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Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave prop-
erties of particles are exploited in metrology using atom interferometers, allowing for high-precision
inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an inter-
ferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer
is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of
interest [3]. Here we show experimentally that the classical precision limit can be surpassed using
nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the
atoms lead to non-classical entangled states within the interferometer; this represents an alternative
approach to the use of non-classical input states [4–8]. Extending quantum interferometry [9] to the
regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to
that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the “one-axis-
twisting” scheme [10] and implements interaction control using a narrow Feshbach resonance. We
perform noise tomography of the quantum state within the interferometer and detect coherent spin
squeezing with a squeezing factor of ξ2S = −8.2dB [11–15]. The results provide information on the
many-particle quantum state, and imply the entanglement of 170 atoms [16].

The concept of interferometry relies on the splitting
of a quantum state into two modes, a period of free
evolution and, finally, the recombination of the modes
for readout. The key observable, the accumulated
relative phase, is inferred from the measured popula-
tion difference between the two output states [17]. A
prominent example of linear interferometry is Ramsey
spectroscopy, a technique used to define the current time
standard. The concept underlying Ramsey spectroscopy
is shown in Fig. 1a. A quantum state of N atoms is
transformed unitarily by a linear beam splitter, resulting
in a coherent spin state |Ψ〉 ∝ (â†+ b̂†)N |0〉, where â† and

b̂† are the creation operators for the modes a and b. This
beam splitter is typically realized using a π/2 microwave
pulse coupling two internal atomic states. The mismatch
between the frequency of the microwave field and the
frequency of the atomic transition to bemeasured leads
to an accumulated phase, ϕ, after the evolution time
τ and to a quantum state |Ψ〉 ∝ (â† + eiϕb̂†)N |0〉.
To convert the relative phase, ϕ, into an observable
population difference, n = (Na − Nb)/2, where Na and
Nb are the respective populations of the two modes a
and b, the two states are coupled again before readout.
Varying the relative phase by 2π causes the observed
population difference to change sinusoidally, producing
a so-called Ramsey fringe. The interferometerÕs phase
error, ∆ϕ = ∆n/ ∂n∂ϕ , is determined by the root mean
square error, ∆n, of the population difference and
the slope of the interference signal, ∂n

∂ϕ . Best exper-
imental performance is achieved at the zero crossing
(n = 0) of the Ramsey fringe, where the slope is maximal.

In linear interferometry, the phase precision for an
N−atom coherent spin state can be explained by classi-
cal statistics. The situation is equivalent to N individual

measurements on a single particle. At the most sensitive
point of the interferometer, each particle has an equal
chance to to be measured in state |a〉 or |b〉; the uncer-
tainty for N particles is thus ∆n =

√
N/2. The maximal

slope ∂n
∂ϕ = VN/2 is determined by the visibility V which

is close to one for a macroscopically populated coherent
spin state. The resulting minimal phase error for a classi-
cal measurement ∆ϕ = 1/

√
N is known as the standard

quantum limit. In the case of correlated particles, this
classical limit can be exceeded; doing so is the subject
of the emerging field of quantum metrology. The idea is
to achieve improved scaling of the interferometric phase
sensitivity with the number of quanta, N , which are typ-
ically atoms or photons, using entangled quantum states
within the interferometer [9, 18]. Here the fundamental
quantum limit is known as Heisenberg limit where the
phase error is ∆ϕ = 1/N .

