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The dynamics of quantum systems far from
equilibrium represents one of the most challeng-
ing problems in theoretical many-body physics
[1, 2]. While the evolution is in general in-
tractable in all its details, relevant observables
can become insensitive to microscopic system pa-
rameters and initial conditions. This is the ba-
sis of the phenomenon of universality. Far from
equilibrium, universality is identified through the
scaling of the spatio-temporal evolution of the
system, captured by universal exponents and
functions. Theoretically, this has been studied
in examples as different as the reheating process
in inflationary universe cosmology [3, 4], the dy-
namics of nuclear collision experiments described
by quantum chromodynamics [5, 6], or the post-
quench dynamics in dilute quantum gases in non-
relativistic quantum field theory [7–11]. How-
ever, an experimental demonstration of such scal-
ing evolution in space and time in a quantum
many-body system is lacking so far. Here we
observe the emergence of universal dynamics by
evaluating spatially resolved spin correlations in a
quasi one-dimensional spinor Bose-Einstein con-
densate [12–16]. For long evolution times we ex-
tract the scaling properties from the spatial cor-
relations of the spin excitations. From this we
find the dynamics to be governed by transport
of an emergent conserved quantity towards low
momentum scales. Our results establish an im-
portant class of non-stationary systems whose dy-
namics is encoded in time-independent scaling ex-
ponents and functions signaling the existence of
non-thermal fixed points [10, 17, 18]. We con-
firm that the non-thermal scaling phenomenon
involves no fine-tuning, by preparing different ini-
tial conditions and observing the same scaling
behaviour. Our analog quantum simulation ap-
proach provides the basis to reveal the underlying
mechanisms and characteristics of non-thermal
universality classes. One may use this univer-
sality to learn, from experiments with ultra-cold
gases, about fundamental aspects of dynamics
studied in cosmology and quantum chromody-
namics.

Isolated quantum many-body systems offer particu-
larly clean settings for studying fundamental properties
of the underlying unitary time evolution [19]. For sys-

tems initialised far from equilibrium different scenarios
have been identified, including the occurence of many-
body oscillations [20] and revivals [21], the manifestation
of many-body localisation [22], and quasi-stationary be-
haviour in a prethermalised stage of the evolution [23].

Here we observe a new scenario associated to the no-
tion of non-thermal fixed points. This is illustrated
schematically in Fig. 1a: Starting from a class of far-
from-equilibrium initial conditions, the system develops
a universal scaling behaviour in time and space. This is
a consequence of the effective loss of details about initial
conditions and system parameters long before a quasi-
stationary or equilibrium situation may be reached. The
transient scaling behaviour is found to be governed by
the transport of an emergent collective conserved quan-
tity towards low momentum scales.

For our experimental study we employ an elongated
Bose-Einstein condensate of ∼ 70,000 87Rb atoms. We
use the F = 1 hyperfine manifold with its three mag-
netic sublevels mF = 0,±1 as a spin-1 system with fer-
romagnetic interactions [24]. Initially, all atoms are pre-
pared in the mF = 0 sublevel, forming a spinor con-
densate with zero spin length. The dynamics is initi-
ated by instantaneously changing the energy splitting of
the F = 1 magnetic sublevels by means of microwave
dressing (see Methods). Consequently spin excitations
develop in the Fx–Fy-plane [12] as sketched in Fig. 1b.
Our experimental setup allows the extraction of the spin
distribution in terms of the spin component F̂x(y) =

(ψ̂0(y)
[
ψ̂†+1(y) + ψ̂†−1(y)

]
+ h.c.) /

√
2, where ψ̂†m(y) is the

creation operator of an atom in the magnetic sublevel m
at position y. At a given time t this is achieved by a
spin rotation from the Fx–Fy-plane to the Fz-direction
and subsequently detecting the atomic density difference
Fz(y) = n+1(y)−n−1(y) (see Methods for details). Rep-
resentative absorption images are shown in Fig. 1c to-
gether with the extracted spin profiles (green lines). The
histograms in Fig. 1c show the probability distribution
of Fx for all positions y and experimental realisations
for the corresponding evolution time (see Extended Data
Figure 1 for all evolution times). Results are presented
for characteristic stages associated to the initial condi-
tion (1), nonequilibrium instability regime (2), universal
scaling regime (3) and departure from the non-thermal
fixed point (4), as also indicated in Fig. 1a.

