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The way in which energy is transported through an interacting system governs fundamental
properties in many areas of physics, chemistry, and biology. Remarkably, environmental noise can
enhance the transport, an effect known as environment-assisted quantum transport (ENAQT). In
this paper, we study ENAQT in a network of coupled spins subject to engineered static disorder
and temporally varying dephasing noise. The interacting spin network is realized in a chain of
trapped atomic ions and energy transport is represented by the transfer of electronic excitation
between ions. With increasing noise strength, we observe a crossover from coherent dynamics and
Anderson localization to ENAQT and finally a suppression of transport due to the quantum Zeno
effect. We find that in the regime where ENAQT is most effective the transport is mainly diffusive,
displaying coherences only at very short times. Further, we show that dephasing characterized by
non-Markovian noise can maintain coherences longer than white noise dephasing, with a strong
influence of the spectral structure on the transport efficiency. Our approach represents a controlled
and scalable way to investigate quantum transport in many-body networks under static disorder
and dynamic noise.

Introduction.— The transport of energy through net-
works governs fundamental phenomena such as light har-
vesting in photosynthetic organisms [1–3] or properties
of nano-fabricated quantum devices [4, 5]. Often, such
systems are subject to static disorder, which for non-
interacting particles suppresses transport through An-
derson localization [6]. In realistic networks, coupling
to environments such as phonon baths moreover induces
dynamical noise that can lift Anderson localization, an
effect known as environment-assisted quantum transport
(ENAQT). This phenomenon has been postulated to be
a key factor enabling the high efficiency of energy con-
version in photosynthetic biomolecules [7–9]. At large
noise levels, the transport efficiency again decreases due
to the quantum Zeno effect [10]. While the general phe-
nomenology governing the transport efficiency is widely
accepted, many works have been dedicated to under-
standing the influence of non-Markovian noise [11–15] as
well as coherence [3, 13, 16–21]. Here, engineered quan-
tum systems provide a prime opportunity, by enabling
controlled studies of energy transport under noisy envi-
ronments. Recent experiments have started investigat-
ing the elementary building blocks of ENAQT, but were
limited to at most four network nodes, represented by
photonic wave-guides, classical electrical oscillators, su-
perconducting qubits, or trapped ions [22–27].

In this work, we study ENAQT in a controlled net-
work of 10 coupled spins subject to static disorder and
dephasing noise (see inset (a) in Fig. 1). The network

is realized in a system of trapped ions following a re-
cent proposal [28]. Our approach enables us to investi-
gate the role of ENAQT in a controlled quantum net-
work that does not have a simple lattice structure re-
stricted to close-neighbor interactions. First, applying
white dephasing noise of increasing strength, we observe
a crossover from coherent dynamics and Anderson local-
ization to ENAQT, and finally a suppression of transport
due to the quantum Zeno effect. In the regime where
ENAQT is most effective, we find that the transport re-
veals coherences only at very short times, and that the
spread of the excitation is mostly diffusive. Finally, we
show that non-Markovian dephasing can maintain coher-
ences longer than white noise, with a strong influence
of the structure of the noise spectrum on the transport
efficiency.

Experimental implementation.— The nodes of our
quantum network are encoded into (pseudo-) spin-1/2

particles, represented by two internal electronic states
of 40Ca+ ions trapped in a linear Paul trap [30]. We
define the state |S 1

2
,m = + 1

2 〉 as spin down |↓〉 and

|D 5
2
,m = + 5

2 〉 as spin up |↑〉. A spin–spin interaction
Hamiltonian is realized by global laser pulses coupling
the electronic states of all ions [31]. In the subspace with
a single spin excitation |↑〉, the Hamiltonian is given by

H1 = ~
∑
i 6=j

Jij(σ
+
i σ
−
j + h.c.). (1)

Here, σ+
i (σ−i ) are the spin raising (lowering) operators
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Figure 1: Main graph: Transport efficiency η8 to the tar-
get (ion 8) under different strengths of static disorder (blue:
Bmax = 0.5 ·Jmax, red: Bmax = 2.5 ·Jmax) and Markovian-like
dephasing with rate γ. Experimental points (shown as dark
squares and triangles) result from averaging over 20−40 ran-
dom realizations of disorder and noise, with 25 experimental
repetitions each. Error bars are derived via bootstrapping,
based on 1000 samples (see [29] for details). ENAQT is seen
to be most advantageous around γ = Jmax. The data agrees
well with theoretical simulations of the coin-tossing random
process (light bullets) realized in the experiment, while simu-
lations with ideal Markovian white noise (lines) underestimate
ENAQT at large γ. The simulation averages over 300 random
realizations. Inset a): Sketch of the transport network. The
ions experience a long-range coupling, with darker and thicker
connections indicating higher coupling strengths. The green
arrows denote the source (3) and the target (8) for the exci-
tation in the ion network. Inset b): Sketch of the ion chain
representing interacting spin-1/2 particles as blue circles, with
the spin states denoted by black arrows. The ions are sub-
ject to random static and dynamic on-site excitation energies,
indicated by Bi and Wi(t).