In this letter we report on a direct experimental
demonstration of interferometric phase precision beyond
the standard quantum limit in a novel nonlinear Ram-
sey interferometer. Two hyperfine states labeled |a〉 and
|b〉 of a 87Rubidium Bose-Einstein condensate act as the
two modes of the interferometer. The atoms in the two
states are trapped in the wells of a deep one-dimensional
optical lattice (deep enough that there is no tunneling
coupling). Absorption imaging at high spatial resolu-
tion allows the direct measurement of the populations
in |a〉 and |b〉 in each well. The two hyperfine states
are detected after each other with a delay of 780µs.
Controlled inter particle interactions using a Feshbach
resonance allow for the realization of a nonlinear beam
splitter in which the state at its output ports is a co-
herent spin squeezed state (Fig. 1b). Coherent spin
squeezed states are a special kind of many-particle entan-
gled states for which the minimal interferometric phase
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FIG. 1. Comparison of linear and nonlinear interferometry. a, Schematic of a classical linear interferometer. The input
state (top) is brought into a superposition of two modes by the first beam splitter which is indicated in the Bloch sphere
representation. This coherent spin state evolves freely and acquires a phase shift ϕ proportional to the quantity to be measured
until the two modes are mixed by a second beam splitter, where the acquired relative phase translates into an observable mean
population imbalance 〈Jz(ϕ)〉 at the two output ports. b, Here the input state is split by a nonlinear beam splitter, leading
to an entangled quantum state, i.e. a coherent spin squeezed state with reduced fluctuations in the relative phase ϕ. This
phase squeezed state improves the precision of this interferometer beyond the classical limit. c, We prepare six independent
Bose-Einstein condensates of 87Rubidium in a one dimensional optical lattice. Two hyperfine states form a two mode system,
i.e. the interferometer, in each well. The Bloch sphere representation of the quantum state in one well is shown for all atoms
in state |a〉 (blue), in state |b〉 (red) and in a coherent superposition of the two states (purple). An imaging system with high
spatial resolution (≈ 1µm) allows the detection of the condensate in each well individually using high intensity absorption
imaging [19]. State-selective time-delayed imaging causes the atomic clouds to have different shapes.

error is ∆ϕ = ξS/
√
N with the coherent spin squeez-

ing factor ξ2S = N (∆Jz)
2/(〈Jx〉2 + 〈Jy〉2). [11, 12] In the

symmetric two mode case the total spin is J = N/2
for a system consisting of N quanta. For large N and
small population difference, n� N , the orthogonal spin
components are related to the population difference, n,
and relative phase, ϕ, between the two modes as follows:
Jz = n, Jx ≈ N/2 cos(ϕ) and Jy ≈ N/2 sin(ϕ). Here
we choose a coordinate system such that 〈Jy〉 = 0 when
measuring the mean spin length 〈Jx〉2 + 〈Jy〉2. The spin
representation allows the visualization of quantum states
on a generalized Bloch sphere as shown in figure 1c.

For the realization of the nonlinear beam splitter we
follow the one-axis-twisting scheme proposed in ref. [10].
The detailed interferometric sequence is shown in Fig.
2a. A fast π/2 pulse produces a coherent spin state with
〈Jz〉 = 0, and subsequent evolution under the influence
of interactions causes a shearing effect transforming
the circular uncertainty region into an elliptical one
as detailed in Fig. 3a. The resulting quantum state
is a coherent spin squeezed state where the squeezed
direction forms at an angle α0 relative to the Jz axis.
The final step to realize the nonlinear beam splitter is
the rotation of the uncertainty ellipse around its center
by α = α0 + π/2 to prepare a phase squeezed state.
The quality of the output state critically depends on the

choice of the axis about which this rotation is made.
Therefore, we add a spin echo pulse in the evolution
period to correct for technical dephasing. After the
beam splitting process, we allow for τ = 2µs of phase
accumulation time and then recouple the states |a〉 and
|b〉 using a π/2 pulse with controlled phase ϕ before
readout of the population imbalance.

The Ramsey fringe resulting from this nonlinear inter-
ferometric sequence is shown in Fig. 2b (red), and from
it we deduce a visibility of V = 0.92± 0.02. For a direct
comparison with the linear interferometer, we replace the
nonlinear beam splitter with a standard linear one – real-
ized using a single π/2 pulse – and keep the total number
of atoms at the output constant. We obtain a fringe with
a visibility of V = 0.98±0.02 (blue). The solid lines above
and below the two fringes in Fig. 2b show the total spin
length, ±N/2, for reference. In order to determine the
phase error, we analysed the region around the zero cross-
ing in more detail, as shown in Fig. 2c. We performed
120 experimental runs per phase setting and measured
∆J2

