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Abstract:

The wave description of particles is a cornerstone of quantum physics and lies in the focus
of multiple modern experiments. The present work demonstrates the working principle of a
Talbot-Lau interferometer with a wide range of particles, namely hydrogen, helium, argon,
krypton, and xenon. Such an interferometer consists of three gratings and is herein extensively
studied in respect of the most important factors which affect the quality of the interference
pattern. Special focus is given to the gratings’ alignment requirements and to the intra-grating
interactions which occur between the particles and the material gratings. The experimental
design which has been realised in the scope of this work is discussed in detail and tested with
numerous characterisation measurements. These act as a preliminary stage to the working
interferometer and provide various information, such as about the composition of the particle
beam, the uniformity of the grating pitches, or the detection precision and data acquisition of
the fringe pattern. The constructed interferometer successfully operates with particles whose
de Broglie wavelengths span more than two orders of magnitude, i.e. λdB ∈ [0.02 pm, 2.2 pm],
and thus enables the observation of the transition to the classical equivalent of the Talbot-Lau
interferometer, the moiré deflectometer. The shape of the interference pattern gives an insight
into the intra-grating interactions, which are modelled by means of implanted charges inside
the material gratings. Furthermore, a novel idea of using the Talbot-Lau interferometer as a
spectrometer is demonstrated. To explore the wave nature also of ions, the work concludes
with a discussion on the necessary conditions for, and the experimental implementation of a
functioning Talbot-Lau interferometer with protons.
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Zusammenfassung:

Der Wellencharakter von Teilchen ist ein Eckpfeiler der Quantenmechanik und steht im Mittel-
punkt einer Vielzahl von zeitgenössischen Experimenten. Die vorliegende Arbeit demonstriert
die Funktionsweise eines Talbot-Lau-Interferometers mit einer Vielzahl unterschiedlicher
Atome und zwar mit Wasserstoff, Helium, Argon, Krypton und Xenon. Dieses Interfero-
meter besteht aus drei Gittern und wird eingehend untersucht hinsichtlich der wichtigsten
Umstände, welche die Qualität des Interferenzmusters beeinflussen. Besonderes Augenmerk
liegt hierbei auf den Ausrichtungsanforderungen der Gitter und den auftretenden Wechsel-
wirkungen zwischen den Atomen und den Gitterstäben. Der experimentelle Aufbau, der
im Rahmen dieser Arbeit geleistet wurde, wird ausführlich diskutiert und mit zahlreichen
Messungen charakterisiert. Diese Messungen, die einen wichtigen Schritt für das eigentliche
Interferometer darstellen, liefern verschiedene Informationen, wie zum Beispiel die Zusam-
mensetzung des Teilchenstrahls, die Einheitlichkeit der einzelnen Gitterperioden und die
Auflösung der Interferenz-Streifenmuster. Das konstruierte Interferometer arbeitet erfolgreich
mit Teilchen, deren de-Broglie-Wellenlängen mehr als zwei Größenordnungen umfassen, d.h.
λdB ∈ [0.02 pm, 2.2 pm], und ermöglicht so die Beobachtung des Übergangs zum klassischen
Äquivalent des Talbot-Lau-Interferometers, dem Moiré-Deflektometer. Die genaue Form des
Interferenzmusters gibt einen Einblick in auftretende Wechselwirkungen innerhalb der Gitter,
die durch gitterinterne Ladungen erklärt werden. Darüber hinaus wird gezeigt, wie das In-
terferometer als Spektrometer eingesetzt werden kann. Um auch die Wellennatur von Ionen
zu untersuchen, werden die Voraussetzungen und deren experimentelle Umsetzung für ein
funktionierendes Talbot-Lau-Interferometer mit Protonen diskutiert.
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1. Introduction

The wave-particle duality of light and matter is a cornerstone of modern physics. Louis de
Broglie, a French physicist of the early 20th century, was puzzled by the fact that, on the one
hand, for light two contradictory theories – that of waves and that of corpuscles – seem to
hold true, and, on the other hand electrons within an atom can only perform distinct motions
among the infinity of classical possible motions [1]. De Broglie thus postulated in 1923 in his
PhD thesis [2]: for both matter and radiations, light in particular, it is necessary to introduce
the corpuscle concept and the wave concept at the same time [1]. The fundamental relation
of his theory is the association of a characteristic wavelength λdB to particles, later called
the de Broglie wavelength, and defined as:

λdB =
h

p
, (1.1)

where p is the momentum of the particle and h the Planck constant. This proposed connection
of wave behaviour with the idea of a particle – the wave-particle duality – has given rise to
a great set of new experiments, whose modern incarnations entertain physicists up to this
day. Yet, the concepts of particles and waves were already present long ago. Hence, to have
a better understanding of the time period during which de Broglie came up with his idea,
the following section gives a brief overview of the history of wave-particle duality to date.
Thereafter, the content of this work is explained as a part of the lasting story of wave-particle
duality.

1.1. Wave-Particle Duality: A Historical Review

The concept of atoms and particles as basic building blocks of the world around us goes back
already to the philosophers of the antiquity. At this time, a corpuscular understanding of
matter as well as of light can be found formulated for example by Democritus (460-370 BC)
or later mentioned by Lucretius (98-55 BC) and Seneca (4 BC - 64 AD) [3]. On the other hand,
the conceptual idea of the medieval English bishop Grosseteste (1168-1253) of comparing
light propagation with the vibration and motion of sound was maybe one of the first attempts
at a wave theory of light [4].
However, a comprehensive theoretical description of both ideas is primarily found 500 years
later, with Christiaan Huygens (1629-1695) and his contemporary Isaac Newton (1643-1727).
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1. Introduction

Newton adapted his material point dynamics for the behaviour of light and hence developed
the corpuscular theory [5], while Huygens defended the idea of an underlying wave nature,
whereby each point on the wavefront is a source of elementary spherical waves [6].
One hundred years later in 1803, this question seemed to be settled when Thomas Young
(1773-1829) performed his famous double-slit experiment and hence discovered interference
phenomena. Augustin-Jean Fresnel (1788-1827) interpreted interference with the help of
the Huygens principle and hence disproved the corpuscular theory of light. James Clerk
Maxwell (1831-1879) and Heinrich Hertz (1857-1894) further developed the wave concept of
light.
At the same time, the physics of matter was pushed forward, suggesting an atomic, i.e. cor-
puscular theory. In this context, the law of multiple proportions discovered by the British
chemist John Dalton (1766 - 1844) or the evolution of the kinetic gas theory, both of which
assume an underlying corpuscular structure, stand out as prime examples of the progress
achieved on this front.
Hence, at the turn of the 20th century two seemingly disjoint theories to explain matter and
light were present. The corpuscular theory following Newtonian mechanics for the physics
of matter on the one hand, and the concept of waves following the ideas of Huygens and
Fresnel for describing optical phenomena on the other. Such two disjoint theories gave rise
to the question about energy exchange between matter and radiation and hence to the
question about black body radiation. Using classical assumptions led to the formulation of
the Rayleigh-Jeans law which states that a black body radiator would tend to the absolute
zero of temperature. This was later referred to as the ultraviolet catastrophe [7] and hence
not consistent with experimental results. Max Planck avoided this problem, positing that
a black body emits radiation only in integer multiples of hν, where ν is the frequency of
light. Planck’s idea that light is emitted in specific amounts of energy, called quanta, gave
rise to the question about a granular structure of light. It needed only five years until Albert
Einstein discovered the photoelectric effect in 1905 and hence verified the existence of such a
corpuscular structure of light thereby reviving Newton’s hypothesis. Nevertheless, it was still
necessary to consider the wave-like behaviour of light so that Einstein was forced to state:
It seems as though we must use sometimes the one theory and sometimes the other, while
at times we may use either [8]; a statement which paraphrases what lies at the core of the
wave-particle duality.
In the field of atomic physics, great progress was achieved by Ernest Rutherford who discov-
ered that an atom consists of a positively charged nucleus surrounded by negative charged
electrons. With such an understanding of the atom, Niels Bohr came up with a new theory of
the atomic structure in 1913. To explain hydrogen’s characteristic spectrum, Bohr postulated
that electrons in an atom are fixed in orbits around the nucleus, with only a small number
of stable orbits determined by the Planck constant h.
Here we have approached the historical point mentioned above, when Louis de Broglie pub-
lished his PhD thesis to resolve the discrete states inside an atom and expanded the wave-
particle duality for the field of matter, introducing the de Broglie wavelength in the process.
It only needed three years until in 1927 that Davisson and Germer [9] prove de Broglie’s
hypothesis by diffracting electrons on a crystal, hence paving the way for numerous matter
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wave experiments. The field of matter waves was extended by Estermann and Stern three
years later to the helium atoms and the hydrogen molecule [10]. In 1936, interference of
neutrons was shown by Halban and Preiswerk [11] and by Mitchell and Powers [12]. With the
development of lasers and the possibility of producing grating structures on the nanometric
scale, the door to large and complex molecules was opened in 1999 by Zeilinger, who showed
interference with the fullerenes C60 and C70 [13, 14]. In the most recent development, Arndt
has been pushing the limit towards the macroscopic world by steadily increasing the mass of
the interfering objects [15–17]. In 2019 he demonstrated interference with molecules beyond
25 kDa, i.e. molecules consisting of more than 2000 atoms [18]. Furthermore, also worth
mentioning are the first experiments in the field of antimatter, with positron interferometry
achieved in 2019 [19].
Besides showing the wave nature for multiple particles, matter wave interferometry has been
used to perform high precision measurements, for example on the electric polarisability of
sodium [20], or the rotation of the Earth [21]. Furthermore, there are multiple proposals for
matter wave experiments designed to show the Aharonov-Bohm effect [22–24], to look for
deviations from Coulomb’s law [25], to set bounds on the continuous spontaneous localisation
model [26], or to test the superposition principle looking for multipath interference [27].
With such a broad applications of matter wave interferometers, still at least one field is lacking:
ion interferometry. In spite of multiple successful experiments with electrons [28,29] an ion
interferometer has not been successfully realised up to date. A single result with ions in a
German PhD thesis could not be reproduced [30]. The group of Stibor from the University of
Tübingen is currently trying to achieve this goal with a biprism interferometer and a single-tip
source [24,31,32], but has not been successful thus far. Furthermore, multiple proposals exist
requiring an ion interferometer [24,25], as for example with antiprotons [33,34].

1.2. Motivation and Contents

This work intends to take part in the history of the wave-particle duality on two sides. First
it shows the transition between the wave regime to the classical case with a single setup and
second gives an insight to the feasibility of an ion interferometer with material gratings.
The tool of choice is a three-grating setup, which is described as classical moiré defelectometer
and its wave-mechanical counterpart, the Talbot-Lau interferometer, depending on the de
Broglie wavelength of the impinging particles. With such an experiment, is readily available
a tool with a wide acceptance range for different de Broglie wavelengths. Hence, we use this
device to show systematically the working principle of such a Talbot-Lau interferometer and
to demonstrate the transition to the classical regime by using several particle species without
altering the geometry and the characteristics of the measuring device. The result obtained by
such an experiment is then used to estimate limits in which the same device could be used
to achieve ion interferometry.
The work is structured as follows: Chapter 2 provides the necessary theoretical basis reviewing
Talbot-Lau interferometry and the moiré deflectometer, and contains a full mathematical
description of the expected signal. Particular attention is paid to providing an intuitive
access to the key features of such a device, as well as to discussing the limit between the
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classical and the wave regime. With the provided idea of an ideal setup, chapter 3 discusses
perturbation factors due to imperfections in the experimental setup, such as misalignments,
or due to external influences, such as electric and magnetic fields, or vibrations. Chapter 4
discusses in detail the experimental setup from the particle source all the way down to the
detector. This includes measurements to characterise parts of the experiment, which is a step
towards a working Talbot-Lau interferometer. The results of the three-grating setup and
their discussion is presented in chapter 5. Special attention is paid showing the transition
between the wave-regime to the classical description and how the atomic-interference pattern
gives an insight to the feasibility of ion interferometry with the same device.

18



2. From Talbot-Lau Interferometry to
Classical Moiré Deflectometer

The experiment presented in this work envisions to show atomic interference phenomena and
their classical limit with one single setup. For this purpose the interferometer of choice is the
Talbot-Lau interferometer due to its wide acceptance range of different masses and velocities,
and hence for different de Broglie wavelengths. It consists of three equidistant placed gratings
and is a well established tool to show interference phenomena with spatially incoherent sources.
The first grating establishes coherence in the beam, the second lets the beam interfere and
the third resolves the nanoscopic fringe pattern. Such an interferometer has a wide range of
applications, in interference of atomic [35] or heavy molecular beams [14], of electrons [29,36]
or different light sources [37]. In the classical limit this device is traditionally called moiré
deflectometer [34,38,39].
In the following we start with providing a general introduction to Talbot-Lau interferometry
to go into a more detailed description in the subsequent parts. We give sequential derivation
and discussion of the underlying phenomena for each grating separately which provides
an intuitive access to the Talbot-Lau interferometer. This is followed by a fully analytical
description which results in simple expressions for the visibility – the signal – of a given
Talbot-Lau setup realised with different wavelengths. Subsequently the moiré deflectometer
is introduced and finally presented as the short-wave limit of the Talbot-Lau interferometer.
The theoretical framework described in this chapter serves as a basis for the topic studied in
the next chapter, where minor aberrations from the ideal setup are discussed, but also for
the full experiment, to show the transition between the quantum regime and the classical
limit in one system.

2.1. Talbot-Lau Interferometry – an Introduction

The Talbot-Lau interferometer is named after the British scientist William H. F. Talbot and
the German physicist Ernst Lau. In 1836 the former one observed that after a grating was
illuminated with coherent light, self-images of the grating were observed at integer multiples
of a certain distance [40], later called the Talbot length LT . This effect – the Talbot effect –
as part of the near-field or Fresnel regime, was analytically described 45 years later by Lord
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classical limit

diffuse illumination N

14 cm

a

b

plane waves

14 cm

Figure 2.1.: Working principle of a three-grating Talbot-Lau interferometer illuminated
with a spatially incoherent source: (a) Talbot carpet after a plane wave illumination
of the first grating. At integer multiples of the Talbot length LT a grating’s self-image
is observed. (b) A diffuse source smears out the Talbot carpet. The Talbot-Lau inter-
ferometer therefore requires a second grating, displaced at an integer multiple of the
Talbot length. Now the first grating produces coherence in the beam for the second one,
resulting in a Talbot carpet after the second grating similar to the one generated with
a plane wave. The nanoscopic pattern in the plane of the third grating is resolved with
a third grating, which can be either vertically scanned or tilted around the beam axis.
The full graph shows the visibility evolution as a function of the de Broglie wavelength
for a setup with a grating distance L = 14 cm and a grating pitch d = 257 nm, as used
in this work. The visibility peaks are at the points where the wavelength corresponds
to a Talbot length which is an integer fraction of the grating distance L. The visibility
at this point cannot be distinguished from the classical limit λ � λ1T . On top of the
graph the Talbot carpets are shown for different positions in the visibility plot with the
intensity profile after a scanned third grating.
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2.1. Talbot-Lau Interferometry – an Introduction

Rayleigh [41], with the Talbot length LT as

LT =
d2

λ
. (2.1)

Here d is the grating period and λ the wavelength of the used particles. Later the whole
pattern behind a coherently illuminated grating, the so-called Talbot carpet, was extensively
studied, which revealed the fractional Talbot effect, showing images with shorter periods at
rational multiples of the Talbot length [42].
Coherent illumination is crucial in order to observe the Talbot carpet. If the grating is
irradiated with a diffuse source, the whole pattern is smeared out (compare figure 2.1(b)).
Ernst Lau showed in 1948 that adding a second grating at an integer multiple of the Talbot
length affects a Talbot carpet similarly to Talbot-carpet with a plane wave [43] (figure 2.1(b)),
which is the basis for an interferometer with spatially incoherent sources.
The nanoscopic pattern generated behind the second grating is detected with a third grating.
This grating can either scan the pattern while the total flux over the last vertical grating
position is measured, or magnify the pattern with the help of the moiré effect.
With the same three-grating setup, a classical analogue – the moiré deflectometer – can
be obtained if the wavelength λ is sufficiently small. The moiré deflectometer has been
successfully used in the field of atomic optics, as it has a high sensitivity to external forces,
similar to the Talbot-Lau interferometer. This instrument has been successfully employed
to measure the gravitational force on argon atoms [38], or electric and magnetic fields on
antiprotons [44] as well as on different hydrogen ions [45,46].
One can estimate the limit between the wave regime and the classical regime from the grating
equation,

d sin(θn) = nλ . (2.2)

The classical limit is realised if the first-order diffraction angle is so small that the diffracted
beam is displaced by much less than one grating period on the following grating, positioned
distance L beyond the first grating:

L
λ

d
= L sin(θ1) ≈ Lθ1 � d . (2.3)

Therefore, the setup can be described in classical terms for the limit

L� d2

λ
= LT , (2.4)

which is, interestingly, identical to the Talbot length.
The fringe pattern in the classical limit of the Talbot-Lau interferometer cannot be distin-
guished from the pattern in the wave regime if the grating separation is set to a multiple
integer of the Talbot length. A significant deviation from this pattern is observed if the
distance does not match the Talbot length. An appropriate measure for the fringe pattern is
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the visibility ν, which is visually related to the contrast and is defined as

ν =
Imax − Imin

Imax + Imin
, (2.5)

with Imax and Imin the maximal and minimal intensity of the pattern. For practical reasons
in the experiment it is much easier to keep the grating distances L fixed while the de Broglie
wavelength for the beam is tuned. Therefore equation (2.1) can be rewritten as

λnT =
d2

L
n , (2.6)

where λnT is the de Broglie wavelength for which the grating distance fits n-times the Talbot
length. The classical limit is accordingly given by

λ� d2

L
. (2.7)

Figure 2.1 gives the visibility over the wavelength for a fixed grating distance of L = 14 cm
and a grating period of d = 257 nm, as used in this work. Following equation (2.6) the
same visibility is expected for the wavelengths λnT = n · 0.47 pm, since in the classical limit
λ� 0.47 pm. This artefact is clearly visible in the graph, as for the λnT a peak in the visibility
appears. If the wavelength does not match the Talbot length of the given setup, the visibility
is drastically reduced. The small pictures on top of figure 2.1 show the underlying Talbot
carpets for various de Broglie wavelengths in the graph. Here it is made clear how the Talbot
carpet has to fit the grating distance in order for a high contrast signal to appear. The given
fringe pattern after the Talbot carpet gives the intensity after the last grating if it is scanned
vertically. From this fringe the visibility is evaluated.
Having provided a general overview to Talbot-Lau interferometry and its classical limit the
moiré deflectometer, a more detailed description of the underlying theory will be presented in
the subsequent parts. For this purpose we discuss the physics and the underlying phenomena
behind each grating separately to provide an intuitive access to the Talbot-Lau interferometer.

2.2. First Grating: The Talbot Effect – Plane Wave Illumination

The following systematic derivation of the Talbot effect is based on the angular spectrum
method, also known as the plane-wave decomposition. It is one of the basic analytic tools
in this work to compute intensity fields such as the Talbot carpets shown in figure 2.1.
Furthermore, it gives an intuitive understanding of the key features of the Talbot effect. The
hereby presented derivation follows previous work done in this field [34,47,48].
The angular spectrum method is used to propagate wavefields from an initial source plane, in
this work the plane of the first grating (z = 0), to a destination plane (z > 0). It is frequently
used in the field of optics [49–51] as well as for calculating the propagation of acoustic
fields [52]. The method follows four major steps, which are discussed in detail subsequently:

1) Defining the wavefield at the initial plane z = 0 in its complex components.
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2.2. First Grating: The Talbot Effect – Plane Wave Illumination

2) Decomposing the wavefield into its plane wave components, the so called angular spec-
trum, with a Fourier Transform.

3) Propagating each plane wave component in the Fourier domain to the destination plane.
This quantifies the phase shift that each plane wave builds up to the destination plane.

4) Reconstructing the wavefield in the plane of destination with the inverse Fourier trans-
form.

1) Defining the Wavefield: For the purposes of this work, we restrict our analysis to two
dimensions, as depicted in figure 2.2(a) with the beam axes along the z- and y-axis which are
parallel to the grating vector. The gratings are assumed to be infinitely thin pure-transmission
gratings and hence can be expressed as

g(y, d, η) =

{
1 if mod(y, d) < ηd

0 otherwise .
(2.8)

Here the grating transmission function g is 1 if a particle can pass through the grating,
and 0 if it cannot. The parameters d and η denote the grating period and the open fraction,
respectively. The open fraction is defined as the ratio of the slit width b over the period,
i.e. η = b/d. Such an infinitely long grating can be expressed by means of a Fourier series with
the grating vector kd = 2π/d as:

g(y, d, η) =
∞∑

n=−∞
cne

inkdy =
∞∑

n=−∞
cne

ikny , (2.9)

where we have used kn = nkd. For a given rectangularly shaped grating function with an
initial phase φ = 2π∆y/d the Fourier coefficients are

cn =
1

d

d
2∫

− d
2

dy g(y, d, η)e−inkdy (2.10)

=
1

d

ηd
2

+∆y∫
− ηd

2
−∆y

dy e−inkdy (2.11)

=
i

2πn

(
e−inkdy(

ηd
2

+∆y) − e−inkdy(−
ηd
2

+∆y)
)

(2.12)

= η sinc(nη)e−inkdy∆y =: c′ne
−inkdy∆y . (2.13)

The initial wavefield u(y, z = 0+) for a plane wave u(y, z) = ei(kyy+kzz) impinging on such a
grating is the product of the grating function with the plane wave (0− and 0+ denotes for
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2. From Talbot-Lau Interferometry to Classical Moiré Deflectometer

the wavefield directly before and after the grating):

u(y, z = 0+) = u(y, z = 0−) · g(y) =
∞∑

n=−∞
cne

i(ky+kn)y . (2.14)

As can be seen, the field at the grating consists of a series of plane waves with the wave
vectors k′n = ky +kn. With the dispersion relation ~k2 = k2

y +k2
z = (2π/λ)2 the two components

ky and kz are connected by

kz = ±

√(
2π

λ

)2

− k2
y . (2.15)

Furthermore and not surprisingly, the wave vectors k′n = ky+kn = k sin(β)+n(2π/d) = k sin(α)
contain the well-known diffraction angles of the grating equation

d(sin(θn)− sin(β)) = nλ , (2.16)

where β denotes the incident angle of the incoming plane wave.

2) Decomposing the Wavefield: With the initial wavefield defined (equation (2.14)), the
second step of the angular spectrum method is to decompose the wavefield into its plane
wave components by means of a Fourier transform. The Fourier transform for a given scalar
field u(y, z = 0), and hence for the wavefield, is

ũ(ky) = Fy{u(y, z = 0)} =

∞∫
n=−∞

dy u(y, z = 0)e−ikyy . (2.17)

Utilising
∫

dy exp(iky) = δ(y) and the obtained initial wavefield from equation (2.14) the
Fourier transform yields

ũ(ky) =
∞∑

n=−∞
cn

∞∫
n=−∞

dy ei(k
′
ny−kyy) (2.18)

=

∞∑
n=−∞

cnδ(k
′
n − ky) . (2.19)

3) Propagating in the Fourier Domain: The next step propagates each plane wave to the
observational plane z. Over the distance between the initial plane (z = 0) and the destination
plane z each wave accumulates a phase eikzz. Using equation (2.15), the following propagator
can be defined:

Pky(z) := eiz
√

( 2π
λ )

2−k2
y . (2.20)
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2.2. First Grating: The Talbot Effect – Plane Wave Illumination

For the angular spectrum in the observational plane this yields

ũ′(ky) = ũ(ky) · Pky(z) =
∞∑

n=−∞
cnδ(k

′
n − ky)e

iz
√

( 2π
λ )

2−k2
y . (2.21)

4) Reconstructing the Wavefield: The last step reconstructs the wavefield from the Fourier
spectra with the inverse Fourier transform

u(y, z) = F−1
ky
{ũ′(ky)} =

1

2π

∞∫
n=−∞

dky ũ
′(ky)e

ikyy . (2.22)

This gives the final result of the wavefield at the plane z behind a grating illuminated with a
plane wave:

u(y, z) =
1

2π

∞∑
n=−∞

cn

∞∫
n=−∞

dky δ(k
′
n − ky)e

iz
√

( 2π
λ )

2−k2
yeikyy (2.23)

=

∞∑
n=−∞

cne
iz
√

( 2π
λ )

2−k′2n eik
′
ny . (2.24)

Discussing the Result: In order to better understand the Talbot effect, the obtained full
description of the wavefield can be simplified with the paraxial approximation√(

2π

λ

)2

− k′2n ≈
2π

λ
− λ

4π
k′2n ± ... . (2.25)

If a plane wave impinges on the grating perpendicularly, ky = 0 and therefore k′n = kn =
nkd = n(2π/d). The field follows as

u(y, z) ≈ eiz
2π
λ

∞∑
n=−∞

cne
iknye

−iπ n
2

LT
z
, (2.26)

where the Talbot length (equation (2.1)) LT = d2/λ has been inserted. Interestingly, this
result is similar to the wavefield directly behind the grating (equation (2.14)), except for the

additional phase factors eiz
2π
λ and e

−iπ n
2

LT
z
. The first phase factor can be neglected, as only

the intensity I = u∗u is measured in the experiment. If the distance z equals an even integer
of the Talbot length, the second phase factor equals 1, resulting in a pattern identical with
the initial plane

u(y, z = 2mLT ) ≈ u(y, z = 0) for m ∈ N . (2.27)
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Figure 2.2.: The Talbot effect. (a) Behind a grating illuminated with a plane wave,
self-images of the grating are observed. These images appear at integer multiples of the
so-called Talbot length LT = d2/λ. A detector placed at the position of such a self-image
can detect a high-visibility fringe pattern. For even multiple of the Talbot length the
self-images are in phase with the illuminated grating, while for odd multiples the image
is shifted by half a period. The whole pattern behind the grating is called the Talbot
carpet. (b) If the grating is illuminated with a diffuse source the Talbot carpet is smeared
out, making the high contrast self-images disappear.

This is the reason why the observed patterns are called self-images and hence one often finds
an alternative definition of the Talbot length in literature, namely L′T = 2d2/λ. At distances
with an odd integer multiple of the Talbot length (i.e. z = (2m+ 1)LT for m ∈ N) the last
phase factor in equation (2.26) becomes e−iπn. The resulting pattern can then be described
as:

u(y, z = (2m+ 1)LT ) ≈ eiz
2π
λ

∞∑
n=−∞

cne
iknye−iπn (2.28)

= eiz
2π
λ

∞∑
n=−∞

cne
i( 2π
d
ny−πn) (2.29)

= eiz
2π
λ

∞∑
n=−∞

cne
in 2π

d
(y−d/2) (2.30)

= u (y − d/2, z = 0) . (2.31)

This results states that for odd integer multiples of the Talbot length the self-image of the
gratings is shifted by half a period. This artefact can be clearly seen in figure 2.2(a) where
self-images of the grating appear at integer multiples of the Talbot length LT , while for odd
multiples the pattern is shifted by half a period.

