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Abstract

We investigate experimentally and theoretically the nurair propagation &Rb Bose
Einstein condensates in a trap with cylindrical symmetny.a&lditional weak periodic po-
tential which encloses an angle with the symmetry axis ofwheeguide is applied. The
observed complex wave packet dynamics results from theliogupf transverse and lon-
gitudinal motion. We show that the experimental observatican be understood applying
the concept of effective mass, which also allows to model erigally the three dimen-
sional problem with a one dimensional equation. Within frasnework the observed slowly
spreading wave packets are a consequence of the continbangecof dispersion. The ob-
served splitting of wave packets is very well described leydbveloped model and results
from the nonlinear effect of transient solitonic propagati
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1. Introduction

The experimental investigation of nonlinear matter waveatyics is feasible since the real-
ization of Bose-Einstein-condensation of dilute gasesThE combination of this new matter
wave source with periodic potentials allows for the redl@maof many nonlinear propagation
phenomena. The dynamics depends critically on the moduldgpth of the potential. For deep
periodic potentials the physics is described locally tgkimo account mean field effects and
tunneling between adjacent potential wells. In this conteave packet dynamics in Josephson
junction arrays have been demonstrated experimentalbri@honlinear self trapping has been
predicted theoretically [3]. In the limit of weak periodiotentials and moderate nonlinearity
rich wave packet dynamics result due to the modification ghelision which can be described
applying band structure theory [4]. Especially matter waaekets subjected to anomalous dis-
persion (negative effective mass) or vanishing disper@oe@rging mass) are of great interest.
In the negative mass regime gap solitons have been predi®edetically [5] and have been
observed recently [6]. Also modulation instabilities cacar [7].

The experiments described in this work reveal wave dynaimitke linear and nonlinear
regime for weak periodic potentials. The observed behasia consequence of the special
preparation of the wave packet leading to a continuous ehahtie effective mass and thus the
dispersion during the propagation. The initial propagaiscdominated by the atom-atom inter-
action leading to complex wave dynamics. After a certairetohpropagation slowly spreading
atomic wave packets are formed which are well describedr®ali theory. In this work we
focus on the mechanisms governing the initial stage of pyafian.

The paper is organized as follows: in section 2 we describeffective mass and dispersion
concept. In section 3 we present our experimental setuprasddtion 4 the employed wave
packet preparation schemes are discussed in detail. lioisécthe experimental results are
compared with numerical simulations. We show that somaufeatof the complex dynamics
can be identified with well known nonlinear mechanisms. Wectade in section 6.

2. Effective mass and dispersion concept

In our experiments we employ a weak periodic potential wikéeds to a dispersion relation
En(g) shown in Fig. 1(a). This relation is well known in the contektelectrons in crystals
[8] and exhibits a band structure. It shows the eigenengfithe Bloch states as a function
of the quasi-momenturg. The modified dispersion relation leads to a change of wankegia
dynamics due to the change in group veloaityq) = 1/h dE/dq (see Fig. 1(b)), and the
group velocity dispersion described by the effective mass; = h?(9%E/dq?) ! (see Fig.
1(c)), which is equivalent to the effective diffractionriatiuced in the context of light beam
propagation in optically-induced photonic lattices [#]dur experiment only the lowest band is
populated, which is characterized by two dispersion regimermal and anomalous dispersion,
corresponding to positive and negative effective mass. thgdagical situation arises at the
quasimomentungz, where the group velocityy(q) is extremal|me¢| diverges and thus the
dispersion vanishes.

In the following we will show that the two preparation schen@nployed in the experi-
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Fig. 1. (a) Band structure for atoms in an optical latticedwi§ = 1.2 E¢¢ (solid), parabolic
approximation to the lowest energy bandjat r7/d = G/2 (dashed), corresponding group
velocity (b) and effective mass (c) in the lowest energy bdre vertical dashed lines at

q = g5 indicate whergmegs| = . The shaded region shows the range of quasimomenta
where the effective mass is negative.

ment lead to a continuous change of the quasimomentumidistn, and thus to a continuous
change of dispersion. One of the preparation schemes altoasitch periodically from pos-
itive to negative mass values and thus a slowly spreading wacket is formed. This is an
extension of the experiment reporting on dispersion mamagé[10]. The second preparation
gives further insight into the ongoing nonlinear dynamuamsthe initial propagation.