z for a linear interferometer (blue) and nonlinear in-
terferometer (red). It is important to note that none of
the data shown in Fig. 2c has been corrected for noise.
The gray shaded areas indicate the two standard devia-
tion bounds for an ideal classical measurement, i.e. as-
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FIG. 2. Direct experimental demonstration of precision beyond the standard quantum limit. a, The nonlinear Ramsey
interferometric sequence in the Bloch sphere representation. The states before and after the coupling pulses are represented by
gray and red shading respectively. Rotation angles of the different pulses and their rotation axes (subscripts) are as indicated.
The lower curve represents the temporal evolution of Jz, its width indicating the corresponding variance. The nonlinear beam
splitter realized with the first three pulses produce a phase squeezed state. The last pulse with phase ϕ mixes the |a〉 and |b〉
modes before readout of the population imbalance. b, A Ramsey fringe observed when scanning the phase ϕ over a full period.
The blue data correspond to linear interferometry (the first three pulses are substituted by a single π/2 pulse) and the red data
correspond to nonlinear interferometry. Technical imperfections cause the decrease in visibility from 0.98±0.02 for the linear to
0.92±0.02 for the nonlinear interferometer. The solid lines show the total atom number ±N/2 measured for each phase setting
as a reference. c, In order to determine the performance of the nonlinear interferometer we repeat the population difference
measurement for a given phase 120 times (red), concentrating on the region shown in the dotted box in b. The solid lines are
fits through the lower and upper ends of the two s.d. error bars. The gray shaded areas show the corresponding uncertainty
regions for an ideal linear interferometer with full visibility. For the nonlinear interferometer, we find a phase error, ∆ϕnl,
15% smaller than that, ∆ϕl, for the ideal linear scheme. This is remarkable because for classical linear interferometry (blue),
technical noise causes phase errors 24% larger than those expected for an ideal measurement. For clarity the two measurements
are vertically displaced.

suming no excess noise due to the measurement process.
The solid lines are linear fits to the upper and lower ends
of the two s.d. error bars of the measured data. The
difference between the slopes of these lines and the ideal
measurement is caused by the slightly decreased visibility.

The performance of this interferometer in phase estima-
tion is 15% superior to that in the ideal classical case,
as shown by the dashed lines indicating the respective
phase errors in Fig. 2c. This is remarkable because the
phase error that we measure for the linear interferometer
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is 24% higher than that expected in an ideal apparatus.
This excess noise is due to readout noise in the detec-
tion scheme [13, 20] and experimental imperfections in
the coupling pulses (see supplementary information).

The experimental sequence starts with a Bose-Einstein
condensate of 2300 87Rubidium atoms in the |F,mF 〉 =
|1,−1〉 hyperfine state in an optical dipole trap. By split-
ting the trap into six using a one-dimensional optical
lattice potential [13] we are able perform six indepen-
dent experiments in parallel (Fig. 1c). This results in
increased statistics for a given measurement time. The
single traps are almost spherical with dipole frequencies
of ωtrap = 2π ∗ 425 Hz. An adiabatic passage is used
to sweep the atoms to the state |a〉 = |1, 1〉. By two-
photon combined microwave and radio frequency pulses
we couple the |a〉 and |b〉 = |2,−1〉 states with a Rabi
frequency Ω. The single photon detuning to the |2, 0〉
state is δ = −200 kHz. The chosen states have a narrow
Feshbach resonance at B = 9.10 G which allows us to
control the interspecies s-wave scattering length aab and
therefore to access the miscible regime [21–24].

For our trap geometries and interaction regime the
single spatial mode approximation has been shown to
be well justified [25]. The dynamics is described by
the Josephson Hamiltonian H/~ = χJ2

z + ΩJγ + ∆ω0Jz
where Jγ = cos(γ)Jx+sin(γ)Jy is the angular momentum
direction in which the coupling pulses are applied and
χ ∝ aaa + abb − 2aab is the effective nonlinearity arising
from intra- and interspecies interaction. [26] The ratio of
the background scattering lengths aaa : aab : abb = 100 :
97.7 : 95 results in a very small effective nonlinear inter-
action, but using the Feshbach resonance decreases aab
such that χ = 2π ∗0.063 Hz at B = 9.13 G. The Rabi fre-
quency Ω can be switched rapidly between Ω = 0 Hz and
Ω = 2π ∗600 Hz allowing for fast diabatic coupling of the
states. We keep the magnetic field constant throughout
the whole interferometric sequence but during the cou-
pling pulses the interaction χJ2

z can be neglected since
the system is in the Rabi regime, i.e. χN/Ω� 1. Differ-
ential energy shifts ∆ω0 between the |a〉 and |b〉 states are
mainly due to uncontrolled magnetic field fluctuations.
We use active magnetic field stabilization to suppress the
low frequency components of the magnetic noise to sub
milli-gauss levels. This is of utmost importance because
the performance of the nonlinear beam splitter crucially
relies on the final rotation around an axis stable through
the center of the noise ellipse.