Extension to Diffuse Illumination: Throughout this work, all illustrated intensity fields are
computed numerically following the aforementioned pathway of the angular spectrum method.
Therefore the intensity I = u∗u is displayed. If the first grating is illuminated diffusely, as it
is the case for the Talbot-Lau interferometer, the intensity field is simulated by summation
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2.3. Second Grating: Talbot-Lau Interferometry – Diffuse Illumination

of the single-intensity fields resulting from plane waves with different incident angles β:

I =
∑
β

Iβ with Iβ = u∗βuβ and ~k = [sin(β), cos(β)]Tk . (2.32)

As shown in figure 2.2(b) the Talbot carpet is smeared out after the illumination of the first
grating with a diffuse source, making a second grating necessary, as discussed in the following.

2.3. Second Grating: Talbot-Lau Interferometry – Diffuse
Illumination

As we saw in the previous section, coherent illumination is crucial to observe the Talbot
effect. Ernst Lau showed in 1948 [43] why a similar effect can be observed with a diffuse wave
source and a second grating. Figure 2.3 follows his exposition and shows an enlarged view of
the two involved gratings with a period d and a separation L. For his argumentation, Lau
assumed that the slits of the grating are small compared to the pitch so that each slit can be
seen as a point source. In figure 2.3 two rays are highlighted starting at point A at the first
grating and propagating towards two neighbouring slits B and D at the second grating. The
black circle depicts the points of identical phase and cuts the second ray at C. Therefore, the
phase difference between the two rays at the second grating is CD. A tangent to the circle
at point C cuts for small angle α the distance BD in two equidistant parts, from which it
follows that BE = 2CD. It can be seen that for a small angle α the phase difference CD
equals one wavelength λ if

L =
d2

2λ
=
LT
2

, (2.33)

using the relations CD = BE/2, BE/d = sin(α) ≈ α, d/L = tan(α) ≈ α and the known Talbot
length LT = d2/λ. In such a configuration, the second grating is illuminated with a plane
wave which results in a Talbot carpet similar to the case with one grating and a plane wave.

2

1st grating 2nd grating

Figure 2.3.: Schematic representation of neighbouring rays as used by Ernst Lau to show
how the first grating can prepare coherence in a diffuse beam for the second one [43].
The phase difference of two neighbouring rays equals one wavelength λ if the grating
distance L matches half the Talbot length. The second grating therefore appears to be
illuminated by a plane wave. Image adapted from [34].
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Figure 2.4.: Principle of a Talbot-Lau interferometer which requires a second grating.
(a) A diffuse illumination of the first grating can be depicted as a sum of plane waves
with different directions. Only those waves can pass the second grating for which the
self-image of the first grating is in phase with the second one. Therefore the second
grating has to be placed at a multiple integer of the Talbot length LT . In the depicted
case only waves with an incident angle β = nd/L1 (n ∈ Z) can pass the second grating.
All waves passing the second grating have another self-image which is in phase at the
same distance L2 = L1 behind the second grating. (b) The Talbot-Lau pattern for a
diffuse illumination. Behind the first grating no diffraction pattern is observed while
with a second grating the pattern observed on the detector remains. (The intensity of
the pattern behind the second grating has been normalised in intensity with the open
fraction of the grating. This compensates the loss due to transmission through the second
grating.)

Consequently the first grating generates the spatial coherence for the second one and gives
an intuitive explanation of the working principle of a near-field interferometer, such as the
Talbot-Lau interferometer, with uncollimated sources.
A usual practice in many experiments [34,46,47,53] is to set the distance between the gratings
to an integer multiple of the Talbot length (L = nLT with n ∈ Z). For such cases we can
try another intuitive reasoning, to explain why a pattern can be still observed after a second
grating, despite the diffuse illumination. Following the graphic in figure 2.4, different plane
waves with varying incident angle β hit the first grating. Each of them generates a unique
Talbot carpet which, however, experiences a position dependent phase shift of ∆y ≈ zβ,
following equation (2.24). The sum of all the individual Talbot carpets with different phase
results in the already-mentioned disappearance of a diffraction pattern between the first and
second grating. The second grating only lets waves pass for which the self-image is in phase
with the grating. This holds in general for all incident angles which are β ≈ nd/L1 with n ∈ Z.
Furthermore all these waves have another grating’s self-image in phase at the same distance
L2 after the second grating. From this argument it becomes also clear that the open fraction
of the grating plays a crucial role, as with smaller fraction the self-images can be selected
more precisely. The effect of the open fraction will be discussed in detail later in the context
of the classical moiré deflectometer (chapter 2.6.1 and figure 2.6).
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2.4. Third Grating: Moiré Effect – Resolving the Nanoscopic Pattern

Implementation of the Second Grating in the Angular Spectrum Method: To compute
the intensity field after the second grating with the mentioned angular spectrum method one
first has to calculate the intensity field in the plane of the second grating. Afterwards, in
order to obtain the field directly after the grating, this field has to be multiplied with the
grating function of the second grating (compare equation (2.9)). With this field one starts the
angular spectrum method from the beginning to calculate the field at an arbitrary position
after the second grating. Similarly as before, this has to be repeated for a diffuse illumination
several times to sum up the intensity fields for all different incident angles β.

Up to now we have seen that a diffusely illuminated two-grating system with a distance L
equal to a multiple integer of the Talbot length LT generates a self-image of the gratings at
the same distance L behind the second grating. This pattern, from here on called nanoscopic
fringe pattern, has the same periodicity d as the grating. The following section examines how
to detect this fringe pattern with a third grating.

2.4. Third Grating: Moiré Effect – Resolving the Nanoscopic
Pattern

To detect the nanoscopic pattern one would need a position sensitive detector with a resolution
considerably smaller than the pattern period itself. Such nanometre resolution is well beyond
the resolution of typical high resolution detectors, which is in the micrometer range [54,55].
Therefore, a third grating is placed at the position of the nanoscopic pattern one wants to
resolve. The idea behind a third grating is to scan the pattern or magnify it using the moiré
effect. Both methods (depicted in figure 2.5) enable the detection of the fringe pattern either
with a particle counter or a position-sensitive detector with a resolution in the micrometre
range and are frequently used for this kind of interferometer (scanning [38], moiré effect
[44–46]).
In case of scanning the third grating (figure 2.5(a)), a detector is placed behind it. This will
detect maximal flux if the grating and the nanoscopic fringe pattern are in phase with each
other and minimum flux if the patterns exhibit a π-shift.
The moiré effect describes the appearance of a macroscopic pattern if two similar patterns
overlap. The two patterns must not be identical, but rather they have to be tilted with respect
to each other or have a slightly different period. For a moiré pattern formed by two sets of
parallel lines with a tilt α with respect to each other and their pitch d1 and d2, a general
form can be found from geometrical considerations for the period Dmoiré and the orientation
angle αmoiré of the emerging macroscopic moiré pattern

Dmoiré =
d1 · d2√

d2
1 + d2

2 − 2d1d2 cos(α)
, (2.34)

tan(αmoiré) =
d1 · sin(α)

d1 cos(α)− d2
. (2.35)
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Figure 2.5.: Different ways to resolve the nanoscopic pattern with a third grating. (a) If a
third grating with the same period as the pattern is scanned orthogonally to the grating
structure, a particle counter behind measures maximal flux if the grating is in phase with
the pattern and minimal flux if it has a phase π. (b) A tilted third grating magnifies
the nanoscopic pattern by means of the moiré effect. This pattern can be detected with
a spatially resolving detector. The period of the macroscopic pattern is dependent on
the tilt α and equals Dmoiré ≈ d/α. (c) The moiré effect also works for a third grating
parallel to the nanoscopic pattern but with a small difference ∆d in period. Macroscopic
fringes parallel to the grating with a period of Dmoiré ≈ d2/∆d can be observed. All three
measurement principles are analogue to each other. Therefore irrespective of the chosen
method we refer to the obtained pattern as the macroscopic or moiré pattern.

For the Talbot-Lau interferometer the moiré effect appears between the nanoscopic fringe
pattern and the third grating. In figure 2.5(b,c) two special cases of the moiré effect are
depicted: In figure 2.5(b) the nanoscopic pattern and the grating have the same period
(d = d1 = d2) but a small tilt with respect to each other. Prominent are the macrosopic
fringes which thus emerge and which can be detected with a spatially resolving detector as
they can exhibit a period in the millimetre range. The period of the moiré pattern can be
simplified (for small angles α, cos(α) ≈ 1) from equation (2.35) to

Dmoiré ≈
d

α
. (2.36)

The second special case (see figure 2.5(c)), occurs when a third grating is parallel with a
small variation ∆d in the grating pitch. This leads to a beating parallel to the grating bars
with a pitch of

Dmoiré ≈
d2

∆d
. (2.37)

From symmetry considerations, it holds for the macroscopic moiré pattern that a phase shift
of the last grating perpendicular to its bars directly results in the same phase shift of the
macroscopic pattern.
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2.5. Talbot-Lau in Wigner Representation

In principle, all three detection methods are physical analogues, as the moiré effect can be
interpreted as a “scan over space” either in the horizontal (rotational misalignment of each
other) or vertical (minor periodic difference) direction. Mathematically, the resulting fringe
Imoiré is expressed as the convolution of the nanoscopic intensity pattern with the grating
function of the third grating

Imoiré = I(y) ∗ g3(y) =
1

d

d∫
0

dτ I(τ)g3(y − τ) . (2.38)

From this pattern the visibility as a significant characteristic parameter of a periodic pattern
can be obtained following the definition in equation (2.5).
From a practical point of view, resolving the nanoscopic pattern with the moiré effect is more
robust against fluctuations in the particles’ flux compared to a scan of the third grating. A
scan has to be performed over time making the total measured flux prone to variations of
the initial flux.
Up to now we have provided an intuitive access to all key features of the three-grating
Talbot-Lau interferometer. The following section gives a detailed analytical description of
the Talbot-Lau interferometer using the Wigner formalism.

2.5. Talbot-Lau in Wigner Representation

There is a large body of literature which studies the Talbot-Lau interferometer [34,40,43,45,
47,48,56,57]. This section follows the derivation of Hornberger et al. [58,59] and is based on
the Wigner representation [60]. This approach results in a simple expression for the visibility
and the phase, and requires sufficiently less computational power than the angular spectrum
method introduced earlier (section 2.2).
Furthermore, the Wigner representation of the quantum evolution permits a direct comparison
to classical dynamics in the phase-space representation, as will be discussed in the subsequent
section (section 2.6).
In the following, the Wigner function is introduced in general including its transformations
under a free evolution and upon a passage through a grating. These transformations are
applied step by step to the Talbot-Lau setup to conclude this section with an explicit formula
for the detectable signal for a setup with pure-transmission gratings. Throughout the ensuing
derivation we assume the longitudinal momentum pz to be much larger than the transversal
momenta, which allows to decouple the longitudinal and the transversal components of the
wave function. ψz(r) is the transverse wave function at the position z in a plane parallel to
the gratings. r = (x, y) denotes the two-dimensional coordinates in such a plane.
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2. From Talbot-Lau Interferometry to Classical Moiré Deflectometer

2.5.1. Wigner Function, its Free Evolution and Passage Through a Grating

Wigner Function

The Wigner function is a quasi-probability distribution and is comparable to a probability
distribution of a classical system in phase-space. It is defined as [60]

w(r,p) =
1

(2π~)2

∫
d∆ e

ip∆
~ ρ

(
r− ∆

2
, r +

∆

2

)
, (2.39)

which is the Fourier transformation of the position density matrix

ρ(r, r′) =

∫
dµ h(µ)ψµ(r)ψ∗µ(r′) , (2.40)

with
∫

dµ h(µ) = 1 and the two-point separation ∆ = r− r′.

Free Evolution

With a given wave function ψ0(r) at the z = 0 plane the free evolution of ψ up to the z = L
plane yields [59]

ψL(r) =
pz

2π~iL
e
ipzL

~

∫
dr0 exp

(
i
pz
~
|r− r0|2

2L

)
ψ0(r0) +O

(
r2

L2

)
, (2.41)

and hence, following equation (2.40), the density matrix becomes

ρ(r, r′) =
p2
z

(2π~)2L2

∫
dr0 dr′0 exp

(
i
pz
~
|r− r0|2 − |r′ − r′0|2

2L

)
ρ0(r0, r

′
0) . (2.42)

Combining equations (2.39) and (2.42), it is found that upon free evolution of the Wigner
function by a distance L it is changed to

wL(r,p) = w0

(
r− L

pz
p,p

)
. (2.43)

Passage Through a Grating

Another step one has to consider to describe the interferometer is the transformation of
the Wigner function for passing through a grating. As for the angular spectrum method in
equation (2.14), a grating with its transmission function g(r) with |g(r)|2 < 1 results in a
modification of the wave function ψ(r):

ψ′(r) = g(r)ψ(r) . (2.44)

Inserting the modified wave function in the definition of the Wigner function (equation (2.39))
and the density matrix (equation (2.40)) yields the desired Wigner function after passing the
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grating:

w′(r,p) =

∫
d∆ ei

p∆
~ g

(
r− ∆

2

)
g∗
(

r− ∆

2

)
ρ

(
r− ∆

2
, r +

∆

2

)
. (2.45)

This expression can be rewritten as a convolution

w′(r,p) =

∫
dq G(r,q) w(r,p− q) , (2.46)

with the convolution kernel

G(r,q) =
1

(2π~)2

∫
d∆ ei

p∆
~ g

(
r− ∆

2

)
g∗
(

r− ∆

2

)
. (2.47)

With the two transformations of the Wigner function, the free evolution in space (equation
(2.43)) and the passage through a grating (equation (2.46)), one can now express the full
Talbot-Lau setup in the Wigner representation.

2.5.2. Propagation Through the Talbot-Lau Setup

The Talbot-Lau Interferometer consists of three vertical gratings separated by a distance
L1 and L2. A monochromatic but uncollimated beam at the beginning of the setup can be
expressed by a Wigner function of w0(r,p) = 1. With equation (2.46) the Wigner function
immediately after the first grating is

w1(r,p) = |g1(r)|2 . (2.48)

And with the help of equation (2.43) the subsequent free evolution over the distance L1 to
the next grating yields

w2(r,p) = w1

(
r− L1

pz
p,p

)
=

∣∣∣∣g1

(
r− L1

pz
p

)∣∣∣∣2 . (2.49)

Afterwards transmission through the second grating g2 with its convolution kernel G2 gives

w3(r,p) =

∫
dq G2(r,q) w2(r,p− q) (2.50)

=

∫
dq

∣∣∣∣g1

(
r− L1

pz
(p− q)

)∣∣∣∣2 ·G2(r,q) , (2.51)
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while the free evolution up to the third grating leads to

w4(r,p) = w3

(
r− L2

pz
p,p

)
(2.52)

=

∫
dq

∣∣∣∣g1

(
r− L2

pz
p− L1

pz
(p− q)

)∣∣∣∣2 ·G2

(
r− L2

pz
p,q

)
(2.53)

=

∫
dq

∣∣∣∣g1

(
r− p

pz
(L1 + L2) +

q

pz
L1

)∣∣∣∣2 ·G2

(
r− p

pz
L2,q

)
. (2.54)

The Wigner function w4(r,p) represents the state of the beam in the plane of the third
grating (z = L1 + L2). In order to obtain the particle density w(r), which is the measurable
observable in the experiment, the Wigner function has to be integrated over the momentum
variable

w(r) =

∫
dp w4(r,p) . (2.55)

In the following the explicit grating functions for the interferometer in this work are considered
to obtain the theoretical signal expected in this work.

2.5.3. Signal of the Talbot-Lau Interferometer with Pure Transmission Gratings

As previously mentioned, the Talbot-Lau interferometer operates in the near-field regime.
Therefore, the finite lateral extension of the gratings does not affect the mathematical de-
scription of the interferometer. Hence the gratings can be described with a periodic function.
Furthermore, as the experiment is invariant in the x-direction, it is sufficient to consider only
the coordinates parallel to the grating vector, i.e. the position y, and the momentum py.
As discussed for the angular spectrum method (chapter 2.2), a grating with the grating vector
kd = 2π/d and a phase φ = 2π∆y/d can be expressed by its Fourier series (equation (2.9))

gi(y) =
∑
n∈Z

ane
inkdiy , (2.56)

with the Fourier coefficients (equation (2.13))

an = η sinc(nη)e−inkdy∆y =: a′ne
−inkdy∆y . (2.57)

For the second grating with period d2 and open fraction η2 we will use the Fourier coefficient
bn accordingly. With such grating function we get

|g1(y)|2 =
∑
l∈Z

Ale
ilkd1y with Al =

∑
j∈Z

aja
∗
j−l (2.58)

=
∑
l∈Z

A′le
ilkd1 (y+∆y1) with A′l =

∑
j∈Z

a′ja
′∗
j−l (2.59)
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and

G2(y, p) =
∑
l,j∈Z

bjb
∗
j−l exp (ilkd2y) δ

(
p− ~π

2j − l
d

)
(2.60)

=
∑
l,j∈Z

b′jb
′∗
j−l exp (ilkd2(y + ∆y2)) δ

(
p− ~π

2j − l
d

)
. (2.61)

With these two expressions the integral in equation (2.54) for the Wigner function w4(y, p)
in the plane of the third grating can be evaluated. For simplicity, the gratings are assumed
to have identical period d = d1 = d2 and open fraction η = η1 = η2, and are taken to be
equidistant, i.e. L = L1 = L2. The state (2.54) thus becomes

w4(y, p) =
∑

l,j,m∈Z
Albmb

∗
m−j exp

(
ikd(l + j)y − ikd(2l + j)

p

pz
L

)
· (2.62)

exp

(
iπl(2m− j) L

LT

)
. (2.63)

Here the Talbot length

LT =
d2

λ
=
d2pz
2π~

(2.64)

is introduced. Following equation (2.55) the density modulation, which is detectable with a
spatially resolving detector, yields

w(y) =

∫
dp w4(y, p) (2.65)

∝
∑
l∈Z

AlB
(T )
2l exp(ikdly) , (2.66)

with the Fourier components

B
(T )
j =

∑
m∈Z

bmb
∗
m−j exp

(
iπ
j2 − 2mj

2

L

LT

)
. (2.67)

The result in equation (2.66) predicts a pattern with the same period d as the gratings. The

coefficients B
(T )
j account for the second grating1. Considering the phase of the second grating

φ = 2π∆y2/d, one gets for the coefficients

B
(T )
2l = B

′(T )
2l exp(−ikdl2∆y2) , (2.68)

1The Fourier components B
(T )
j are marked with a T to distinguish them from the classical case with the

Fourier components B
(C)
j introduced later.
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2. From Talbot-Lau Interferometry to Classical Moiré Deflectometer

which indicates that a vertical shift of the second grating of ∆y2 results in twice the vertical
displacement on the observed pattern. In contrast, a shift ∆y1 of the first grating (equation
(2.59)), causes a one to one shift on the observable pattern but in the opposite direction.
As discussed in chapter 2.4 a third grating with the same period d as the other two gratings
helps to resolve the pattern if it is scanned over its vertical position ys. The signal then yields

ST (ys) =

∫
dy w(y)|g3(y − ys)|2 . (2.69)

With the same notation, Fourier coefficients for the third grating are denoted with Cl with
its position ∆y3. The final signal for the full three-grating Talbot-Lau interferometer leads to

ST (∆y1,∆y2,∆y3) ∝
∑
l∈Z

AlB
(T )
2l Cl (2.70)

=
∑
l∈Z

A′lB
′(T )
2l C ′l exp(ikdl(∆y1 − 2∆y2 + ∆y3)) (2.71)

=
∑
l∈Z

(A′l)
2B
′(T )
2l exp(ikdl(∆y1 − 2∆y2 + ∆y3)) . (2.72)

In the last steps we extracted the position such that the coefficients for the first and last
grating would be identical (A′l = C ′l). The visibility (compare equation (2.5)) can be derived
from the upper equation. Maximum signal is obtained if the three gratings are aligned and
hence the phase is ∆y = ∆y1 − 2∆y2 + ∆y3 = 0, while minimal signal is attained if the last
grating is shifted by half a period and hence ∆y = d/2. The visibility therefore yields

νT =
Smax − Smin

Smax + Smin
(2.73)

=

∑
l∈Z

(
(A′l)

2B
′(T )
2l − (A′l)

2B
′(T )
2l eiπl

)
∑
l∈Z

(
(A′l)

2B
′(T )
2l + (A′l)

2B
′(T )
2l eiπl

) (2.74)

=

∞∑
n=1

(A′2n−1)2B
′(T )
4n−2

1
2(A′0)2B

′(T )
0 +

∞∑
n=1

(A′2n)2B
′(T )
4n

. (2.75)

This equation enables directly to calculate the visibility of the pattern for a Talbot-Lau
interferometer with a given grating separation L, grating pitch d and grating open fraction η
for a particle beam with a wavelength λ. Hence, we use this formula to produce visibility
plots such as that in figure 2.1. In order to make use of this equation, we truncate the series
after 100 iterations.
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2.6. The Classical Limit: Moiré Deflectometer

So far we have given a full quantum mechanical description of the Talbot-Lau interferom-
eter with its underlying principle and characteristics. In general, one can argue that this
full description inherently includes the classical case, the moiré deflectometer, a priori. To
retrieve the visibility of the moiré deflectometer one has to follow equation (2.4) and set the
wavelength λ to a sufficiently small value, so that for the given setup the Talbot length LT
is large compared to the grating distance L, i.e. LT � L. However, with classical trajectories
the key feature of the classical moiré deflectometer gets more intuitive. General features
such as the pattern deflection due to an external force or the requirements of the grating
alignments, as discussed in the next chapter (chapter 3), can be illustrated in a more intuitive
way in the classical scenario, while still holding in the quantum case.
In the following, we first provide a general exposition of the moiré deflectometer with simple
geometric trajectories. Secondly we conclude with a classical phase-space representation of
the three-grating setup. This enables us to compare the Talbot-Lau in Wigner representation
with its classical limit in section 2.7.

2.6.1. Pattern Formation with Geometrical Trajectories

Similarly to the Talbot-Lau interferometer, the moiré deflectometer consists of three iden-
tical transmission gratings which are aligned parallel and equidistant to each other [38].
Furthermore, and still similarly to the interferometer, particles of a non-collimated source
pass through the first and second grating and create a fringe pattern with the periodicity of
the gratings in the plane of the third grating. Here the first two gratings can be seen as a
collimator. The shadow image of the gratings which is created in the plane of the third grating
can be understood merely with the possible geometrical trajectories (compare figure 2.6(a)).
From this picture it becomes clear that in contrast to the Talbot-Lau interferometer, the
chosen distance L plays no role in the pattern of the moiré deflectometer as long as the
three gratings are equidistant. The reason is that all possible trajectories are defined by
two arbitrary slit positions y1 = nd and y2 = md (n,m ∈ Z) in the plane of the first and
second grating. For the position at the third grating this results in y3 = (2m− n)d, which is
independent of L and resembles the grating function with period d.
With a finite slit width b and hence an open fraction of η = b/d more particle trajectories
are possible, resulting in the pattern smearing out (compare figure 2.6(b)). This is equiva-
lent to the aforementioned selection of different Talbot carpets. Therefore for open fractions
below η = 50 % it holds that the smaller the open fraction, the higher the fringe contrast
(figure 2.6(c)). As for the Talbot-Lau setup, a third grating in the moiré deflectometer also
magnifies the fine periodic structure by means of the moiré effect.
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Figure 2.6.: Principle of the classical moiré deflectometer. (a) An uncollimated beam
passing through two gratings forms a shadow image of the gratings in the plane of the
third grating. (b) A close-up to show the effect of a finite slit width b with open fraction
η = b/d. A multiple of additional trajectories are possible which smear out the pattern
and therefore reduce visibility. (c) The visibility of the macroscopic pattern formed by
the third grating as a function of the grating’s open fraction.

If we consider the two grating functions g1(y, η, d) and g2(y, η, d), for the first two gratings as
introduced in equation (2.8) an analytical expression for the fringe pattern can be retrieved
from geometrical considerations [47,48]. The pattern Inano is mathematically a convolution
of the two transmission functions

Inano(y) = g1(y, η, d) ∗ g2(y, η, d′) (2.76)

=

∫
dτ g1(τ, η, d)g2(τ − y, η, d′) , (2.77)

whereby the periodicity for g2 has to be changed according to

d′ = d
L1 + L2

L2
= 2d . (2.78)

In the last step we assumed the gratings to be equidistant (L = L1 = L2). Following equation
(2.38) the third grating is another convolution of the nanoscopic intensity pattern with the
grating function of the third grating. If we use the Fourier series to express the gratings
(equation (2.9)) the following expression for the macroscopic moiré pattern can be found [45]

Imoiré(y) =
a0

2
+

∞∑
n=0

an cos(2πny/d) (2.79)

an = 4η3 sin(πηn)3

(πηn)3
cos(πηn) . (2.80)

Here we used that all gratings are identical and equidistant. It can be seen and also understood
with the geometrical trajectories that the fringe pattern does not depend on the de Broglie
wavelength or the particle’s energy, respectively. This analytic approach helps calculate the
visibility for different configurations, as shown in figure 2.6(c). Furthermore, it requires less
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2.6. The Classical Limit: Moiré Deflectometer

computational effort than the quantum description to study the alignment requirements, such
as the precision of the grating pitch and small variations in the rotational and horizontal
alignment. This is explained in chapter 3.1 where these alignment requirements are studied
as a function of divergence α of the incident particle beam2.

2.6.2. Classical Phase-Space Representation

Analogous to the Talbot-Lau interferometer in Wigner representation, the moiré deflectometer
can be calculated using classical phase-space dynamics [59]. The classical phase-space density
f(r,p) replaces the Wigner function, while the transform under free evolution is just as for
the Wigner function (2.43) given by

f(r,p) = f0

(
r− L

pz
p,p

)
. (2.81)

The main difference is the convolution kernel for passing through a grating, which is now
given by

GC(r,p) =
1

(2π~)2

∫
d∆ e

ip∆
~ |g(r)|2 = |g(r)|2δ(p) . (2.82)

With equation (2.46) the passage through a grating leads to

f ′(r,p) = |g(r)|2f(r,p) . (2.83)

For the full passage through the two gratings the phase-space distribution in the plane of the
third grating yields

f4(r,p) =

∣∣∣∣g1

(
r− p

pz
2L

)∣∣∣∣2 ∣∣∣∣g2

(
r− p

pz
L

)∣∣∣∣2 . (2.84)

The very same result can also be obtained from the quantum case in equation (2.54) by
replacing the convolution kernel of the second grating G2 with GC . For the classical density
pattern in the observational plane it follows

f(y) =

∫
dp f(y, p) ∝

∑
l∈Z

A∗lB
(C)
2l exp

(
2πil

y

d

)
, (2.85)

with

B(C)
m =

∑
j∈Z

bjb
∗
j−m . (2.86)

2Note, to consider the beam’s divergence, the integral in equation (2.77) has to be restricted to the limits of
y ± 2L tan(α).
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2. From Talbot-Lau Interferometry to Classical Moiré Deflectometer

Comparing the classical density pattern with the quantum result (equation (2.66)) reveals

that they have the same form but differ in Bm. B
(C)
m can be interpreted as the classical limit

L/LT → 0 ofB
(T )
m , which is also indicated by the notation. As this is the only difference between

the quantum and the classical descriptions the analytic form of the signal and visibility in the
classical case is obtained from equation (2.72) and (2.75) by replacing the Fourier components

B
(T )
m of the second grating in the quantum case by their classical equivalent B

(C)
m :

SC(∆y1,∆y2,∆y3) ∝
∑
l∈Z

(A′l)
2B
′(C)
2l exp(ikdl(∆y1 − 2∆y2 + ∆y3)) (2.87)

νC =

∞∑
n=1

(A′2n−1)2B
′(C)
4n−2

1
2(A′0)2B

′(C)
0 +

∞∑
n=1

(A′2n)2B
′(C)
4n

. (2.88)

2.7. From Quantum Description to Classical Trajectories

The previous sections gave a full analytic description of the Talbot-Lau interferometer and
its classical counterpart the moiré deflectometer. We noticed that the retrieved signals ST
and SC show a strong similitude, with the only difference being the Fourier coefficients of the

second grating B
′(T )
l and B

′(C)
l . This shows that for the interferometer diffraction only plays

a role at the second grating, while the first and last grating generate the spatial coherence or
read out the pattern, respectively. The difference of the two Fourier components lies solely
in an additional phase factor

B
′(T )
2l = B

′(C)
2l · exp

(
2πi(l2 − jl) L

LT

)
. (2.89)

From this connection two artefacts become clear:

1) For the short-wavelength limit, which is the classical limit, the grating separation L
becomes much smaller than the Talbot length LT = d2/λ, and therefore the phase factor
vanishes. Consequently, it is justified to see the moiré deflectometer as the classical limit of
the Talbot-Lau interferometer. This fact confirms that the Talbot length is the characteristic
measure which separates the various regimes. Thus, for

L� LT , (2.90)

the device approaches its classical limit as predicted in equation (2.4).

