
Sampling scheme for neuromorphic simulation of entangled quantum systems

Stefanie Czischek,1 Jan M. Pawlowski,2 Thomas Gasenzer,1 and Martin Gärttner1
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Due to the complexity of the space of quantum many-body states the computation of expectation
values by statistical sampling is, in general, a hard task. Neural network representations of such
quantum states which can be physically implemented by neuromorphic hardware could enable ef-
ficient sampling. A scheme is proposed which leverages this capability to speed up sampling from
so-called neural quantum states encoded by a restricted Boltzmann machine. Due to the complex
network parameters a direct hardware implementation is not feasible. We overcome this problem
by considering a phase reweighting scheme for sampling expectation values of observables. Apply-
ing our method to a set of paradigmatic entangled quantum states we find that, in general, the
phase-reweighted sampling is subject to a form of sign problem, which renders the sampling com-
putationally costly. The use of neuromorphic chips could allow reducing computation times and
thereby extend the range of tractable system sizes.

I. INTRODUCTION

Simulating quantum many-body systems is considered
a hard task for classical computers due to the exponen-
tially growing Hilbert space dimension with system size.
While some models, like the transverse-field Ising model,
can be solved analytically [1–5], various approximative
simulation methods exist. Among the most successful are
the density matrix renormalization group, which is based
on tensor network states [6–11], quantum Monte Carlo
methods [12, 13], or semi-classical phase-space methods
[14–17]. However, all these methods exploit specific prop-
erties of the quantum states. This limits their range of
applicability and requires some a priori knowledge about
the system. Quantum simulation of systems by other
quantum systems [18–23] as an alternative is plagued by
the fragility of quantum states due to decoherence.

Here we explore further a new route leading beyond
standard von-Neumann architectures which makes use of
brain-inspired approaches [24–26]. Among these, neuro-
morphic chips emulate neural networks by means of spik-
ing neurons implemented on classical analog hardware.
These chips have been shown to enable an efficient im-
plementation of sampling from Boltzmann distributions
[25–27]. The sampling on neuromorphic chips can yield a
speed-up of at least one order of magnitude compared to
classical computers while consuming about three orders
of magnitude less energy [28]. The dynamical process
performed by the neuromorphic network can be related
to Langevin sampling of spin systems [29] which opens a
path to the representation of quantum many-body states
on the classical hardware.

Recently, parametrizations of quantum many-body
states in terms of a restricted Boltzmann machine (RBM)
network topology have been proposed [30, 31] and further
studied [32–45]. These RBM representations of quantum
states, in general, involve complex network parameters
(weights and biases) due to the necessity to account for
quantum superposition and interference [30, 46, 47]. As
a result, the RBM does not resemble a positive definite

Boltzmann probability distribution but rather the mea-
sure of a Feynman path integral. Therefore, standard
RBM sampling and training methods, implementable on
neuromorphic chips, cannot be applied.

Here we propose a phase reweighting scheme which
absorbs the complex phases into the sampled observ-
ables [48–53], while the remaining amplitudes give a
Boltzmann distribution of the spin configurations. This
enables an implementation of a sampling process from
this distribution on neuromorphic hardware to approxi-
mately evaluate expectation values according to a quan-
tum Monte Carlo method.

Moreover, an extension of the parametrization to deep
Boltzmann machines with multiple hidden layers be-
comes possible. In contrast to two-layer RBMs with com-
plex weights which require the analytic summation of the
hidden spins [30], these networks can be Gibbs sampled.
This is crucial since an RBM with a single hidden layer
allows to extract directly only diagonal spin observables
from the sampled visible spin configurations. Here we
devise an extension to deep networks which makes the
calculation of arbitrary expectation values of spin oper-
ators possible from the visible layer of the network.

In general, the advantages of the reweighting scheme
come at the expense of a form of sign problem which
renders the sampling costly. However, we argue that
neuromorphic hardware implementations could still pro-
vide a proportional speedup compared to standard ar-
chitectures [28]. To benchmark our method, we consider
the transverse-field Ising model (TFIM), which is a one-
dimensional spin-1/2 chain with nearest-neighbor Ising
interactions in a transverse field. The model describes a
quantum phase transition between a para- and a ferro-
magnetic phase, controlled by the relative strength of the
interactions and the transverse-field strength. We apply
the deep Boltzmann machine representation to perform
measurements of the order parameter and correlations
in the ground state of the TFIM at the quantum phase
transition, which is known to exhibit non-trivial quantum
correlations.
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To further analyze the ability of the RBM representa-
tion to capture quantum mechanical effects, we consider
spin systems in strongly entangled states. As paradig-
matic examples we choose the Bell state of two spins [54–
56], as well as its generalization to larger spin systems,
the Greenberger-Horne-Zeilinger (GHZ) states [57].

If the network parameters are purely real, which is
the case for measurements in the computational basis (z-
basis) for the ground state of the TFIM, we find sampling
to be efficient, in the sense that the number of random
samples needed in order for the expectation values to
be converged is almost independent of the system size.
Measurements in other bases require the extension to a
deep network. For Bell and GHZ states, where complex
network parameters are involved, the number of samples
required to reach converged results scales exponentially
with the size of the network. This is a manifestation
of the sign problem [48–51, 53, 58, 59], which is due to
the fact that the phases that need to be averaged in the
phase reweighting scheme fluctuate heavily. This leads
to strongly growing variances in the statistical sampling
process (see Sect. V B). As a result, our method can be
used to encode quantum states of limited size, also max-
imally entangled ones, in classical networks and sample
from them, which can be realized efficiently by neuro-
morphic hardware.

Applications of RBM representation of quantum states
include the simulation of ground states and dynamics
in closed and open quantum many-body systems [30–38,
43, 45, 60–64] and efficient state tomography by learning
the parameters of the state from experimental data [46,
59, 65]. All these applications could benefit from the
use of neuromorphic hardware to more efficiently perform
learning and sampling tasks.

After having introduced the RBM ansatz for
parametrizing quantum states of many-spin systems
(Sec. II), we present the phase reweighting scheme
(Sec. III) and extensions to deep networks for measur-
ing off-diagonal observables (Sec. IV). In Secs. V and
VI, we apply the method to ground states of the TFIM
and Bell and GHZ states, respectively, analyzing conver-
gence and sampling efficiency. We draw conclusions in
Sec. VII.

II. REPRESENTING QUANTUM STATES
WITH RESTRICTED BOLTZMANN MACHINES

The state vector of an array of N spin-1/2 objects can
be expressed in terms of product basis states |vz〉 =
|vz1〉 ⊗ · · · ⊗ |vzN 〉, where vzi = ±1 and |vzi 〉 are the
eigenstates of the Pauli operator σz. The many-body
wave-function is thus represented by complex coefficients
cvz ∈ C as

|Ψ〉 =
∑
{vz}

cvz |vz〉, (1)

. . .