In addition to the interferometry experiment we char-
acterize the quantum state produced by the nonlinear
beam splitter by noise tomography [27]. A rotation by
α around the center of the quantum state maps spin
directions orthogonal to the mean spin orientation to
the Jz readout axis such that their fluctuations can
be measured. Figure 3a shows a close-up of the re-
sults for small angles. We find minimal fluctuations for
α0 = 16◦; the corresponding number squeezing factor is

ξ2N = 2∆J2
z /J = −6.9+0.8

−0.9dB, where we average the re-
sults for α = 16◦ and α = 17◦ to increase the statistics
to 634 measurements. Here photon shot noise due to the
imaging process is removed (blue data points) [13, 20].
The red data in Fig. 3a show the result of also subtract-
ing technical noise due to coupling-pulse imperfections
and magnetic field fluctuations (Supplementary Informa-
tion). Using this correction, we infer a number squeezing
factor of ξ2N = −8.2+0.9

−1.2 dB, which is close to the atom
loss limited theoretical optimum for our internal system
of ≈ 10 dB [25].

Maximum fluctuations of ξ2N,max = +10.3+0.3
−0.4 dB are

observed for measurement along the axis orthogonal to
the squeezed direction and limit the coherence, and vis-
ibility, of the nonlinear beam splitter output to V =

〈cos(ϕ)〉 = e−ξ
2
N,max/2N = 0.986 ± 0.001, assuming a

gaussian distribution of the phase fluctuations and the
validity of the two-mode approximation (see supplemen-
tary information) [28]. The measured Heisenberg uncer-
tainty product 4 ∆J2

z ∆J2
y/〈Jx〉2 of the conjugate vari-

ances is 1.65 ± 0.35, which is only slightly larger than
the one expected for a minimal-uncertainty state. A fit
to the data assuming evolution under the one axis twist-
ing Hamiltonian [10] with the nonlinearity χ as a free
parameter shows very good agreement with theory (Fig.
3b) for χ = 2π ∗ 0.063 Hz. The discrepancy between
fit and data in the number squeezed region is mainly
due to a loss of 15% of the atoms during the nonlinear
evolution [25, 29]. To put the best number squeezing
factor, ξ2N = −8.2 dB in context with the interferometer
experiment, it is important to note that there the non-
linear beam splitter performance was ξ2N = −4.3 dB or
ξ2N = −2.1 dB, where the first value was inferred from the
population- difference fluctuations at the interferometer
output with subtraction of known technical noise and the
second value was inferred without subtraction of known
technical noise. The degradation of the performance can
be explained by the drift of the magnetic fields (approx-
imately 5 mG per day) during the measurement period
(24 h here but only 3 h in the measurement of the best
number squeezing).

With knowledge of the fluctuation in two conjugate
spin directions, it is possible to make statements about
entanglement in the spin system [12, 16, 30]. For distin-
guishable particles, entanglement is defined as the non-
separability of the overall density matrix. The problem of
indistinguishability of the atoms in a Bose-Einstein con-
densate can in principle be overcome by a local operation
whereby the particles are localized to distinguishable po-
sitions in space without affecting the spin properties of
the collective system [16]. Since local measurements can
not generate entanglement it must have been present be-
forehand. The values of squeezed and antisqueezed fluc-
tuations in two orthogonal spin directions imply a lower
bound for the block size of the largest non-separable part
of the density matrix [16]. The measured number squeez-
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FIG. 3. Characterization of the quantum state within the nonlinear interferometer. a, One-axis-twisting dynamics of a coherent
spin state evolving under a pure χJ2

z Hamiltonian. By analogy with the non-interacting Hamiltonian H/~ = ∆ω0Jz, we expect
eigenstates of Jz to rotate around the Jz axis at a rate proportional to ∂H/∂Jz. In the interacting case, this gives a rotation
rate proportional to Jz. Because a coherent spin state with 〈Jz〉 < N/2 can be described as a superposition of several of these
eigenstates, the twisting effect shown in the left-hand column appears. After a fixed evolution time of 18 ms a coupling pulse
rotates the quantum state around its center and the fluctuations ∆Jz are detected. The graph shows the observed number
squeezing factor ξ2N at the output of this nonlinear beam splitter versus rotation angle α. The blue data have been corrected
for photon shot noise and the red data additionally take the technical noise into account (Supplementary Information). For
clarity one s.d. error bars are given for the red data only. We observe a best number squeezing factor of ξ2N = −8.2+0.9