2) The main characteristic feature of the Talbot-Lau interferometer is that the phase factor
vanishes if the grating separation L equals a multiple integer of the Talbot length, i.e.

L = nLT with n ∈ Z . (2.91)
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At such positions the peculiar self-images of the grating appear. As the Fourier components

B
′(T )
l and B

′(C)
l become equal, the Talbot-Lau interferometer is indistinguishable in these

configurations from the classical moiré deflectometer. Therefore, to show that the particle
exhibits wave nature one has to tune the de Broglie wavelength such, that the Talbot length
does not match an integer multiple of the grating distance L in the interferometer. While
the fringe pattern and hence the visibility remains constant for different wavelength in the
classical case it changes significantly in the quantum regime.

2.8. Summary

This chapter aimed to give a detailed review on the Talbot-Lau interferometer and its classical
limit the moiré deflectometer. Full analytical expressions were presented for the visibility –
a key feature in the measurements – which enable to distinguish the classical and the wave
behaviour of the particle. The Talbot length was introduced as a characteristic measure to
define the classical limit of the interferometer. Therefore, it was shown that the same setup
can be described in classical terms if the de Broglie wavelength is much larger than the square
of the gratings period d over the grating distance L:

λ� d2

L
. (2.92)

The presented analytic approaches provide us with powerful tools to study crucial parameters
which alter the visibility. Therefore, the next chapter goes into detail on the main effects
which can result in a significant visibility reduction, like the alignment of the three gratings
or forces acting on the particles passing through the interferometer.
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The previous chapter provided powerful tools to calculate the fringe shape and visibility for
an arbitrary Talbot-Lau or moiré setup. However, their performance is sensitive to numerous
perturbations, such as misalignments of the three gratings or vibrations. Furthermore the
interferometer exhibits a high susceptibility to forces which may alter the path of a par-
ticle propagating through the interferometer. This can result in decoherence effects or in
a deflection of the interferometric pattern, resulting in variation of the detected visibility.
Thereby, one has to consider overall offset fields the interferometer is exposed to, such as the
gravitational field, the Earth’s magnetic fields and any electric fields, as well as interactions
inside the grating slits, for instance van der Waals or dipole interactions.
It is the topic of this chapter to discuss the different visibility-affecting factors and to provide
limits on them which must be met in order for the Talbot-Lau interferometer and its classical
equivalent the moiré deflectometer to operate successfully.

3.1. Alignment Requirements of the Three-Grating Setup

The Talbot-Lau interferometer and the moiré deflectometer were introduced in the previous
chapter in their ideal form. This implies that all gratings have the same periodicity and are
equidistantly placed, while the planes of the gratings as well as the grating slits are parallel.
However, there are experimental limitations on the extent to which, for example, two gratings
can be placed equidistantly or parallelly with respect to each other.
This section provides a detailed understanding of the different parameters with respect to
their required precision and shows how the visibility decreases if the requirements are not met.
The individual parameters are discussed separately to give in the end a quantitative measure
of how much a particular parameter can be varied from its ideal value before the visibility
of the observed fringes drops to zero. For the sake of clarity, all relations are summarised in
table 3.1 at the end of this section.
Various approaches exist to derive and explain the limits on the different parameters, starting
from rigorous treatments with the Wigner formalism [58], over semi-classical approaches
[61, 62] up to classical explanations [47]. The approach presented in the following aims to
give an intuitive access how a small misalignment affects the visibility. Classical pictures are
used in the process to illustrate the criticality of the different parameters. Furthermore, the
detailed visibility evolution over the different parameters is calculated with the approach
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presented in chapter 2.6.1.
The classical results derived and presented in this section were verified by Demetrio [47]
for the general quantum case using the angular spectrum method and published collectively
in [53].

3.1.1. Longitudinal Position of the Gratings

The Talbot-Lau interferometer and the moiré deflectometer are based on the re-phasing or
re-focussing effect of the particle waves or the trajectories in the plane of the third grating
(compare chapter 2). Small deviations in the longitudinal position of the gratings can therefore
reduce the visibility of the resulting fringe pattern.
To asses this effect, we start with the classical picture in figure 3.1(a). A particle beam with
divergence1 θ forms a shadow image after the two gratings. The position of this image is
a distance L after the second grating, while L denotes the distance between the first and
second grating. A small misplacement by ∆L results in a blur D of the shadow image, given
by

D = 2∆L tan(θ) . (3.1)

If the blur equals one grating period, i.e. D = d, the periodic pattern vanishes. This defines
the critical misplacement of the last grating where no fringe pattern can be found

∆Lcrit =
d

2
tan

(π
2
− θ
)
. (3.2)

Figure 3.1(b) gives the full evolution of the visibility retrieved with the formalism presented
in chapter 2.6.1. The visibility evolution resembles the absolute values of a sinus cardinalis
whose first zero crossing equals the critical displacement ∆Lcrit. Note that besides the grating
period d the visibility depends only on the divergence θ. For a decreasing θ, i.e. for a more
collimated beam, the longitudinal grating position becomes less critical. For example, for
θ = 1 mrad, the pattern vanishes at ∆Lcrit = 128µm, whereas for a better collimated beam
with θ = 0.5 mrad the pattern is washed out only at ∆Lcrit = 257µm.

3.1.2. Grating Pitch

The transmission gratings in this work were photo-lithographically etched into a silicon nitride
membrane2. Therefore, it is important to discuss the precision of the grating pitch and the
deviations in the gratings’ period with respect to each other.
In order to shed light on this question, figure 3.2(a) gives a simple intuition with trajectories
of classical particles. If the second grating exhibits a periodic difference of ∆d with respect
to the first one, a well-collimated beam will form a periodic pattern with d′ = d + 2∆d in
the plane of the third grating (red trajectories). In case of a diffuse beam with divergence θ

1We define the divergence θ of a beam as the maximum angle particle trajectories have with respect to the
beam axis (compare figure 3.1(a)).

2More details on the gratings are given in chapter 4.2.1.
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a b

Figure 3.1.: Effect of a longitudinal misalignment of the three gratings. The third grating
is not placed equidistantly with respect to the second one, but is subject to a displacement
∆L. (a) Classical picture of the effect of a longitudinal displacement of the last grating.
The grating’s shadow image is formed in the plane which is equidistant to the second
grating. A misplacement by ∆L results in a blur D of the shadow image which is depen-
dent on the initial divergence of the beam θ. If the blur equals one grating period D = d,
a periodic pattern cannot be identified anymore. This defines the critical misplacement
with ∆Lcrit = d/2 tan(0.5π − θ). (b) Calculated visibility over the longitudinal grating
displacement ∆L for different beam divergence angles θ. The visibility drops from the
initial 80 % to zero if the displacement equals the critical distance ∆Lcrit. The larger the
beam divergence, the more sensitive is the visibility to the displacement.

one can interpret each grating slit of the first grating as a point source which projects the
second grating on the third one. In conflict with the collimated beam, this pattern exhibits
a slightly different periodicity with d′′ = d + ∆d that washes out the fundamental pattern.
If the extension of the projected pattern due to the divergence angle θ causes a mismatch
of the two patterns by half a period, no pattern can be identified in the plane of the third
grating. Similarly as for the longitudinal misalignment, this defines a critical parameter for
the difference of the first two gratings, given by

∆dcrit =
d2

4Lθ
. (3.3)

The graph in figure 3.2(b) shows the more detailed visibility evolution for a small difference in
the periodicities of grating one and two. Pictured is the evolution for three different divergence
angles θ. The visibility drops rapidly to zero if the difference ∆d equals the critical values
∆dcrit. For example, the visibility drops to zero for a beam with θ = 1 mrad if the pitches
have a difference of ∆dcrit = 118 pm. This is a mismatch of less than 0.5� and corresponds
to, for example, the size of a single hydrogen atom.
The visibility evolution for a small mismatch of the grating pitches shows a considerable
similarity to the visibility evolution of the longitudinal misplacement (compare figures 3.1(b)
and 3.2(b)). This artefact indicates a deeper relation of these two parameters. Indeed, following
the schematic in figure 3.2(a), particles passing two slightly different gratings also have a
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a b

Figure 3.2.: Influence of a small difference ∆d on the grating pitches. (a) Classical picture
to explain the visibility reduction if the second grating exhibits a periodic difference of
∆d with respect to the first one. Red trajectories indicate the pattern formation for a
well-collimated beam in the plane of the third grating. A grating image is formed with
a periodicity of d+ 2∆d. In case of a diffuse beam (turquoise trajectories) this pattern
is overlapped with a projection of the second grating onto the third one. This results
in a periodic pattern of 2(d+ ∆d) which blurs out the above-mentioned pattern. If the
extension of the projected pattern due to the divergence θ causes a mismatch of the
two patterns by half a period d, the pattern vanishes completely. This defines a critical
parameter ∆dcrit = d2/4Lθ. The effect of a mismatch in the periodicity can be compensated
for by altering the distance between the second and third grating. The refocusing plane
for two slightly different gratings is shifted by ∆L = 2L(∆d/d). (b) Calculated visibility
over a small difference in the grating pitch. The visibility drops to zero if the difference
in period equals the critical value of ∆dcrit.

refocusing plane. This plane does not overlap with the ideal plane, which is equidistant with
respect to the first two gratings, but is shifted by a small displacement

∆L(∆d) ≈ 2L
∆d

d
. (3.4)

This relation clarifies the similarity of the visibility behaviour and verifies the relation of the
critical difference ∆dcrit in equation (3.3) using the expression for ∆Lcrit in equation (3.2)3.
Furthermore, it indicates that a difference in the grating pitch can be compensated with the
longitudinal position of the last grating following equation 3.4. It therefore yields a more
general constraint for the precision of the longitudinal grating position and the pitch precision
which is

∆L

L
− 2

∆d

d
� d

2θL
. (3.5)

Note that the nanoscopic pattern in the new refocusing plane has a periodicity of d′ ≈ d+2∆d.
As described in chapter 2.4 a third grating is used to scan or magnify the fringe pattern.
If the last grating also exhibits a small difference ∆d′ in periodicity, with respect to the

46



3.1. Alignment Requirements of the Three-Grating Setup

nanoscopic pattern d′, a macroscopic moiré pattern with a period of Dmoiré ≈ d2/∆d′ can
be observed. Anyhow this gives a more rigorous limit if the last grating is used to scan the
pattern. Therefore the size of the particle beam H has to be smaller than half the macroscopic
moiré pattern to enable the scanning principle. The critical difference hence yield

∆dcrits =
d2

4H
, (3.6)

for scanning the third grating4. For H = 3 mm, which is the size of the grating used in this
work, the critical pitch difference is ∆dcrits = 22 pm.

3.1.3. Rotational Alignment

For the sake of simplicity the three-grating setup was solely considered in the y-z-plane. This
treatment was sufficient, as the first two gratings were considered to be parallel, resulting in a
translational symmetry in the x-direction. Nevertheless, with a small rotational misalignment
∆α = α1 − α2 between the first two gratings, this approach is no longer valid. Extending
the analytic treatment introduced in chapter 2.6.1 into two dimensions [47] leads to distinct
visibility minima, as can also be seen in figure 3.3(b).
A rough idea of the critical rotational misalignment can be given if one treats the effect
separately in the y-z-plane and the x-z-plane. To do this, we introduce the divergence angles
θy and θx which give the divergence in the respective planes. A rotation of the second grating
with respect to the first one increases the effective period of the grating according to

d′ =
d

cos(∆α)
≈ d+ d

∆α2

2
+O(∆α4) . (3.7)

Using the critical difference in the grating pitch (equation (3.3)) the rotational misalignment
is therefore not allowed to exceed

∆αcrit,y =

√
d

2Lθy
. (3.8)

To consider the effect a divergence beam has in the x-z-plane, it can be noticed, that the
nanoscopic pattern in the plane of the third grating rotates twice the rotational misalignment
angle, i.e. 2∆α. This can be directly seen following the argument that a phase shift of the sec-
ond grating results a shift of the nanoscopic pattern twice as large (compare equation (2.72)).
In the x-direction this results in a periodic pattern in the plane of the third grating with
D ≈ d/∆α. With a divergence beam θx the pattern has to vanish if a particle coming from a
horizontal slit in the first grating covers more than half of the horizontal beating in the plane
of the third grating, i.e. if θx ≈ D/4L. This yields a critical limit for the rotation angle of

∆αcrit,x =
d

4Lθx
. (3.9)

4The subscript s accounts for the idea that the last grating is used to scan the nanoscopic pattern.
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a b

Figure 3.3.: Rotational misalignment ∆α between the first two gratings. (a) The classical
two-dimensional description has to be extended in the x-direction to account for a rotation
of the second grating. Therefore the divergence angle θ describes the half opening of
a cone which defines the maximum angle particle trajectories have with respect to the
beam axis. (b) Calculated visibility for two non-parallel gratings. The critical angle,
where the visibility equals zero, is ∆αcrit = k(d/4Lθ), with a correction factor k = 1.22.

For the special case that the divergence of the beam in both directions is equal, i.e. θx = θy,
one can follow the analytic treatment in [47] which is the three-dimensional extension of the
approach presented in chapter 2.6.1. Analogous to the two-dimensional case, the divergence θ
is defined as the maximum angle particle trajectories will experience with respect to the beam
axis. This is equivalent to a half of the opening of a cone, just as pictured in figure 3.3(a).
The graph in figure 3.3(b) shows the visibility behaviour if the rotational misalignment is
considered in the full three-dimensional description. Similarly to the other critical parameters
the visibility shows a sharper drop off if the divergence angle is increased. Performing the
calculation for several configurations of d, L and θ, one numerically finds an expression of
the first visibility minimum, that defines the critical rotational misalignment up to

∆αcrit = k
d

4Lθ
. (3.10)

A proportionality factor k has to be considered which reflects the definition of the diver-

gence angle θ. For the mentioned cone which fulfills the relation θ ≤
√
θ2
x + θ2

y, one finds

k = 1.22± 0.02 [53]. The analytic treatment therefore confirms the simple assumptions in
equation (3.9), which is only modified by the small correction factor k. For a beam with
θ = 10 mrad, this would mean a critical value of ∆αcrit = 0.56 mrad.
As mentioned before, a rotation of the second grating with respect to the first one results in
twice the rotation of the nanoscopic pattern in the plane of the third grating. Furthermore,
this pattern has a small reduction in periodicity according to d′ = d cos(2∆α). Similarly
to the critical difference in the grating pitch, this defines a more restricted limit if the last
grating is to be used to scan the pattern instead of magnifying it. With the given size of the
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3.1. Alignment Requirements of the Three-Grating Setup

particle beam H, this results in a critical rotational difference of

∆αcrits =

√
d

4H
, (3.11)

which would yield ∆αcrits = 4.6 mrad if the beam exposed the full size of the gratings with
H = 3 mm.

3.1.4. Tilt Angle

The last parameter to consider is the tilt angle, which describes the parallelism of the grating
planes with respect to each other. To discuss the effect the tilt around the x-axis, βx, is
separated from a tilt around the y-axis, βy. In the following the effect of a tilt is explained
with the help of a change in the second grating. The retrieved relations hold for any tilt of
each grating. Furthermore, the effect of a tilt around the x- or y-axis can also be derived
using the discussed expressions for the critical longitudinal misalignment and the critical
difference in the gratings’ period.
A tilt around the x-axis, as well as around the y-axis, leads to a variance of the distance
between the gratings over the whole grating size H, according to

∆L(βx,y) ≈ Hβx,y . (3.12)

With the definition of the critical longitudinal misalignment (equation (3.2)), one finds an
expression for the maximum tilt

∆βx,y;crit;L =
d

2H tan(θ)
, (3.13)

for which the nanoscopic fringe pattern fades towards the grating edge.
The tilt around the x-axis exhibits an additional effect which alters the visibility. A small
angle βx changes the effective grating period according to

d′ = d cos(βx) ≈ d− dβ
2
x

2
+O(β4

x) , (3.14)

and hence yields a difference in the grating pitch with respect to the non-tilted first grating
of

∆d ≈ dβ
2
x

2
. (3.15)

With equation (3.3) this defines the critical tilt around the x-axis with respect to a change
in period with

∆βx;crit;d =

√
d

2Lθ
. (3.16)
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For the setup in this work, i.e. for H = 3 mm and a beam divergence θ = 1 mm, the critical
parameters yield

∆βx,y; crit;L = 43 mrad (3.17)

∆βx; crit;d = 30 mrad . (3.18)

Here the critical value ∆βx due to the change in the effective grating period is more stringent
compared to the effect of the change in the distance L. Therefore one has to consider always
the more demanding limit. The limits for the two different tilts can be expressed as following

∆βx = min

{√
d

2Lθ
;

d

2H tan(θ)

}
, (3.19)

∆βy =
d

2H tan(θ)
. (3.20)

critical parameter formula θ = 1 mrad

Longitudinal Alignment ∆L d
2θ 128µm

Grating Pitch ∆d d2

4Lθ 118 pm

Rotational Alignment ∆α 1.2d
4Lθ 0.56 mrad

Tilt Angle ∆βx min

{√
d

2Lθ ; d
2H tan(θ)

}
30 mrad

∆βy
d

2H tan(θ) 43 mrad

Table 3.1.: Critical alignment parameters and their analytic expression for which the fringe
visibility of the nanoscopic pattern drops to zero. Only those relations are considered
which allow the read-out of the nanoscopic pattern with a third grating using the moiré
effect. The last column gives the critical parameters for the three-grating setup used in
this work with a beam divergence of θ = 1 mrad. (Specifications of the three-grating
setup: L = 14 cm, d = 257 nm, H = 3 mm.)
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3.2. Vibrations of the Three-Grating Setup

The previous sub-chapter discussed critical motions of different parameters in the three-
grating setup which can alter the fringe visibility. Besides the precise alignment of the
different gratings with respect to each other, drifts and vibrations may also affect the pat-
tern’s shape. While drifts can be avoided using short data-acquisition times and keeping
the ambient temperature constant5, vibrational perturbations may play a crucial roll if the
particles’ inverse time of flight is in the order of the oscillation frequencies, or if different parts
of the experimental setup oscillate independently. Following the listed critical parameters in
table 3.1, it becomes clear that those parameters are not relevant for considering vibrational
perturbations. For example, the gratings would have to oscillate horizontally with amplitudes
in the range of 100µm to surpass the critical longitudinal alignment ∆Lcrit. Such immense
oscillations are extremely unlikely to appear. Resonance frequency measurements of the single
fine-precision actuators used to align the gratings reveal resonances in the range of 200 Hz
up to 25 000 Hz dependent on their load, with amplitudes around few tens of nanometres [63].
These frequencies from the acoustic regime in fact dominate the vibrational spectrum for
example due to the vacuum turbo-molecular pumps or the chiller, while such small oscillation
amplitudes may have a detrimental effect if they appear along the grating vector.
Therefore, in the following we focus on vertical oscillations. Thereby we can consider the
full setup to carry out a simple harmonic oscillation, or the three gratings to vibrate inde-
pendently. We will see that a fixed harmonic oscillation can be neglected in this work, while
independent grating oscillations may have a non-negligible impact on the visibility.
The subsequent derivations follow considerations made for heavy and slow molecular inter-
ferometers [64–66].

3.2.1. Fixed Harmonic Oscillation

The basic oscillation which affects the fringe visibility is a common vertical motion of the
entire three-grating setup along the grating vector with

∆y = A sin(2πft) , (3.21)

where A denotes the oscillation amplitude, f the frequency and t the time. Following equation
(2.72), particles which enter the setup with the initial phase position ϕ0 of the gratings will
cause a fringe shift of

∆y = ∆y1 − 2∆y2 + ∆y3 (3.22)

= A

[
sin(ϕ0)− 2 sin

(
ϕ0 + 2πf

L

vz

)
+ sin

(
ϕ0 + 2πf

L

vz

)]
. (3.23)

Using the angle addition and subtraction theorems the shift can be further simplified to

∆y(ϕ0) = −4A sin2

(
πf

L

vz

)
sin

(
ϕ0 + 2πf

L

vz

)
. (3.24)

5A change of 5° will result in a longitudinal material expansion of the aluminium based setup of 32µm.
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a b

Figure 3.4.: Visibility reduction due to a fixed harmonic oscillation and independent
grating oscillations. (a) If the whole setup exhibits a common oscillation (A = d) and the
particles’ inverse time of flight is in the order of the oscillation frequencies the visibility
of the pattern is reduced. For the slowest particles in this work, a xenon beam with
hundreds of eV, oscillations exceeding 10 kHz would be required to destroy the observed
pattern. This frequency range is atypical for the noise spectrum in a laboratory, which
usually experiences vibrations in the acoustic regime. Therefore, the effect of a fixed
harmonic oscillation can be neglected. (b) If the three gratings vibrate independently, the
visibility pattern is independent from the time of flight, as well as from the frequencies.
Only the vibrational amplitude affects the pattern. Shown is the visibility reduction for
different vibration configurations over the common oscillation amplitude.
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3.2. Vibrations of the Three-Grating Setup

To obtain the visibility of the resulting fringe pattern, the single patterns with a phase
shift following equation (2.72) have to be averaged over the initial phase position ϕ0. The
phase ϕ0 is thereby uniformly distributed, as the particles’ arrival times are independent of
the harmonic oscillation of the setup. For the sake of simplicity only the first two Fourier
components are considered in the expression of the resulting signal (equation (2.72)), so that
the signal can be written as

S(ys) ∝ 1 + ν0
1

2π

2π∫
0

dϕ0 cos

(
2π

d
∆y(ϕ0) +

2π

d
ys

)
(3.25)

= 1 + ν0
1

2π

2π∫
0

dϕ0 cos

(
8π

d
A sin2

(
πf

L

vz

)
sin

(
ϕ0 + 2πf

L

vz

)
+

2π

d
ys

)
,(3.26)

with ν0 the undisturbed visibility and ys the vertical position of the last grating to scan
the pattern. With the repeated use of the angle addition and subtraction theorems and the
zero-order Bessel function6 J0, the signal yields

S(ys) ∝ 1 + ν0J0

(
8π

d
A sin2

(
πf

L

vz

))
cos

(
2π

d
ys

)
, (3.27)

which directly defines the visibility reduction factor

Rvib =

∣∣∣∣J0

(
8π

d
A sin2

(
πf

L

vz

))∣∣∣∣ . (3.28)

Figure 3.4(a) shows the effect different vibration frequencies have, whose amplitude equals
one grating period d. As the vibrational effect is more prominent for particles with a small
velocity, the graph shows only the consequences for a xenon beam with energies up to 1 keV.
Since the interferometer works with velocities beyond 12 km s−1, corresponding to a time of
flight τ = L/v = 12µs, frequencies below 1000 Hz can be neglected. For higher frequencies,
which are less likely to appear in a laboratory, the fringe pattern of a xenon beam is altered
below 1 keV. Accordingly, fixed harmonic oscillations of the whole setup are negligible in this
work. Of a somewhat different nature is the case, if the three gratings oscillate independently,
as discussed in the following.

3.2.2. Independent Grating Oscillations

As all three gratings in this work are mounted separately on fine-precision actuators (see
chapter 4.2.2) each grating has to be considered as an independent harmonic oscillator. To
calculate the resulting fringe pattern, one has to average over all possible fringe shifts weighted
by their probability, which are possible for the various grating configurations. Therefore, the

6Named after the German mathematician Friedrich Wilhelm Bessel, the zero-order Bessel function is defined

as J0 = 1
π

π∫
0

dϕ cos(x sin(ϕ)).
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result will be independent of the three frequencies and the particles’ time of flight. In a similar
manner as for the fixed oscillation the reduction factor yields [64]

Rvib3 =

∣∣∣∣J0

(
2π
A1

d

)
J0

(
4π
A2

d

)
J0

(
2π
A3

d

)∣∣∣∣ , (3.29)

with Ai the amplitudes of the individually vibrating gratings. As this reduction factor is
independent of the particles’ velocity it may not be neglected for the interferometer in this
work. Figure 3.4(b) depicts the corresponding visibility reduction factor for different oscillation
amplitudes and vibration configurations. In case only the first or third grating oscillates the
visibility drops to zero within an amplitude range of 100 nm, while a pure oscillation of the
second one would yield a faster drop of at around 50 nm. This is due to the fact that the second
grating causes twice the phase shift of the resulting pattern, which is already reflected by the
corresponding factor in equations (2.72) and (3.29). Vibrations measurements of the gratings
fine positioner, using the piezoelectric crystal as the vibration source, indicate an oscillation
amplitude around 30 nm if the resonance is hit [63]. Table 3.2 list the visibility reduction factor
for an oscillation amplitude of A = 30 nm and different oscillation configurations. Notable
among them is that an independent oscillation of all three gratings reduces the visibility
down to 40 % of the initial value. For an expected fringe pattern with a contrast of 80 % this
would reveal a much weaker pattern with a 32 % visibility.
Inspite of the preceding, the justification of assuming the three gratings to act as independent
harmonic oscillators may still be questioned. It can be argued that the resonance frequencies
of the different actuators strongly depend on the load which is mounted on them. As all three
gratings are mounted slightly differently (compare figure 4.6), different resonance frequencies
can be safely assumed and hence the three gratings can be taken as exhibiting independent
oscillations. In the worst case, where the acoustic vibration spectrum of the laboratory
environment matches the grating resonances, a reduction of the initial visibility down to 40 %
can be expected.

oscillating gratings visibility reduction factor Rvib3

g1 ∨ g3 87 %
g1 ∧ g2 75 %
g2 53 %

(g1 ∨ g3) ∧ g2 46 %
g1 ∧ g2 ∧ g3 40 %

Table 3.2.: Calculated visibility reduction factor Rvib3 using equation (3.29) for different
grating vibration configuration which oscillate independently but with the same ampli-
tude of A = 30 nm. If all three gratings oscillate independently a fringe pattern with
an initial visibility of, for example, ν0 = 80 % is reduced to νvib3 = 32 %. Note that the
visibility reduction due to a vibration of the second grating is larger than of the first and
third grating, as a shift of the second grating leads to twice as large a shift of the fringe
pattern compared to the first or third grating.
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3.3. Perturbations due to External Forces Acting on the Particles

The Talbot-Lau interferometer and the moiré deflectometer are both well-established devices
used for measuring small particle-beam deflections arising perpendicularly to the interferom-
eter’s (or the deflectometer’s) grating. A wide range of theoretical and experimental work
has been reported on measuring forces ranging from electrostatic and magnetostatic forces
on protons [45, 46, 67] or antiprotons [34, 44], all the way to gravitational interactions and
centripetal forces on argon [38] or antihydrogen [68,69]. This extreme sensitivity to external
fields has also its negative side. If the particle beam consists of a wide range of velocity
classes, the resulting pattern washes out, as each velocity class experiences a different shift
on the detector. Hereinafter, first the principle of inertial sensing is introduced, followed by
considering the effect of a finite velocity distribution. For simplicity, we restrict the discussion
mainly to the moiré deflectometer, although the same kind of reasoning may be applies to
the Talbot-Lau interferometer, too. This section concludes with a list of possible forces and
limitations on their strength for the interferometer.