. . .

vz
1 vz

2 vz
N
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FIG. 1. Restricted Boltzmann machine (RBM) network with
N visible neurons vz = (vz1 , . . . , v

z
N ) and M hidden neurons

h, cf. Eqs. (2), (3). Each visible neuron vzi is connected to
each hidden neuron hj via the weight Wi,j and has a bias di,
while the hidden neurons hj have biases bj .

where the sum runs over all basis states. The number
of coefficients needed is 2N , thus scaling exponentially in
system size. In order to reduce the number of parame-
ters needed to represent the quantum state to a tractable
size, the coefficients cvz can be parametrized by means
of an artificial neural network, specifically of a restricted
Boltzmann machine (RBM) [30, 31, 66].

An RBM consists of N visible and M hidden binary
neurons, vzi , hj ∈ {±1}, where the visible neurons corre-
spond to the physical spins in the quantum state repre-
sentation. Each visible neuron vzi is connected to each
hidden neuron hj via a weight Wi,j and each neuron has
an additional bias, di for the visible and bj for the hidden
neurons, as illustrated in Fig. 1. This yields the network
energy function

ERBM (vz,h;W) = −
N∑
i=1

M∑
j=1

vziWi,jhj −
N∑
i=1

vzi di

−
M∑
j=1

hjbj ,

(2)

with the set of all weights and biasesW = (d,b,W ) [67].
An RBM-based parametrization of the unnormalized co-
efficients cvz can be defined as [30, 66]

cvz (W) =
∑
{h}

exp [−ERBM (vz,h;W)] . (3)

While for real-valued network parameters this corre-
sponds to the marginal of a Boltzmann distribution over
all neurons of the network, the weights and biases in gen-
eral need to be complex in order to account for the com-
plex basis projections cvz of a quantum state [30, 66].

An unnormalized probability distribution over the vis-
ible neurons is instead given by |cvz (W) |2, which can
be evaluated after the summation over the binary hidden
neurons is carried out, giving [30]

cvz (W) = exp

[
N∑
i=1

div
z
i

]
M∏
j=1

2cosh

[
N∑
i=1

vziWi,j + bj

]
.

(4)
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With this, expectation values of operators that are diag-
onal in the chosen basis [z-basis, cf. Eq. (1)], Odiag, can
be written as〈

Odiag
〉

=
1

Z (W)

∑
{vz}

Odiag (vz) |cvz (W)|2

≈ 1

Q

Q∑
q=1

Odiag
(
vzq
)
,

(5)

normalized by

Z (W) =
∑
{vz}

|cvz (W)|2 . (6)

In the second line of Eq. (5) we approximate the mean
value in terms of a sum over Q samples of visible spin
configurations vz drawn according to the probability dis-
tribution |cvz (W)|2 via a Metropolis-Hastings algorithm
and evaluate Odiag(vzq) on these samples [30]. The sam-
pling error can be estimated via the variance, as further
discussed in Sect. VI B.

Non-diagonal operators, such as the total magnetiza-
tion

∑
i σ

x
i , can be evaluated similarly, exploiting their

sparsity [30]:

〈O〉 =
1

Z (W)

∑
{vz}

∑
{ṽz}

〈ṽz |O|vz〉 cvz (W) c∗ṽz (W)

=
1

Z (W)

∑
{vz}

Oloc (vz) |cvz (W)|2

≈ 1

Q

Q∑
q=1

Oloc
(
vzq
)
,

(7)

where we introduce the local operator

Oloc (vz) =
∑
{ṽz}

〈ṽz |O|vz〉 c
∗
ṽz (W)

c∗vz (W)
, (8)

with the star denoting complex conjugation. This ex-
pression can be evaluated efficiently if O is sparse, i. e.
〈vz|O|ṽz〉 is only non-vanishing for a number of matrix
elements that scales polynomially in the number of spins.
Physically relevant observables have this property.

The weights and biases in the RBM parametrization
are variational parameters which can be adapted to
represent a desired wave function. These weights can
be found via a variational ansatz, where commonly a
stochastic reconfiguration method is used to find ground
state representations via energy minimization [30]. In
some cases the network parameters can be found analyt-
ically as is the case for Bell and GHZ states which we
will use below.

In the case of complex network parameters, Eq. (3) can
no longer be interpreted as the marginal of a Boltzmann
distribution. The exponential factors that are summed
are complex and thus do not represent probabilities. In

particular, this means that the intuitive procedure for
evaluating observables – sampling configurations of all
neurons in the network, including hidden ones, and then
averaging the values of the observables obtained from the
states of the visible neurons – is not applicable.

This motivates us to reformulate the procedure of eval-
uating observables in a way that allows sampling from
a Boltzmann distribution while complex phases are ab-
sorbed into the diagonal elements of the considered ob-
servable. On the one hand, this enables an extension to
deep neural networks with multiple hidden layers. On the
other hand, an implementation on neuromorphic hard-
ware setups becomes possible, which is known to effi-
ciently sample from Boltzmann distributions [25–27].

III. PHASE REWEIGHTING SCHEME

To enable a sampling of visible and hidden neurons
in the complex RBM from Boltzmann distributions, we
consider the exponential of the network energy stated in
Eq. (2). We split the weights and biases into real and
imaginary parts,

exp [−ERBM (vz,h;W)]

= exp

 N∑
i=1

M∑
j=1

vziW
R
i,jhj +

N∑
i=1

dRi v
z
i +

M∑
j=1

bRj hj


× exp

i
 N∑
i=1

M∑
j=1

vziW
I
i,jhj +

N∑
i=1

dIiv
z
i +

M∑
j=1

bIjhj


=: P̃

(
vz,h;WR

)
eiϕ̃(vz,h;WI),

(9)

with W =WR + iWI. Here we introduce the probability
distribution P̃ (vz,h;WR) yielding a Boltzmann distri-
bution over visible and hidden neurons, and the phase
ϕ̃(vz,h;WI).

The basis expansion coefficients can then be expressed
as

cvz (W) =
∑
{h}

P̃
(
vz,h;WR

)
eiϕ̃(vz,h;WI), (10)

according to Eq. (3). Substituting Eq. (10) into Eq. (5),
expectation values of diagonal operators in the z-basis,
Odiag, can be expressed as〈
Odiag

〉
=

1

Z (W)

∑
{vz}

∑
{h,h̃}

[
Odiag (vz) eiϕ(vz,h,h̃;WI)

]
× P

(
vz,h, h̃;WR

)
,

(11)

Z (W) =
∑
{vz}

∑
{h,h̃}

eiϕ(vz,h,h̃;WI)P
(
vz,h, h̃;WR

)
,

(12)
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where we introduce

ϕ
(
vz,h, h̃;WI

)
=: ϕ̃

(
vz,h;WI

)
− ϕ̃

(
vz, h̃;WI

)
,

(13)

P
(
vz,h, h̃;WR

)
=: P̃

(
vz,h;WR

)
P̃
(
vz, h̃;WR

)
.