We find that during the time evolution the angular
orientation θ of the transverse spin (see Fig. 1b) becomes
the relevant dynamical degree of freedom. For short evo-
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Figure 1. Figure 1. Universal dynamics and experimental procedure. a, Starting from a class of far-from-equilibrium
initial conditions, universal dynamical evolution indicates the emergence of a non-thermal fixed point. Experimentally, we probe
the system at different evolution times during the stages indicated by numbers 1 to 4. b, A condensate is prepared in the
mF = 0 state of the F = 1 hyperfine manifold, i.e. with a vanishing mean spin length (left spin sphere). With microwave
dressing (see Methods) we initiate spin-exchange dynamics which leads to a growth of spin orthogonal to the magnetic field
~B in the Fx–Fy-plane (right sphere). Subsequently, spatial structures of the spin orientation θ are found along the cloud. c,
Exemplary absorption images of the three hyperfine levels taken after a π/2 spin rotation and Stern-Gerlach separation together
with the inferred local spin Fx(y) (green lines). Furthermore histograms for ∼ 160 experimental realisations are shown. In the
universal regime (see step 3 in panel a) we extract the spin length and its fluctuation by a fit to the double-peaked structure
of the histogram, as indicated in the corresponding plot (see Methods).

lution times unstable longitudinal spin modes grow expo-
nentially [25], well described by Bogoliubov theory, but
non-linear evolution quickly takes over (& 100 ms). This
leads to a double-peaked structure of the histograms (see
Fig. 1c) indicating that the spin has a mean length and
a random orientation in the Fx–Fy-plane. On the ba-
sis of this observation we extract the mean spin length
〈|F⊥(t)|〉, where F⊥ = Fx+iFy, and its fluctuations using
a fit. Building on that knowledge, we extract the local an-
gle from the profiles as θ(y, t) = arcsin(Fx(y, t)/〈|F⊥(t)|〉)
(see Methods for details).

The time evolution of the fluctuations of the spin ori-
entation is described in terms of correlation functions
of the scalar field θ(y, t). The fluctuations are anal-
ysed by evaluating the two-point correlation function
C(y, y′; t) = 〈θ(y, t)θ(y′, t)〉. To distinguish the role of
different length scales we consider a momentum-resolved
picture of the dynamics. Hence we evaluate the structure
factor, which is the Fourier transform of C(y, y′; t) with
respect to the relative coordinate ȳ = y′ − y, averaged
over y,

fθ(k, t) =

∫∫
dy dȳ C(y + ȳ, y; t) exp(−i 2πkȳ) . (1)

In general, the structure factor fθ is a function of momen-
tum k which evolves in time t in a way determined by the
system parameters and initial conditions. In Fig. 2a, we
plot fθ(k, t) as a function of k on a double-logarithmic
scale for times between 4 s and 9 s. A characteristic shift
of the structure factor towards smaller momenta as well
as an increase of the low-momentum amplitude with time
is observed.

In fact, instead of separately depending on k and t we
find that in this regime the data sets collapse to a single
curve if the rescaled distribution t−αfθ is plotted as a
function of the single variable tβk. This implies that the
data satisfy the scaling form

fθ(k, t) = tαfS
(
tβk
)