for site i. This Hamiltonian describes the hopping of
spin excitations between sites i and j and conserves the
total magnetization, i.e. the number of spins in the ex-
cited state |↑〉 is preserved. The hopping rates follow an
approximate power-law, Jij = Jmax/|i− j|α, with peak
strength Jmax between (2π) 28 Hz and (2π) 33 Hz and
exponent α = 1.22 [32]. Inset (a) of Fig. 1 depicts this
quantum network.

Static disorder, disturbing the quantum network, is
represented as on-site excitation energies ~Bi, see Fig. 1
(b) and Eq. (3) below. The values Bi are randomly sam-
pled from a uniform distribution [−Bmax, Bmax], with
Bmax ∈ {0.5, 2.5} · Jmax. In the experiment, these dis-
order energies are realized by laser beams focused to sin-
gle ions and introducing precisely controlled AC-Stark
shifts on the encoded spin states [33]. For this, we apply
multiple radio frequencies to an acousto-optical deflector,
generating a set of laser beams to simultaneously address

multiple ions.

Moreover, we can temporally modulate the AC-Stark
shifts, employing an arbitrary-wave-form generator with
a switching time much faster than all other time scales.
Using this technique, we are able to engineer time-
dependent on-site energies ~Wi(t), which induce de-
phasing between the |↓〉 and |↑〉 states. In this way,
we simulate a stationary noise process with vanishing
mean, 〈〈Wi(t)〉〉 = 0, and broadly tunable spectral
power [34, 35]

S(ω) = lim
T→∞

1

T

∫ T

0

∫ T

0

〈〈Wi(t)Wi(t
′)〉〉 eiω(t−t′)dt′dt ,

(2)

where 〈〈•〉〉 denotes averaging over noise trajectories.
Cross talk between neighbouring spins and subharmonics
of the driving frequencies are negligible, so noise at dif-
ferent sites is uncorrelated. Including static disorder and
dynamical dephasing noise, the Hamiltonian H1 becomes

H = ~
∑
i 6=j

Jij(σ
+
i σ
−
j + h.c.) + ~

∑
i

(Bi +Wi(t))σ
z
i . (3)

where σz is the Pauli-z matrix.

To investigate ENAQT, we introduce an excitation
at time t = 0 at the source site isource = 3 (see in-
set (a) of Fig. 1) by preparing spin isource in the σzi
eigenstate |↑〉 while keeping all other spins in the eigen-
state |↓〉. We observe the transport of the excitation
through the network to the target site itarget = 8 un-
der the Hamiltonian H in Eq. (3), for both Markovian
and non-Markovian dephasing. The source and target
sites are chosen such that the transport dynamics is
not immediately influenced by boundary effects. We
define the transport efficiency to a particular site i by
ηi ≡

∫ tmax

0
dtpi(t). Here, pi(t) = (〈σzi (t)〉+ 1)/2 is the in-

stantaneous probability to find the excitation at site i
and tmax = 60 ms ≈ 11.7/Jmax is the system’s evolution
time. The time is chosen such that the evolution is long
enough to observe ENAQT and short enough to mini-
mize decoherence from amplitude damping due to spon-
taneous decay [28]. Any residual amplitude damping ef-
fect is eliminated by postselecting measurements with a
single excitation in the system. Typically more than 77%
of the measurements lie within this subspace.

Markovian dephasing.— We first study ENAQT in the
regime where Wi(t) can be described as white (or Marko-
vian) noise, i.e. S(ω) = const. In the experiment, every
∆T = 100 µs (200 µs) we randomly sample Wi between
{−Wmax

2 , Wmax

2 } with equal probabilities (equivalent to
tossing a coin). As the “coin tossing rate” λ = 1/∆T is
much faster than the maximal hopping Jmax, over the rel-
evant frequency range this process is well approximated

as white noise S(ω) =
W 2

max

λ = γ with dephasing rate γ.
We apply the dephasing noise to our system under (i)
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weak static disorder Bmax = 0.5 · Jmax and (ii) strong
static disorder Bmax = 2.5 · Jmax.