(14)

It turns out that the hidden neuron configurations are
summed over twice (sums over h and h̃) when calculat-
ing expectation values. These sums originate from the
coefficients of bra- and ket-states, respectively [60].

As P (vz,h, h̃;WR) yields a Boltzmann distribution
over the visible and hidden neurons, the sums in
Eqs. (11)–(12) can be approximated by summing over
samples drawn from these probability distributions. We
use standard block Gibbs sampling [67]. In contrast to
Eq. (5), not only the operator itself needs to be evaluated

for each sample, but also the phase ϕ(vz,h, h̃;WI). Fur-
thermore, this phase appears in the normalization factor
Z(W) [cf. Eq. (12)].

The observable is thus reweighted with a complex
phase in the evaluation of expectation values, which is
why one refers to this ansatz as a phase reweighting
scheme. This is a commonly used method in quantum
Monte Carlo approaches [48–51, 53, 59]. Note that this
method often suffers from a sign problem. If the phases
fluctuate heavily they can cancel each other, resulting
in an uncontrolled growth of the variance of the sampled
quantity, which in turn requires an exponentially growing
number of samples [48–51]. A more quantitative account
of this will be given in Sect. VI B.

IV. MEASURING IN DIFFERENT BASES

Having introduced the phase reweighting scheme to
evaluate expectation values of diagonal operators by sam-
pling from a Boltzmann distribution, we now derive a
scheme for measuring non-diagonal operators that elim-
inates the use of local operators. This overcomes the
problem that efficient evaluation of local operators re-
quires them to be sparse and that their matrix elements
need to be evaluated explicitly. More importantly, only
the states of the visible spins and the phases associated
with a given sample state need to be evaluated for the
samples drawn from a Boltzmann distribution. This en-
ables the use of neuromorphic architectures for perform-
ing the sampling.

Any hermitian operator can be decomposed into a
Pauli string as

O =
∑
{α}

Dασ
α1
1 ⊗ . . .⊗ σαN

N (15)

where αi ∈ {0, 1, 2, 3} and σαi
i are Pauli operators acting

on spin i with σ0
i = 1 and Dα are expansion coefficients.

Here, we will only consider product operators or Pauli

(a) (b)
. . .

. . .

. . .

h1 h2 hM

vz
1 vz

2 vz
N

vx
1 vx

2 vx
N

bj

Wi,j

di
−iπ

4

iπ
4

−iπ
4

. . .

. . .

. . .

h1 h2 hM

vz
1 vz

2 vz
N

vy
1 vy

2 vy
N

bj

Wi,j

di

−iπ
4

FIG. 2. Setup of the deep neural network parametrization
to perform measurements in different spin bases. Panel (a)
shows the extension of the RBM with visible neurons vzi , hid-
den neurons hj , biases di, bj and connecting weights Wi,j ,
cf. Fig. 1, to a deep neural network (dNN) to represent the
state in the x-basis with visible neurons vxi , where the neu-
rons vzi turn into hidden neurons which are summed over. vxi
and vzi are connected by weights iπ/4, and biases for vxi as
well as imaginary parts of the biases for vzi appear. Panel
(b) shows the corresponding dNN to perform measurements
in the y-basis, where the visible neurons vyi are added instead
of vxi in panel (a). Here only connecting weights between vyi
and vzi are required, but no further biases appear.

strings, such as the magnetization of a single spin σαi
i

(not writing out identities) or correlations between two
spins σ

αi

i σ
αj

j , but generalization to arbitrary operators is
straight forward.

An operator is diagonal in the z-basis if it only involves
σ3 = σz-operators (and identities). A non-diagonal spin
operator, which involves σx and/or σy, can be evaluated
by rotating the spins locally into the basis in which the
operators acting on the corresponding spins are diagonal.
In the following we will show that this procedure can
be encoded as an additional layer in the neural network
representation of the state.

We first consider the Pauli-operator σxi acting on a
single spin i. The eigenstates of this operator can be
obtained from the z-basis states by applying a rotation,

|vxi 〉 =
∑
{vzi }

uz→x (vxi , v
z
i ) |vzi 〉, (16)

with the entries uz→x(vxi , v
z
i ) = 〈vzi |vxi 〉 of the unnormal-

ized rotation matrix

Uz→x =

[
1 1
1 −1

]
. (17)

These entries can be written as an exponential function,

uz→x (vxi , v
z
i ) = exp

[
i
π

4
(vxi v

z
i − vxi − vzi + 1)

]
, (18)

taking the form of the exponential of an RBM network
energy, similar to Eq. (2). In order to evaluate the ex-
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pectation value of σxi we can equivalently apply a rota-
tion to spin i and then evaluate the diagonal observable
σzi . This means that we replace the single-particle basis
states |vzi 〉 appearing in Eq. (1) by Eq. (16), resulting in
an additional summation over vzi . This additional sum-
mation means in our network representation that vzi has
become a hidden neuron. Since the involved matrix el-
ements can be written as exponential factors of the re-
quired form Eq. (18), they just contribute to the overall
network energy as any other weights in the network. We
hence end up with a deep neural network (dNN) with two
hidden layers. If we are interested in measuring the x-
magnetization of all spins or correlations σxi σ

x
j , we would

add an additional connection to every visible spin as il-
lustrated in Fig. 2(a).

To summarize, we can parametrize the state of a spin
in the x-basis by introducing a neuron vxi in the RBM
parametrization, which is connected to vzi via a weight
iπ/4 and has a bias of −iπ/4, while vzi gets an addi-
tional bias of −iπ/4. The overall bias of iπ/4 appearing
in Eq. (18) can be neglected as it is an irrelevant global
phase factor.

An analogous expression can be derived for a local ro-
tation of the spin state into the y-basis, so that also a
neuron vyi can be connected to vzi , enabling a measure-
ment of the Pauli-operator σyi , as illustrated in Fig. 2(b).
The vzi neuron again turns into a hidden neuron, yielding
the transformation

|vyi 〉 =
∑
{vzi }

uz→y (vyi , v
z
i ) |vzi 〉, (19)

with elements

uz→y (vyi , v
z
i ) = exp

[
i
π

4
(1− vyi vzi )

]
, (20)

of the rotation matrix

Uz→y =

[
1 i
i 1

]
. (21)

With this ansatz, any desired Pauli string operator can
be measured using the phase reweighting scheme on the
corresponding dNN. The network representation can al-
ways be set up to represent the local spins in the basis
where the applied operator becomes diagonal. Notice
that the added network parameters are purely imaginary
such that the resulting dNN will always contain complex
parameters. We saw in Eqs. (13)–(14) that the evalua-
tion of observables requires to sum twice over all hidden
neurons. This will now be the case for all spins vzi that
get connected to an additional spin vxi or vyi .