(2)

with universal scaling exponents α, β and scaling func-
tion fS . Fig. 2b shows this collapse, where the same data
points as in Fig. 2a are plotted with times normalised
to the reference time tref = 4.5 s. The ability to reduce
the full nonequilibrium time evolution of the correlation
function in the scaling regime to a time-independent, so-
called fixed point distribution fS(k) and associated scal-
ing exponents is a striking manifestation of universality.
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Figure 2. Figure 2. Scaling in space and time at a non-thermal fixed point. a, Structure factor fθ(k, t) as a function
of the spatial momentum k = 1/λ in the scaling regime between 4 s and 9 s. The color indicates the evolution time t. The
statistical error is on the order of the size of the plot markers. In the infrared the structure factor shifts in time to smaller k
(bigger wavelengths) which is connected to transport of excitations towards lower momenta. Characteristic for the non-thermal
fixed point dynamics is the rescaling of the amplitude with universal exponent α and rescaling of the length scale with β (see
inset). b, By rescaling the data with tref = 4.5 s, α = 0.33 and β = 0.54 the data collapses to a single curve. We parametrise
the universal scaling function with fS ∝ 1/(1 + (k/ks)

ζ). Using a fit (grey solid line) we find ζ ≈ 2.6 and ks ≈ 1/133µm. The
quality of the rescaling is revealed by the small and symmetric scatter of the rescaled data divided by the fit (see inset).

We find for the amplitude scaling exponent α =
0.33 ± 0.08 and for the momentum scaling exponent
β = 0.54 ± 0.06. The errors correspond to one stan-
dard deviation obtained from a resampling technique (see
Methods). However, the actual uncertainty for α is ex-
pected to be larger since the rescaling analysis is much
less constraining on α than on β. We find that fθ(k, t)
develops a plateau at the lowest momenta and an ap-
proximate power-law fall-off above a characteristic length
scale in the scaling regime. To parametrise the universal
scaling function, we fit the rescaled data with a function
of the form fS(k) ∝ 1/[1 + (k/ks)

ζ ] [26] and find ζ ≈ 2.6,
with ks ≈ 1/133µm for our system. The value of ζ be-
comes constant after about 4 s (see Fig. 3a). Analysing
fθ(k = 0, t) as shown in Fig. 3b reveals that the occupa-
tion of k = 0, which cannot be seen on the logarithmic
scale employed in Fig. 2, builds up in the scaling regime.
This growth is consistent with the power law ∼ tα with α
obtained from the rescaling analysis as indicated by the
solid green line. After 9 s the system departs from the
scaling behaviour.

The nature of the observed scaling phenomenon is ex-
plained by the emergence of an approximately conserved
quantity and its transport. In terms of our dynamical
degree of freedom θ(y, t) we identify

∫
dk 〈|θ(k, t)|2〉 ≡∫

dk fθ(k, t) as the conserved quantity. In fact, Fig. 3c

shows that the sum over all modes k for different evolu-
tion times – after a fast initial rise due to the instability
– settles around a constant within the scaling regime (see
also Extended Data Figure 2). According to the scaling
(2),

∫
dk fθ(k, t) = tα−β

∫
dk fS(k) ' const. corresponds

to α ' β such that in our case only one independent
dynamical scaling exponent remains. A distinct feature
is the transport of the conserved quantity directed to-
wards the infrared corresponding to a positive sign of
β. Theoretically it is expected to find the scaling only
for momenta smaller than some scale [10] (in our case
∼ 0.04µm−1, see Extended Data Figure 3). The trans-
port towards the infrared is in contrast to the turbulent
transport into the ultraviolet observed in direct cascades
[27].

These experimental findings of scaling behaviour, im-
plying universality, allow the comparison with predic-
tions in a variety of models in the non-thermal universal-
ity class, which is defined by the scaling function fS and
α = dβ for given spatial dimension d. N interacting Bose
gases with equal intra- and interspecies Gross-Pitaevskii
couplings are described by an O(N) symmetric model.
This is closely related to O(N) symmetric scalar models
[28], such as the relativistic Higgs sector of the Standard
Model with N = 4 for d = 3. For these types of models,
both, Gross-Pitaevskii and relativistic, a universal value
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Figure 3. Figure 3. Characterisation of the scaling regime. a, For each evolution time (cf. Fig. 2) we extract the
power-law exponent ζ from a fit. After 4 s it settles to ≈ 2.6 (red solid line) revealing the build-up of the universal scaling
function. The grey shaded region indicates the scaling regime. b, The transport to the infrared in the scaling regime is
connected to a monotonic increase of the occupation of k = 0. The solid line depicts the expected scaling fθ(k = 0, t) ∝ tα with
α = 0.33. After 9 s a rapid decay signals the departure from the scaling regime. c, The emergence of a conserved quantity is
signalled by the sum over all k-modes of fθ(k, t). After a fast initial growth this observable is approximately constant in the
scaling regime and starts to decay after 9 s.

