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

G̃12
mm′ (2N) G̃12

mm′ (2N − 1) . . . G̃12
mm′ (0) G̃11

mm′ (2N) G̃11
mm′ (2N − 1) . . . G̃11

mm′ (0)
G̃22
mm′ (0) G̃22

mm′ (−1) . . . G̃22
mm′ (−2N) G̃21

mm′ (0) G̃21
mm′ (−1) . . . G̃21

mm′ (−2N)

G̃22
mm′ (1) G̃22

mm′ (0) . . . G̃22
mm′ (−2N + 1) G̃21

mm′ (1) G̃21
mm′ (0) . . . G̃21

mm′ (−2N + 1)

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

G̃22
mm′ (2N) G̃22

mm′ (2N − 1) . . . G̃22
mm′ (0) G̃21

mm′ (2N) G̃21
mm′ (2N − 1) . . . G̃21

mm′ (0)



, (51)

having exploited spatial homogeneity. We decompose complex field operators into real components, ψ̂(x) = 1√
2
(ψ̂1(x)+

iψ̂2(x)), translating into the unitary transformation

ψ̂m,1(−N )
...

ψ̂m,1(N )

ψ̂m,2(−N )
...

ψ̂m,2(N )


= A



ψ̂m(−N )
...

ψ̂m(N )

ψ̂†m(−N )
...

ψ̂†m(N )


, A =

1√
2

(
I I
−iI iI

)
, (52)

with I the (2N + 1)× (2N + 1)-dimensional identity matrix. We define the final covariance matrix of the theory as

Cov =

ACov+1,+1A
T ACov+1,0A

T ACov+1,−1A
T

ACov0,+1A
T ACov0,0A

T ACov0,−1A
T

ACov−1,+1A
T ACov−1,0A

T ACov−1,−1A
T

 . (53)

Finally, we sample i = 1, . . . , Nsample field realizations

ψ(i) =

ψ
(i)
+1

ψ
(i)
0

ψ
(i)
−1

 , ψ(i)
m =

(
ψ
(i)
m,1(−N ), · · · , ψ(i)

m,1(N ), ψ
(i)
m,2(−N ), · · · , ψ(i)

m,2(N )
)T

, (54)

from the multivariate Gaussian distribution with zero mean vector and covariance matrix Cov. This corresponds
to samples from the Wigner distribution of the symmetrically ordered Bogoliubov theory of fluctuating modes at
inverse temperature β. We sample fields in position space instead of momentum space, since in momentum space,
having decomposed the operators âk,m into âk,m = (âk,m,1 + iâk,m,2)/

√
2, the components âk,m,j need to satisfy

â†k,m,j = â−k,m,j , such that samples of individual momentum modes cannot be drawn independently. From the

fluctuating realizations ψ(i) we can compute realizations of the individual spin sublevel fields in real space,

ψ(i)
m (x) =

1√
2

[ψ
(i)
m,1(x) + iψ

(i)
m,2(x)] +

√
ncondζm, (55)

with ncond the condensate density. We explicitely checked that for increasing sample numbers structure factors

computed from samples ψ
(i)
m (x) converge towards their expectations Gijmm′(k).
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The composite operator histograms displayed in Ext. Data Fig. 2 are computed from composite profiles of individual

realizations given by
∑+1
m,m′=−1(ψ

(i)
m (x))∗cmm′ψ

(i)
m′(x)/

√
ncond with matrices c as denoted in Methods E.



14
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Extended Data Figure 1. Measurement of the gap by observation of temporal oscillations of the k = 0 mode. a,
We measure the gap of the quadratic spin mode by a global rotation of the spinor phase. We record the resulting oscillations
of the fractional m = 0 population as a function of evolution time after the rotation. We fit a sinusoidal function (solid line)
to infer the frequency. b, Extracted oscillation frequency (diamonds) and mean value of the m = 0 population (circles). We
compare to theoretical expectations for the easy-plane phase (solid lines; see Methods eq. (1)). The dashed line extrapolates
the expectations to q < 0 under the assumption of equal populations of m = ±1. For the theory curves we use nc1 = 1.3 Hz.
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Extended Data Figure 2. Histograms of local observables in the thermalized state. Histograms obtained from
evaluating the local observations of the experimental data presented in Fig. 4 (green bars). Here, each local observable is
normalized to the square-root of the local mean of the total atom number. On top we display theoretical estimates from 1000
samples generated according to thermal Bogoliubov theory with parameters as in Fig. 4 (grey line; grey band indicates 68%
confidence interval including statistical and systematic uncertainties). The mean value of each histogram is subtracted. For
details on the sampling procedure see Methods.
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Extended Data Figure 3. Structure factor close to q = 0. We show experimental power spectra of different spin and
density degrees of freedom close to q = 0 (green diamonds). The grey diamonds represent the fluctuations of a coherent
spin state with comparable atom numbers. We compare to thermal Bogoliubov theory predictions for the same parameters
as displayed in Fig. 4 but with q = 0 (green line; grey band indicates 68% confidence interval of statistical and systematic
uncertainties). Experimentally, we find that for momenta in the range of 0.02µm−1 to 0.1µm−1 the fluctuations are higher
than for the thermal predictions for all observables (except the transversal spin F⊥). The length scale of these fluctuations is in
accordance with observable localized long-lived non-linear excitations which are not present in the thermalized data of Fig. 4.
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