V. GROUND STATES OF THE
TRANSVERSE-FIELD ISING MODEL

Having introduced the dNN setup with the phase
reweighting scheme, we benchmark the approach on the
ground state of the transverse-field Ising model (TFIM)
at the quantum critical point.

A. Model and dNN Representation

The one-dimensional TFIM is an integrable model de-
fined on a spin-1/2 chain with N sites via the Hamilto-
nian

HTFIM = −J
N∑
i=1

σzi σ
z
(i+1)%N − h

N∑
i=1

σxi , (22)

with (i + 1)%N = (i + 1)modN denoting a modulo-N
calculation, i.e., we choose periodic boundary conditions.
The system undergoes a quantum phase transition at the
quantum critical point reached for the transverse mag-
netic field strength h = hc = J . In the following, we fix
the energy scale by setting J = 1. The model is inte-
grable and can be solved in terms of a Jordan-Wigner-
fermionization [1–5, 68]. It has been studied in great de-
tail and is a common choice to benchmark approximative
analytical and numerical methods.

To represent the ground state in the RBM
parametrization, the corresponding weights can be found
variationally by using stochastic reconfiguration minimiz-
ing the system energy [30]. In the following we apply
this variational ansatz to find weights and biases repre-
senting the ground state at the quantum critical point.
Subsequently, given the state representation, we fix the
weights and biases and apply the phase reweighting sam-
pling scheme to benchmark its performance when applied
in the dNN approach.

We only consider moderate system sizes, N ≤ 10, so
that we can apply exact diagonalization, enabling an ex-
act evaluation of any desired operator, and thus a bench-
mark of the dNN ansatz in arbitrary bases. We remark
that, for these system sizes, sampling of configurations,
usually used for evaluating gradients during training, can
be omitted in favor of calculating the gradients exactly
by summing over all states. This makes the obtained
representation more accurate.

B. Results

When training the RBM to represent a ground state
of the TFIM, it turns out that it is sufficient to choose
the weights purely real since the Hamiltonian is stoquas-
tic, i.e., all its off-diagonal elements in the z-basis are
real and non-positive [69, 70]. We train a real RBM with
as many hidden as visible neurons, M = N , to repre-
sent the ground state of the TFIM at the critical point,
h = 1, and fix the weights. We use the dNN setup ac-
cording to Fig. 2, together with the phase reweighting
scheme with block Gibbs sampling to perform measure-
ments of operators in the z- and x-directions. Here we
choose the ground state at the quantum critical point
where the entanglement entropy is maximal and grows
logarithmically with system size [71]. This demonstrates
that quantum effects can be represented in the classical
network ansatz. It should be noted that two kinds of
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(c)

FIG. 3. RBM representation of the TFIM ground state at the quantum critical point: Sampling and representation errors
for the phase reweighting scheme. Magnetizations 〈σk1 〉 of the first spin and correlations 〈σk1σk2 〉 between the first two spins
in a TFIM chain of N spins, in k-direction, k = z, x, have been evaluated. Panel (a) shows the absolute deviation of the
observables evaluated with the phase reweighting method, 〈O〉dNN, from the respective value obtained by explicitly summing
over all states, 〈O〉sum, as a function of the sample size. The number of spins in the chain is varied from N = 2 to N = 10,
indicated by the colors. The sampling is run ten times for each system size and the results are averaged, where shaded regions
denote statistical fluctuations. While we do not find a dependence on the system size for measurements in the z-basis (upper
row), we find increasing deviations with larger N for measurements in the x-basis (lower row). In both cases the error decays
only slowly and a huge amount of samples is considered. Panel (b) shows the same data evaluated at a fixed sample size of
108, as a function of system size N , as indicated in the legend at the bottom. Error bars denote statistical fluctuations within
averaging over ten runs. We find the accuracy of the measurements in the z-basis to be approximately constant, while the
deviations grow exponentially for measurements in the x-basis. The latter indicate the existence of a sign problem which limits
the method to small system sizes. Panel (c) shows the absolute deviation between the observables as calculated in the RBM
parametrization but by summing over all configurations, 〈O〉sum, from their values obtained by exact diagonalization, 〈O〉exact.
This comparison shows the intrinsic error of the RBM parametrization and illustrates that it dominates the overall error for
N ≥ 4.

imperfections are involved now. First, the representation
of the ground state as an RBM is not exact (represen-
tation error) and, second, there will be statistical errors
due to finite sample sizes (sampling error). We analyze
both aspects with the main focus being on the statistical
sampling errors.

Figure 3 shows the results for the sampling error, where
we vary the system size from N = 2 to N = 10. Panel
(a) shows the absolute deviations between performing the
phase reweighting sampling in the dNN representation
and summing over all configurations explicitly, evaluat-
ing operators in the x-basis using local operators. We
study magnetizations (σz1 and σx1 ) and nearest-neighbor
correlations in the z- and x-directions (σz1σ

z
2 and σx1σ

x
2 ).

Restricting to the magnetizations of the first spin and
the correlations between the first two spins suffices due
to translation invariance, which is explicitly implemented
in the structure of the dNN weights [30, 72]. We run the
sampling ten times for each system size and average the
outcomes, with shaded regions denoting the statistical
fluctuations.

We find good convergence, especially in the z-basis,
where the weights are purely real and the complex phases

vanish. The absolute deviations go down proportional to
1/
√

# Samples, as it is expected due to statistical argu-
ments [73]. The error is approximately independent of
system size. Considering measurements in the x-basis,
we find larger deviations, which is reasonable as now
the weights in the network also take imaginary values
and phases need to be considered, which can cancel each
other in the normalization factor Z(W). If these phases
fluctuate heavily, a sign problem can appear. This leads
to divergences for too small sample sizes and requires
an exponentially growing amount of samples to find con-
vergence for increasing system sizes. An increase in the
absolute deviation with growing system size is indeed ob-
served [see lower panels of Fig. 3(a)]. However, we still
find stable convergence to the exact solution as expected
from statistical reasons up to N = 10.

Figure 3(b) shows the absolute deviations of the expec-
tation values of magnetizations and correlations in the
x- and z-directions using 108 samples, from results when
summing over all states explicitly as a function of system
size. The underlying data is the same as in panel (a).
Here we see more clearly that the absolute deviations do
not depend on the system size for measurements in the
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z-basis, but they scale exponentially with the system size
for measurements in the x-basis (mind the log-scale). In
this case the ansatz performs inefficiently, as exponen-
tially many samples are necessary when going to larger
system sizes. However, in the present example the sam-
ple size is still much smaller than the number of possible
states in the network, which here is 25N as we choose
M = N . This enables simulations of slightly larger sys-
tems than with exact diagonalization using comparable
resources.