3. Experimental Setup

The wave packets in our experiments have been realized WiRaBose-Einstein condensate
(BEC). The atoms are collected in a magneto-optical trapsabhdequently loaded into a mag-
netic time-orbiting potential trap. By evaporative coglime produce a cold atomic cloud which
is then transferred into an optical dipole trap realizedtyfocused Nd:YAG laser beams with
60umwaist crossing at the center of the magnetic trap (see Rip.Kurther evaporative cool-
ing is achieved by lowering the optical potential leadingotoe Bose-Einstein condensates
with 1-10* atoms in thgF = 2,mg = 4-2) state. By switching off one dipole trap beam the
atomic matter wave is released into a trap acting as a onerdiimnal waveguide with radial
trapping frequency, = 2mr- 100Hz and longitudinal trapping frequency, = 2r- 1.5Hz Itis
important to note that the dipole trap allows to release thE€ i a very controlled way leading
to an initial mean velocity uncertainty smaller than 1/1@hef photon recoil velocity.

The periodic potential is realized by a far off-resonanhdiag light wave with a single
beam peak intensity of up to//cn?. The chosen detuning of 2 nm to the blue off the D2 line
leads to a spontaneous emission rate beléiz. IThe standing light wave and the waveguide
enclose an angle @ = 21° (see Fig. 2(b)). The frequency and phase of the individwsarla
beams are controlled by acousto-optic modulators driveatayo channel arbitrary waveform
generator allowing for full control of the velocity and aritptie of the periodic potential. The
light intensity and thus the absolute value of the potentgdth was calibrated independently
by analyzing results on Bragg scattering [11] and Landalezamneling [12, 13, 14].

The wave packet evolution inside the combined potentidhefwaveguide and the lattice is
studied by taking absorption images of the atomic densgiridution after a variable time de-
lay. The density profiles along the waveguidg,t), are obtained by integrating the absorption
images over the transverse dimension.

4. Dynamicsin reciprocal space

In our experimental situation an acceleration of the pécigetential to a constant velocity
leads to a collective transverse excitation as indicatédgn2(d). Since the transverse motion
in the waveguide has a non vanishing componentin the direofithe periodic potential due to
the angled, a change of the transverse velocity leads to a shift of the@leguasimomentum of
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Fig. 2. Scheme for wave packet preparation (a-d). (a) Initeve packet is obtained by
condensation in a crossed dipole trap. (b) A stationaryopéripotential is ramped up adi-
abatically preparing the atoms at quasimomentyns= O in the lowest band. (c),(d) The
periodic potential is accelerated to a constant veloayshows the numerically deduced
guasimomentum shift for the preparation method | describetie text. (f) The motion
of the center quasimomentum for the preparation methodsitrilged in the text. The ad-
ditional shift to higher quasimomenta for long times resditom the residual trap in the
direction of the waveguide. The shaded area representsuti®@ngomenta corresponding
to negative effective mass.

the wave packet. The coupling between the transverse miotibe waveguide and the motion
along the standing light wave gives rise to a nontrivial moin reciprocal (see Fig. 2(e,f)) and
real space.