of β ≈ 0.5 has been predicted and found to be insensitive
to the spatial dimension for d ≥ 2 [10]. This describes the
self-similar transport of excitations of the relative phases
between the components to lower wave numbers. The
scaling function fS is known to depend on dimensional-
ity [29] and has not yet been theoretically estimated for
d = 1. Our setup is the first realisation of an effective
N = 3 model for the transport of conserved quantities
associated to non-thermal fixed points in a quasi one-
dimensional situation. Finding scaling behaviour in one
dimension was not expected and sheds new light on the
concept of universality classes far from equilibrium.

We emphasise that the non-thermal scaling phe-
nomenon studied here involves no fine-tuning of param-
eters. This is in contrast to equilibrium critical phenom-
ena that require a careful adjustment of system variables
such as the temperature to a critical value [30]. To illus-
trate this insensitivity we employ the high level of control
of the atomic spin system and prepare three qualitatively
different initial conditions (for details see Methods). The
corresponding absorption images of single realisations are
shown in Fig. 4a along with the Fourier transform of the
spatial correlation function of Fx(y).

We find universal dynamics for all initial conditions
with comparable inferred scaling exponents (see inset of
Fig. 4b). We rescale the data with the same exponents
obtained from the mean of all four measurements and
take into account overall scaling factors and reference
momentum scales. This procedure leads to a collapse of
all data manifesting the robustness of non-thermal fixed
point scaling.

The demonstrated level of control and the accessible
observables on our platform open the door to the dis-
covery of further non-thermal universality classes. This

represents a crucial step towards a comprehensive under-
standing of out-of-equilibrium dynamics with potential
impact in various fields of science.

Similar phenomena have recently been observed by
the Schmiedmayer group [31] in Vienna in a single-
component Bose gas where a scaling exponent β ' 0.1
was extracted.
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the Fourier transform of the transversal spin. b, All initial
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[13] Kronjäger, J., Becker, C., Soltan-Panahi, P., Bongs, K.
& Sengstock, K. Spontaneous Pattern Formation in an
Antiferromagnetic Quantum Gas. Phys. Rev. Lett. 105,
090402 (2010).

[14] Bookjans, E. M., Vinit, A. & Raman, C. Quantum Phase
Transition in an Antiferromagnetic Spinor Bose-Einstein
Condensate. Phys. Rev. Lett. 107, 195306 (2011).

[15] De, S. et al. Quenched binary Bose-Einstein condensates:
Spin-domain formation and coarsening. Phys. Rev. A 89,
033631 (2014).

[16] Nicklas, E. et al. Observation of Scaling in the Dynamics
of a Strongly Quenched Quantum Gas. Phys. Rev. Lett.
115, 245301 (2015).

[17] Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal Fixed
Points: Effective Weak Coupling for Strongly Correlated
Systems Far from Equilibrium. Phys. Rev. Lett. 101,
041603 (2008).

[18] Nowak, B., Sexty, D. & Gasenzer, T. Superfluid turbu-
lence: Nonthermal fixed point in an ultracold Bose gas.
Phys. Rev. B 84, 020506(R) (2011).

[19] Bloch, I., Dalibard, J. & Nascimbène, S. Quantum sim-
ulations with ultracold quantum gases. Nat. Phys. 8,
267–276 (2012).

[20] Hung, C.-L., Gurarie, V. & Chin, C. From Cosmology
to Cold Atoms: Observation of Sakharov Oscillations in
a Quenched Atomic Superfluid. Science 341, 1213–1215
(2013).

[21] Rauer, B. et al. Recurrences in an isolated quantum
many-body system. Science 10.1126/science.aan7938
(2018).

[22] Schreiber, M. et al. Observation of many-body local-
ization of interacting fermions in a quasirandom optical
lattice. Science 349, 842–845 (2015).