3.3.1. Inertial Sensitivity of the Three-Grating Setup

Consider7 a uniform force Fy = ma parallel to the grating vector. Particles under such a
condition follow parabolic paths

y(t) =
1

2
at2 + vyt+ y0 , (3.30)

due to the uniform acceleration a, as shown in figure 3.5(a). The particle’s position y is
here given over the time t, while vy denotes the particle’s velocity in y-direction and y0

the initial position at t = 0. Furthermore, the particles’ trajectories are restricted by two
arbitrary grating slits of the first and second grating with the positions y(t = 0) = nd and
y(t = L/vz =: τ) = md, where L is the distance between the two gratings with period d, τ
the time of flight for such a distance, and n and m are integers. These constraints restrict all
particle trajectories to

y(t) =
1

2
at2 +

(
(m− n)d

τ
− 1

2
aτ

)
t+ nd . (3.31)

A further distance L, at the position of the third grating, this yields

y(2τ) = aτ2 − nd+ 2md , (3.32)

which is a total shift ∆y with respect to the case when no uniform force acts on the propagating
particle:

∆y = aτ2 . (3.33)

This relation is also valid for the discussed general case with a finite slit width. As noted

7Following derivation follows the argument given in [45].
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Figure 3.5.: Inertial sensitivity of the three-grating device. (a) Classical particles follow
parabolic paths if a uniform force acts perpendicularly to the grating slits. The shift of
the fringe pattern depends on the force and is ∆y = aτ2, where τ denotes the time of
flight between two gratings. (b) In the quantum mechanical description the underlying
scalar potential of the force results in an additional phase shift for the propagating
wavefield, which results in a distortion of the Talbot carpet similarly to the classical
parabolic paths.

before (chapter 2.4), a phase shift of the nanoscopic pattern results directly in the same phase
shift for the macroscopic moiré pattern. Therefore, it is more general to refer to the phase of
the fringe under a uniform acceleration

∆φ =
2π

d
∆y =

2π

d
aτ2 . (3.34)

If the longitudinal kinetic energy p2
z/2m of the particles is large compared to an interaction

potential |V (~r)| the force on a particle perpendicular to the grating slits can be also imple-
mented into the angular spectrum method for calculating the Talbot carpet (see chapter 2.2)
by using the eikonal approximation [58,70]. If the force is the gradient of a scalar potential,
Fy = − ∂

∂yV (y, z) an additional phase factor has to be taken into account for the plane waves
travelling a short time ∆t = ∆z/vz, which is

ϕ(y) = − 1

~vz

∫
∆z

dz V (y, z) . (3.35)

Here we assumed that the horizontal velocity is much larger than the vertical one (v ≈ vz � vy).
For a uniform field (V (x, z) ≡ V (x)) this result can be simplified to

ϕ(y) = − 1

~v
V (y)∆z . (3.36)

Considering this additional phase for the wavefield, the Talbot carpet deforms as shown in
figure 3.5(b). As expected the Talbot carpet follows the classical trajectories resulting in the
same phase shift in the plane of the third grating.
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3.3.2. Critical Acceleration and the Effect of Finite Energy Distribution

A phase shift does not, per se, alter the fringe visibility of the macroscopic pattern and
hence disturb the working principle of the interferometer. A problem occurs only if the
particle beam a force acts upon has a finite velocity distribution. If one considers an energy
distribution with mean energy Ekin and a certain energy spread ∆E, according to equation
(3.34) each energy class experiences a different shift. Since the final fringe pattern consists
of a sum of individual fringes, each with its own velocity class, the final pattern suffers from
a reduced visibility if the individual fringes are out of phase with respect to each other. A
critical acceleration can be defined [46,47] posing a limit on the strength of an external field
such that the total phase shift between the two specified energies E± = Ekin±∆E/2 does not
overcome π, i.e.

∆ϕ =
2π

d
|∆y(E−)−∆y(E+)|

!
� π . (3.37)

With equation (3.34) and the time of flight τ2 = L2m/2E± it follows

aL2m

2d

(
1

E−
− 1

E+

)
� 1 , (3.38)

aL2m

2d

(
4∆E

4E2 −∆E2

)
� 1 . (3.39)

With the assumption that the energy spread is small compared to the mean energy (i.e.
δE = ∆E/E � 1) one finds a simplified expression for the critical acceleration

acrit =
d

mL2

E2

∆E
(3.40)

=
d

mL2

E

δE
. (3.41)

Figure 3.6 shows the effect an acceleration perpendicular to the grating slits has on an particle
beam with a finite energy spread. If, for a given de Broglie wavelength, the critical acceleration
exceeds the acceleration caused by an external force, the visibility of the interferometric fringe
pattern is influenced only to a negligible extent. Otherwise, if the critical acceleration is smaller
than the acceleration caused by the force, the visibility is altered. In the noticeably graph
3.6, the external force is set such that the resulting acceleration on a hydrogen beam equals
the critical acceleration for the beam parameter E = 3.68 keV (i.e. λ = h/

√
2mE = 0.47 pm;

dashed line) and δE = 1 %. Accordingly, the visibility undergoes only minor changes for lower
de Broglie wavelengths (i.e. higher energies) but almost vanishes for higher wavelengths.
With the above definition of a critical acceleration we can now discuss possible primary causes
of such an acceleration on the particles in the next step.
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Figure 3.6.: Effect of an external force acting on a particle beam with a finite energy
distribution. The acceleration a is set to the critical acceleration acrit (compare equation
(3.41)) of a hydrogen beam with a relative energy spread of δE = 1 % and a mean
energy of E = 3.68 keV (i.e. λ = h/

√
2mE = 0.47 pm; dashed line). For higher de Broglie

wavelengths the critical acceleration acrit is below the given value of a, resulting in a
significant visibility reduction of the interferometric pattern. For lower wavelengths (i.e.
higher particle energies) the given acceleration a undercuts the critical acceleration acrit.
This implies that the visibility is thereby influenced only to a negligible extent. (The
value of the given acceleration a = 4.6× 108 m s−2 is equivalent to the force which an
electric or magnetic field causes on a positively charged hydrogen atom with a strength
of E = 4.8 V m−1, or B = 57 mG, respectively.) The small insets (a) and (b) show the
underlying Talbot carpets if the acceleration is smaller or higher than the critical value
for a given particle beam. Remarkable is the patterns’ washout for a > acrit.
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3.3.3. Different Forces Arising in the Setup

The Talbot-Lau interferometer in this work is used with a wide range of particles. Starting
with the light hydrogen atom it runs with noble gases up to xenon. Trajectories of such
neutral particles can be altered due to an electric or magnetic field gradient, as the particles
possess an electric or magnetic dipole moment. Moreover, as the interferometer can be seen
as an important step to show interference with charged particles, the effect of electric and
magnetic fields on charged particles has to be considered. Table 3.3 lists a number of primary
causes of the acceleration and gives an explicit formula to calculate their critical values.
Furthermore, the forces are compared to the much weaker but more intuitive force, the
gravitation. The formulae for the magnetic and electric field gradients follow the derivation
in [47] and hold for hydrogen atoms with principle quantum numbers n larger than n > 10. In
addition, the critical parameters are calculated for a hydrogen beam with arbitrary energies
and relative spread, but also for a 100 eV beam, the lowest possible value in the setup, with
an energy spread of 1 %. The latter is expected to be realised in this work (see chapter
4.1.3). For the sake of completeness it should be realised, that an energy spread by itself can
also smear out the pattern in the Talbot-Lau interferometer. This is owing to the grating
distance’s not matching the Talbot length of each energy class present in a realistic particle
beam. Consequently, fringe patterns with a lower visibility are summed up with high-visibility
fringes, resulting in a smearing-out of the observed pattern. Nevertheless, for a relative energy
spread expected in this work, δE ≈ 1 %, this effect is negligible in comparison to the visibility
reduction due to external fields [47].

cause formula hydrogen in this work E = 100 eV, δE = 1 %

Gravitation gcrit
d

mL2
E
δE 1256 m s−2 eV−1 · E[eV]

δE 12.6× 106 m s−2

E-field Grad. |∇E|crit
d
L2

2
3ea0

E
n2δE

1.65× 105 V m−2 eV−1 · E[eV]
δE

1
n2 1.65× 109 V m−2 · 1

n2

B-field Grad. |∇B|crit
d

L2µB
E
nδE 2.3 kG m−1 eV−1 · E[eV]

δE
1
n 23× 103 kG m−1 · 1

n

E-field Ecrit
d
L2q

E
δE 131× 10−7 V m−1 eV−1 · E[eV]

δE 131 mV m−1

B-field Bcrit
d
L2q

√
m
2

√
E

δE 9.5× 10−6 G/
√

eV ·
√
E[eV]

δE 9.5 mG

Table 3.3.: Possible external forces that can alter the visibility of the interferometer.
While gravity acts on the mass of the particles, the E- and B-field gradients act on
the electric and magnetic dipole moment, respectively. If the particles are charged the
influence of electric and magnetic fields has to be considered further. Precise formulae
are given. The relations for the E- and B-field gradient following the derivations given
in [47] where only hydrogen atoms with the principle quantum number n > 10 are
considered with the Bohr radius a0 and the Bohr magneton µB . The critical values are
calculated for a hydrogen beam (for the E- and B-field a proton beam respectively) with
the parameters of the setup used in this work but keeping the energy and energy spread
variable. The last column gives the absolute value for the critical parameters assuming
the lowest energy possible in this work (100 eV) and an energy spread of 1 %.

59



3. Visibility-Affecting Factors

The resulting maximal fields given in table 3.3 are effortless to avoid if one uses Faraday cages
and magnetic mu-metal shielding, as described for the experimental setup in chapter 4.3. A
much greater impact might have forces which occur while the particles pass the grating. Such
interactions between the particles and the grating material are discussed in the following
section.

3.4. Realistic Gratings with Intra-Grating Interaction

Up to this point the gratings have been described as ideal transmission gratings (compare
equation (2.8)). However, such an idealisation neglects the finite thickness l of gratings. Such
a longitudinal grating extension provides an interaction time t between the particle beam and
the gratings, dependent on the particle’s velocity vz. Consequently, the grating transmission
function has to be adjusted, taking into account energy- and location-dependent modifications
in the process. In general, intra-grating interactions affect the Talbot-Lau interferometer more
than they affect, for instance, a Mach-Zehnder interferometer. This is the case because small
phase shifts are more dominant in a near-field interferometer than of a far-field regime [59].
In the following we start with a discussion about the mathematical description of such
intra-grating interactions to list afterwards explicitly possible forces inside the grating slits.
The subsection concludes with an analysis of the effective open fraction and the effect such
interactions have on the visibility profile.

3.4.1. Mathematical Description of Intra-Grating Interactions

Assuming the grating walls to be parallel and straight, and edge effects to be negligible,
one can express the grating-particle interaction with the potential V (y, z). Furthermore, the
interaction is well described by the eikonal approximation (compare equation (3.35)) [59,71,72].
The modified grating function therefore yields

g̃(y) = g(y) exp

− i

~vz

∫
l

dz V (y, z)

 (3.42)

= g(y) exp

(
−i l

~v
V (y)

)
. (3.43)

For simplicity, in the last step we assumed that the interaction potential is independent of
the z-position inside the grating (i.e. V (y, z) ≡ V (y)) and that the longitudinal velocity vz
is much greater than the transverse, and thus vz ≈ v. Here g(y) denotes the grating function
of equation (2.8) for an ideal grating whose amplitude {0, 1} describes the grating structure.
With such a modified grating function the corresponding visibility of the interference pattern
and its underlying Talbot carpet can be obtained with the angular spectrum method (section
2.2) or in the Wigner representation (section 2.5). Note that the modified grating function
has to be only considered for the second grating. This is due to the fact that the effect of
an uncollimated beam at the beginning overcomes the momentum change of diffraction on
the first grating, while the third grating only acts as a mask to facilitate the readout of the
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3.4. Realistic Gratings with Intra-Grating Interaction

nanoscopic pattern. Mathematically, this fact can be seen in equations (2.48) and (2.69) where
only the absolute square of the two grating functions g1 and g3 has to be considered. Hence,
the complex phase is not considered that contains the influence of intra-grating interaction.
Only for the case where the eikonal approximation (i.e. equation (3.43)) is invalid, for example
for very strong interaction potentials, the effective open fraction is altered which is therefore
also relevant for the first and third grating and discussed later.
If we follow the Wigner representation in chapter 2.5 we have to modify the Fourier coefficients
(bn → b̃n; equation (2.57)) for the grating function of the second grating. This yields [59]

b̃n =
∑
j

bj c̃n−j (3.44)

with

c̃n =
1

d

d
2∫

− d
2

dy e−inkdy exp

(
−i l

~v
V (y)

)
. (3.45)

The Fourier coefficient B
(T)
j to express the density pattern (equation (2.72)) and the visibility

of the signal (equation (2.75)) change accordingly

B̃
(T )
j =

∑
m∈Z

b̃mb̃
∗
m−j exp

(
iπ
j2 − 2mj

2

L

LT

)
. (3.46)

Similar corrections have also to be done for the classical phase-space representation (compare

chapter 2.6.2). Here the classical Fourier components B
(C)
m to calculate the signal (equation

(2.88)) and the visibility (equation (2.88)) have to be replaced by [59]

B̃(C)
m =

∑
j∈Z

B
(C)
j C̃mm−j (3.47)

with

C̃mn =
1

d

d
2∫

− d
2

dy e−imkdy exp

(
−iπnL

d

Q(y)

pz

)
. (3.48)

Q(y) denotes the momentum kick particles get by the classical force −∂yV (y), while they
travel horizontally through the grating slit. It can be quantified as:

Q(y) = −∂yV (y) · l
vz

. (3.49)
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3. Visibility-Affecting Factors

With the expounded modification for the Talbot-Lau setup in the Wigner representation and
the classical moiré deflectometer in the phase-space description, one has powerful tools to
calculate the expected visibilities assuming intra-grating interactions. Still question remains
open what kind of interaction potentials one has to consider. The following gives an overview
of typical particle grating interactions which have to be considered in this work.

3.4.2. Intra-Grating Interactions

The Talbot-Lau interferometer works with a wide range of neutral particles. Starting from
hydrogen and helium up to the higher mass particles as argon, krypton, and xenon. In general
such neutral particles experience an attractive van der Waals force close to a surface and
hence is the first interaction to be considered inside the gratings. Anyhow the gratings where
also exposed to energetic charged particles giving rise to another force to be considered, the
induced dipole force. Such charges, for example arising during the examination of the gratings
in an electron microscope or for first interferometric tests with protons and other ions, have
a penetration depth of several nanometres into the gratings’ material8. This may implant
permanent charges into the grating material which cause electric gradient fields and hence
act upon the particles due to their polarisability. Self-explanatory is the third interaction to
be discussed, the electrostatic interaction which occur for running the interferometer with
charged particles.

London Dispersion Force

For non-polar atoms the London dispersion force, or sometimes called the attractive van
der Waals force, is a simple and realistic description of the interaction between a quantum
object and a wall. The experimental agreement of such an interaction modelled with the
London dispersion force was shown for a number of different particles [71,72]. The interaction
potential is given by [74]

V (l) = −C3

r3
, (3.50)

with r denoting the distance between the wall and the particle and C3 > 0 the interaction
constant. For many combinations of different atoms and wall materials the interaction constant
can be retrieved experimentally [71,72,75]. Nevertheless, in general it is estimated from the
Lifshitz formula [74,76,77]

C3 =
~

4π

∞∫
0

dω α(iω)
ε(iω)− 1

ε(iω) + 1
. (3.51)

Here α denotes the dynamic polarisability of the particle which can be obtained either from
experimental data, for example with absorption spectroscopy, or with appropriate models.
The dielectric function ε for the wall material can be obtained in a similar fashion.

8For example 10 keV-protons have a stopping range of approximately 80 nm [73].
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3.4. Realistic Gratings with Intra-Grating Interaction

Table 3.4 gives an overview of the interaction constants C3 for different atoms. It is given
once for the interaction with a wall made of Si3N4 and once for gold. It is worth noticing,
that the van der Waals interaction is stronger with a conducting plate (Au) than an insulator
(Si3N4). As the gratings used in this work are made of Si3N4 but are coated with a gold
palladium mixture (compare chapter 4.2.1) the C3 values for the interaction with gold are
used hereafter.
The force due to the van der Waals interaction diverges close to the grating walls, rendering the
eikonal approximation insufficient. However this does not appreciably change the interference
pattern in this case as it will be discussed later in section 3.4.3.
Inside a grating slit one has to consider two walls. The final potential inside the grating yields
therefore

VVdW(y) = V

(
y +

ηd

2

)
− V

(
y − ηd

2

)
(3.52)

= −C3

(
1

(y + ηd
2 )3
− 1

(y − ηd
2 )3

)
for y ∈

]
−ηd

2
,
ηd

2

[
, (3.53)

with y = 0 the middle of the grating slit. The corresponding force is

Fy(y) = −∂yVVdW(y) (3.54)

= −3C3

(
1

(y + ηd
2 )4
− 1

(y − ηd
2 )4

)
. (3.55)

Induced Electric Dipole and Electric Field Gradient

Neutral atoms inside an electric field ~E will exhibit an induced electric dipole moment

~d = α0
~E , (3.56)

dependent on their static polarisability α0. For reference, α0 for the different atoms is listed
in table 3.1. The electric dipole moment gives rise to a potential

V = −~d · ~E (3.57)

= −α0| ~E|2 . (3.58)

Assuming N charges are implanted into the grating slits or on the surface of the intra-grating
walls, this charge distribution can be represented in first order with a single charge Q = Ne
in the middle of each grating bar, with e the elementary charge. Neglecting minor changes
along the z-direction, this results in an electric field Ey perpendicular to the beam axis inside
the grating slits of

Ey(y) =
Q

4πε0

(
1

(y + ηd
2 )2
− 1

(y − ηd
2 )2

)
for y ∈

]
−ηd

2
,
ηd

2

[
. (3.59)
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3. Visibility-Affecting Factors

Here we considered only the charges of the nearest neighbouring bars with equal amount,
while y = 0 is the centre of the grating slit. The potential can thus be written as

V (y) = − α0Q
2

16π2ε20

(
1

(y + ηd
2 )2
− 1

(y − ηd
2 )2

)2

for y ∈
]
−ηd

2
,
ηd

2

[
, (3.60)

and the force

Fy(y) =
α0Q

2η2d2

2π2ε20
y

η2d2

4 + 3y2

(ηd2 − y)5(ηd2 + y)5
. (3.61)

Coulomb Interaction

If the three-grating setup is to work with charged particles as well, the above-mentioned
implanted charges will have a greater effect on a charged-particles beam due to Coulomb
interaction. The potential in this case yields

V (y) = − Qq

4πε0

(
1

y + ηd
2

− 1

y − ηd
2

)
for y ∈

]
−ηd

2
,
ηd

2

[
, (3.62)

where q is the charge of the particle beam. The corresponding force equals

Fy(y) = − Qq

4πε0

(
1

(y + ηd
2 )2
− 1

(y − ηd
2 )2

)
. (3.63)

C3-Si3N4 [meV�A
3
] C3-Au [meV�A

3
] α0 [1× 10−42 C m2 V−1]

H 544 74.4
He 100 274 23.3
Ar 700 1768 183.2
Kr 1100 2455 276.4
Xe 3533 450.7

Table 3.4.: Interaction constants and static polarisability for different atomic species.
C3 is given for a wall made of Si3N4 and gold. As the gratings used in this work are
made of Si3N4 coated with a gold-palladium mixture (compare chapter 4.2.1) the C3

values for the interaction with gold are used. The listed values are compiled from various
experimental studies [72,75,76,78].

All thus-far-discussed potentials describing the intra-grating interactions diverge at close
proximity to the grating walls, making the eikonal approximation insufficient. Therefore, the
following subsection discusses a reasonable cut-off criterion to take this affect into account.
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3.4. Realistic Gratings with Intra-Grating Interaction

3.4.3. Limit of the Eikonal Approximation and Effective Open Fraction

The eikonal approximation to evaluate the additional phase (equation (3.43)) which the
particles accumulate while travelling through the grating slits may break down in a close
vicinity to the grating walls, as the potential diverges. In a semi-classical notion the eikonal
approximation holds for the high-energy limit. This requires a well-collimated beam (i.e.
pz/p ≈ 1) with a short interaction time, a small grating thickness l or a small interaction
strength, so that the particle trajectories through the slits can be described as straight,
accumulating a phase along the z-axis with fixed y (compare equation (3.43)). Close to the
wall these conditions are invalid, as classical particle trajectories would be deflected towards
the grating bars in such a way, that they hit them during the transition time. Since only
a small fraction of the semi-classical trajectories are affected these regions do not alter the
overall visibility profile appreciably. Nevertheless, using the Wigner-representation or the
angular spectrum method to calculate the visibility the regions close to the grating bars
reduces the visibility due to numerical noise. Hence, following figure 3.7(a), a reasonable
criterion to ignore the region close to the grating bars is defined [58]. This criterion states
that in a classical picture all particles are rejected if they would hit the inner wall of the
gratings while travelling the grating within the time tl = l/vz . For a given intra-grating
potential V (y), the time for a particle to hit the wall starting at a distance y0 away from the
wall is

T (y0) =

√
m

2

y0∫
0

dy
1√
−V (y)

, (3.64)

assuming the initial transverse velocity to be zero, i.e. vy = 0. The point where the passage
time tl equals the time to hit the wall T , defines the critical distance yc and therefore the
cut-off criterion. Considering the before listed potentials but only from one side of the wall9,

the critical distances for the different potentials solving the conditions tl
!

= T yield:

London dispersion force: yc =
5

√
25l2C3

4E
(3.65)

Induced dipole: yc = 6

√
9l2α0Q2

16π2ε20E
(3.66)

Coulomb interaction: yc = 3

√
9l2Qq

16πε0E
. (3.67)

E denotes hereby the particles kinetic energy. The critical distance reduces the gratings’
effective open fraction according to

η′ = b− 2yc
d

. (3.68)

9The potential in equation (3.60) for the force due to an induced electric dipole was approximated close to
the wall with a 1/r4 dependence, where r is the distance to the wall.
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H Xe
a b

H

Si3N4

Si3N4

Figure 3.7.: Effective open fraction due to intra-grating interaction. (a) Implanted charges
inside the grating material change the particles’ trajectories as they pass the grating slits.
Representing the charges as one charge Q placed at the slit walls, the potential V (y)
describes the intra-grating interaction due to an induced dipole force. As the potential
diverges close to the walls a reasonable cut-off criterion is defined. The critical distance
yc defines the region close to the wall where classical trajectories would hit the wall while
passing the grating. This defines an effective open fraction η′, where the slit width is
reduced by twice the critical distance yc. (b) The effective open fraction for an induced
dipole interaction due to implanted charges. Shown is the case for hydrogen and xenon
beams as a function of the kinetic energy with an initial open fraction of 30 %.

Although, the additional phase shift and hence diffraction has to be only considered for
the second grating, the change in the open fraction has to be taken into account even for
the first and last grating. The reason for this lies in the fringe visibility’s sensitivity to the
corresponding open fraction as discussed previously (compare figure 2.6(c)).
Figure 3.7(b) pictures the effect an accumulated charge Q placed at the inner grating walls
has on the open fraction due to an induced dipole force on the particles. If a charge of
Q = 100e is implanted on each slit wall, the open fraction is reduced from initial 30 % down
to approximately 28 % for a hydrogen beam, while the slower xenon beam experience an
even smaller slit width. Increasing the implanted charge Q results in a further reduction of
the effective open fraction. Note that the effective open fraction depends on the velocity, i.e.
particles energy, and hence the open fraction decreases significantly for decreasing energies.
It was shown [58] that the critical distance and hence the reduced effective open fraction are
well chosen, as the phase factor calculated with the eikonal approximation is almost identical
to the exact phase factor within the slit width reduced by the critical distance.