Figure 1 shows the measured transport efficiency η8

as a function of γ/Jmax: Weak static disorder Bmax <
Jmax (blue markers) does not affect transport consider-
ably. However, with additional noise at a level beyond
γ = Jmax the transport efficiency gradually decreases.
This regime, where noise is the dominant effect and in-
hibits quantum transport, is known as the quantum Zeno
regime. Under strong static disorder Bmax > Jmax (red
markers), the phenomenology becomes even richer: At
weak dephasing, γ < Jmax, excitation transport is sup-
pressed corresponding to Anderson localization. Around
γ ≈ Jmax, the noise cancels destructive interference caus-
ing the localization and thereby enhances the transport
efficiency, which is the hallmark of ENAQT. For strong
noise, γ > Jmax, the quantum Zeno effect again sup-
presses transport.

The experimental results agree well with theoretical
simulations of the coin-tossing random process (light bul-
lets in Fig. 1). At very strong dephasing, the shift
Wmax becomes comparable to the coin flipping rate λ
and the Markovian approximation is no longer fulfilled.
In this case, deviations from ideal Markovian white noise
(lines) become noticeable, as discussed in [28]. Such non-
Markovian effects will be further discussed later, after
analyzing the coherence properties of the quantum trans-
port.

Coherent dynamics in excitation transport.— The role
of coherences in ENAQT has been much discussed in
the context of exciton transport in photosynthetic com-
plexes [9, 36–39]. To investigate how coherences affect
excitation transport in our system, we observe the time-
resolved dynamics of the excitation probability of spin
8, p8(t), for strong static disorder and several levels of
dephasing noise (see Fig. 2). Without dephasing noise,
γ = 0, we find strong oscillations, indicative of quantum
coherent transport. Already in the regime where ENAQT
becomes relevant, γ ≈ Jmax, however, the noise damps
out any perceivable coherent oscillations, with spurious
oscillations lying in the range of statistical fluctuations.
Further, at sufficiently large times, t� 1/γ, and for large
values of γ, the dynamics of the excitation probability of
spin i, pi(t), is well described by a classical rate equation
(blue solid lines, Fig. 2). Here, the coherences between
sites have been adiabatically eliminated (see Supplemen-
tary Material), resulting in the equation

ṗi =
∑
` 6=i

Γ`i(p` − pi) , (4)

with the classical hopping rate Γ`i =
γJ2
i`

4(Bi−B`)2+γ2 , de-

rived from the experimental spin–spin coupling matrix
Ji` and the applied static on-site energies Bi as well as
dephasing noise rate γ. This set of coupled differential
equations describes a purely diffusive transport of the
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Figure 2: Excitation probability at ion 8 as a function of time,
for strong static disorder Bmax = 2.5 ·Jmax and increasing de-
phasing rate, from (a) to (d) γ/Jmax = 0 | 0.23 | 1 | 3.9. Each
data set (red to magenta triangles) results from averaging over
20 − 40 random realizations, with 25 repetitions each. Error
bars are derived with bootstrapping [29], based on 1000 sam-
ples. With increasing γ, coherent oscillations damp out and
the data converges towards a model following diffusive, clas-
sical rate equations (blue solid line). This theoretical approx-
imation is valid for times t� 1/γ. (The crossover tc = 1/γ is
illustrated by a blue dashed line.) The shaded areas show the
time evolution of a theoretical model with ideal Markovian
noise, averaged over 100 random realizations.

spin excitation. For weak dephasing, we observe devi-
ations from rate equation (4) at short times, which in-
dicates a temporal crossover from ballistic to diffusive
transport, similar to what has recently been resolved in
classical Brownian motion [40]. With increasing dephas-
ing strength, the observed coherences are damped and
the system converges to a diffusive rate equation. This
highlights the fact that Anderson localization is a wave
phenomenon caused by destructive interference, which is
lifted by dephasing.

Crossover from ballistic to subdiffusive transport.— We
can quantify the transport behaviour by examining the
spatial dispersal of the excitation, i.e. by measuring the
spatial width σWP of the excitation wave packet. This
analysis is analogous to experiments with ultracold atoms
in a momentum space lattice [41] and to experiments
in a photonic system on a discrete quantum walk [42].
We calculate the width via the spread from source spin

i3: σWP(t) ≈
√

2
(∑

i>i3
pi(t) · (i− i3)2

)
(this formula

is chosen to reduce boundary effects, see Supplemen-
tary Material for details). Depending on the relation-
ship to time, σWP(t) ∝ tC , one distinguishes between
‘normal diffusion’ as it occurs in classical random walks
(C = 0.5), ‘subdiffusion’ (0 < C < 0.5), and ‘superdiffu-
sion’ (C > 0.5). The case C = 1 is referred to as ballistic
transport. As we now show, we observe ballistic, diffu-
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sive, and subdiffusive behavior in our experiment.