[23] Gring, M. et al. Relaxation and Prethermalization in
an Isolated Quantum System. Science 337, 1318–1322
(2012).

[24] Stamper-Kurn, D. M. & Ueda, M. Spinor bose gases:
Symmetries, magnetism, and quantum dynamics. Rev.
Mod. Phys. 85, 1191–1244 (2013).

[25] Leslie, S. R. et al. Amplification of fluctuations in
a spinor Bose-Einstein condensate. Phys. Rev. A 79,
043631 (2009).

[26] Karl, M. & Gasenzer, T. Strongly anomalous non-
thermal fixed point in a quenched two-dimensional Bose
gas. New J. Phys. 19, 093014 (2017).

[27] Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic,
Z. Emergence of a turbulent cascade in a quantum gas.
Nature 539, 72–75 (2016).

[28] Zinn-Justin, J. Quantum Field Theory and Critical Phe-
nomena (Clarendon Press, Oxford, 2002).
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Methods

A. Microscopic parameters

The dynamics of the spinor Bose gas is described by
the Hamiltonian

Ĥ =Ĥ0 +

∫
dV
[

:
c0
2
n̂2 +

c1
2

(
F̂x

2
+ F̂y

2
+ F̂z

2
)

: +q (n̂+1 + n̂−1) + pF̂z

]
(3)

where ψ†m is the bosonic field creation operator of the

magnetic substate m ∈ {0,±1} and n̂m = ψ̂†mψ̂m and ::

denotes normal ordering. Ĥ0 contains the spin indepen-
dent kinetic energy and trapping potential. The spin op-

erators are given by: F̂x =
[
ψ̂†0

(
ψ̂+1 + ψ̂−1

)
+ h.c.

]
/
√

2

and F̂y =
[
iψ̂†0

(
ψ̂+1 − ψ̂−1

)
+ h.c.

]
/
√

2 and F̂z = n̂+1−
n̂−1. The parameter p describes the linear Zeeman shift
in a magnetic field. For the hyperfine spin F = 1 of 87Rb
the spin interaction is ferromagnetic, i.e. c1 < 0.

For the experimental control parameter q > 2n|c1|,
with n being the total density, the mean-field ground
state is the polar state, which corresponds to all atoms
occupying the mF = 0 state. In the range 0 < q <
2n|c1| a spin with non-vanishing length in the x-y-plane
is energetically favoured (easy-plane ferromagnet) [32].
This is the parameter regime employed in the experiment.

B. Experimental system

We prepare a BEC of ∼ 70, 000 atoms in the state
(F, mF) = (1, 0) in an optical dipole trap of 1030 nm light
with trapping frequencies (ω‖, ω⊥) ≈ 2π × (2.2, 250) Hz.

The control parameter q is given by q = qB − qMW,
where qB ≈ 2π× 56 Hz is the second-order Zeeman split-
ting at a magnetic field of B ≈ 0.884 G and qMW = Ω2/4δ
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is the energy shift due to the microwave dressing. For
dressing [33] we use a power-stabilised microwave gen-
erator with resonant Rabi frequency Ω ≈ 2π × 5.3 kHz
and δ ≈ 2π × 137 kHz blue detuned with respect to the
(1, 0) ↔ (2, 0) transition. For the spin dynamics we ad-
just Ω and δ such that q ≈ n|c1| (with nc1 ≈ −2π×2 Hz).
In order to monitor the long-term stability of q we do a
reference measurement every 4 h (corresponding to ∼ 250
experimental realisations). For this we observe spin dy-
namics for a fixed evolution time of 4 s as a function
of the control parameter q (changing the detuning δ).
Analysing the integrated side mode population we infer
that the drifts of q are well below 0.5 Hz.