3.4.4. Effect of Intra-Grating Interactions

Having introduced different possible intra-grating interactions, the question remains what
kind of interaction has to be considered in the scope of this work. For the ideal case of thin,
non-charged-up transmission gratings made of Si3N4 and the interferometer run with non-
polar atoms, the London dispersion force, is the only force among the listed to be considered.
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Xenon

Hydrogen

Figure 3.8.: The effect of intra-grating interactions due to implanted charges inside
the grating. Hydrogen: An increasing number of charges Q do not affect the visibility
significantly for wavelengths where the grating distance corresponds to multiples of the
Talbot length (visibility peaks λnT ) but reduces the width of the maxima. In contrast,
assuming classical trajectories the visibility is steadily reduced with increasing Q up to
the point where the fringe pattern vanishes. Xenon: The wavelength regime accessible
with xenon atoms in this work is close to the classical limit. The visibility is reduced also
in this case with increasing Q. The small insets on top of the respective images show the
underlying Talbot carpet for different charges. The reduced contrast of the pattern can
be noted. Note that for the classical calculations the notional wavelength of λ = h/mv is
assumed.
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In spite of, being the leading force to be considered in the field of large and thermal molecule
interferometry [26,58], it quickly becomes clear that for atom interferometry with energies in
the range of keV, the effect is negligible. This is mainly owing to the reduction of the passage
time in an atomic interferometer by more than one order of magnitude in comparison with an
conventional molecular interferometer. Furthermore, the minimal effect of the van der Waals
interaction can be noticed on the respective critical distance yc, which is below 1 nm for all
possible configurations in this work. Finally, simulations using the eikonal approximation
show that the change in the visibility profile is below 3 %.
If more noticeable deviations of the visibility profile occur, stronger interactions have to
be considered such as the mentioned induced electric dipole interaction. This requires the
gratings to be charged up appropriately. Figure 3.8 shows the effect a charged grating has on
a neutral hydrogen and xenon beam respectively due to the mentioned induced dipole force.
The upper graph shows the visibility behaviour for a hydrogen beam with wavelengths around
the first and second visibility maxima, corresponding to the wavelengths where the grating
distance fits the Talbot length, once and twice, respectively (compare equation (2.6)). Given
is the visibility evolution considering the wave-nature of the particle and only considering
classical trajectories. For the classical calculations a notional wavelength of λ = h/mv is
assumed. The effect of an increasing implanted charge Q inside the grating bars becomes
prominent around the visibility peaks. While in the classical case the visibility is drastically
reduced with an increasing number of charges, the high visibility in the maxima remains
unchanged in the quantum description albeit with a reduced width of the peak structure.
This leads to the remarkable artefact that for a high number of charges (here Q = 500e),
no fringe pattern can be observed in the classical case, whereas high visibility fringes still
remain in the wave-picture. Note that the asymmetry around the visibility peaks results from
the fact that particles with smaller wavelength, and hence greater velocity, acquire a smaller
phase according to equation (3.43) compared to particles with larger wavelength.
For a neutral xenon beam (figure 3.8 bottom), which covers the transition to the classical
regime in this work, the picture is slightly different. While the pattern formed with classical
trajectories still exhibits high-contrast fringes, the pattern is further reduced in the quantum
description, as the force-free case already shows a significant visibility reduction with respect
to the classical description.
The examples of hydrogen and xenon beam both show that implanted charges inside the
grating significantly change the visibility dependence as a function of the particles’ species
and wavelength. Furthermore, the reduction in the width of the visibility maxima and the
reduction for the heavy particles close to the classical limit allow to re-estimate the implanted
charges with given measured data. This will be done during the discussion of the data in
chapter 5.3, which also allows us to discuss the possibility of ion interferometry with the
given three-grating setup. Therefore the estimated implanted charges have to be considered
via the Coulomb interaction with the ions, which is discussed in chapter 5.4.
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3.5. Summary

This chapter discussed in detail the multiple aspects which influence the visibility of the
fringe pattern.
Having started with the alignment requirements of the three gratings with respect to each
other, we observed a strong dependence of the pattern on the divergence of the beam, and
state relations to calculate the critical parameters in an arbitrary setup for which the visibil-
ity of the pattern vanishes completely. Thereby we noticed that for the concrete setup used
in this work longitudinal misalignments have to be sufficiently better aligned than 100µm.
Moreover, we found that a difference in the grating pitches of 100 pm leads to disappearance
of the pattern.
Considering vibrations of the setup, we learned that a fixed harmonic oscillation of all three
gratings is only of relevance if one considers vibrational noise above 10 kHz, which is an atyp-
ical frequency range for the noise spectrum in a laboratory. However, if the three gratings
oscillate independently, small vertical amplitudes in the range of tens of nanometre can result
in a visibility reduction down to 50 % of the initial expected value.
Besides mechanical constraining forces, both, external forces and forces arising inside the
grating slits, also affect the visibility pattern. Therefore, a critical acceleration was introduced,
which posits the maximum strength an external field can have before the field’s acceleration
completely washes out the pattern. To illustrated the strength of the critical field, several
scenarios were considered: Gravitation, electric- and magnetic-field gradients and a homoge-
neous electric- and magnetic-field.
The intra-grating interaction causes an additional phase shift for particles passing the grating,
depending on the position within the grating. We discussed this effect for a beam of neutral
particles and stated that van der Waals interaction can be neglected. More prominent are the
charges which may be implanted inside the semiconducting grating material, causing forces
due to induced dipole interactions. We found that already a hundred implanted charges inside
the grating bars change the profile of the visibility evolution with respect to the particles’ de
Broglie wavelengths.
Having provided the detailed discussion of possible visibility-affecting factors, we now turn to
the experimental setup and its construction. Thereby we explain how the already mentioned
mechanical constraints are accomplished and the external fields avoided. The intra-grating
interactions, which cannot be fully avoided in our setup, are therefore only considered in the
last chapter where we re-estimate the number of charges within the gratings and discuss the
possibility of an ion interferometer.
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4. Experimental Setup: Characteristics and
Performance

The previous chapters gave an essential understanding of Talbot-Lau interferometry, a re-
markable technique to prove the wave nature of non-coherent particle sources and with a clear
transition to the classical case, the moiré deflectometer. Depending on the momentum of the
particles, the same setup has to be described with quantum mechanics or can be expressed in
classical terms. This section shows the implementation of a single experimental setup for a
wide range of particles, which can show the full wave nature of the particles but also enables
to go to the classical limit.
A sketch of the experimental setup is depicted in figure 4.1. The first part of the setup
consists of an electron cyclotron resonance (ECR) source supplied with different gases such
as hydrogen, helium, argon, krypton, or xenon. Depending on the gas, the source provides
different kind of particles, both charged and neutral, as well as photons. These are separated
with a Wien filter and a pair of Helmholtz coils. A subsequent chamber which can be filled
with nitrogen serves to neutralise charged particles without energy loss, while the residual
charges are subsequently deflected with two electrostatic plates. A moveable Faraday cup
along the beam line is used for beam diagnostics. In front of the interferometer, exchangeable
pinholes are placed to control the beam’s divergence. The experimental stage consists of
the three-grating interferometer, discussed previously, and is magnetically and electrically
shielded with mu-metal and copper tubes. To spatially detect the pattern after the beam has
passed the interferometer, a microchannel plate with a phosphor screen is placed afterwards.
The particle impacts on the screen are imaged with a camera.
In the following, every part of the experiment is described in detail. Moreover data analysis
of the camera images is discussed, especially in relation to the retrieval of the crucial infor-
mation: the visibility of the pattern. The chapter concludes with systematic measurements
to characterise the setup, in particular the precision of the grating pitch, an independent
measurement of the beam divergence, and the stability of the interferometer.

4.1. Making Well-Defined Particle Beam

Having a well-defined particle beam in mass and energy is crucial to run the interferometer.
An electron cyclotron resonance (ECR) source delivers not only a variety of different ions out
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Figure 4.1.: Experimental setup: An ECR source with a plasma delivers both charged
and neutral particles. The charged particles are separated with a Wien filter, while the
neutrals are separated from the beam with a pair of Helmholtz coils. A variable small
angle α between the source and the experimental stage can be adjusted to choose between
the neutral and the charged beam to enter the experiment. A neutralisation chamber that
can be flooded with nitrogen serves to neutralise the charged particles beam. The deflector
plates behind the neutralisation chamber separate the generated neutral particles from
the remaining charged particles. The experimental stage consists of the three-grating
Talbot-Lau interferometer, which is magnetically and electrically shielded. To detect the
particles at the end of the line, a microchannel plate with a phosphor screen and a camera
are placed upstream. A moveable Faraday cup and a moveable set of pinholes are used
for beam diagnostics and to control the beam’s divergence, respectively.
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4.1. Making Well-Defined Particle Beam

of the plasma but it also generates photons corresponding to the spectral line of the used gas.
Furthermore, neutral particles are formed out of the ions leaving the source through collisions.
Hence, a Wien filter placed directly in front of the source selects one charged-particle species,
while a subsequent pair of Helmholtz coils separate the selected charged particles from the
neutral ones. A moveable Faraday cup placed behind the Wien filter not only helps to resolve
the source spectrum, but it also gives an insight to the energy spread of the selected charged
beam. The consecutive nitrogen gas target converts the charged beam via charge exchange to
a neutral particle beam with the same energy. Different pinholes in front of the experimental
stage collimate the beam for the interferometer. All these components are necessary to obtain
a well-defined beam and are subsequently discussed in detail to give a deeper understanding
about the characteristics of the particle beam which enters the interferometer.

4.1.1. ECR Ion Source

Electron cyclotron resonance (ECR) sources are widely used in various fields such as in
medical proton therapy [79], in condensed matter physics for semiconductor manufacturing
and cleaning [80], or in general in particle physics [81]. Their simple assembly and easy
handling is the main reason, for which they are used for the generation of beams consisting of
protons [45,46,82,83] and multiple other charged ions such as argon and xenon [84–86]. The
principle of such sources is shown in figure 4.2. A magnetic field B and radio frequency field
are superimposed over each other inside a small cavity filled with a gas. Under the electron
cyclotron resonance condition

ωRF
!

= ωc =
eB

me
, (4.1)

a plasma is ionised. Here the radio frequency ωRF matches the electron cyclotron frequency
ωc. Under this condition, free electrons are accelerated above the ionisation potential of the
atoms at hand (e.g. 13.6 eV for hydrogen, 24.6 eV for helium etc.) and ignite the plasma.
Besides the elementary gas ions, other, heavier particles can also be formed inside the plasma
by recombination processes, for example H+

2 and H+
3 for hydrogen [45,46,83]. In the present

source, a fixed RF frequency is injected via an antenna, while three couplers improve the local
electric field intensity. Following equation (4.1) the frequency of ωRF = 2.45 GHz requires a
magnetic field of B = 876 G. This field is achieved with a ring magnet made of a samarium-
cobalt alloy (Sm2Co17), which has a high temperature stability up to T = 300 ◦C [87]. Figure
4.2 shows the magnetic fields measured along the source axis and marks the area where the
ECR condition is fulfilled. After the plasma is formed, the charged particles are extracted
via a 500µm hole by applying an acceleration potential Uacc (Uacc ∈ [500 eV, 20 keV]) to
the cavity. A grounded grid in front of the source ensures a well-directed beam. However,
recombination processes on this grid can result in neutral atoms with energies equal to those
of the charged particles. In section 5.2, we will discuss how the interferometer can be used to
characterise this kind of neutral particles which originate directly from the source. Photons
due to electron transitions between two states of an atom are too produced, as discussed
later in section 4.5.1.
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Figure 4.2.: Electron cyclotron resonance (ECR) source. Left: Schematic view of the
source and the measured magnetic field of the ring magnet. The gas inside the cavity is
ionized in the region where the magnetic field fulfils the ECR condition for the RF-field
of the antenna (ωRF = 2.45 GHz, B = 876 G). The three couplers are used to improve
the emittance of the RF antenna inside the cavity. The ions leave the source, which is on
a positive potential Uacc, through a 500µm hole and are accelerated towards a grounded
mesh. Right: Photography of the opened source showing the ring magnet, the antenna
and the couplers.
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4.1. Making Well-Defined Particle Beam

4.1.2. Wien Filter: Spectrum of the Source

In this work the ECR source is supplied with the following gases separately: hydrogen, helium,
argon, krypton, and xenon. For each gas, a variety of ions are extracted. While for the noble
gases corresponding multiply ionised particles occur, e.g. Xen+, the hydrogen plasma delivers
protons, dihydrogen cations H+

2 and trihydrogen cations H+
3 . A Wien Filter can select one

charged species, providing a major step towards a pure particle beam. As depicted in figure
4.3, it consists of homogeneous electric and magnetic fields applied perpendicularly to each
other. Particles for which the Lorentz force equals to zero can pass through the slit at the
end of the filter:

~FL = q( ~E + ~v × ~B)
!

= 0 . (4.2)

As the velocity and the fields are perpendicular to each other, the equation is simplified to
Ex = vz ·By. Accelerated with the potential Uacc, the particle velocity is

v =

√
2Ekin
m

=

√
2
q

m
Uacc , (4.3)

and hence depends on the charge q, the mass m and the already mentioned potential Uacc.
Combining equation (4.2) and (4.3) together, results in an expression for the electric field Ex
as a function of Uacc and B given by

Ex = By ·
√

2
q

m
Uacc . (4.4)

In this work, a nearly homogeneous magnetic field is generated with two permanent ferrite
magnets with a magnitude of approximately By = 1.2 kG. The electric field is supplied from
two electrodes separated by a distance of d = 30 mm. The desired particle can be selected by
tuning the voltage between the two electrodes UWF following the relation:

m

q
=

2B2d2Vacc

U2
WF

. (4.5)

Figure 4.3 shows the measured spectrum for hydrogen and helium plasma. Both are measured
on the Faraday cup behind the Wien filter. The particles, accelerated with a voltage of
Uacc = 2000 V, show clearly distinguishable peaks over the electrode voltage. Following
equation (4.5) to convert the voltage to the mass-over-charge ratio in terms of the proton
mass mp and the elementary charge e reveals the particles species. For hydrogen, three well-
separated peaks are visible. Consistent with the mass-over-charge ratio, they are identified as:
proton, dihydrogen cations H+

2 , and trihydrogen cations H+
3 . For the helium spectrum only

two peaks appear which indicate the two possible helium ions 4He+ and 4He2+. Note that not
only is the current on the Faraday cup not directly proportional to the total particle current,
but it even varies in dependence of the species. This is due to the fact that the particles
hitting the Faraday cup cause emittance of several secondary electrons [88–90]. Nevertheless,
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Figure 4.3.: Left: Photography of the Wien Filter. Crossed magnetic and electric fields
only let pass those kind of charged particles for which the Lorentz force equals to zero.
The magnetic field is generated with two permanent magnets, while the electric field
can be tuned with the applied voltage UWF on the electrodes. This enables to select
different particles. Right: Particles spectrum of the ECR source supplied with hydrogen
and helium, respectively. The current I is measured on the Faraday cup over the Wien
filters electrode voltage. Converting the voltage UWF to the mass-over-charge ratio in
terms of the proton mass mp and the elementary charge e reveals the particles species.
For the hydrogen plasma it is proton (m/q = 1), H+

2 (m/q = 2), and H+
3 (m/q = 3); for the

helium plasma 4He+(m/q = 4) and 4He2+(m/q = 2). (Photography: courtesy of Pierre
Lansonneur.)

we can still state that the abundance of the different particle species is highly dependent on
the pressure of the gas inside the ECR cavity. We observed that while in the case of hydrogen,
H+

3 is favoured for low pressure, protons are favoured for increasing pressure.
For the experiment, different particles with different acceleration voltages Uacc are used. The
desired species is selected as described above by tuning the Wien filter voltage, following
equation (4.5). At this point neutral particles coming directly from the source are still part of
the beam. Hence, the subsequent experiment is placed off axis, so that the neutral particles
cannot enter the three-grating setup, while the charges are bent with a pair of Helmholtz
coils into the experimental zone. When neutrals are preferred or required, the Wien filter
is switched off and the source is put back onto the axis, thus enabling them to reach the
detector.
For heavier particles, such as argon, krypton, and xenon, the resolution of the Wien filter
is not sufficient, as it scales with the inverse of U2

WF (see equation (4.5)). Hence, a small
offset field generated by the Helmholtz coils and the 2D-MCP-detector (described in detail in
section 4.4.1), placed one meter apart, is used spatially to separate the different ions. From
this separation one can state, that heavier particles Mn+ are ionised in the range of n ∈ [1, 5].
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4.1. Making Well-Defined Particle Beam

4.1.3. Energy Spread

It is important to know the beam’s energy spread, as it influences the visibility (compare
section 3.3.2). With a fine mesh in front of the Faraday cup one can measure the energy
spread of the now well-defined ion beam. Therefore, a tunable voltage Umesh is applied on
the mesh which hinders a particle whose energy is below q ·Umesh from reaching the Faraday
cup. Scanning Umesh, the intensity on the Faraday cup for a particle beam with a certain
energy distribution f(E) follows the integral of the distribution:

I(Umesh) ∝
∞∫

Umesh

f(E) dE . (4.6)

Paradigmatic figure 4.4(a) shows the measured intensity as a function of the applied mesh
voltage for a proton beam with an acceleration voltage of Uacc = 1500 eV. By calculating the
derivative of the measured intensity to obtain the beam’s energy distribution (see equation
(4.6)), it can be seen that the distribution is centred on the acceleration voltage (compare
figure 4.4(b)). We find the beam’s energy spread (FWHM) ∆E = 20 eV, resulting in a relative
energy spread of

∆E

E
= 1.3 % . (4.7)
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Figure 4.4.: Measuring the energy spread of a proton beam accelerated withUacc = 1500 V.
(a) Current read on the Faraday cup as a function of the mesh voltage Umesh. Particles
whose energy is below the mesh potential are reflected, while higher-energy particles can
pass through and are subsequently detected. The sharp drop of the intensity around
1500 V indicates that the beam’s energy is 1500 eV (for a q = 1e particle beam). (b)
The energy spectrum of the beam is the derivative of the intensity profile in (a). It is
centred around the expected mean energy of 1500 eV and has a spread (full width at half
maximum) of 20 eV. The relative energy spread is therefore ∆E/E = 1.3 %. (Data: [46])
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4.1.4. Neutralisation Chamber: Well-Defined Neutral Particle Beam

In the previous section we saw that the source delivers different ion species with well-known
energies. While for hydrogen and helium the species are easy to separate with the Wien
filter, the same setup is not as effective for particles with higher mass. Nevertheless, we know
that all three argon, krypton, and xenon become multiply ionised in the plasma source. This
section discusses how knowledge about the source spectrum provides an important step to
produce a well-defined neutral particle beam for the interferometer.
One frequently used technique to convert ion beams into their neutral equivalent is based on
resonant (or near resonant) charge exchange between fast positive ions and thermal neutral
particles [91]. For this purpose, the fast ion beam with the projectiles X+ passes through a
charge-exchange chamber filled with a neutral particle gas Y (the target), as shown in figure
4.5. An electron with negligible kinetic energy is transferred from the target particle to the
projectile, following the equation

X+ + Y −→ X + Y+ + ∆E . (4.8)

∆E marks the energy difference of the ionisation potentials of the two interacting particles.
In case the projectile and the target are of the same sort, ∆E vanishes and the charge transfer
is called resonant. The neutralisation of the ions does not necessarily require a resonance
process. Still, it is worth to minimise ∆E, as the smaller the energy difference the better
is the charge exchange cross section σ. Furthermore, non-resonant conditions (∆E > 0)
usually yield a broad distribution of excited states [91]. As an example, for the utilised
nitrogen gas target and a proton or 4He+ beam, the energy difference is ∆EH = 0.9 eV and
∆EHe = 10.1 eV, respectively. The higher energy difference for the helium ion is reflected in
the smaller cross section σ as shown in table 4.1 which lists the different cross sections. In
general, the charge exchange cross section is much larger than the cross sections for energy
or momentum transfer. Hence, the ions can be approximated without changing their energy
or direction [92]. Consequently, the energy distribution of a neutral particle beam exiting the
neutralisation chamber is the same as of the incident ion beam. From the measurement in
chapter 4.1.3 we can thus conclude an energy spread of less than 2 % for the neutral beam.
Since not all the ions are neutralized inside the chamber, the remaining charges are removed
by employing an electrostatic deflector (compare figure 4.5).
The intensity of the neutral beam produced via charge exchange is determined by the charge
exchange cross section σ, and by the scattering cross sections for the ions and the neutrals
(σ0, σ+). The rate equations yield:

dN+

dz
= −N+nσ −N+nσ0 , (4.9)

dN0

dz
= N+nσ −N0nσ+ . (4.10)

N+ and N0 are the number of ions and neutrals at a given position z in the neutralization
chamber, where n is the particle density inside the chamber and can be rewritten following
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Figure 4.5.: Neutralisation chamber. Left: A schematic drawing of a setup for a fast
hydrogen beam production with a neutralisation chamber. A fast proton beam with
kinetic energy Ekin enters a charge-exchange chamber filled with nitrogen gas. As the
charge exchange cross section is much larger than the cross section for energy and
momentum, the resulting neutral hydrogen atoms have the same energy Ekin. To have a
pure atom beam, the non-neutralised protons are removed with an electric field at a later
stage. Right: Calculated flux for hydrogen and helium beams originating from protons
and He+ respectively using the parameters given in table 4.1. The flux is given as a
function of nitrogen pressure in the chamber and compared with measurements taken
with 2 keV protons. Note that a direct comparison of the theory with the experimental
results is difficult, as the initial proton flux is not known and the pressure reading may
be inaccurate for p > 1× 10−3 mbar, due to the limitations of the utilised pressure
gauge. This may explain the steep decrease in flux. Nevertheless, the shape of the data
resembles the process of charged particles being converted to neutrals and scattered at
higher pressure.

the ideal gas equation as

n =
p

kBT
, (4.11)

with p and T pressure and temperature inside the chamber and kB the Boltzmann constant.
Solving the differential equation yields the number of neutral particle along the beam axis z
inside the gas target:

N0(z) = N+
0

σ

σ+ − σ0 + σ
exp(−nσ0z)[1− exp(−n(σ+ − σ0 + σ)z)] , (4.12)

where N+
0 is the initial ion flux. For the scattering cross section σ0 and σ+ we can assume

the colliding particles to be hard spheres with the so-called kinetic radius r. In this case, the
cross section is given by

σ0,+ = π (r1 + r2)2 . (4.13)
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Table 4.1 lists the cross sections and the kinetic radii for hydrogen and helium.
Figure 4.5 (right) shows the pressure-dependent neutral particle flux expected after the beam
has left the chamber. For this purpose equation (4.12) is evaluated for z = 20 cm (the length
of the chamber), using the relevant cross sections. Remarkable is the shape of the curve
showing two dominant principles. The increase at low pressures (p < 1× 10−3 mbar) is due
to conversion from charged to neutral particles. At higher pressures (p > 1× 10−3 mbar)
scattering of the neutral particles becomes dominant, resulting in a steep decline of the
particle flux. For comparison, a measurement with a 2 keV proton beam is also shown in
figure 4.5. One should treat the displayed hydrogen data with care, as the initial proton flux
is not known and the pressure gauge used to measure chamber pressure shows a non-linearity
in the range above 1× 10−3 mbar, as this is the detecting limit of the gauge. Nevertheless,
the experimental data resemble the overall shape of the theoretic curves.

kinetic radius r cross section σ with N2

Hydrogen 1.4�A (H2) 18.5× 10−20 m2 (H+)

Helium 0.91�A (He) 3.4× 10−20 m2 (He+)

Nitrogen 1.8�A (N2)

Table 4.1.: Kinetic radius and charge exchange cross section with nitrogen for different
particles [93–96].

Neutralisation with Metal Target

The up to here described principle of making a pure and in energy well-defined neutral
particle beam is not the only possibility to have a fast atomic beam. There are other ways
how an ion can get an electron, for example via a metal target [91]. As observed before, the
ECR source itself generates neutral particles. These are ions which are neutralised against
a metal surface. The most probable piece of metal on which the particle can neutralise is
the grounded mesh directly in front of the source. However, the wall of the vacuum chamber
can also work as a neutral particle source if the charged beam is made to run against it.
Nevertheless only the neutral particles directly from the mesh are used for the interferometer.
Various mechanisms can be involved in the charge transfer of a metal surface to the ions.
In most cases, the dominant process requires an electron from the conduction band of the
metal to be transferred to a valence state of suitable energy of the ion. Furthermore, detailed
experiments show that the energy of the neutral beam is proportional to the energy of the
incident ions [91]. In our case one main drawback of the mesh as a neutral source becomes
apparent: In contrast with the neutrals produced by the neutralisation chamber, the exact
energy of the particles, is not known. Furthermore, it is in principle possible that all ions
leaving the source are neutralised. In this case each species will have undergone a different
neutralisation reaction and hence carry various momenta, as listed in table 4.2. In practice,
this was prevented by using the Wien filter to define the desired reaction in front of the gas
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4.1. Making Well-Defined Particle Beam

target. In chapter 5.2 we will show that the use of the interferometer can help to identify
which reaction process is dominant in this neutralisation process and what its energy is.

neutralisation reaction particle momentum p

p+ e −→ H pp = pH =
√

2empUacc

H+
2 + e −→ 2H pH =

√
1/2 · pp

H+
2 + e −→ H2 pH2 =

√
2 · pp

H+
3 + e −→ 3H pH =

√
1/3 · pp

H+
3 + e −→ H2 + H pH =

√
1/3 · pp

pH2 =
√

4/3 · pp
AMn+ + ne −→A M pM =

√
2nAempUacc =

√
nA · pp

Table 4.2.: Possible neutralisation reactions and particles’ momenta compared to the
protons particles momentum accelerated with Uacc. Different reactions are possible for
the different hydrogen ions. For ions of the noble gas M with charge q = ne and mass
m = Amp the resulting momenta are dependent on the degree of ionisation n.

Neutralisation of Multiple Charged Ions

The question remains open how the different multiply ionised heavy particles (e.g. Xe+,
Xe2+ and Xen+ where n is the degree of ionisation) are neutralised. Knowing the degree of
ionisation is of interest, as the particles are hardly distinguishable with the Wien filter and
their resulting momentum in the neutralisation process is larger by a factor of

√
n compared

to the singly ionised particles (compare table 4.2). The following two arguments may indicate
whether neutral particles from singly ionised noble gas are predominant: The neutralisation
of an ion with the degree of ionisation n can be expressed as a nested rate equation, since each
neutralisation step from n to n− 1 can be separated. Therefore, for a low-pressure gas in the
nitrogen target the probability of converting an ion with n = 1 compared to ions with n > 1
is much higher. Furthermore, we saw before that the charge exchange cross section decreases
for increasing ∆E. For all used noble gases, it holds that ∆E increases as the ionisation
energy for the n-th electron increases. This reduces the probability of a highly charged ion to
be neutralised inside the chamber. Both arguments also hold for neutralisation on the metal
mesh. Following these arguments, the neutral beam of the heavier particles with mass M
(argon upwards) are assumed in this work to have a momentum p =

√
2eMUacc.

4.1.5. Pinholes to Control Beam’s Divergence

The contrast of the interferometric pattern does not depend only on the mass and the energy of
the particles. As alluded in chapter 3.1, small misalignments of the three gratings with respect
to each other significantly reduce the visibility. Besides carefully aligning the gratings (see
following section) the reduction of the beam’s divergence weakens the alignment requirements
for the gratings. Hence, different pinholes with diameter D are placed one metre in front of
the detector on a vertical translation stage. The pinhole diameter can be selected from the
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following options:

D ∈ [5 mm, 1 mm, 200µm, 100µm, 50µm, 10µm] . (4.14)

Correspondingly, the beam’s divergence θ is given by

θ =
D

1 m
. (4.15)

Note that for the two largest diameters, the divergence is defined by the initial divergence of
the source due to its opening (D = 500µm) and its distance to the detector (l = 2.30 m).

4.2. Talbot-Lau Interferometer

The main part of the experiment is the Talbot-Lau interferometer. It is an improved version
of the setup described in references [33,34,46]. It consists of three nanometric gratings placed
equidistantly on high-precision actuators and kinematic mounts, as depicted in figure 4.6. The
gratings are glued onto an L-shaped aluminium holder. The distance between the gratings is
chosen to be 14 cm, thereby matching the Talbot length of a 3.6 keV hydrogen beam. With
the specifications of the utilised source, this distance makes it possible, on the one hand, to
detect multiple Talbot lengths for hydrogen in the quantum regime, and on the other hand,
to show the classical limit, in case of e.g. xenon. In the following, the gratings are described in
more detail. After that the significance of the actuators and the kinematic mounts is discussed
to fulfil the high grating alignment requirements mentioned in section 3.1. A discussion on
how the aforementioned requirements are achieved concludes this chapter, setting the stage
for the practical application of the device to our case.