−1.2dB. b,
Noise tomography of the output state of the nonlinear beam splitter. The dotted box indicates the region detailed in a. The
largest fluctuations we measure have a number squeezing factor of ξ2N,max = +10.3+0.3

−0.4 dB, resulting in an uncertainty product
of the conjugate variances 1.6± 0.35 times larger than expected for a minimal uncertainty state. The black line is a fit to the
data allowing for one free parameter in the two-mode approximation. Because the theory does not include the 15% atom loss,
it overestimates the optimal suppression of number fluctuations. Nevertheless we find good agreement confirming the expected
interdependence between number squeezing and purely interaction-driven phase dispersion. Knowledge of the minimal and
maximal spin fluctuations in two orthogonal directions allows for a statement on the many body entanglement present in the
system [12]. The inset shows theoretical limits for ξ2N for different minimal non-separable block sizes of the N -particle density
matrix (gray lines) [16]. These sizes equal the numbers of entangled atoms. The red data point is the result of the noise
tomography and indicates entanglement of more than 80 atoms with a three s.d. confidence level.

ing ξ2N and coherence 〈cos(ϕ)〉 imply entanglement of 170
atoms (red data point in inset of Fig. 3b), and we can ex-
clude entanglement of fewer than 80 atoms with a 3-s.d.
confidence level.

We have directly demonstrated the feasibility of non-
linear atom interferometry beyond the standard quan-
tum limit using a macroscopic ensemble of atoms. Pre-
cise characterization of the output state of the non-
linear beam splitter implies coherent spin squeezing of
ξ2S = ξ2N/〈cos(ϕ)〉2 = −8.2dB. In principle (that is, if
there is no excess technical noise), this allows for a 61%
increase in phase sensitivity over classical linear inter-
ferometry. This is a significant step towards useful spin
squeezing in atom interferometry [13–15, 27]. The exten-
sion of many particle atom interferometry to the nonlin-
ear regime is thus an advance towards applied quantum
atom optics using coherent interactions between atoms.

We note that the group of P. Treutlein has independently
realized internal-state spin squeezing on an atom chip
through controlled interactions using state-dependent po-
tentials [31].
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Supplementary Information

Calculation of the atom number difference fluctuations

We deduce the population of each hyperfine state by
state selective high intensity absorption imaging (see next
section). For each well, the raw data consists of a set of
atom numbers Na and Nb in the two hyperfine states |a〉
and |b〉 obtained by repeating the experiment 60 times.
The data shown in figures 3 and 4 of the main paper are
average numbers extracted from several wells (with to-
tal atom number between 200 and 450) and over several
datasets measured at different days. The indicated er-
ror bars and error values are obtained as the statistical
standard error of the mean obtained from the described
averaging. A Grubb outlier detection algorithm [F.E.
Grubbs, Technometrics 11 1 (1969)] is used to filter the
extracted atom number difference (Na − Nb)/2. It de-
tects typically zero but maximally 1 to 2 points out of 60
(at a 5% significance level). Due to possible slow drifts
of the magnetic field (on the hour timescale) we correct
each dataset and remove a linear slope. Statistical simu-
lations were performed to test this procedure and biasing
was found to be negligible.
For each dataset, we define p = 〈Na/Ntot〉 the probabil-
ity for an atom to be in state |a〉 where Ntot = Na +Nb
is the total atom number. If p 6= 1/2 the atom num-
ber difference n depends on the total atom number as
n = (p − 1/2)Ntot. Therefore fluctuations in the total
atom number between different experimental runs (which
are on the order of