The excitation dynamics pi(t) for three exemplary pa-
rameter values is displayed in the left column of Fig. 3.
At small γ an interference pattern is clearly visible. This
hallmark for coherence is rapidly washed out as γ in-
creases. We fit a power law of the form σWP(t) = A · tC
to the width of the wave packet (see Fig. 3, right col-
umn), only including data up to the time where the ex-
citation has been reflected from the left boundary back
to ion 2 (Fig. 3, left column). In this way, we exclude
data dominated by boundary effects. Without any disor-
der and noise, the width increases linearly in time with
C = 1.01± 0.09, corresponding to ballistic spreading.
In the regime around γ = Jmax (Fig. 2 (b)), where
ENAQT is most efficient, we find that within very short
times t ∼ 1/Jmax the transport evolves from ballistic to
mainly diffusive dynamics (as theoretically predicted in
Ref. [43]), yielding C = 0.76± 0.18. For strong dephas-
ing, γ = 18.4 · Jmax, we observe subdiffusive transport
with a power exponent C = 0.44± 0.02. Based on theo-
retical simulations, we conclude that subdiffusive dynam-
ics is caused by the long-range interactions in our system.

Non-Markovian dephasing.— In Fig. 1, the experi-
mentally observed transport efficiencies for γ > Jmax

are higher than the simulated values for ideal Marko-
vian noise. This discrepancy could indicate that non-
Markovian effects can increase the transport efficiency.
To investigate non-Markovian dephasing further, we
study ENAQT under noise with a spectral density func-
tion S(ω) of Lorentzian shape, which we generate using
the frequency-domain algorithm described in Ref. [44].
We choose a single random configuration of static disor-
der (Bmax = 2.5 · Jmax) in order to have full knowledge
of the disordered system and its eigenvalues.

From Fig. 4, we see that the spectral structure of the
noise model has a strong influence on the transport ef-
ficiency: Non-Markovian structured noise that covers all
difference frequencies of the spin system’s eigenenergies
(models 3 and 4) can enhance excitation transport as
much as white noise (model 1), and the efficiency is sim-
ilar for different target ions (Fig. 4 (b)). Narrowband
noise models, instead, only couple a few eigenstates, so
the spectral position determines for which target ions
excitation transport is enhanced (cf. models 5 and 6 in
Fig. 4). Integrating the applied local energy shifts over
the entire interaction time, we find that with narrowband
non-Markovian noise we can achieve similar transport ef-
ficiencies as with Markovian noise, but already at half the
energy cost (cf. noise models 1 and 6 in Fig. 4 (a)). Fur-
ther, panels (c) and (d) in Fig. 4 show that coherences
can be maintained better for narrowband noise models
than for Markovian-like noise.

Conclusion.— We have experimentally analyzed a
quantum network under static disorder and dynamic
noise, realized in a string of 10 trapped ions. We observed
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Figure 3: Left panels: Single-ion resolved excitation dynam-
ics pi(t) for (a) the unperturbed system (no static disorder
and no noise), (b) static disorder Bmax = 2.5 · Jmax with de-
phasing γ = Jmax, and (c) static disorder Bmax = 2.5 · Jmax

with γ = 18.4 · Jmax. The orange dotted line shows the max-
imum speed at which an excitation spreads (see Supplemen-
tary Material) in order to estimate until when the reflection
from the left boundary can be neglected (blue arrows). Right
panels: Spatial width of the excitation wave packet σWP(t),
calculated from the data in the left panels. Blue solid lines
are fits of the form σWP = A · tC (fits from the respective
other panels are included as dashed lines for comparison).
The vertical black line at σmax = 5.3 is the expected max-
imum of the wave packet width, for a single excitation dis-
tributed equally over all ions. (a) A = (1.2± 0.8) · 10−3, C =
1.01± 0.09 (b) A = (5.1 ± 7.6) · 10−3, C = 0.76± 0.18. (c)
A = (3.9 ± 0.9) · 10−2, C = 0.44± 0.02. All error bars are
derived via bootstrapping [29], based on 100 samples.