4.2.1. Gratings

The three gratings1 are pure-transmission gratings which were photo-lithographically etched
into a silicon nitride membrane [97, 98]. With a thickness of (160 ± 10 )nm and a size of
3 × 3 mm2, the grating structure is free-standing. The nanometric periodicity of 257 nm is
stabilised with a larger structure oriented perpendicular to the grating bars. This so-called
support structure has a periodicity of 1.5µm. The open fraction η of the nanometric as well
as of the support structure varies from grating to grating and is listed in table 4.3 together
with the other parameters. The inset of figure 4.6 shows an SEM2 image of one grating where
the nanometric slits and the support structure are clearly visibile.
As the gratings are made of an insulator, they accumulate charge if exposed to an ion beam.
This can result in such strong electric fields that they act even on neutral particles via
induced dipole forces (compare section 3.4). To reduce the extent of this phenomenon, a
metallic layer is deposited on the gratings. It has been shown that a mixture of gold (80 %)

1A special and sincere thanks to Prof. Markus Arndt from Vienna University who graciously offered us these
gratings

2The image was taken at BioQuant Heidelberg with the help of the research group of Prof. Schröder. A
special thanks to Anne Kast and Lisa Veith.
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Figure 4.6.: Schematic view of the Talbot-Lau Interferometer. The three gratings
are mounted on L-shaped aluminium holders which are in turn placed on different
piezoelectrically-driven fine positioners. The first two gratings are each mounted on a
goniometer for rotational alignment the gratings around the beam (z-)axis. Additionally,
the first grating is screwed on a horizontal positioner to ensure that the gratings are
equidistant to each other. The actuator for the third grating is a vertical positioner to
scan the third grating. Furthermore, each unit is fixed on a kinematic mount to adjust the
tilt around the x- and y-axes, and thereby ensuring the parallelism of the gratings. While
the tuning of the actuators can be performed inside the vacuum with the experiment
running, the kinematic mounts have to be adjusted before the experiment is started.
The distance between the gratings is chosen to be L = 14 cm, corresponding to the first
Talbot length of a 3.6 keV hydrogen beam. The small inset shows an SEM picture of the
nanometric grating. Clearly visible is the periodic structure with d = 257 nm and the
orthogonal support structure to stabilize the grating. (SEM picture courtesy of L. Veith
and A. Kast.)
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grating characteristics

material Si3N4

size 3×3 mm2

thickness l (160± 10 )nm
pitch d 257 nm
open fraction η 46 %, 37 %, 37 %
pitch support structure ds 1.5µm
open fraction support structure ηs 71 %, 53 %, 53 %
coating each side 20 nm AuPd (4:1)

Table 4.3.: Characteristics of the nanometric transmission gratings used in this work.

and palladium (20 %) sticks homogeneously to the silicon nitride membrane [46]. Hence, all
gratings have been sputtered from both sides with a 20 nm thick layer.
The several-nanometres-thin Si3N4 membrane can become transparent if exposed to particles
with energies above a certain limit. To estimate such limit, the transmission as a function of
energy is evaluated for different kinds of particles. This is done with the computer program
Stopping and Range of Ions in Matter (SRIM), which is a software package for calculating
the transport of ions in matter, including targets with complex multi-layer configurations [73].
Designed for ions only, the software produces reliable result for any atom above 10 keV u−1,
as the atom will reach an equilibrium charge state within about 30 nm of the surface3. Figure
4.7 shows the results for an uncoated and coated membrane, respectively. While a pure silicon
nitride membrane with the denoted thickness still lets a high fraction of hydrogen and helium
through at 20 keV, the additional 20 nm of AuPd on both sides stop all particles below 20 keV.
From this calculation it seems safe to use the coated gratings for the energy range below
20 keV.

4.2.2. Actuators: Aligning and Scanning the Gratings

Section 3.1 discussed the crucial influence of minor misalignments between the gratings on the
visibility. To meet these requirements, all three gratings are mounted on different actuators
(compare figure 4.6). The kinematic mounts correct for tilt around the x- and y-axes and have
to be aligned manually outside the vacuum. The procedure for such an alignment is as follows:
A He-Ne laser is coupled via a beamsplitter into a fibre. The laser beam leaving the fibre is
aligned with the grating axis e.g. beam axis. As the grating itself partially reflects the laser
light, the light goes back to the fibres’ out-coupler. In the case the grating is perpendicular
to the laser beam, adjustable with the kinematic mounts, the light will be coupled back into
the fibre and detected with a photodiode on the side of the beamsplitter. As this method
only works with one grating at a time, the gratings have to be sequentially mounted and
aligned, the last grating as first, and ending with the first one. As the fibre’s out-coupler lies

3Result of a private correspondence with James F. Ziegler, the developer of SRIM. At this point I want to
express my thanks to him, as he has always warmly replied to my questions about SRIM.
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Figure 4.7.: Transmission of different particles through a pure 160 nm thin Si3N4 mem-
brane (left) and a membrane coated from both sides with a 20 nm thick layer of gold (80 %)
and palladium (20 %). For the second case the gratings act as true transmission gratings
for energies below 20 keV.

more than 150 cm away from the first grating and has a fibre core of 200µm, the alignment
reaches a precision better than

∆βx = ∆βy . 200µrad . (4.16)

This is equivalent to a z-displacement of less than 1µm over the grating size and hence fulfils
the criterion of ∆βx ≤ 30 mrad and ∆βy ≤ 43 mrad (compare table 3.1).
Compared to the tilt around the x- and y-axes, the rotational alignment around the beam
axis (z-axis) is much more sensitive (∆α ≤ 560µrad, compare table 3.1), as it governs the
moiré periodicity (compare equation (2.35)). Therefore, the first two gratings are screwed on
a goniometer4 with an angular resolution of 1.7µrad [99]. Although the actuator can be tuned
while the experiment is running, it is desirable to have a rough idea of the rotational alignment
with respect to the last grating. A complete lack of pre-knowledge for this alignment would
rule out the possibility of finding the required position, as both goniometers with an angle
range of 115 mrad each have to match on 0.56 mrad to the ideal position. To pre align the
gratings we use the general form of the grating equation

sin(θn)− sin(β) = n · λ
d
, (4.17)

where β is the angle of incidence and θn the angle of the n-th diffraction maximum. As the
left side of equation (4.17) cannot exceed the value of 2, the wavelength λ of the laser to
align the gratings has to be chosen correspondingly. With a blue laser diode (λ = 405 nm)
and the given periodicity of d = 257 nm, it is possible to observe the first diffraction order
as 405/257 = 1.58 < 2. Therefore, the incident angle has to be set around 60°. Note that due
to the construction of the setup we use the diffraction order of the back reflection. The blue

4ANGt101 RES from attocube [99]
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laser light coming from the top (β = 60°) is reflected and diffracted into the first order going
to the top as well (θ−1 = 46°). The absolute position of the diffraction spot is measured up
on the ceiling 2.5 m above the experiment. Small rotations of the grating directly translate
into a movement of the spot on the ceiling. To align all three gratings with respect to each
other, we start with the third one, which is rotationally fixed, and mark the position of the
diffraction spot. Then, the whole experiment is moved on a high-precision translation stage
L = 14 cm upwards, so that the second grating is at the position of the previous one, while
the laser beam was locally fixed. Now, the rotational alignment for the second grating can
be performed. Then, the setup is moved a second time to repeat the alignment procedure
already used for the first grating. The appearance of fringes after the alignment procedure
for the running experiment shows that the achieved alignment was significantly better than
∆α1,2 � 100µrad.
The last alignment requirement is the z-position of the three gratings with respect to each
other. With a sensor resolution of 200 nm [99], the horizontal actuator5 beneath the first grat-
ing enables to keep the gratings equidistant. With the above-mentioned alignment procedure
for the angle alignment it is also possible to guarantee that the gratings are roughly equidis-
tant, as a horizontal grating displacement translates into a displacement of the diffraction
spot perpendicularly to the displacement of the rotation. The results and on-time corrections
in the experiment show that this alignment was only precise up to ∆z = 200µm and, hence
was above the critical value of 128µm for a 1 mrad beam (compare table 3.1).
The last grating is placed on a vertical positioner6 with a sub-nanometre positioning resolu-
tion [99] for scanning the last grating as described (compare section 2.4).

4.3. Magnetic and Electric Shielding

A field-free environment between the three gratings is crucial for avoiding decoherence effects
and pattern distortions within the interferometer, especially while working with charged
particles (compare section 3.3). Since our experimental device is designed to be used with
both, atoms and ions, it is of utmost importance to set up the environment such that it be
suitable for both, without having to interfere with it. In order to ensure the surrounding
fields fall below the critical values of Ecrit = 131 mV m−1 and Bcrit = 9.5 mG (see table 3.3),
the interferometer is placed inside a magnetic shielding while the gold-coated gratings and
small copper tubes between the gratings work as a Faraday cage.

4.3.1. Mu-Metal to Shield the Earth’s Magnetic Field

As indicated in figure 4.8 the interferometer is placed inside a cylindrical mu-metal shield to
reduce the effects of magnetic fields, the predominant of which is the Earth’s magnetic field.
Mu-metal is a special alloy of nickel (77 %), iron (16 %), copper (5 %) and chromium (2 %),
whose relative permeability can reach values higher than µr = 20× 103 [100]. Such high
permeability leads to the concentration of the magnetic flux into the material, resulting in a

5ANPx101 RES from attocube [99]
6ANPz101 RES from attocube [99]
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Figure 4.8.: Magnetic field along the beam axis inside a cylindrical mu-metal shield with
a length of 56 cm and a diameter of 18.6 cm. The shaded area marks the position of
the interferometer inside the mu-metal with respect to the measured data. The ambient
field of | ~B| = 520 mG is shielded inside the experimental area in all three axes below
the detection limit of the fluxgate magnetometer, i.e. |Bx,y,z| < 5 mG. This condition is
sufficient to neglect the influence of magnetic fields inside the interferometer.

lower field inside a tube of mu-metal. Typical shielding factors for such geometries can reach
1000 or more [101].
In our case, the cylindrical mu-metal shield7 is 56 cm long with a diameter of 18.6 cm. The
28 cm long interferometer is centrically placed inside the tube to match the best conditions.
To demonstrate the efficiency of this monolayer mu-metal shield, figure 4.8 shows the different
magnetic field components along the beam axis measured with a fluxgate magnetometer. The
ambient magnetic field of | ~B| = 520 mG is attenuated around the gratings in all three axes
below the value of |Bx,y,z| < 5 mG, which is the detection limit of the sensor. According
to calculations whose results are stated in table 3.3, this value is sufficient to neglect the
influence of magnetic fields in the interferometer even for a 100 eV proton beam with a 1 %
energy spread.

4.3.2. Faraday Cage to Avoid Influence of Stray Electric Fields

If the system is tested with charged particles, insulators within the setup can accumulate
permanent charge, causing stray electric fields. This will heavily influence the performance of
the interferometer not only with charged particles themselves but also with neutral species, as
induced dipole interaction will occur. Hence, it is important to minimise insulating materials
inside the interferometer and shield residual electric fields along the beam path with a Faraday
cage.
As shown in figure 4.9(a), the Faraday cage is constructed of coated metallic gratings and two

7from Magnetic Shield LTD [101]
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Figure 4.9.: Electric shielding using the principle of a Faraday cage. (a) The coated
metallic grating and the copper tubes build a Faraday cage to shield stray electric fields
caused by charged insulators. (b) Electric field distribution simulated for an ambient
field of Ey = 1 V m−1. The shielding effect of the copper tube is clearly visible, while the
gap between the grating and the tubes causes the electric field to penetrate the beam
path. (c) Closer look at Ey and Ez in the middle of the beam path. Significant is the
residual Ey field due to the gap. (d) Further shielding improvement with a fine and
flexible copper mesh that does not disturb the grating’s movement.

13 cm long and 1 cm wide copper tubes. With the principal of finite elements we estimate the
effectiveness of this Faraday cage. The simulation is performed with Matlab for an ambient
field of Ey = 1 V m−1 (figure 4.9(b)). Figure 4.9(c) shows the profile of Ey,z along the axis of
the interferometer (centre of the tube) and clearly reveals the effect of the small, 5 mm gap
between the grating and the tube. At this point, ambient electric field penetrates the beam
path, causing a residual vertical field up to 30 mV m−1. To minimise this effect further a fine
and flexible copper mesh is laid around this gap in such a way that the gratings’ movement
is not hindered (see figure 4.9(d)). Inside the copper tube an electric field of 8 µV m−1 can
be expected, which is not due to insufficient shielding but rather due to a surface electron
layer on the inside of the tube’s wall [102].

4.4. Detection System and Data Acquisition of Fringe Pattern

The fringe pattern formed after the interferometer is detected with a combination of a two-
stage microchannel plate (MCP), a phosphor screen and a camera (figure 4.10). The detection
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Figure 4.10.: Schematic view of the detection system with two different acquisition
modes. The detection part consists of two microchannel plates (MCP), a phosphor screen
inside of the vacuum chamber, and a camera outside of the vacuum chamber. Particles
hit the MCP and generate a cascade of up to 1× 106 secondary electrons. When the
electron cloud impacts on the phosphor screen isotropically, green light is emitted which
is detected outside of the vacuum chamber with the camera. Dependent on the electron
gain of the MCP and the camera’s exposure time either single-particle impact or the
whole pattern integrated at once can be resolved. Images showing single particle hits are
further analysed to retrieve the particles’ position with a precision up to 10µm. While
the integrated picture needs seconds to display the pattern, single-particle detection
requires thousands of pictures to obtain the pattern. Nevertheless this results in a better
resolution of the fringe pattern and its visibility than the procedure of integrating all
impacts at once.

setup is sensitive to a wide range of particles, for instance energetic or metastable atoms,
charged particles, or high-energy photons. It is capable of resolving single-particle impacts
in two dimensions, as well as the entire fringe pattern at once, depending on the camera
exposure time and the MCP adjustments. To obtain the crucial information, the visibility
of the pattern, two different computer based algorithms are used (single particles detection
versus continuous picture).
The current section firstly explains the principle and specifications of the hardware in order
to show secondly the different computer-based methods to obtain the visibility of the periodic
pattern. It concludes with a comparison of the two detection principles.

4.4.1. Microchannel Plate - Phosphor Screen - Camera

Microchannel Plate

A microchannel plate is a 2D detector with single-particle resolution and sensitivity to a broad
selection of particles, such as protons,H+

2 ,H+
3 , all ions of noble gases, and high-energy photons

(λ ∈ [1 nm, 150 nm]) [103–107]. Neutral atoms such as hydrogen, helium, argon, xenon, or
krypton, can also be detected, provided they have sufficient kinetic energy (> 500 eV) [108].
The principle of an MCP is based on 1× 104 − 1× 107 miniature electron multipliers, i.e.
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channels which are closely packed and parallel to each other [106]. An incident particle
produces secondary electrons if it hits the surface of a channel. A voltage is applied along the
channel to accelerate the electrons which then produce a cascade of electrons while hitting the
channel wall. To increase the efficiency, two MCPs with slightly tilted channels (α = 12 deg)
are stacked onto each other in a chevron configuration. For an applied voltage of Uc = 2 kV
along the two plates, a typical electron gain of 5× 106 [109] is expected. Table 4.4 gives an
overview of the MCP characteristics used in this work8.

MCP characteristics

active diameter 25 mm
thickness 0.48 mm± 0.03 mm
channel pitch size 12.5µm
channel pore size 10µm
bias angle 12°± 1°
open area ratio min. 60 %
double MCP gain at Uc = 2 kV 5× 106

Table 4.4.: Characteristics of the MCP used in the experimental setup [109].

Phosphor Screen

The avalanche of electrons is accelerated to 4 keV towards a phosphor screen. The phosphor
screen is a glass plate coated with a thin layer (≈ 6µm) of fluorescent material (Gd2O2S:Tb)
and of a conducting material (indium tin oxide) to avoid accumulation of charge. The energy of
the 4 keV fast electron cloud impinging on the screen is absorbed and re-emitted isotropically
as visible light (λ ≈ 545 nm) with a conversion efficiency of 100 photons per electron. The
decay time of 2.6 ms limits the speed of the image acquisition.

Camera

A camera9 outside of the vacuum chamber images the backside of the phosphor screen. For
sufficiently low particle flux, exposure time of the camera set to the order of O(10 ms), and the
MCP’s gain at maximum (i.e. Uc = 2 kV), the obtained image shows clearly distinguishable
single impacts on the detector, as can be seen in figure 4.10. For a low MCP gain (i.e.
Uc = 1.5 kV) and long exposure time (O(10 s)), the recorded images display the entire fringe
pattern at once. While in the second case the data acquisition allows an on-time interpretation
of the experiment, in the first case several thousand images with single-particle impacts with
post-processing are required before a conclusion on the system can be made. Nevertheless,
we will see in the following that taking single-particle images significantly improves the
resolution.
For an optimal visualization of the pattern, the camera is focused to the area where the

8MCP from GIDS-GmbH [109]
9Mako G-234 from Allied Vision [110]
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fringes appear. The conversion rate of the images, calibrated with a millimetre scale, is found
to be

1 px =̂ 11.4µm. (4.18)

4.4.2. Single-Particle Detection: High Spatial Resolution

The detection system is able to reveal single-particle impacts. To do so, the flux and shutter
time of the camera have to be reduced while the MCP gain is at maximum, so that the particles
are imaged one by one. A particle hit results in a 2D Gaussian-shaped intensity modulation
over several pixels (200× 200µm2) on the camera. With such images the coordinates of the
impact are retrieved on the detector for each particle with a sub-pixel resolution. In the
following, the algorithm used to extract the coordinates for each particle is explained and
subsequently the characteristics of detecting particles in such a way are presented, including
the resolution and statistics of such impacts.

Algorithm to Retrieve Coordinates of Single-Particle Impact

A typical dataset of a 15 minute long measurement consists of approximately 10 000 images
with each showing a few single-particle impacts. A computer-based algorithm is used to
analyse such images in order to find the position of the particles in a reasonable time. Similar
obstacles have to be faced in many fields of physics such as image analysis of localization
microscopy where the centre of an airy disk in an image has to be found [111], or in photoelec-
tric astrometry to obtain the precise location of celestial objects in a noisy image [112,113].
The methods range from fitting a 2D Gaussian to merely taking the position of the brightest
pixel [46]. While the first method is time-consuming, the second lacks precision. The algo-
rithm utilised in this work is based on the principle of finding the unique point where the
weighted relative position of the distributed pixels sums to zero. The analysis time for such
an approach is in the order of the image acquisition time, whereas the accuracy is better
than the pixel size and overcomes the internal resolution limit of the MCP itself.
The algorithm is structured as follows:

� All pixels with intensities below a certain threshold are suppressed. The threshold value
is put to 10 % of the maximum value possible for the image’s class. This eliminates
most of the background noise in the images.

� The remaining pixels are grouped with their neighbouring pixels. All groups that
overcome a threshold size of more than 50 px are taken into account as particle hits.
Not only does this step separate single hits in one picture, but it also removes hot pixels.
The outcome of this operation is a 3×N -matrix for each detected impact, where N is
the number of relevant pixels for that impact characterised with the x- and y-position
of the pixel and its intensity I.

� For each pixel group the mean location of the pixel distribution is calculated as follows
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(centre of mass detection):
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� In the rare case of two particles impinging on the detector in close proximity to each
other, the previous steps do not separate them. In such a case, ~P gives the direction
vector between the two impacts. To avoid this, variance σ2
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If σ exceeds a threshold of 100µm, the pixel group is not interpreted as a single-particle
event and is hence taken as invalid. The limit of 100µm was empirically deduced, testing
the algorithm with well-understood data samples.

Using this algorithm we will see in the following that the accuracy of the position is not
limited by the algorithm itself, but more by the working principle of the MCP.

Statistics and Resolution of Single-Particle Impacts

The above-presented algorithm allows to study the statistics of the impacts and enables a
closer look at the internal resolution limit of the detector.
We start with the dark count rate of the detector. The dark counts originates primarily from
the residual gas in the chamber and cosmic rays hitting the MCP. Running the MCP without
beam exposure and detecting the particles for four days reveals a significant low dark count
rate of

R = (1.3± 0.1)× 10−3 counts s−1 cm−2 (4.21)

with the impacts distributed uniformly over the whole detector area (compare figure 4.11(b)).
Compared to an average observed flux of approximately 2× 103 counts s−1 cm−2, during a
regular measurement the dark counts are negligible.
The dark counts, as well as the particles originating from the source may be argued to follow
the Poisson distribution, as can be seen in figure 4.11(a). The Poisson distribution expresses
the probability P of a given number of events N occurring in a fixed interval of time (in our
case the camera exposure time), and is given by

P (N) = e−λ
λN

N !
. (4.22)

Constraints for the Poissonian statistics are that the events have to be independent from one
another and have a constant rate of occurrence λ over time. The good agreement of theory
and experimental data (figure 4.11(a)) indicates that indeed the dark count rate as well as the
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Figure 4.11.: Detecting single-particle impacts: (a) The detected particles in one camera
image for dark counts as well as for the particles from the source following the Poisson
distribution. (b) Image of the backside of the phosphor screen. The dark counts (red dots)
are distributed equally over the entire surface. (c) Zoom in on a 100× 100µm2 square
with multiple particles detected. The single channels of the MCP are resolved with a
pitch size of 12.5µm. This gives the internal resolution limit of the detection system.

source have a constant particle rate λ and all particles are independent. The particles could
not be taken as independent, if, for example, the MCP had a dead time after each particle’s
arrival or if the algorithm invalidated large quantities of particles so that for example the
0-particle images would rise in probability.
Analysing around 10 000 particle impacts on a 100 × 100µm2 square reveals a honeycomb-
like structure with a pitch (distance between sphere centres) of 12.4µm± 0.2µm, which is
consistent with the MCP channel pitch given in table 4.4. It is remarkable that the resolution
of the camera and the algorithm is so high that the individual channels of the MCP can be
resolved and hence the exact channel which the incident particle hit determined. Therefore,
the precision of a particle impact is the channel pore size, amounting to 10µm. Note that
due to the open area ratio of the MCP, 40 % of the particles are not detected, as they do
not hit any channel. Furthermore, detecting the single channels of the MCP reveals defects
in the MCP’s honeycomb structure and shows 0.6× 0.6 mm large channel patches which are
most likely a result of the production mechanism of the detector.
Since the measurement aimed at resolving the channel structure took more than three days,
it indicates a high rigidity of the camera outside of the vacuum with respect to the MCP and
phosphor screen. The drifts of these two components with respect to each other have to be
sufficiently smaller than the channel pitch size.

Summarising the results, the single-particle detection and the algorithm to retrieve the
position of the impacts have been shown to have a low dark count rate, high spatial res-
olution, and long time stability. The weakness of the technique is a long acquisition time
(≈ 10 min) for collecting enough particles to generate the pattern. In table 4.5 a summary of
the most important characteristics of detecting single particles are listed.
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characteristics: single-particle detection

dark count rate (1.3± 0.1)× 10−3 counts s−1 cm−2

statistics particle hits following Poisson distribution
precision of particle impact 10µm
high rigidity of detection system drifts � 12.5µm in 3 days
time for one dataset ≈ 10 min

Table 4.5.: Characteristics of measuring with single-particle detection.

4.4.3. The Rayleigh Test: Efficient Way of Receiving Pattern’s Period,
Orientation, and Visibility

The previous section gave a list of the particle impacts with their respective x- and y-
coordinates. The crucial information we have to retrieve from these data is the visibility of
the periodic fringe pattern depicted by these coordinates. A simple sinusoidal fit may be a
sufficient tool for obtaining this information, if the orientation angle and periodicity of the
pattern are known. As these depend on the grating alignment, which we know only to a
certain limit (see chapter 4.2.2), they are extracted from the dataset.
The so-called Rayleigh test is an effective tool from the field of directional statistics [114–116]
to test for non-uniformity of a set of unbinned points on a circle and hence can be adapted
to look for periodic patterns in a 2D plane. First described by Lord Rayleigh in 1919 [117]
it finds nowadays a number of applications in different fields of physics. It is used not only
to find a periodic signal in the scattered (x, y)-positions of different particles [19, 34, 44] –
as it will be used in the following – but also to look for periodicity in γ- or X-ray emission
from pulsars [118–120], or to study the magnetic compass navigation of robins in the field of
ornithology [121,122].
As the Rayleigh test indicates the non-uniformity of points on a circle, the (x, y)-data first
have to be mapped onto a ring. To do this, we choose projection angle αtest and period dtest

(identical with the circumference of the circle) under which we want to apply the Rayleigh
test to verify whether our data exhibit in a periodic structure. The new polar coordinates θi
for particle i are hence expressed by the following two steps:

projection: x′i = xi · cos(αtest) + yi · sin(αtest) , (4.23)

mapping onto a circle: θi = 2π
dtest
· x′i . (4.24)

The actual non-uniformity test in the new coordinate system is defined [114] as

Z2 =
2

N

( N∑
i=1

cos(θi)

)2

+

(
N∑
i=1

sin(θi)

)2
 , (4.25)

where N is the total number of particles. The higher Z2, the more likely it is that a periodic
pattern is present under the test parameter (αtest, dtest).
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a b c

Figure 4.12.: Rayleigh test applied on xenon data to retrieve the pattern’s visibility.
(a) Single xenon impacts already reveal a periodic fringe pattern slightly rotated around
the horizontal axis (0°). (b) Z2 of the Rayleigh test is computed for different orienta-
tion angles αtest and periodicities dtest. A clear maximum appears at αtest = 6.6° and
dtest = 184.7µm. (c) Mapping the dataset with the retrieved parameters onto one period.
With a sinusoidal fit the visibility ν is obtained (here: ν = 43 %± 1 %).

In order to get the information about a periodic pattern from our data, we have to find
parameters (αtest, dtest) which maximise Z2. Figure 4.12 shows the result of the Rayleigh test
when applied on real xenon data from the interferometer for a wide parameter range (ori-
entation angle αtest = (−90°, ..., 90°), periodicity dtest = (100µm, ..., 250µm)). A prominent
maximum of Z2

max = 1043 appears at αtest = 6.6° and dtest = 184.7µm.
With this information, the visibility is retrieved in the next step: The dataset is mapped
and binned with the obtained parameters onto one period dtest. A sinusoidal function is
approximated to these bins with the method of least squares, which optimises the phase φ,
the amplitude A, and the offset C of the sine function, while the period is held constant. The
visibility ν is subsequently calculated as ν = A/C.

The Rayleigh Test Performance

To estimate the uncertainties of a single measurement, we use simulated datasets as an input
for the Rayleigh test and sinusoidal fit.
The path towards such an estimation is the following:

� Fringe patterns are generated on a 1 mm × 1 mm square with a known orientation
angle, periodicity and visibility, while ensuring that all parameters are similar to the
experimental conditions. The fringe pattern is created with N particles probabilistically
distributed over the sample size.

� The period, angle, and visibility are re-estimated by means of the Rayleigh test and
the sinusoidal fit.

� Both steps are repeated 1000 times for each configuration (ν/N) to enable approximat-
ing the standard deviation.
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Figure 4.13.: Performance of the Rayleigh test and the sinusoidal fit. The standard
deviation for the different measurands (orientation angle α, periodicity d, visibility ν,
phase φ) are estimated with simulated datasets for different visibilities and particle
numbers. In all cases a 1/

√
N dependence is observed (black solid line). Furthermore, for

all cases except for the visibility, the error is inversely proportional to the visibility of
the pattern.
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� Since even small changes in the periodicity and angle change the phase, both the
periodicity and the angle have to be fixed while the phase is being analysed. Therefore
the standard deviation of the phase is estimated with the known values of period and
orientation for the fit. This is repeated 1000 times with randomised samples as well.