Figure 3(c) shows the representation error, i. e. the ab-
solute deviations of the observables obtained using the
RBM parametrization and summing over all states ex-
plicitly from the expected value calculated via exact di-
agonalization. We find that the deviations grow abruptly
larger with increasing system size for N ≥ 4, which is
probably due to the limited representational power of the
network. While the state can be parametrized with good
accuracy for N < 4, it takes a form for N ≥ 4 which can-
not be represented that accurately with the RBM ansatz.
The deviations saturate around 10−2 for large system
sizes, which is still small. This shows that the weights
trained in the RBM parametrization represent the exact
ground state with good accuracy for the cases considered
here. However, the deviations are mostly larger than the
ones in panel (a), showing that the overall error is domi-
nated by the representation error and larger sample sizes
cannot improve the accuracy any further.

In summary, we find that the ground state of the TFIM
can be represented well with the RBM parametrization.
It can be sampled using the phase reweighting scheme in
the dNN ansatz to perform measurements in the x-basis,
but due to exponentially scaling sample sizes it is limited
to small system sizes.

VI. BELL AND GHZ STATES

We now apply our dNN approach with phase reweight-
ing to a paradigmatic example of an entangled state, the
Bell state [54–56], and its generalization to larger spin
systems, the Greenberger-Horne-Zeilinger (GHZ) states
[57]. With these examples we intend to assess whether
the network can capture genuine quantum features such
as entanglement and non-locality manifest in the viola-
tion of Bell’s inequalities.

A. Model and dNN Representation

We consider a Bell state of two spin-1/2 particles, also
called a Bell pair (BP),

|ΨBP〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) . (23)

This state has non-classical correlations in the sense that
it violates Bell’s inequality. For classical systems Bell’s
inequality cannot be violated under the assumptions of

local realism [54–56]. Specifically, we consider the well-
known CHSH-inequality (named after Clauser, Horne,
Shimony and Hold) [74, 75]. A CHSH-inequality which
is maximally violated by the considered state is given by

|B| =
√

2 |〈σx1 ⊗ σx2 〉 − 〈σz1 ⊗ σz2〉|
≤ 2.

(24)

If the measured correlations exceed this bound, they can-
not arise in a classical way. However, with the wave func-
tion of the Bell state we find

B = 2
√

2 > 2, (25)

showing that the CHSH-inequality is violated. It has
been shown that this is the maximum reachable value
for a quantum state, so that the inequality is maximally
violated [76].

To represent the Bell state in the dNN, we need N = 2
visible neurons and we show in Appendix A that it is
sufficient to choose M = 1 hidden neuron. Expressions
for the weights in the dNN can be derived analytically
by demanding

cvz=[±1,±1] (W)
!
= 0,

cvz=[±1,∓1] (W)
!
=

1√
2
,

(26)

see Appendix A for a full derivation and Table I for possi-
ble analytical expressions of the weights. Solving Eq. (26)
yields infinitely many possible choices to represent a Bell
state. Thus we can directly determine the weights in
the dNN and do not need to train them. We can rather
perform sampling via the phase reweighting scheme to
measure the correlations in the x- and z-directions and
see if Bell correlations can be captured with this ansatz.

The generalization of the Bell state to larger system
sizes yields the GHZ state with state vector [57]

|ΨGHZ〉 =
1√
2

(| ↑↑ . . . ↑〉+ | ↓↓ . . . ↓〉) . (27)

This is a genuinely N -partite entangled state which we
can represent in the dNN approach. As the GHZ state
is the generalization of the Bell state to larger system
sizes in the sense of being a superposition between two
macroscopically different states, we use it to check the
scalability of the dNN ansatz [57, 77, 78]. The weights to
represent this GHZ state with a dNN can be calculated
analytically by solving

cvz=[±1,...,±1] (W)
!
=

1√
2
,

cvz 6=[±1,...,±1] (W)
!
= 0,

(28)

which is solvable for M = N − 1 hidden neurons, see
Appendix B for a full derivation. We derive a formula
for the weights and biases in a general way as a function
of the system size N . The final expressions for general
system sizes are stated in Table I.



8

Bell State Bell State GHZ State
(complex weights) (imaginary weights)

dj iπ
2

for j = 1, 0 0
0 otherwise

bk iπ
2

0 iπ
2

i
2(N−1)

arcsin
[

1

2N−1/2

]
if j 6= N , k = 1;

Wj,k
(−1)j

2
arsinh

(
1√
8

)
+ iπ

2
i
[
(−1)j

2
arccos

(
1√
8

)
− π

4

]
i
2
arcsin

[
1

2N−1/2

]
if j = N , k = 1;

iπ
4

(δj,k−1 + δj,k) if k 6= 1.

TABLE I. Analytically calculated weights and biases entering the RBM representation of the Bell and GHZ states, where
two possible solutions are given for the Bell state, one with complex values and one with purely imaginary entries. To avoid
confusion with the imaginary unit we have used the indices j, k instead of the usual convention i, j to label the visible and
hidden units, respectively.

B. Results

We implement a dNN representing a Bell state, con-
sisting of one hidden and two visible neurons and perform
the phase reweighting scheme to sample from the under-
lying Boltzmann distribution using block Gibbs sampling
[67]. We consider two possible choices for the network pa-
rameters, one with purely imaginary and one with com-
plex weights. The expressions for the weights are given
explicitly in the left two columns of Table I.

As the system consists only of two sites, we can solve
it exactly and compare the simulation outcome with the
exact solution. The expected magnetizations and corre-
lations in the x- and z-directions are given by

〈σxi 〉 = 〈σzi 〉 = 0, ∀ i ∈ {1, 2} ,
〈σx1σx2 〉 = −〈σz1σz2〉 = 1.

(29)

The simulation results of the magnetization in the x- and
z-basis are shown in Fig. 4, where for symmetry reasons
we only plot the result for the first spin. Shown are re-
sults for both choices of the network parameters. The in-
sets depict the corresponding observables together with
the exact solutions as functions of sample size, and the
main plots show the absolute deviations from the exact
result. To compare the convergence to the expectation
on grounds of statistical arguments [73] we also display
the expected sampling error σ[〈O〉]/√# Samples where
σ2[〈O〉] is the variance. The sampling error can be ob-
tained via error propagation [73],

|〈O〉dNN −〈O〉exact| =
σ [〈O〉dNN]√
# Samples

, (30)

σ [〈O〉dNN] =

∣∣∣∣σ [Re 〈Ψ |O|Ψ〉dNN]

Re 〈Ψ |Ψ 〉dNN

∣∣∣∣
+

∣∣∣∣∣Re 〈Ψ |O|Ψ〉dNN

Re 〈Ψ |Ψ 〉2dNN

σ [Re 〈Ψ |Ψ 〉dNN]

∣∣∣∣∣ ,
(31)

where the index “exact” refers to the exact quantum me-
chanical expectation value. The index “dNN” denotes
the average over samples drawn from the dNN.