C. Preparation of different initial conditions

We prepare three initial conditions (ICs, see Fig. 4)
which differ from the polar state. For IC 1 the control
parameter is first set to q ≈ n|c1| + 1 Hz. After 500 ms
of spin dynamics at this value we quench to the final
value q ≈ n|c1|. For the preparation of IC 2 we apply a
resonant π/5 radiofrequency (rf) pulse to populate the
(1,±1) states. After a hold time of 100 ms at a mag-
netic field gradient of ≈ 0.2µG/µm in the longitudinal
trap direction we apply a second π/5 rf-pulse. The com-
bination of q and an inhomogeneous p during the hold
time leads to a spatially modulated transversal spin on a
length scale of λ ≈ 80µm. For IC 3 we populate homoge-
neously the (1,±1) states with a short rf-pulse such that
(n+1 + n−1)/n ≈ 0.1.

D. Spin read-out

The spin dynamics is initiated by quenching the con-
trol parameter. After a fixed evolution time t we apply
a short magnetic field gradient pulse (Stern-Gerlach) in
z-direction and switch off the waveguide potential. Fol-

lowing a short time of flight (∼ 1 ms) we perform high
intensity absorption imaging with a resonant light pulse
of 15µs duration. The resolution of the imaging system
is ≈ 1.2µm corresponding to three pixels on the CCD
camera [34]; we accordingly bin the spin profiles by three
pixels. As our Stern-Gerlach analysis is oriented in z-
direction, for the read-out of the spin in the x–y-plane
we apply, prior to the magnetic field gradient, an rf-pulse
resonant with the transitions (1, 0)↔ (1,±1).

The rf-pulse can be modelled as a spin rotation de-
scribed by the Hamiltonian Ĥrf = ΩrfF̂y with resonant
Rabi frequency Ωrf ≈ 2π × 17.5 kHz. Applying a π/2-

pulse of duration 14.3µs the observable F̂x is mapped to
the measurable density difference n+1 − n−1.

E. Inferring the spin orientation

The double-peaked spin distributions in the scaling
regime (see Extended Data Figure 1) resemble a distri-
bution of a transversal spin with random orientation. To
extract the corresponding ensemble average length 〈|F⊥|〉
of the transversal spin and its fluctuation σ we fit a prob-
ability density of the form p(Fx) ∝ 1/

√
1− (Fx/ 〈|F⊥|〉)2

convolved with a Gaussian distribution with rms σ.
Under the assumption of a homogeneous spin length

the spatial profile of the angular orientation is given by
θ(y) = arcsin(Fx(y)/ 〈|F⊥|〉). If the maximal amplitude
is larger than 〈|F⊥|〉 − σ we use the maximal amplitude
of the single realisation instead of 〈|F⊥|〉.

F. Extraction of scaling exponents

After rescaling the results of the discrete Fourier trans-
form according to eq. (2) we interpolate with cubic
splines to obtain a common k-grid for all evolution times.
We vary the scaling exponents α and β to minimise the
sum of the squared relative differences of all structure
factors fθ. To estimate the statistical error on the expo-
nents we employ a jackknife resampling analysis [35].
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mesoscopic atomic clouds. Appl. Phys. B 113, 69–73
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Extended Data Figure 1. Extended Data Figure 1. Spin distributions for all evolution times. a) The panels
show the distributions of the transversal spin Fx measured at different evolution times as indicated. Initially, we find a narrow
Gaussian distribution corresponding to the prepared coherent spin state. The excitations developing in the transversal spin
lead to a double-peaked distribution within the interval of 2 s to 10 s. For long evolution times, t > 12 s, the distribution
resembles a Gaussian, which is much broader than the initial distribution. b) The spin length and its rms fluctuation as a
function of evolution time are extracted by a fit (see Methods). We find a slow decay of the spin length and nearly constant
rms fluctuations in the scaling regime.
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Extended Data Figure 2. Extended Data Figure 2.
Build-up of transversal spin in momentum space.
Since the angular orientation θ cannot be extracted reliably
for short evolution times, we choose to show the Fourier trans-
form of the transversal spin for regimes 1-3 (cf. Fig. 1). The
initial condition, all atoms prepared in mF = 0, is charac-
terised by a flat distribution. There is a fast build-up of
long-wavelength spin excitations by more than two orders of
magnitude within the first second. This process is followed
by a redistribution of momenta leading to the scaling form for
times longer than 4 s.
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