The results are shown in figure 4.13, giving the standard deviation for the different parame-
ters dependent on the particle number and the visibility of the given fringe pattern. Due to
Poissonian statistics for all four parameters the statistical error decreases with

√
N . Further-

more, the error in the orientation angle, periodicity and phase is inversely proportional to
the visibility of the pattern itself. The error for all four of them is therefore found to be:

∆α =
1

ν
√
N
· 99(4) mrad (4.26)

∆d =
1

ν
√
N
· 11.0(5)µm (4.27)

∆ν =
1√
N
· 1.31(3) (4.28)

∆φ =
1

ν
√
N
· 1.6(1) rad . (4.29)

The proportionality factor is retrieved from the data points via the least-square method.
However, due to time constraints, it is not possible to repeat the measurement one thousand
times. But if the orientation and periodicity of the fringe pattern have once been found,
the error in the visibility and phase can also be estimated with a re-sampling technique. To
do this, the sinusoidal fit is repeated several times, while the bin counts on the histogram
are randomised. The randomisation also follows Poissonian statistics, as described in section
4.4.2. Comparing the statistical error retrieved by the re-sampling technique with the revealed
dependence in equations (4.28) and (4.29) shows a difference which is within the error bar
of the proportionality factor. This indicates the equivalence of both methods.

4.4.4. Integrated Data Acquisition: Saving Time

Previous chapters examined the analysis of the fringe pattern via the detection and processing
of single-particle events. The single-particle detection was characterised by the high precision
of the impact coordinates, but required a long acquisition time in order to have enough
statistics to enable a quality assessment of the pattern formation. This section presents a
different approach, taking images with a long exposure time (O(10 s)), accumulating thousands
of particles in one picture. Furthermore, the MCP gain is reduced to increase the number of
particles in one image without saturating the camera. This makes it impossible to separate
single events but enables rapidly to intervene in the system, for instance by changing the
grating alignment parameters. A typical fringe pattern taken with this approach is shown in
figure 4.14(b).
As stated before, the shape of a single-particle event resembles a Gaussian distribution with
an extension over approximately 200× 200µm2. Needless to say, for the integrated detection
mode this makes it impossible to recognise the MCP structure or to detect periodic pattern
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a                                                          b                                                                c

Figure 4.14.: Integrated data acquisition. (a) Poissonian statistics of the single impacts
appear within the integrated data acquisition in the form of the relative error of the
intensity δI. It decreases with

√
N for higher camera exposure time ∆t (red curve).

(b) Raw image of a fringe pattern with low visibility (≈ 5 %) and long exposure time
(∆t = 60 s). Due to a non-homogeneous beam over the pattern size and due to a lower
efficiency of the phosphor screen in the lower right corner, the fringes are hard to see.
(c) Exposing the real image by, firstly, subtracting a “black” image from the raw data,
and, secondly, by dividing the residual by a reference image. The black image is without
particles but with the same exposure time as the raw image, and the reference image
is without a pattern and thus compensates for inhomogeneity of the beam and for
the phosphor screen efficiency. The fringes become apparent over the whole image size.
The visibility is calculated by taking multiple points along the lines of minimum and
maximum fringe intensity following equation (2.5). The reference image is the sum of
multiple images (subtracted with a “black” image) each showing the fringe pattern shifted
a small fraction over the whole period.

with periodicities around 100µm. In general, particle extension on the camera reduces the
fringe visibility significantly with decreasing periodicity. Therefore, the next subsection will
goes into detail on this feature, while the procedure to analyse the visibility out of the many-
particle picture is discussed thereafter.
In contrast to the single-particle images, further effects have to be taken into account when
analysing the fringe pattern from the long-exposure pictures. Firstly, residual light from
the laboratory is detected, leading to an intensity offset for each pixel. Therefore, for every
measurement with given exposure time ∆t, an offset image is taken which is subtracted
from every image captured later. Furthermore, the phosphor screen shows ageing phenomena
depending on the beam intensities. This means that an area on the screen which has been
exposed to the beam via the MCP has a lower conversion efficiency than the surroundings and
hence appears darker. The solution to this problem is to take a beam image without a pattern
as a measure for the detection efficiency of each pixel. For instance, this can be achieved by
summing multiple pictures of a fringe pattern while the pattern is being shifted in small steps
over one period. Not only does such a reference picture enable to solve the different local
detection efficiencies, but it overcomes spatial inhomogeneities within the particle beam as
well. Dividing the image with such a reference lets the fringe pattern emerge over the whole
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pattern size uniformly as shown in figure 4.14(c). From this processed picture the visibility
is retrieved, taking the intensity of several points along the line of minimum and maximum
fringe intensity following equation (2.5).
It is worth to notice that the Poissonian statistics have to appear in the relative error of the
intensity of the images, as the underlying statistics are the single-particle impacts. Hence,
analysing multiple pictures with different exposure times reveals an inversely proportional
behaviour with

√
N , as shown in figure 4.14(a).

4.4.5. Single-Particle Detection versus Integrated Picture: Accuracy versus
Time

It might be of interest to use single-particle detection and the integrated acquisition to detect
the pattern. If the interferometer has to be adjusted, it is desirable to have a fast feedback
on the presence of fringes and, should this be the case, on their possible orientation and
periodicity. As soon as the grating adjustment is done, visibility is the only signal relevant
for the experiment. Hence the single counting mode can be used to obtain precise data.
Nevertheless, it is worth to know how the visibility retrieved from an integrated picture is
related to the visibility analysed with single particles.
In mathematical terms, the pattern of the integrated picture can be described as a single-
particle pattern convoluted with a Gaussian function. This is just a mathematical expression
of the fact that each single particle has a Gaussian extension on the camera image with a
standard deviation of σ ≈ (70±10)µm (compare equation (4.20)). Based on this, it is clear that
the visibility of the pattern is reduced with decreasing periodicity, since the extension of the
Gaussian averages a larger fraction of the period. Nevertheless, it can be shown, by calculating
the convolution, that the reduction of the visibility is independent of the initial visibility. To
confirm this behaviour, we took two fringe configurations with variable periodicity. One with
approximately 95 % visibility and one with around 30 % visibility.10 The result is shown in
figure 4.15. The left side shows a direct comparison of the same pattern, once detected via a
single-particle recognition and once with a camera exposure time of ∆t = 60 s. The projection
angle α was retrieved with the Rayleigh test and applied to the integrated image, too. A great
difference in visibility is clearly noticeable. While the single-particle pattern shows a visibility
of νs = 27 %, the integration technique results in a significantly lower visibility νc = 3 %. The
right side shows the ratio νc/νs as a function of periodicity for the two mentioned visibility
configurations. A linear dependence in the depicted period range between the ratio and the
periodicity is found, while a different initial visibility has no effect on the relation between
the two different acquisition modes. Note that even for large periodicities, for which d� σ
holds, the ratio is expected levelling to 1. Applying a linear regression to the data yields the

10While the 30 % visibility fringe was achieved with the interferometer described in this work, the 95 % visibility
is obtained with the three-grating-deflectometer described in [45]. The principle of that deflectometer is the
same as for our current interferometer, only that its gratings have a pitch of d = 40µm and are separated
by L = 35.4 mm. In both cases is the period of the resulting fringe pattern changed by means of rotating
the last grating as described in chapter 2.4.

99



4. Experimental Setup: Characteristics and Performance

0 200 400 600 800
projection [µm]

0

0.5

1

1.5
no

rm
al

is
ed

 c
ou

nt
s 

/ i
nt

en
si

ty

single particle
integrated

0 200 400 600 800 1000 1200
periodicity [µm]

0

0.2

0.4

0.6

0.8

ra
tio

 
c / 

s

s  95%

s  30%

Figure 4.15.: Comparison of the two different ways of detecting a fringe pattern. Left:
For the same grating alignment and beam properties, a histogram with single-particle
events is shown under the same projection angle α as for the integrated picture. The
difference in visibility is clearly identifiable. While in the first case a visibility of νs = 27 %
is measured, the second case reveals a νc = 3 % fringe. Right: The ratio νc/νs shows a
strong dependence on the periodicity of the pattern. In fact, for the relevant periodicity
range it shows a linear behaviour which is independent of the original visibility (here
shown for fringes with νs ≈ 95 % and νs ≈ 30 %).

following conversion rate:

νc
νs

= 0.62 mm−1 · d− 0.05 . (4.30)

This knowledge provides a tool to convert directly the fringe visibility between the two
different acquisition modes. Therefore, in the remainder of this work, no distinction will be
made between the two ways of obtaining the visibility (νs and νc). Note that typically single-
particle νs provides information about the visibility ν. In rare cases, when νc was measured,
it is converted to νs and hence to ν with equation (4.30).

4.5. Characterising Single Components by Using the Setup as a
Whole

Combining the elements of the described experimental setup – namely the source, the gratings
and the detector – allows us to get a deeper understanding of the individual components as
well as of the whole system. The following sections discusses the photons coming from the
ECR source, the divergence of the neutral particle beam, the precision of the grating pitch,
and the temporal stability of the interferometer.

4.5.1. Photons Originating from the Source

Placing one grating close to the detector allows to understand the spectrum of neutral
particles which emerge directly from the source. It is observed that neutral particles do not
only result from collisions inside the experimental chamber but that they also originate from
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the source and are detected on the MCP if the acceleration voltage Uacc is put to zero. It
is unlikely that the detected particles in case of Uacc = 0 V are neutralised ions, as these
ought to have thermal energies and hence not be detectable with the MCP. More plausible
is the assumption that the remaining neutrals are photons which originate from electronic
transitions inside the plasma.
To test this hypothesis one grating is placed at a distance l = 9 mm in front of the detector
and illuminated with neutrals from an argon plasma (Uacc = 0 V). The result is not a clear
shadow image of the 3× 3 mm2 grating. Instead, additional shadows appear in the horizontal
and vertical direction. Following the grating equation, these maxima are identified with the
diffraction orders due to the nanometric structure (d = 257 nm) and the support structure
(ds = 1.5µm). While up to four maxima on each side are seen for the fine structure, the
larger structure exhibits only the first order maxima. From the distances of the maxima
on the detector and the grating-detector distance, the corresponding wavelength λ can be
calculated:

λ = (105± 7) nm . (4.31)

Comparing with the spectrum of argon shows that the given wavelength lies in the close
vicinity of the spectral lines λ = 106.7 nm and λ = 104.8 nm [123]. Therefore, it is likely
that the neutrals coming from the source when Uacc = 0 V are photons from the electronic
transitions inside the plasma.
It may certainly appear surprising that photons from a plasma should interfere on a grating, as
the plasma possesses a certain spatial extension and consequently the photons have negligible
spatial coherence. To understand this, we consider the coherence criterion, which prescribes
the maximal diameter of the source dsource for interference with a wavelength λ to be observed
on an object with a diameter D and a distance L away from the source:

dsource �
λ

D
L . (4.32)

For the given setup, assuming that only 1 mm2 of the grating participates in the interference
pattern, we see that the source has to be smaller than

dsource �
105 nm

1 mm
2.30 m ≈ 250µm . (4.33)

The resulting 250µm is half the size of the pinhole on the ECR source which may suggest that
the the effective source size is reduced or the grating area participating in the interference
pattern is smaller than 1 mm2.
Finally, we state the photon abundance compared to the neutrals from the source if Uacc is
switched on. Measurements for argon show that the ratio of photons to neutral particles is
in the order of 1 % and therefore negligible for the use of the neutral atomic beam.
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4.5.2. Systematic Study of Individual Actuator Movements and their
Informative Value about the System

A systematic scan of each single actuator can provide a deeper understanding of the system.
With a y-scan we can verify whether the fringes are due to the nanometric structure and
are not an artefact of the support structure. Moreover, it helps to characterise the fine
positioning of the vertical actuator. α-scans on grating one and two allow conclusions to be
drawn about the precision of the grating pitch, as minor differences in the pitch are reflected
in the behaviour of the moiré pattern. A horizontal z-scan provides information about the
divergence of the used particle beam. In the following, each scan and the conclusions drawn
from it is discussed more closely.

y-Scan: Proof of Nanometric Moiré Fringes

In order to confirm whether the detected fringes are moiré fringes caused by the nanometric
gratings as described in chapter 2.4 or whether they are of a different origin, a vertical scan
of the last grating can be performed. As discussed before, a vertical shift of the third grating
by one grating period results in a fringe shift of 2π also for the moiré pattern. Figure 4.16
depicts single-fringe projections for different piezoelectric voltages of the third actuator, which
exactly reflects this behaviour. The evolution of the fringe phase is clearly visible and shows a
linear dependence on the voltage. A linear regression of the phase allows precisely to calibrate
the actuator and yields

d = 257 nm =̂ 4.0± 0.1 V . (4.34)

This is consistent with the actuator specifications and hence proves the reliability of the
nanometric moiré fringes.

α-Scan: Precision of the Grating Pitch

Small variations in the grating pitch do not alter only the moiré visibility, as discussed in
chapter 3.1.2, but also its behaviour, in correspondence with equation (2.35). A full rotational
scan of the first two gratings elucidates the difference between the fringe pattern in the plane
of the third grating (the so-called nanoscopic pattern) and the last grating itself which is
used to magnify the pattern using the moiré effect.
Figure 4.17 displays the period and the orientation angle of the detected moiré fringe over a
systematic scan of α1 and α2, respectively. If the nanoscopic fringe pattern and the last grating
were perfectly aligned and had the same period, a uniform and homogeneously illuminated
square would be expected on the detector, which is mathematically equivalent to divergence
of the fringe period to infinity. In contrast, a minor periodic difference ∆d = |d1 − d2| would
result in a finite moiré beating with a macroscopic periodicity of

D =
d1 · d2

∆d
, (4.35)
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Figure 4.16.: Vertical scan (y-scan) of the last grating for a typical fringe (here taken
with a neutral hydrogen beam). Shown is the fringe projection for different piezoelectric
voltages of the vertical actuator. The phase shows linear dependence on the voltage,
while a full shift is accomplished over 4 V. This is consistent with a grating shift of one
period with d = 257 nm. (The error bar for the phase lies within the marker size.)

which is a special case of equation (2.35) for α = 0. Hence, the fringe period in figure 4.17
directly implies that there must be a difference in period. Note, that a rotational change
of the second grating (α2) causes the nanoscopic fringe pattern to rotate twice the angle,
whereas α1 has a one-to-one relation to the rotation of the pattern in the plane of the third
grating. This is the reason why the spread of the data in figure 4.17(c) is half as large as in
figure 4.17(a). Fitting the full moiré equation (2.35) to the fringe period yields a difference
between the last grating and the nanoscopic fringe pattern of

∆d = 140± 20 pm . (4.36)

Such a discrepancy can be explained by a pitch difference of half of its value between the first
and second grating, i.e. ∆d = d2 − d1 = 70 pm, following the argumentation in chapter 3.1.2.
Furthermore, such a minor difference of 0.5� in the grating pitches can also be explained
with a small tilt βx of one of the gratings, as the effective period is reduced according to

deff = cos(βx)d . (4.37)

For the measured difference, this would imply a tilt of

βx = 33± 2 mrad = 1.9°± 0.1° . (4.38)

This value is two orders of magnitude higher than expected from the results of the gratings’
alignment (compare equation (4.16): ∆βx . 200µrad). Consequently the periodic mismatch
is more likely to arise from the gratings themselves.
Looking at the orientation of the moiré pattern in figures 4.17(b) and (d) exposes a further
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a b

c

d

Figure 4.17.: Rotational scan of the first (α1) and second (α2) grating and the behaviour
of the moiré pattern. Fitting the theoretical cure (equation (2.35)) to the data reveals,
that the nanoscopic fringe pattern is larger than the last grating by ∆d = 140± 20 pm.
The rotation angles (grating angle and fringe orientation) are given anti-clockwise along
the beam axis. The error bar is within the marker size.

interesting artefact. From a geometric consideration, it can be seen that a rotation of the first
grating by α1 causes a rotation of the nanoscopic fringes on the third grating in the opposite
sense, i.e. αn = −α1. On the other hand, a rotation of the second grating by α2 leads to
a rotation of the nanoscopic pattern in the same direction but with double the amplitude,
i.e. αn = 2α2. This explains the different evolution of the fringe orientation over α1 and α2.
However, a still closer look also reveals that the movement of the macroscopic moiré fringes
is just the opposite to the nanoscopic fringes. This evidence proves that the periodicity of
the nanoscopic fringes is larger than the periodicity of the last grating, i.e.

dnano > d3 , |dnano − d3| = 140± 20 pm . (4.39)

104



4.5. Characterising Single Components by Using the Setup as a Whole

In the opposite case (dnano < d3) the moiré orientation would follow the nanoscopic fringe
orientation. For the difference between the first and second grating this means:

d2 > d1 , |d2 − d1| = 70± 10 pm . (4.40)

The fact that the second grating rotates the pattern twice its own angle can be also noticed
in figure 4.17(c) and (d) where the measurement was repeated for a fixed offset angle ∆α1 =
0.9 mrad resulting in the curve’s rotating in the negative direction only by a half of ∆α1.

z-Scan: Beam’s Divergence

Figure 4.18 shows the visibility for three different gases if the first grating is horizontally
misplaced by a distance ∆z. Such a displacement brings the gratings out of the equidistant
position and hence reduces the visibility of the fringes. Another factor which affects the
visibility is the divergence of the beam which governs how fast the visibility drops as ∆z
increases (compare section 3.1). Hence, the horizontal scan can be used as a measure of
divergence. A least squares optimisation of the measured gases’ visibility depicted in figure
4.18 with the theoretical curve (section 3.1.1) yields the following diffusivity of the different
particle beams:

αH = 1.05± 0.04 mrad , (4.41)

αKr = 0.24± 0.02 mrad , (4.42)

αXe = 0.23± 0.05 mrad . (4.43)

Here we see the necessity for a well-collimated beam, as the maximum critical misplacement is
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Figure 4.18.: Horizontal z-scan to measure the beam divergence. Shown is the visibility
as a function of the z-displacement with respect to the ideal position ∆z = 0 (maximum
visibility corresponds to equidistant gratings). Measurements were performed with a
3.6 keV hydrogen beam, a 17.7 keV krypton beam, and a 14.7 keV xenon beam. The
width of the visibility gives an insight on the beam’s divergence. It holds that the smaller
the width is, the larger the divergence becomes.
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reduced with higher diffusivity. In this measurements, the neutral particle beam was produced
on the grounded mesh in front of the source. Hence, the diffusivity should be determined by
the opening of the source (D = 500µm) and distance to the interferometer (l = 2.30 m), i.e.
α = D/l = 0.22 mrad. Comparing the results shows that this fits well for krypton and xenon,
whereas for hydrogen an effective source diameter of five times the actual source opening (i.e.
DH = 2.5 mm) has to be taken into account, indicating a larger neutralisation area for the
hydrogen production on the grounded mesh.

4.5.3. Stability of the Interferometer

The last question we address is the question about the stability of the interferometer. In
section 4.4 it was shown that the MCP is sufficiently stable with respect to the camera
outside the vacuum. An upper limit of 12.5µm was given for the drift of the detection system
in three days (see table 4.5). For the interferometer the critical drift is much smaller. A
drift of one grating with respect to another grating, of one period, i.e. 257 nm, would wash
out the fringe pattern and reduce the detected visibility significantly. To study this effect
a hydrogen fringe at 3.6 keV was measured with single-particle events over three hours (see
figure 4.19). The dataset was then divided into smaller subsets with a sampling time ∆t,
which were investigated separately. The left graph shows the thereby retrieved visibility for
the pattern over different sampling times. Unsurprisingly, as the number of detected particles
increases with the sampling time, the statistical error decreases accordingly. More interesting,
however, is the kink in the visibility for a sampling time of approximately 100 min. There,
the visibility drastically drops, indicating that a phase shift in this time domain starts to
play a crucial role. The right side in figure 4.19 depicts the evolution of the fringe phase for
two different sampling times. Here we clearly see that the fringe pattern drifts over half a
period in 150 min, with minor drifts in the range of 10 min on top of it. For the interferometer,
this would mean a corresponding grating shift of around 130 nm in three hours. For a higher
sampling time, as shown for example for ∆t = 30 min, the analysis cannot resolve the minor
phase shift in its detailed trend anymore, but only the overall drift. In comparison with the
plot on the left, averaging over the minor drifts does not reduce the visibility significantly
(∆t = 10 min→ ν = 15.6± 1 %, ∆t = 30 min→ ν = 15.1± 0.5 %). On the other hand data
sampling of more than 100 min would include different subsets with phases greater than a
quarter of period. This would reduce the fringe visibility significantly, as the kink in the left
graph makes clear.
From these results we learn that longer data acquisitions do not produce more precise results,
as the statistical error decreases. A longer acquisition time also makes room for systematic
error such as drift of the fringe pattern due to instabilities inside the interferometer. Therefore,
in the present work we made sure to avoid systematic errors due to drifts by always analysing
the full dataset and its subsets.
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Figure 4.19.: Pattern stability over time. Left: Sampling a three-hour-long data set into
subsets with a sampling time ∆t in order to analyse the visibility. The statistical error
in the visibility decreases as the sampling time increases. While the visibility is nearly
constant for a sampling time up to ∆t = 100 min, it decreases rapidly for larger sampling
times. This effect is due to a phase shift of the pattern in this time domain, resulting in a
wash-out of the pattern and hence reduction of the measured visibility. Right: Analysing
the phase shift reveals a drift over half a period in 150 min, which is equivalent to a drift
of the third grating by 130 nm. Such a drift is the reason for the decline in visibility
for higher sampling times. Evaluating the drift for a small sampling time (∆t = 10 min)
resolves also minor phase modulations over the overall phase drift, while a higher sampling
time (∆t = 30 min) only shows the long-term shift.

4.6. Summary

An experiment has been designed and built to show the interferometrical and classical be-
haviour in one setup for a wide range of neutral particles.
Its first stage produces a well-defined particle beam of atomic hydrogen, helium, argon, kryp-
ton, or xenon. To this end, an ECR source delivers the respective charged particles at an
energy ranging from 500 eV to 20 keV, which are neutralised upstream at a metal or gas target
without losing energy. A small energy spread of 1.3 % has been measured for the hydrogen
beam. In order to control the divergence of the beam, different pinholes can be introduced
in front of the interferometer.
The main part of the experiment is the three-grating Talbot-Lau interferometer. All three
gratings with a pitch of 257 nm are placed on a set of actuators to ensure that the gratings are
parallel and equidistant. The whole device is placed inside a mu-metal shield which reduces
the Earth’s magnetic field by a factor of more than a hundred. Any influence of stray electric
fields is avoided by means of copper tubes and a copper mesh between the metallically coated
gratings.
Particles participating in forming a fringe pattern are detected upstream with a two-stage
MCP, a phosphor screen, and a camera. Detecting individual particles can be performed with
a position resolution up to 10µm, while the dark count rate is kept less than 1 %. With the
Rayleigh test, an efficient way of obtaining the pattern’s period, orientation, and visibility
has been shown. For faster data acquisition multiple particles can be detected at once, albeit
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at the cost of reduced visibility due to finite extension of the particle’s impacts on the camera.
A linear relation between the visibility obtained with single particles and integrated pictures
makes it possible to correct for this effect.
With this completed experimental setup, systematic studies on its different parts reveal im-
portant insights into the experiment. It has been shown that photons whose spectral lines
are consitent with those of the plasma originate from the source, and can interfere on the
gratings. Furthermore, the nanoscopic fringe in the plane of the third grating is larger than
the last grating by ∆d = 140± 20 pm due to similar small differences in the gratings’ pitch.
With the grating not placed equidistantly, the divergence of the beam for hydrogen, krypton,
and xenon has been measured.
This characterised setup fulfils all the conditions necessary to show interference on the three-
grating interferometer with hydrogen and helium, and on its classical counterpart with argon,
krypton, and xenon. The next chapter presents these results and shows how we come from
the quantum to the classical limit with one setup.
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5. From Classical Xenon Fringes to Hydrogen
Interferometry

The previous chapters gave a detailed understanding of the principle of the three-grating
setup and its description as a Talbot-Lau interferometer or as a classical moiré deflectometer.
Thereby the preceding chapter explained explicitly the experimental realisation and imple-
mentations of the ideas presented in the theoretical chapters. Especially, it provided a set of
procedures to expose the three-grating setup with well-defined particle beams in mass and
energy and to extract the visibility out of the resulting periodic pattern.
The present chapter summarises the experimental results. Starting with two similarly looking
fringe patterns, we demonstrate that for one of them its energy dependence can still be
described in classical terms, while for the second one a quantum mechanical description, con-
sidering particles’ wave character, has to be taken into account. Furthermore, we show how
the characteristic behaviour of the Talbot-Lau interferometer can be used as a spectrometer
if the composition of the particle beam is not well understood. Finally, the obtained data
provide the possibility to estimate the charge implanted into the gratings by considering the
intra-grating interaction discussed in section 3.4 and give an outlook on the feasibility of an
ion interferometer with an equivalent setup.

5.1. Necessity of Considering Quantum Behaviour

Figure 5.1 shows two typical macroscopic fringe patterns as obtained with the three-grating
setup and a neutral xenon beam (left: 11.6 keV Xe-beam) or a neutral hydrogen beam (right:
3.7 keV H-beam). The last grating was tilted (α3 ≈ 1 mrad) to magnify the nanoscopic
pattern and single particle hits were detected and their center of mass analysed (compare
sections 2.4 and 4.4.2). The Rayleigh test and a sinusoidal fit (compare section 4.4.3) reveal
for both patterns similar visibilities ν ≈ 40 %. The histogram on the right of each picture
depicts a projection of the pattern along the orientation angle, i.e. along the horizontal axis,
and clearly reveals the fringes.
At first glance, both patterns can be explained by means of classical trajectories theoretically
discussed in section 2.6: an uncollimated beam passes through the first two gratings and
forms a shadow image due to geometric constraints of the trajectories in the plane of the
third grating.
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Figure 5.1.: With the same three-grating device a fringe pattern is observed with a xenon
beam (E = 11.6 keV) and a hydrogen beam (E = 3.7 keV). Both patterns exhibit similar
visibility (ν ≈ 40 %) and appear explicable by using classical trajectories. The histogram
on the right of each picture shows the fringe projection in the direction of the pattern,
i.e. the horizontal direction.