For such small system sizes as we consider them here,
these expressions can be evaluated explicitly by summing
over all possible network states. Due to the exact sum
over all states the imaginary parts of the expectation
values vanish with good accuracy and we hence neglect
them. We expect the simulations to follow this decay for
a sufficiently large number of samples, when the effects
due to fluctuating phases are suppressed. In Fig. 4, the
blue line in the main plot denotes the expected conver-
gence according to the explicitly evaluated variance for
the case of purely imaginary weights. The expected con-
vergence behavior for the case of complex weights shows
a similar decay. We find that the absolute deviation fol-
lows the expected sampling error accurately and hence
converges to the exact solution, where no clear difference
can be observed between the two cases of complex and
purely imaginary weights.

To benchmark the phase reweighting scheme on the
evaluation of correlations, we directly consider the
CHSH-observable, Eq. (24). The result is shown in Fig. 5,
which has the same structure as the plots in Fig. 4.

In Fig. 5 we add a dashed line at the classical limit of
B = 2 in the inset and at the deviation of the limit from
the exact solution, 2

√
2−2, in the main plot. The CHSH-

inequality is hence violated if the curve in the inset is
above and the curve in the main plot is below the dashed
line. We find clear convergence in agreement with the ex-
plicitly calculated behavior expected from statistical ar-
guments. We also find a violation of the CHSH-inequality
after rather short sampling times. However, we already
consider 106 samples here, which is large compared to
the number of network configurations of the dNN which
is 2N+2M = 24 or 2N+2N+2M = 28 for measurements in
the z- or x-basis, respectively.

To analyze how the sample size necessary to find con-
vergence scales with the system size we now consider
GHZ states with N > 2. We first consider the GHZ
state for N = 3 sites. The expected magnetizations and
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FIG. 4. RBM representation of the Bell state (23): Sampling
errors for the phase reweighting scheme. The magnetization
of one spin of a Bell pair in the x- and z-directions is eval-
uated. The graphs show the absolute difference between the
exact expectation values and those sampled from the dNN
by means of the phase reweighting scheme, as a function of
sample size. Two choices of weights are compared, taking ei-
ther purely imaginary (orange data) or complex values (green
data). The blue line indicates the deviation expected on sta-
tistical grounds. Insets show the sampled values together with
the respective exact solutions. Ten simulation runs are aver-
aged. The shaded regions indicate the statistical fluctuations.
For the magnetization in the x-basis, the deviations decay
only slowly as function of the sample size while fluctuations
resulting from the sum over the complex phases are found for
small samples.

correlations are

〈σxi 〉 = 〈σzi 〉 = 0,

〈σx1σx2σx3 〉 =
〈
σzi σ

z
j

〉
= 1,

∀ i, j ∈ {1, 2, 3}.
(32)

We set up a dNN with M = 2 hidden neurons and the an-
alytically derived, purely imaginary weights, see the right
column of Table I for explicit expressions, and perform
the phase reweighting scheme in combination with block
Gibbs sampling to measure magnetizations and correla-
tions in the x- and z-directions. The results are shown
in Fig. 6, where each panel has the same structure as
the plots for the Bell state. We find convergence to the
exact solution with the expected dependence on the sam-
ple size. Observables in the z-basis show faster conver-
gence due to the smaller network size compared to off-
diagonal observables which require an additional hidden
layer. The expected convergence behavior can again be
evaluated explicitly, as for the Bell state, since the net-
work size is still small. For measurements in the x-basis
we find huge fluctuations for small sample sizes, which
basically result from the division by the sum over the
phases, see Eqs. (11)–(12). This can lead to divergences
due to cancellations of the phases. We would expect these
fluctuations to vanish for larger sample sizes, however we
already consider 107 samples here, exceeding the number
of network configurations of 27 and 213 for representing

FIG. 5. RBM representation of the Bell state: observable B
entering the CHSH Bell inequality (24). Shown is the same
deviation as in Fig. 4, as a function of samples drawn from
the dNN representation of a Bell state with phase reweighting
ansatz. The weights can be chosen either complex or purely
imaginary, indicated as green and orange data, respectively.
The main plot shows the absolute deviation of the simulation
from the exact solution together with the expected conver-
gence behavior, while the inset shows the direct evaluation of
the observables in comparison to the exact solution. Shaded
regions indicate statistical fluctuations resulting from averag-
ing over ten runs.

the state in the z- and x-basis, respectively. Besides the
fluctuations, the functions decay as expected from statis-
tical arguments. We even find the decay in the simula-
tions slightly below the expected behavior, but a conver-
gence to the blue curve is visible for large sample sizes.

We now increase the system size further and consider a
GHZ state with N = 5 spins. We can represent it using a
dNN with M = 4 hidden neurons, see Appendix B. The
exact magnetizations and correlations are

〈σxi 〉 = 〈σzi 〉 = 0,

〈σx1σx2σx3σx4σx5 〉 =
〈
σzi σ

z
j

〉
= 1,

∀ i, j ∈ {1, 2, 3, 4, 5}.
(33)

The simulation results for these observables are shown in
Fig. 7, where we find convergence for measurements in
the z-basis according to the expected statistical behav-
ior. This can still be evaluated explicitly for the small
network size. However, considering the outcome of mea-
surements in the x-basis we find large fluctuations which
do not decrease for the sample sizes considered. This in-
dicates that we are still undersampling and convergence
to the exact solution is not yet visible. According to the
explicitly calculated error decay, we would expect conver-
gence appearing for larger sample sizes. As we already
consider 1010 samples, we could not increase the sam-
ple size further with the given computational setup. The
networks here have 213 and 223 possible configurations to
represent the system in the z- and x-basis, respectively.

In summary we find that the necessary sample size re-
quired to find convergence scales exponentially with the
system or network size. This is due to the appearance
of a sign problem, as it is known to be present for phase
reweighting sampling schemes in quantum Monte Carlo
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FIG. 6. RBM representation of the GHZ state with N = 3
spins: Magnetizations and correlations in the x- and z-bases
resulting from sampling by means of the phase reweighting
scheme as functions of sample size. Insets show direct eval-
uations of the operators together with the exact outcome,
while main plots show the absolute deviations from the exact
solution compared to the explicitly evaluated expected con-
vergence behavior. Five simulation runs are averaged over,
with statistical fluctuations indicated by the shaded regions.
Additionally, we average over the spin sites i and j due to
translation invariance.

approaches [48–51]. Intuitively the sign problem results
from the sum over the phase factors, which can be dis-
tributed broadly on the unit circle in the complex plane.
Thus, exponentially many samples are necessary to sum
those phases up in the right way and get a stable result.