effects of Anderson localization in the absence of noise, an
increased transport efficiency by ENAQT at intermediate
noise levels, and finally suppression of quantum trans-
port under strong noise due to the quantum Zeno effect.
Further, we have found that coherences play a role only
in the localized regime (at very low noise strengths) or
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Figure 4: Excitation transport efficiency η under strong static
disorder and different noise models. a) Spectral density func-
tions S(ω) of the applied noise models. (1) white noise, (2)-
(6) non-Markovian noise models of Lorentzian shape. The
curves are averaged over ∼ 30 random realizations, each gen-
erated by a Gaussian random process based on 600 sampling
points. The inset shows a zoom into the low-frequency do-
main. Vertical grey lines denote the difference frequencies
between all eigenenergies of the disordered system. b) Com-
parison of ηtarget to target ion 8, 9, and 10 for the noise
models shown in (a), as indicated by corresponding colors
and numbering. The black circle shows suppressed efficiency
under strong static disorder without any noise. While broad-
band noise in the correct frequency range generically enhances
transport efficiencies, for narrowband noise the enhancement
depends on the source and target ions. Each data point results
from averaging over 25−30 random realizations, with 15 rep-
etitions each. Error bars are derived with bootstrapping [29],
based on 1000 samples. c)-d) Excitation probability of tar-
get ion 9 as a function of time under strong static disorder
Bmax = 2.5·Jmax. Panel c) shows the result for the Markovian
noise model (1). Oscillations, indicating coherent dynamics,
are strongly damped. Panel d) shows the effects of a narrow-
band Lorentzian noise model covering only a few eigenstates
(model 6). Here, coherences are maintained stronger and are
clearly discriminable from measurement errors up to ∼30 ms.

at very short times. In all other regimes of Markovian
noise, the dynamics is well captured through a diffusive
rate equation describing a classical random walk. Finally,
we found that the structure of non-Markovian dephasing
strongly influences quantum transport, with the possibil-
ity to reach as large efficiencies as with white noise while
maintaining long-lived coherences.

In the future, it will be interesting to study the
possibility of stochastically accelerated hyper-transport,
generated, e.g., by time-evolving disorder [45]. Fur-
ther, our approach allows one to investigate quantum
transport with multiple interacting excitations or to
study localization using out-of-time-ordered correlators
(OTOCs) [46, 47].

SUPPLEMENTARY MATERIAL

Here, we discuss the derivation of the classical rate
equation used to describe the diffusive part of the sys-
tem dynamics. Furthermore, a useful way for calculating
the wave packet width with reduced boundary effects is
shown.

Classical rate equation from dephasing noise

The main idea for arriving at a classical rate equation is
to adiabatically eliminate the coherences between sites,
an approximation which becomes valid at times larger
than the inverse dephasing rate. We start from the full
master equation for our system, which reads

ρ̇ = −i[H, ρ] + Lρ , (5)

with the Lindblad superoperator for dephasing noise
LX =

∑
i
γi
2 (2σ+

i σ
−
i Xσ

+
i σ
−
i − σ

+
i σ
−
i X −Xσ

+
i σ
−
i ).

In the single-excitation subspace and in the case where
noise and disorder dominate over the hopping terms, it
is convenient to work in the basis spanned by the states
|i〉 = σ+

i |⇓〉, with i = 1 . . . N and |⇓〉 the fully polarized
state. In this basis, the excitation probabilities (‘popula-
tions’) evolve as

ρ̇ii = −i
∑
6̀=i

(Hi`ρ`i − ρi`H`i) , (6)

where we define ρij = 〈i| ρ |j〉 and analogously for Hij =
〈i|H |j〉 The coherences for i 6= j evolve as

ρ̇ij = −i

∑
` 6=i

Hi`ρ`j −
∑
` 6=j

ρi`H`j


+

[
−i(Hii −Hjj)−

γi + γj
2

]
ρij . (7)