√
Ntot), contribute to the measured

variance. We compute

∆n2raw = 〈[(Na −Nb)/2− (p− 1/2)Ntot]
2〉

in order to avoid taking into account these fluctuations.
Since p is typically close to 1/2 this correction has only
a small effect. Additional noise δN2

a(b),psn in the atom

number Na (Nb) per state due to photon shot-noise from
the detection process contributes to the variance ∆n2raw.
We deduce this extra variance as the sum over all CCD
pixels in the integration area where the contribution per
pixel is inferred from the light intensity on the absorp-
tion and on the reference picture. A measured CCD cam-
era noise calibration curve which relates the variance per
pixel to the mean counts permits to calculate the addi-
tional atomic variances δN2

a(b),psn for each experimental
realization. We subtract this contribution

∆n2psn = [1/4 + (p− 1/2)2]〈δN2
a,psn + δN2

b,psn〉

and obtain the corrected number fluctuations

∆n2 = ∆n2raw −∆n2psn

The typical magnitude of ∆npsn corresponds to fluctua-
tions of 6.8 atoms. For the best measured number squeez-
ing ξ2N = −6.9dB, the total fluctuations are ∆nraw ≈ 8.1

atoms, while the atomic shot noise limit is 9.8 atoms.
Even though the photon shot noise gives a large contri-
bution to the total fluctuations its subtraction is very
accurate. The uncertainty in ∆n2raw is 4% (two s.d. er-
ror) and the main contribution is due to statistical errors
in the CCD camera noise calibration curve.
Finally the number squeezing factor ξ2N is calculated by
normalizing ∆n2 by the expected value for a coherent
spin state with population ratio p between the states |a〉
and |b〉

ξ2N =
∆n2

p(1− p)〈Ntot〉

We emphasize that no post processing (i.e. no photon
shot noise, drift removal or total atom number fluctuation
correction) is possible in the interferometric measurement
shown in figure 2c of the main paper. The plotted data in
figure 2c is directly ∆n = (Na −Nb)/2 after the Grubbs
test.

Atom number measurement and calibration

We detect the atoms by high intensity absorption imag-
ing. The imaging system has a spatial resolution of
≈ 1µm allowing us to unambiguously resolve the indi-
vidual lattice sites spaced by 5.7µm. For precise calibra-
tion of the total atom number we follow the procedure
described in [J. Estève et al., Nature 455 1216 (2008)]
and in [G. Reinaudi et al., Opt. Lett. 32 3143 (2007)].
The detection sequence starts with ramping down the
magnetic offset field from 9.13G, its value during the ex-
perimental sequence, to a value close to zero within 3ms.
Afterwards the optical dipole trap levitating the atoms
against gravity is switched off to expand the atomic
clouds. In order to avoid overlapping of clouds from
different wells during this expansion the optical lattice
is kept on. 570µs after dipole trap switch off the |2,−1〉
atoms are imaged with a 10µs to 25µs long imaging pulse.
The imaging pulse intensity is I ≈ 10Isat to optimize
the signal to noise ratio (Isat is the saturation intensity).
The detected atoms are removed from the field of view of
the camera by an additional resonant laser pulse and the
|1, 1〉 atoms are optically pumped to the F = 2 ground-
state hyperfine manifold. 780µs after the first imaging
pulse a second pulse with the same parameters is used to
detect the second species.
The result of an independent test of the imaging calibra-
tion is shown in figure 1. We prepare a coherent spin
state by a fast π/2 pulse and measure the fluctuations of
the population difference ∆n2/p(1 − p) versus the total
atom number N . For a coherent spin state we expect
∆n2/p(1−p) = N . In order to vary the total atom num-
ber and test the scaling of the fluctuations we use two
approaches: We analyse the different wells of the optical
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FIG. 4. Correct calibration of the atom number detection
is crucial for the results presented in this paper. We per-
formed an independent check of the calibration by measur-
ing the atom number difference fluctuation of a coherent spin
state versus the total atom number. The expected linear slope
for a coherent spin state is unity (blue line). The resulting
fluctuations analyzing all different wells of the optical lattice
are plotted in the inset. A linear fit (black line) reveals a
slope of 0.98 ± 0.06. In order to increase the statistics and
to expand the total atom number range we sum over a differ-
ent number of wells and calculate the fluctuations from the
binned atom numbers. We repeat this procedure for all pos-
sible combinations of the binning. The high statistics allows
for a second order fit (black line) and we find 1.01 ± 0.03 as
the linear coefficient and a very small quadratic contribution
of 2 ∗ 10−5. All uncertainties given are two s.d. errors.