For a beam of particles with classical trajectories, a gradual reduction in the visibility of the
observed pattern is expected for decreasing particle energy. This is owing to an increased
interaction time of the particle beam with external perturbations inside the grating slits as
the particle energy is reduced. And, indeed, changing the energy for the xenon beam shows
a visibility reduction for slower particles (see figure 5.2), which justifies the description of
the experiment with the particles’ classical trajectories. Furthermore, changing the particle
species to the next lighter noble gas, e.g. krypton or argon, reveal a similar behaviour (see
figure 5.2). At 20 keV, the fringes start with a high contrast (around 40 %) which goes down
to almost 0 % as the energy approaches 2 keV.
However, the situation is very different for the fringe pattern of the hydrogen beam (compare
figure 5.2) and invalidates the attempt to describe the pattern in classical terms. Starting
from the fringe pattern with an energy of E = 3.7 keV and further increasing the particles’
energy causes the visibility to drop. The contrast goes down to 0 % at around 5 keV, causing
the pattern to disappear for the whole higher energy range accessible within the experimen-
tal setup. Reducing the energy from 3.7 keV causes a reduction of contrast as well, until
a complete disappearance at 2.8 keV. However, the fringe pattern reappears with a similar
contrast of 30 % around 950 eV. Repeating the measurement with a helium beam reveals a
similar behaviour, but with only one visibility maximum in the accessible range of energies.
Furthermore, the visibility maximum lies at 950 eV, the same as one of the hydrogen contrast
peaks, while the maximum at 3.7 keV seen in hydrogen, disappeared.
The different behaviour for the hydrogen and helium beam compared to the classical de-
scription consistent with xenon, krypton, and argon provides strong indication about the
insufficiency of the classical theory and calls for an explanation in terms of the particles’ wave
nature. In order to affirm quantum behaviour, we change the visualisation of the visibility
and plot all the measured data as a function of the de Broglie wavelength following equation
(1.1). Such representation of the different data sets as depicted in figure 5.3 shows a greater
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Figure 5.2.: Visibility as a function of particle energy reveals a significant difference
between the different atom species. For heavier atoms, like xenon, krypton, and argon,
visibility diminishes with decreasing particle energy. This is explainable in classical terms
by considering that with lower energy, the particle velocity is reduced, providing a longer
interaction time for disturbing forces which act upon the particles and smear out the
pattern. For lighter particles, like helium and hydrogen, no fringe pattern is identified in
the higher energy range, while distinct visibility peaks appear around 1 keV and 4 keV.
The classical picture is insufficient to explain the visibility peaks and therefore the data
demand that the particles’ wave character be taken into account. (Note: Unless specified
otherwise, the error bars are within the marker size. Furthermore, the higher energy range
for hydrogen was visually analysed with the integrated data acquisition mode revealing
no fringe pattern. Hence, the yellow bar indicates the noise floor in this energy range.
The small insets show a magnification of the peaks around 1 keV.)
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quantumclassical

Figure 5.3.: Mapping the various datasets for the different particles as a function of
the de Broglie wavelength λ = h/p = h/

√
2mE reveals a uniform picture which can be

only explained by considering the wave nature of the particles. As predicted for the
Talbot-Lau interferometer, visibility maxima appear at the position where the Talbot
length corresponds to an integer fraction of the grating distance. Therefore, the visibility
peaks for the hydrogen and helium beams mark the position for which the Talbot length
is equal to the grating distance and in the case of the second peak equal to half the
grating distance. The heavier particles have much smaller de Broglie wavelengths than
the wavelength corresponding to the first Talbot length, and hence mark the transition
to the classical regime.

consistency as all data seem to fall on one curve compared to the cases of plotting the visibility
versus the particles’ kinetic energy. Hence, it reveals the underlying quantum mechanical
structure of the experiment and allows us to review the characteristics of the Talbot-Lau
interferometer introduced in chapter 2.

The Talbot-length: The Talbot length LT , introduced in equation (2.1), defines the distance
after the grating for which a self-image of the grating itself can be observed. When considering
a Talbot-Lau interferometer, instead of a single grating, equation (2.6) shows that several
fringes with high contrast are expected to appear whenever the de Broglie wavelength is a
multiple of 472 fm, i.e. λnT = n · 472 fm. To prove this condition, we use a Gaussian curve to
fit the peaks in figure 5.3, which yields a maximum visibility for the following wavelengths:

Hydrogen: λ1T = 474 fm± 2 fm = (1.004± 0.004) · 472 fm (5.1)

λ2T = 951 fm± 2 fm = (2.015± 0.004) · 472 fm (5.2)

Helium: λ1T = 470 fm± 3 fm = (0.996± 0.006) · 472 fm . (5.3)

112



5.2. Talbot-Lau Interferometer as a Spectrometer

The peak values obtained by fitting the data agree with the theoretical prediction within
0.5 %, thus supporting the claim that the detected contrast maxima can be ascribed to the
first and second Talbot length for hydrogen, and to the first Talbot length for helium. Note
that combining equations (1.1) and (2.6) to

En,m =
h2L2

2d4
· 1

n2m
(5.4)

reveals that the visibility peak for hydrogen around 950 eV and for helium at precisely the
same energy represent the second and first Talbot order, respectively. The reason for which
the two peaks appear at the same kinetic energy is the energy’s quadratic dependence on the
Talbot order n.

Classical Limit: In equation (2.7), we stated that a particle beam can be described classi-
cally in our setup if the de Broglie wavelength is much smaller than 472 fm. Figure 5.3 shows
that all the heavier particles, such as xenon, krypton and argon, have de Broglie wavelengths
smaller than 100 fm. In the previous reasoning we argued, that the classical description is
able to explain the pattern generated with such particles and hence referred to it as classical.
The theoretical description of the interferometer legitimate this assumption of taking the
classical reasoning for the heavier particles, as this wavelength regime marks the transition
from the quantum to the classical regime.

The measured data with well-defined beams have demonstrated the working principle of the
Talbot-Lau interferometer for a wide range of particles. In addition, it has been shown that
for de Broglie wavelengths which are small in comparison to the Talbot wavelength the setup
can be described classically. Equipped with this understanding, the Talbot-Lau interferometer
can be conversely used to analyse properties of a beam if, for instance, the composition of
the beam is not well understood, as discussed in the following.

5.2. Talbot-Lau Interferometer as a Spectrometer

In chapter 4.1 we discussed how a well-defined particle beam can be achieved with known
particle mass and velocity. There, we also introduced the working principle of a pressure
chamber to convert ions via a charge exchange reaction into fast atoms with the same kinetic
energy. This step was of significant relevance to show the characteristic behaviour of the
Talbot-Lau interferometer in the previous section (5.1). Besides such a particle production,
we also reported on neutral atoms produced directly from the source (compare section 4.1.4).
These neutral particles were assumed to be formed on the grounded grid in front of the plasma
cavity. In this case we had no access to the information about the specific neutralisation
reaction that generated the detected particles. Due to lack of this knowledge, in table 4.2 we
listed all possible reactions and their resulting momenta in dependence on the acceleration
voltage Uacc, leaving open the precise composition of the neutral particle beam which is
directly produced from the source.
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Figure 5.4.: Using the working principle of the Talbot-Lau interferometer as a spec-
trometer. Shown are two measurements of the fringe patterns visibility over the applied
acceleration voltage Uacc. For the first measurement (red) well separated visibility peaks
can be identified corresponding to the reaction H+

3 → 3H. The indicated vertical lines
En mark the calculated positions of the visibility peaks with Talbot order n. The sec-
ond measurement (green) shows another peak which can be described with the reaction
H+

2 → 2H (E′n), indicating that the composition of the particle beam changed for the
second measurement. Note that for both possible reactions the peak for the third Talbot
order is strongly suppressed.
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1st measurement 2nd measurement reaction Talbot order

11.40 kV ± 0.03 kV - H+
3 + e −→ 3H 0.98± 0.01

2.77 kV ± 0.01 kV 2.84 kV ± 0.02 kV H+
3 + e −→ 3H 1.98± 0.02

- 1.80 kV ± 0.004 kV H+
2 + e −→ 2H 2.01± 0.01

- 1.19 kV ± 0.02 kV H+
3 + e −→ 3H 3.03± 0.03

0.61 kV ± 0.11 kV 0.71 kV ± 0.004 kV H+
3 + e −→ 3H 4.08± 0.22

Table 5.1.: Identified positions of the visibility peaks in figure 5.4 and their possible un-
derlying production mechanism with the corresponding calculated Talbot order following
equation (5.4).

The Talbot-Lau interferometer is a powerful tool to address this question. For certain particle
momenta the interferometer will exhibit high-contrast fringes. Following equations (1.1) and
(2.6) the specific momenta for which this is the case are

pn =
hL

d2n
. (5.5)

With this relation and the collection of possible reactions in table 4.2 it is possible to get
an insight into the beam’s composition. For this, we measure the fringe patterns’ visibility
over the acceleration voltage Uacc for the neutral particles coming directly from the source,
as shown in figure 5.4 (red data points). As predicted, the visibility evolution shows distinct
maxima comparable to the well-understood case in figure 5.2. The positions of the peaks are
identified via a Gaussian fit and listed in table 5.1. Following equation (5.4) and comparing
the data in figure 5.2 it can be observed that the energies at which the peaks are located
are around three times higher than what is expected for hydrogen produced via a charge
exchange reaction in the neutralisation chamber. This artefact strongly indicates that in the
source, hydrogen atoms must be formed from accelerated H+

3 . Note that the state of the
source itself can influence the composition of the beam: After a maintenance intervention on
the source, a secondary, previously unrecorded peak appeared at around 1.8 kV, while the
contrast of the main peak at 2.77 kV fell from 30 % to 15 % (figure 5.4 green data points). A
comparison between the newly formed peak with the possible reactions reveals that the peak
could be due to hydrogen atoms occurring from accelerated H+

2 . This means that the beam
for the second measurement is a mixture of hydrogen atoms originating from the following
reactions:

H+
2 → 2H (5.6)

H+
3 → 3H . (5.7)

A mixed particle beam for the second measurement (green) can also explain why the visibility
of the H+

3 -peak decreased by half of its initial value in comparison to the first measurement
(red). For the fringes at the H+

3 -peak, additional hydrogen atoms coming from H+
2 will only

lead to a constant offset to the fringe pattern, thus reducing visibility.
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In summary, the peaks in the source spectrum fit well to the assumption of the two mentioned
production mechanisms. Furthermore, visibility peaks up to the fourth order for the H+

3

production mechanism can be observed. It is, however, surprising to notice that the third
order for H+

3 is strongly suppressed, while the fourth order shows the same magnitude as
the first and second orders. We observe a similar effect with the beam originating via H+

2

acceleration: While the second order is clearly identified, the third order is suppressed as
well. Also worth noticing is the same magnitude of the peaks for the two different production
mechanisms. This could be understood if the particle beam consists of an approximately
equal number of hydrogen atoms originating from H+

2 and H+
3 . However, there are no strong

arguments why this must be the case.
To address these questions the case of a well-understood particle beam should be reconsidered
in order to mimic the assumed composition of the particle beam. With the introduced pressure
chamber and the Wien filter installed in front of it, it is possible to select the H+

2 and H+
3 ions

separately and to convert them via charge exchange into neutral hydrogen atoms, following
the same production mechanisms as studied before. Such an experiment can shed light on
the questions about the suppressed third order and the equal height of the visibility peaks,
and to confirm the working principle of the Talbot-Lau interferometer as a spectrometer.

5.3. Strength of Intra-Grating Interactions

The measured visibility in figure 5.3 reveals a striking and noteworthy difference in comparison
to the calculated visibility profile in figure 2.1. On the one hand, heavy particles with
wavelengths below 0.1 pm show a faster decrease in visibility as theoretically predicted, while,
on the other hand, the visibility maxima for the Talbot condition are narrower than expected.
To understand such a change in the visibility evolution we discussed various factors, which
affects the patterns’ visibility, in chapter 3. However, most of them, such as the gratings’
misalignment or independent vibrations, merely reduce the visibility by a constant factor.
Hence, even when considering such a negative influence, one still expects the same shape of the
visibility profile. The situation is different if one assumes intra-grating interactions. In section
3.4 we showed that charges placed inside the grating bars can change the overall visibility
behaviour. We use this knowledge in the following in order to explicate the differences in
the visibility plots and to estimate the number of implanted charges. Hereby we neglect the
absolute values of the visibility, as these can be influenced by a mixture of the aforementioned
artefacts (vibrations, misalignment etc.) and focus on the overall shape of the visibility
evolution.
To estimate the amount of charges Q implanted inside the grating, we have to find the
simulated visibility profile (compare section 3.4.2) for a specific Q which suits best the
measurements. For this purpose we perform numerous simulations to retrieve the visibility
profiles for all kind of mentioned particles, each time assuming a different implanted charge
covering the range between Q = 0 e and Q = 2000 e with a step size of Q = 10 e. Using the
least square method on this set of simulations with the data, and further introducing a free
parameter for the proportional visibility reduction indicates the best agreement of the data
with the simulation performed for a specific Q.
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Q = 100e

Q = 190e

Q = 170e

Q
 = 0e

Figure 5.5.: Interpreting the measured visibility with intra-grating interactions due to
implanted charges. The visibility for argon, krypton and xenon drops to zero at much
smaller wavelengths (λ ≈ 0.06 pm) compared to the simulated visibility profile not
considering intra-grating interactions, i.e. Q = 0 e. A good agreement with the data
is obtained if implanted charges are assumed to be Ar: Q = 170 e, Kr: Q = 190 e, Xe:
Q = 100 e. The shaded areas correspond to the estimated error on Q of ∆Q = ±20 e.
Note that an increasing Q affects a stronger interaction potential inside the grating slits
due to induced dipole interaction.

Q
 =

 0
e

Q
 =

 7
00

e

Figure 5.6.: Hydrogen: The width of the visibility peak around the first and second Talbot
order decreases with increasing intra-grating interactions. The best agreement with the
simulation is found for an implanted charge of Q = 700 e with an error interval (shaded
area) between 300 e and 1400 e.
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Figure 5.5 pictures the data for de Broglie wavelengths below 0.1 pm and hence for argon,
krypton, and xenon compared with the best fitting simulations. It can be clearly seen that
the data points drop down at a sufficient smaller value for λ, as expected for the undisturbed
case, i.e. Q = 0 e (purple). The best agreement of the experimental data with the simulation
is obtained for the depicted values of Q in the graph. While for argon a charge of 170 times
the elementary charge e is found to reproduce the experimental observation, the result for
krypton is Q = 190 e and for xenon Q = 100 e. As a guide to the eye, the shaded area indicates
what happens if Q is changed by ∆Q = ±20 e, which also gives the error on the evaluated
charges1.
Significantly higher results for Q are obtained for the hydrogen beam in figure 5.6. Here, the
figure of merit is the width of the visibility peak around the first and second Talbot orders. As
can be seen, the simulation would agree with Q being of the order of 700 implanted charges,
up to 7 times greater than what is found for the heavier nobles gases. The indicated error
range includes implanted charges ranging from Q = 300 e up to Q = 1400 e. A similar result
is obtained from the helium data (Q = 740 e; same error range as for hydrogen). The similar
outcome of hydrogen and helium can be explained due to the fact that for both species the
width of the visibility peaks are comparable (see figure 5.3) and both atoms having a similar
static polarisibility (see table 3.4).
Taking into account intra-grating interactions due to implanted charges allows to describe
satisfactorily the shape of the observed evolution of the visibility as a function of λ. It provides
an explanation why the visibility peaks are much narrower and why the drop for heavy atoms
is at smaller wavelengths than expected. The estimated charges Q are not consistent with
respect to the different kind of particles. While for the heavy noble gases charges between
100 e and 200 e are enough to account for the different visibility evolution, hydrogen and
helium require a charge of around 700 e. To explain this difference, it is to be emphasised that
every measurement was performed on a different day, as changing gas in the source required
time. Furthermore, while the measurement for argon, krypton, and xenon were completed
within a week, hydrogen and helium were measured around two weeks later. Due to the
calibration of the Wien filter and the pressure chamber, all three gratings were frequently
exposed to the corresponding ion beam inbetween the individual measurements. All these
factors could explain the different values for Q.
Yet another possible explanation for the difference in Q could be taking an equilibrium charge
into account which is dependent on the beam parameters. It may be argued that while the
experiment is running, a small fraction of the atoms hit the inner wall of the gratings, thereby
building up a surface charge with a final strength Q. An argument for the difference in
magnitude for the various gases, could be the particles’ penetration depth. As previously
discussed concerning figure 4.7, lighter particles, e.g. hydrogen, have a larger penetration
depth compared to heavier particles, e.g xenon, with the same kinetic energy, and hence could

1The best fitting simulation is assumed to have the minimal sum of squared residuals with respect to the

data and compared to the other simulations. The standard error of the residual is given by σ =
√

1
N

∑
N

r2
i

with N denotes the number of data points. The error on the charge considers all simulated dataset, whose
sum of the squared residuals r are within the standard error of the simulation with the minimal squared
residuals.
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cause a larger implanted charge Q. The final equilibrium charge Q would hence depend on
the particles’ species and might degrade as soon as the beam is shut down.
Even if the question about the different number of charges cannot be answered fully, it
provides a valuable estimate to discuss the feasibility of a proton interferometer in the next
section.

5.4. Ion Interferometer with Material Gratings

In consideration of the success of utilising the Talbot-Lau interferometer to measure on hy-
drogen atoms, it is worth to discuss the feasibility of the same setup for ions or, in our case,
protons. Various efforts exist to realise a matter wave experiment with ions [30,31, 33]. The
additional parameter charge, combined with the ions’ mass (compared to electron interferom-
etry) may give rise to a set of new experiments, such as measurements of the Aharonov-Bohm
effect [22–24] or of deviations from Coulomb’s inverse-square law [25]. Besides a biprism
interferometer [30, 31], which requires a coherent particle source, the presently-discussed
Talbot-Lau interferometer is a strong candidate to address this experimental field [25]. Of
course, the main difference, the charges, gives rise to a number of experimental problems due
to the ions’ sensitivity to electric and magnetic fields. While external magnetic and electric
fields can be sufficiently shielded (compare chapter 4.3), the fields inside the material gratings,
and hence intra-grating interactions due to implanted charges, may be the critical point of
this setup.
Using the Coulomb potential introduced in section 3.4 (equation 3.62) and the estimation of
the implanted charges in section 5.3, we can calculate the visibility for the present Talbot-Lau
interferometer when utilised with a proton beam. Figure 5.7 shows the calculated visibility
profile for different implanted charges Q compared to the force-free case. As discussed above
for the dipole interaction in case of hydrogen and the noble gases, the peak around the first
Talbot order gets narrower with the increasing strength of the intra-grating interactions. This
occurs because the intra-grating force due to Coulomb interactions exceeds the induced dipole
interaction by more than six orders of magnitude. In order to observe constructive interference
a well-defined de Broglie wavelength of protons to match the visibility peak is required. Table
5.2 lists critical deviation ∆λ for different Q for which the visibility drops significantly, such
that detection of the fringe pattern is made impossible. For instance, an implanted charge of
Q = 100 e requires to match the wavelength for the first Talbot order λ1T = 471.78 fm with
a precision better than ∆λ = 0.25 fm. Transferred to the particles kinetic energy this means
a precision better than ∆E = 4 eV for E1,1 = 3652 eV. This is 1�, and hence more than
one order of magnitude smaller than the measured energy spread of 1.3 % (equation (4.7)).
Note that due to an energy spread of the beam of 1.3 %, the visibility peak is broadened but
its maximum falls from the initial 100 % to below 20 %, as the pattern is averaged with the
patterns of the adjacent energies. Besides the de Broglie wavelength and hence the energy, a
working proton interferometer with implanted charges would require a precise knowledge of
the grating distance L and the period d, as these define the corresponding wavelength of the
Talbot order (compare equation (2.6)). As further listed in table 5.2, for Q = 100 e and the
described setup (L = 14 cm, d = 257 nm) this would mean an absolute alignment of the grat-
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ing distance better than ∆L = 74µm and the grating pitch known to a level of ∆d = 68 pm.
Note that implanting negative charges, e.g. Q = −100 e, yields the same maximum visibil-
ity and width as the case with positive charges, although the skewness of the two cases differs.

Figure 5.7.: The effect of an implanted charge Q for proton interference. The force inside
the slits due to the Coulomb interaction exceeds the induced dipole interaction by more
than six orders of magnitude. This results in a narrow peak around the wavelength
corresponding to the first Talbot length. For an implanted charge of Q = 100 e the
Talbot order has to be matched sufficiently better as ∆λ = 0.25 fm, which corresponds
to the beam’s energy precision of ∆E = 4 eV at E1,1 = 3652 eV.

Q [e] ∆λ [fm] ∆E [eV] ∆L [µm] ∆d [pm]

1 14 220 4200 3800
10 1.2 19 356 327

100 0.25 4 74 68

Table 5.2.: Critical parameters to consider for a proton interferometer for different im-
planted charges Q. To detect the visibility maximum around the first Talbot order,
the listed parameters have to be known with the stated precision. The values are esti-
mated for idealised current setup with d = 257× 10−9 nm and L = 14 cm, and hence
E1,1 = 3652 eV, which corresponds to a de Broglie wavelength of λ1T = 471.78 fm.
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Following the above arguments, realisation of a proton interferometer with the current setup
would need a control of the beam energy with precision of 1 eV. Furthermore, if we make
a realistic assumption that the distance L is known only to the limit of ∆L = 100µm and
the grating period d to ∆d = 100 pm, the position of the visibility peak is only known up
∆E = 11 eV. This requires a fine scan around the expected position of ±∆E in order to find
the peak. In principle this is feasible with the current setup, but only if the high voltage power
supply is upgraded to a high precision voltage power supply with low ripple (i.e. . 1�) and
if the beam energy spread is reduced for example implementing a double multi-pole Wien
filter [124]. However in the current state of the art, alternative approaches which use laser
gratings to diffract the ion beam [25, 125] are much more robust, as in those intra-grating
interactions do not play any role.

5.5. Summary

In the beginning of the theory chapter (chapter 2) we illustrated with the help of figure 2.1
the overall behaviour of a Talbot-Lau interferometer. Now, the current chapter concludes
with the same illustration in figure 5.8 but this time filled with the measurements realised
in this work. We have proved the characteristic behaviour of such an interferometer for
different de Broglie wavelengths over more than two orders of magnitude. We showed the
sharp visibility peaks at wavelengths λnT = nd2/L corresponding up to the fourth Talbot order
and the transition to the classical regime for λ� d2/L. Furthermore, we have demonstrated
the principle of a spectrometer based on such an interferometer, which provides an insight into
the momentum composition of the beam, in case the beam production mechanism is not well
understood. Moreover, deviations of the measured data points with respect to the theoretical
curve provide a deeper understanding of intra-grating interactions due to implanted charges
inside the material gratings. The presence of such charges and their estimated value set
constraints on the feasibility of showing proton interference with the present setup. We have
concluded this chapter by arguing that proton interferometry would be possible even with
implanted charges, if one could achieve energy control precision better than 1� and small
energy spread.
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Figure 5.8.: Combined representation of all data, including the H+
3 → 3H production

directly at the source. It reveals the characteristic behaviour of the Talbot-Lau interfer-
ometer with rephasing – i.e. visibility maxima – at wavelengths λnT for which the grating
distance L corresponds to multiples of the Talbot length LT = d2/λ. The transition to the
classical regime is represented by the heavier atoms (xenon, krypton, argon) due to their
smaller wavelengths, λ < λ1T . Histograms on top show the raw data for the indicated
positions from which the visibility is extracted.
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In the course of this work, a three-grating setup was theoretically studied and successfully
experimentally realised with a wide range of atoms, namely hydrogen, helium, argon, krypton,
and xenon to show the working principle of a Talbot-Lau interferometer and its transition
to the classical regime, described in terms of a moiré deflectometer. The presented results
enabled a discussion about the feasibility of an ion interferometer with the current setup.
We started with a full analytical description of the three-grating device as a Talbot-Lau
interferometer. Without requiring a coherent source and using near-field interference effects,
the interferometer was used to verify the wave nature of multiple particles. Furthermore, we
showed that the same device can be classically described as a moiré deflectometer if the de
Broglie wavelength of the impinging particles is sufficiently small.
We then proceeded to studying different effects influencing the visibility of the expected
pattern. Particular attention was paid to the study of alignment requirements of the three-
grating setup. We used a classical framework to derive quantitative formulae to set a limit
on the required precision, considering the longitudinal position of the gratings, the grating
pitch, and a tilt of the gratings around each axis. Discussing the influence of vibrations and
external forces acting on the particles gave further constraints for a working interferometer.
A detailed theoretical description of possible intra-grating interactions occurring inside the
material gratings set a pathway to study the feasibility of a proton interferometer in the last
chapter.
With the presented theoretical background and the constraints for a working setup, this work
analysed in detail the experimental realisation of the three-grating device. Starting from the
source and following the beam axis down to the detector, each component was explained and
characterised separately. Here, we pointed out how a well-defined atom beam is produced
with a known energy, a small divergence, and an energy spread around 1 %. Furthermore,
the Talbot-Lau interferometer was designed with high precision actuators and built in such a
way that all alignment requirements could be complied with. The detection system and the
data acquisition were shown to resolve single-particle impacts with a precision of 10µm. The
description of the experimental setup ended with a list of experiments, including fine scans
over all actuators, to further characterise the apparatus. Thanks to these tests, we found out
that, in addition to the expected particles, the source also produced photons consistent with
the spectral lines of the gas inside the plasma source. Moreover, with a rotational scan of the
first and second grating we were able to measure a difference in the periodicities of the three
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gratings in the order of 140 pm.
In the final stage, the interferometer was exposed to different particles with energies up
to 20 keV. The selected species were hydrogen, helium, argon, krypton, and xenon. Hence
we had access to a wide range of de Broglie wavelengths between 0.02 pm and 2.2 pm. The
reported data for all particles verified the full characteristic behaviour of the Talbot-Lau
interferometer and hence the particles’ description in terms of the wave-particle duality.
Furthermore, we could show that for the heavier particles and thus smaller wavelengths, the
data also matched a classical description. In this context, we presented the idea of using
the Talbot-Lau interferometer as a spectrometer to understand the composition of a particle
beam whose energy is known only up to a proportionality factor. The deviation of the
calculated signal from the obtained data gave an insight into the intra-grating interactions
which were modelled by simulating implanted charges inside the gratings. Charges of more
than a hundred times the elementary charge had to be assumed in order to understand
the discrepancy between theory and experiment. This gave rise to the question about the
feasibility of an ion interferometer. This is because assuming deposited charge of 100 e inside
the gratings sets major constraint on the experimental realisation of a proton interferometer.
We concluded that the main parameters of the experiment – the particle’s energy, the distance
between the gratings, and the grating period – have to match each other on a per mille scale
to achieve an interference signal. This also includes the requirement that the energy spread
of the beam be on the same per mille scale.
Thus, we concluded that in order to achieve proton interferometry, it is crucial either to
improve the source or to avoid implantation of any charges inside the gratings. On the side
of the proton source, a decrease in the energy spread, down to the demanded per mille level
is required, while also the absolute precision of the beam’s energy has to be known at this
scale. This demands an improvement of the ion-beam optics but also a higher precision on
the applied acceleration voltage. The gratings, on the other hand, could be improved with
an additional gold-coating to shield the effect of implanted charges. Summarising, we argue
that the above-mentioned improvements on the source and gratings make a realisation of a
Talbot-Lau interferometer for protons more feasible.
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A. Constants

Fundamental physical constants and related quantities used in this work are adapted from [126]
and listed in the following table.

constant symbol value

electron mass me 9.1094× 10−31 kg
proton mass mp 1.6726× 10−19 kg
elementary charge e 1.6022× 10−19 C
Planck constants ~ 1.0546× 10−34 J s

h ~ · 2π
speed of light c 299 792 458 m s−1

Boltzmann constant kB 1.3087× 10−23 J K−1

vacuum permittivity ε0 8.854× 10−12 F m−1
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