Here, the terms Hi` = Ji` (i 6= `) describe the hoppings
and Hii = 2Bi the on-site disorder (up to a constant).
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Under the assumption that the diagonal terms Hii and
γi are the dominating energy scales, we can adiabati-
cally eliminate the coherences. Formally, this amounts
to setting their time-derivatives to zero, which becomes
valid on the “slow” time scales on which the populations

evolve, t� 1/
∣∣∣i(Hii −Hjj) +

γi+γj
2

∣∣∣.
Solving the Eq. (7) for ρ̇ij = 0 to leading order in the

hoppings, i.e., assuming Hij �
∣∣∣i(Hii −Hjj) +

γi+γj
2

∣∣∣,
we obtain ρij =

Hij(ρii−ρjj)
Hii−Hjj−

γi+γj
2

. Inserting this expression

into Eq. (4), we obtain the result

ρ̇ii =
∑
` 6=i

Γ`i(ρ`` − ρii) , (8)

with Γ`i =
γi+γ`

2 Hi`H`i

(Hii−H``)2+
(
γi+γ`

2

)2 . By setting γi = γ ∀ i,

this set of coupled differential equations describes the
diffusive evolution of the populations pi = ρii according
to the classical rate equation (4) given in the main text.

Estimation of the wave packet width

The left panels in Fig. 3 show single-ion resolved ex-
citation dynamics pi(t), which is used to calculate the
spatial width of the excitation wave packet σWP(t) over
ion 3 to 10. We start from the common definition

of the wave packet width σWP(t) =

√
〈x̂2〉 − 〈x̂〉2 =√(∑10

i=1 pi(t) · i2
)
−
(∑10

i=1 pi(t) · i
)2

and rewrite the

expression relative to the source site i0: σWP(t) =√
(
∑
i pi(t) · (i− i0)2)− (

∑
i pi(t) · (i− i0))

2
. Since the

excitation is inserted off-center, we can increase the spa-
tial and temporal range over which the width is eval-
uated. For this, we discard the data between source
and the nearer boundary, where boundary effects ap-
pear early. Instead, we only consider the region between
source and the boundary that is farther away. We mirror
this region around i0, thus obtaining an imagined system
where the excitation spreads symmetrically around i0.
This description is valid as long as the boundary effects
from the nearer boundary do not influence the data in the
evaluated region. Mathematically, we split the sums at
i0 and assume mirror symmetry, which yields σWP(t) =√(∑

i<i0
pi(t) · (i− i0)2

)
+
(∑

i>i0
pi(t) · (i− i0)2

)
−
(∑

i<i0
pi(t) · (i− i0) +

∑
i>i0

pi(t) · (i− i0)
)2

≈
√

2
(∑

i>i0
pi(t) · (i− i0)2

)
.

A quantitative description of the transport behaviour
is gained by fitting a power law σWP(t) = A · tC . In
order to exclude data in which boundary effects from the
nearer boundary become relevant, we fit the data only up
to the time where the excitation has hopped from ion 3
to the left boundary and back to ion 2. We estimate this

time through a modified hopping strength J̃ij , consisting
of the original hopping rate Jij , reduced by the applied
disorder Bmax and dephasing γ,

Jeff. = min{J̃ij , Jij} ,with J̃ij =
J2
ij

B2
max + γ2

(9)

Based on the hopping rate Jeff., we calculate the maxi-
mum speed at which an excitation spreads in our system
(see [31] and methods in [48]) and visualize it as orange
dotted light-like cones in the left panels of Fig. 3. Since
we do not have finite-range interactions, these are not
strict maximum speeds. Still, they provide a practically
useful description of the excitation spreading in our sys-
tem.
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T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R.
Fleming, Nature 446, 782 (2007), URL http://dx.doi.

org/10.1038/nature05678.
[17] H. Lee, Y.-C. Cheng, and G. R. Fleming, Science 316,

1462 (2007), ISSN 0036-8075, URL http://science.

sciencemag.org/content/316/5830/1462.
[18] M. d. Rey, A. W. Chin, S. F. Huelga, and M. B. Plenio, J.

Phys. Chem. Lett. 4, 903 (2013), ISSN 1948-7185, URL
https://doi.org/10.1021/jz400058a.

[19] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R.
Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S.
Engel, Proceedings of the National Academy of Sciences
107, 12766 (2010), ISSN 0027-8424, URL http://www.

pnas.org/content/107/29/12766.
[20] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-

Guzik, The Journal of Chemical Physics 129, 174106
(2008), URL https://doi.org/10.1063/1.3002335.

[21] M. B. Plenio and S. F. Huelga, New Journal of
Physics 10, 113019 (2008), URL http://stacks.iop.

org/1367-2630/10/i=11/a=113019.
[22] S. Viciani, M. Lima, M. Bellini, and F. Caruso, Phys.

Rev. Lett. 115, 083601 (2015), URL https://link.aps.

org/doi/10.1103/PhysRevLett.115.083601.
[23] D. N. Biggerstaff, R. Heilmann, A. A. Zecevik, M. Gräfe,
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