lattice individually and we also vary the total atom num-
ber in the six well system. This covers the range from
zero to ≈ 1000 atoms in the different wells. The result
of this analysis is shown in the inset in figure 1. The
fitted linear slope is 0.98 ± 0.06 (two s.d. error). In a
second step we analyze the data after binning a different
number of wells (see next section). The same fluctua-
tion calculation is done for every possible permutation
of the binning. This method results in high statistics
and widens the range of atom numbers for which we test
our imaging. A quadratic fit yields a linear coefficient of
1.01 ± 0.03 (two s.d. error) while the quadratic one is
2 ∗ 10−5. This small nonlinearity is caused by errors in
the preparation pulse or by excess noise in the imaging
procedure. As a result of this imaging test we find an
upper limit of 4% for a possible systematic error due to
wrong calibrations in the detection procedure with 95%

confidence level.

Technical noise sources

Uncontrolled fluctuation of the magnetic field during
the experimental sequence or coupling pulse errors due
to frequency or timing noise results in a contribution to
∆n2 scaling as ∆n2tech ∝ β2N2. β2 measures the inte-
grated magnitude of the technical noise. The unfavorable
scaling with N is one of the main challenges to achieve
squeezing systems with larger atom number.
We perform six independent experiments in parallel, well
separated by a high potential barrier. Crosstalk be-
tween the condensates within the experimental timescale
of 20ms is excluded since the tunneling timescale between
the wells is in the order of seconds. Since all wells are
exposed to the same noise, correlation between them can
be used to extract the noise β2. For each dataset taken
we bin different numbers of wells and analyse the result-
ing number fluctuations between the two internal states
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FIG. 5. The left panel illustrates the binning procedure to
obtain different total atom numbers from a single dataset.
We sum the region in the pictures of the |a〉 (|b〉) atoms

corresponding to k wells and obtain the atom number N
(k)
a

(N
(k)
b ). For each binning the total atom number is given by

N (k) = N
(k)
a +N

(k)
b . We repeat the procedure for every pos-

sible permutation and calculate the normalized fluctuations

for each total atom number {N (k)
i }. Plotting the resulting

squeezing ξ2N versus the total atom number typically reveals a
linear correlation. This correlation is due to technical fluctua-
tions affecting all wells in the same way, since the condensates
in different wells are separated. The fitted linear slope β2 is
used to subtract the resulting excess noise from the measured
number squeezing in a single well.
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for all possible permutations of the binning (see figure 2).
We plot the calculated number squeezing ξ2N (N) versus
the total atom number N contained in the binned area
of the picture. Technical noise results in a non zero slope
β2 which we extract by a linear fit to the data as shown
in figure 2. The technical noise contribution to the mea-
sured number squeezing for each lattice site with total
atom number N is ξ2tech = β2N . In order to measure the
number difference fluctuations of the quantum state we
subtract this technical contribution.

Validity of the two-mode approximation

In the symmetric subspace the total spin length J =
N/2 is given by the total number of atoms N . Here
the mean spin length 〈Jx〉 = N/2〈cos(ϕ)〉 can be cal-
culated from the total number of atoms and from the
fluctuations in the most uncertain orthogonal direction
∆Jy. In order to check the validity of the two mode
approximation, we compare the visibility V = 〈cos(ϕ)〉
obtained from a Ramsey fringe measurement VR to the
visibility calculated under the two mode assumption V2.
Figure 3 shows a Ramsey fringe measured at the output
of the nonlinear beam splitter. A sinusoidal fit reveals
VR = 1.00 ± 0.02 which is consistent with the visibility
deduced from the noise tomography measurement, justi-
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FIG. 6. A Ramsey fringe measured at the output of the non-
linear beam splitter. A sinusoidal fit reveals a visibility of
100% with a statistical uncertainty of 2%.

fying the two-mode approximation. Since the noise mea-
surements can be done with higher reliability and accu-

racy we use V2 = e−ξ
2
N,max/2N = 0.986±0.001 to calculate

the visibility in the main paper.
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