VII. CONCLUSION

When parametrizing wave functions of quantum spin
systems with restricted Boltzmann machines, the weights
and biases need to be chosen complex. Thus, the wave
function can no longer be viewed as the marginal of a
Boltzmann distribution but is rather a sum over com-
plex terms [30, 31, 66, 79]. This prohibits the straight
forward implementation of the sampling from quantum
states using classical neuromorphic structures. We re-
cover a way to sample the visible and hidden neurons
from Boltzmann distributions defined by the real parts
of the weights and biases via a phase reweighting scheme,
where standard Gibbs sampling can be applied [67]. This
enables an extension to deep neural networks with mul-
tiple layers, which we use to derive a representation of

FIG. 7. RBM representation of the GHZ state with N = 5
spins: Magnetizations and correlations resulting in the phase
reweighting scheme as functions of sample size. Main plots
show absolute deviations of the simulations from the exact
solution together with the explicitly evaluated expected con-
vergence behavior, while insets show the direct evaluations of
the operators together with the exact solution. Shaded re-
gions denote statistical fluctuations resulting from averaging
over five simulation runs as well as over the spin sites i and j
due to translation invariance.

spin states in arbitrary bases.

When benchmarking this ansatz on highly entangled
spin systems, we find an exponential scaling of the sam-
ple size necessary for convergence to the exact solution
with increasing system or network size. This can be un-
derstood as a sign problem, meaning that the variances of
the sampled quantities increase exponentially with sys-
tem size. The method is hence rendered inefficient for
cases where the wave-function coefficients cannot be cho-
sen real and positive [48–51]. However, when represent-
ing the ground state of the TFIM at the quantum criti-
cal point, we find that the phase reweighting scheme in
the dNN ansatz yields accurate results for operators in
the z-basis without dependence on the system size. For
measurements in the x-basis we find an inefficient expo-
nential scaling of the sample size with the system size. In
summary, our ansatz yields a generalization of the RBM
parametrization of wave functions to deep networks and
enables an implementation of the sampling on neuromor-
phic hardware, which can efficiently sample from Boltz-
mann distributions and could provide a speedup and thus
shift the limitations to larger system sizes, while it is not
expected to in general overcome the curse of dimension-
ality of the quantum many-body problem [25–27].
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Appendix A: Representation of the Bell State

To parametrize the Bell state with an RBM, we need
N = 2 visible neurons for the two spins and it is sufficient
to choose M = 1 hidden neuron. We can analytically
derive expressions for the weights to represent the corre-
sponding basis expansion coefficients. The state vector
reads [54–56]

|Ψ〉 =
1√
2

(| ↑↓〉+ | ↓↑〉)

=
∑
{vz}

cvz (W) |vz〉.
(A1)

Enumerating the two states as | ↓〉 = |−1〉 and | ↑〉 = |1〉,
we get

cvz=(±1,±1) (W) = exp [± (d1 + d2)]

× 2cosh [± (W1,1 +W2,1) + b1]

!
= 0,

(A2)

cvz=(±1,∓1) (W) = exp [± (d1 − d2)]

× 2cosh [± (W1,1 −W2,1) + b1]

!
=

1√
2
.

(A3)

Here we use the RBM parametrization of the coefficients,
see Eqs. (2)–(3) in the main text,

cvz (W) = exp

[
N∑
i=1

div
z
i

]

×
M∏
j=1

2cosh

[
N∑
i=1

vziWi,j + bj

]
.

(A4)

From Eq. (A2) we choose the ansatz

cosh [± (W1,1 +W2,1) + b1]
!
= 0 (A5)

⇒ b1 ± (W1,1 +W2,1)
!
= iπ

(
n± +

1

2

)
, n± ∈ Z,

(A6)

⇒ b1 = iπ

(
n+ + n−

2
+

1

2

)
,

W1,1 +W2,1 = iπ
n+ − n−

2
.

(A7)

Inserting this into Eq. (A3), we get two expressions de-
pending on whether n(±) = n+ ± n− is even or odd,

cosh [b1 ± (W1,1 −W2,1)]

=

{
±i (−1)

n(+)/2
sinh [W1,1 −W2,1] , if n(±) even,

(−1)(
n(+)+1)/2 cosh [W1,1 −W2,1] , if n(±) odd.

(A8)

Considering the even case, Eqs. (A2)–(A3) turn into

i (−1)
n(+)/2

sinh [d1 − d2] sinh [W1,1 −W2,1]
!
= 0,

i (−1)
n(+)/2

cosh [d1 − d2] sinh [W1,1 −W2,1]
!
=

1√
8
.

(A9)

From this, it follows that

d1 − d2 = iπ

(
me +

1

2

)
, me ∈ Z,

W1,1 −W2,1 = (−1)
n(+)/2+me+1

arsinh

[
1√
8

]
.

(A10)

Together with Eq. (A7) we get a solutions for even n(±),

W1,1 = (−1)
n(+)/2+me+1 1

2
arsinh

[
1√
8

]
+ i

π

4
n(−),

W2,1 = (−1)
n(+)/2+me

1

2
arsinh

[
1√
8

]
+ i

π

4
n(−),

d1 − d2 = iπ

(
me +

1

2

)
,

b1 = iπ

(
n(+)

2
+

1

2

)
.

(A11)

For the case of odd n(±), Eqs. (A2)–(A3) yield

(−1)(
n(+)+1)/2 cosh [d1 − d2] cosh [W1,1 −W2,1]

!
=

1√
8
,

(−1)(
n(+)+1)/2 sinh [d1 − d2] cosh [W1,1 −W2,1]

!
= 0.

(A12)

This leads to

d1 − d2 = iπmo, mo ∈ Z,

W1,1 −W2,1 = i

[
π

(
n(+) + 1

2
+mo

)
+ (−1)(

n(+)+1)/2+mo arccos

(
1√
8

)]
.

(A13)
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So we get for odd n(±) the solutions

W1,1 = i

[
(−1)(

n(+)+1)/2+mo
1

2
arccos

(
1√
8

)
+
π

4

(
n(+) + n(−) + 1 + 2mo

)]
,

W2,1 = i

[
(−1)(

n(+)+1)/2+mo+1 1

2
arccos

(
1√
8

)
+
π

4

(
n(−) − n(+) − 1− 2mo

)]
,

d1 − d2 = iπmo,

b1 = i
π

2

(
n(+) + 1

)
.

(A14)

The solutions are highly degenerate, as three integers can
be chosen arbitrarily, so we find infinitely many possibil-
ities to choose the weights. In the main text we focus
on two specific choices, one with complex and one with
purely imaginary weights. The expressions for complex
weights are given by choosing n+ = 1, n− = −1, so that
we consider the case of even n(±). Additionally we choose
me = 0, yielding

d1 − d2 = i
π

2
⇒ d1 = i

π

2
, d2 = 0,

b1 = i
π

2
,

W1,1 =− 1

2
arsinh

(
1√
8

)
+ i

π

2
,

W2,1 =
1

2
arsinh

(
1√
8

)
+ i

π

2
.

(A15)

The second case we consider in the main text is the choice
of purely imaginary weights, which we reach by setting

n+ = −1, n− = 0, so that n(±) is odd. By also setting
mo = 0, we get

d1 − d2 = 0⇒ d1 = d2 = 0,

b1 = 0,

W1,1 = i

(
−1

2
arccos

[
1√
8

]
− π

4

)
,

W2,1 = i

(
1

2
arccos

[
1√
8

]
− π

4

)
.

(A16)

These are the explicit values for the weights and biases
as stated in Table I in the main text.

Appendix B: Representing the GHZ-State

For a general spin-1/2 system with N sites, the
Greenberger-Horne-Zeilinger (GHZ) state is described by
[57]

|Ψ〉 =
1√
2

(| ↑↑ . . . ↑〉+ | ↓↓ . . . ↓〉) . (B1)

The GHZ state is a strongly entangled quantum state
consisting of at least three spin-1/2 particles [77, 78].
To derive the weights representing such a GHZ state in
the RBM parametrization, we first consider the case of
N = 3 sites. We add M = 2 hidden neurons to the
neural network and consider the parametrization of the
basis state expansion coefficients as stated in Eq. (3) in
the main text. This provides a set of four equations,

c (vz = [±1,±1,±1] ;W) = exp [± (d1 + d2 + d3)] 4cosh [b1 ± (W1,1 +W2,1 +W3,1)] cosh [b2 ± (W1,2 +W2,2 +W3,2)]

!
=

1√
2
,

(B2)

c (vz = [±1,±1,∓1] ;W) = exp [± (d1 + d2 − d3)] 4cosh [b1 ± (W1,1 +W2,1 −W3,1)] cosh [b2 ± (W1,2 +W2,2 −W3,2)]

!
= 0,

(B3)

c (vz = [±1,∓1,±1] ;W) = exp [± (d1 − d2 + d3)] 4cosh [b1 ± (W1,1 −W2,1 +W3,1)] cosh [b2 ± (W1,2 −W2,2 +W3,2)]

!
= 0,

(B4)

c (vz = [∓1,±1,±1] ;W) = exp [± (d2 + d3 − d1)] 4cosh [b1 ± (W2,1 +W3,1 −W1,1)] cosh [b2 ± (W2,2 +W3,2 −W1,2)]

!
= 0.

(B5)

There are many ways to solve this set of equations, but
in the following we only look for one possible solution.

Thus, from Eq. (B3) we choose

cosh [b1 ± (W1,1 +W2,1 −W2,2)]
!
= 0. (B6)
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From this it follows,

b1 = iπ

(
n+1 + n−1

2
+

1

2

)
,

W1,1 +W2,1 −W3,1 = iπ
n+1 − n−1

2
.

(B7)

Analogously, we can demand from Eq. (B4)

cosh [b2 ± (W1,2 −W2,2 +W3,2)]
!
= 0

⇒ b2 = iπ

(
n+2 + n−2

2
+

1

2

)
, n±2 ∈ Z

W1,2 −W2,2 +W3,2 = iπ
n+2 − n−2

2
,

(B8)

and from Eq. (B5)

cosh [b2 ± (−W1,2 +W2,2 +W3,2)]
!
= 0

⇒ −W1,2 +W2,2 +W3,2 = iπ
n+2 − n−2

2
.

(B9)

As we only look for a single possible solution, we consider
the simplest case with n±i = 0 for i = 1, 2. This yields

b1 = b2 = i
π

2
,

W1,1 +W2,1 −W3,1 = 0,

W3,2 = 0, W1,2 = W2,2.

(B10)

Plugging these results into Eq. (B2) and considering only
the cosh-terms gives

cosh
[
i
π

2
± (W1,1 +W2,1 +W3,1)

]
cosh

[
i
π

2
± 2W1,2

]
= {±isinh [W1,1 +W2,1 +W3,1]} {±isinh [2W1,2]}
=− sinh [W1,1 +W2,1 +W3,1] sinh [2W1,2]

=− isinh [W1,1 +W2,1 +W3,1] ,

(B11)

where we again simplify the expression by choosing
W1,2 = iπ/4 in the last line. With this choice, Eq. (B2)
becomes

−iexp [± (d1 + d2 + d3)] sinh [W1,1 +W2,1 +W3,1]

=− i (cosh [d1 + d2 + d3]± isinh [a1 + a2 + a3])

× sinh [W1,1 +W2,1 +W3,1]

!
=

1

4
√

2
(B12)

⇒ sinh [d1 + d2 + d3]
!
= 0 ⇒ d1 + d2 + d3 = 0

⇒ − isinh [W1,1 +W2,1 +W3,1]
!
=

1

4
√

2

⇒ W1,1 +W2,1 +W3,1 = iarcsin

[
1

4
√

2

]
.

(B13)

Given these conditions, we can choose one possible solu-
tion with the weights

d1 = d2 = d3 = 0,

b1 = b2 = i
π

2
,

W1,1 = W2,1 =
i

4
arcsin

[
1

4
√

2

]
,

W3,1 =
i

2
arcsin

[
1

4
√

2

]
,

W1,2 = W2,2 = i
π

4
, W3,2 = 0.

(B14)

These are the weights we choose in the main text for
N = 3 sites.

From these results we can see that the choice of the
weights to the first hidden neuron guarantees the nor-
malized coefficients if all spins are equal and the zero co-
efficients if the third spin is flipped compared to the other
two. The weights to the second hidden neuron guarantee
the zero coefficients for the case that spins one and two
have opposite sign, so that all cases are covered. This
behavior can be generalized to an arbitrary number N of
spins and yields the weights to represent a GHZ state in
a neural network with M = N − 1 hidden neurons,

dj = 0, bk = i
π

2
,

Wj 6=N,1 =
i

2 (N − 1)
arcsin

[
1

2N−1/2

]
,

WN,1 =
i

2
arcsin

[
1

2N−1/2

]
,

Wj,k 6=1 = i
π

4
(δj,k−1 + δj,k) ,

∀j ∈ {1, . . . , N} , k ∈ {1, . . . ,M} .

(B15)

To avoid confusion with the imaginary unit, we have re-
placed the indices i, j of the visible and hidden neurons
by the indices j, k, respectively. These are the expres-
sions quoted in Table I in the main text and it has been
checked that this choice of weights represents the GHZ
state for small systems, N ≤ 6. The weights for the cal-
culations with N = 5 sites in the main text are chosen
according to these equations.
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