The appropriate theoretical description of the presentpeérmental situation requires the
solution of the three dimensional nonlinear Schrodinggragion (NLSE) and thus requires
long computation times. In order to understand the basisiphyve follow a simple approach
which solves the problem approximately and explains allffadures observed in the experi-
ment. For that purpose we first solve the semiclassical @nsof motion of a particle which
obeys the equatioh = M*XwhereM* is a mass tensor describing the directionality of the effec-
tive mass. We deduce the time dependent quasimomengtivin the direction of the periodic
potential by identifyindhde = Fz andX = vy(qc) (definition of X see Fig. 2(b)). Subsequently
we can solve the one dimensional NPSE (non-polynomial neati Schrodinger equation)[15]
where the momentum distribution is shifted in each integnestep according to the calculated
gc(t). Thus the transverse motion is taken into account properiyérrow momentum dis-
tributions. We use a split step Fourier method to integita¢eNPSE where the kinetic energy
contribution is described by the numerically obtained gpelispersion relation of the lowest
bandEy(q). Itis important to note, that this description includesédiher derivatives oEp(q),
and thus goes beyond the effective mass approximation.

In the following we discuss in detail the employed preparatichemes:

Acceleration scheme After the periodic potential is adiabatically ramped up/go= 6Eec
it is accelerated within 3ms to a velocitot = cos’-(G)l.Svrec. Then the potential depth is
lowered toVp = 0.52E,¢c within 1.5ms and the periodic potential is decelerated within 3ms to
Vpot = coZ(0)Vrec SUbsequentiy andvpot are kept constant during the following propagation.
The calculated motion in reciprocal spaggt) is shown in Fig. 2(e).

Acceleration scheme:IThe periodic potential is ramped up adiabaticall\wgo= 0.37Eec
and is subsequently accelerated within 3ms to a final vglogy: = cos’-(e) X 1.05Viee. The
potential depth is kept constant throughout the whole eéxpeart. Fig. 2(f) reveals that in con-



trast to the former acceleration scheme the quasimomeratuting initial propagation is mainly
in the negative effective mass regime.

5. Experimental and Numerical Results

In this section we compare the experimental results withptiedictions of our simple theoret-
ical model discussed above. The numerical simulation tealethe experimentally observed
features of the dynamics such as linear slowly spreadingjaisty wave packets, nonlinear
wave packet compression and splitting of wave packets. Diserwed nonlinear phenomena
can be understood by realizing that in the negative effectiass regime the repulsive atom-
atom interaction leads to compression of the wave packetahspace and to a broadening of
the momentum distribution. An equivalent picture borrovredn nonlinear photon optics [16]
is the transient formation of higher order solitons, whitlows periodic compression in real
space with an increase in momentum width and vice versa.

5.1. Preparation |

The experimental results for the first acceleration scheismudsed in section 4 are shown in
Fig. 3. Clearly we observe that a wave packet with reduceditieis formed which spreads out
slowly and reveals oscillations in real space. This wavéea@sults from the initial dynamics
characterized by two stages of compression which lead tatrad of atoms [17]. The observed
behavior is well described by our numerical simulation wahaétlows further insight into the
ongoing physics.

Experiment Theory
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Fig. 3. Wave packet dynamics for preparation |. (a) Expentaleobservation of wave
packet propagation. (b) Result of the numerical simuladerdiscussed in the text. The
data is convoluted with the optical resolution of the expemt. The obtained results are in
good agreement with the experimental observations. Ttaetieally obtained (c) quasi-
momentum distribution and (d) real space distribution dvergfor the initial 14ms of
propagation. The inset reveals the phase of the observetyspreading wave packet.

In Fig. 3(c,d) we show the calculated momentum and real spiatéution for the first 14ms



of propagation. As can be seen the acceleration of the stgtight wave leads to a oscillatory
behavior in momentum space. For the chosen parameters tleepaaket is initially dragged
with a tight binding potentiaMy = 6E,¢c) over the critical negative mass regime. While the real
space distribution does not change during this processntiraentum distribution broadens
due to self phase modulation [16]. The subsequent promagatithe positive mass regime
leads to a further broadening in momentum space and reat $paOms).

The dynamics changes drastically as soon as a significanfghe momentum distribution
populates quasimomenta in the negative mass regime (t910imsre the real space distribu-
tion reveals nonlinear compression as known from the Irdifaamics of higher order solitons.
This compression leads to a significant further broadeningpomentum space and thus to
population of quasimomenta corresponding to positive mMgss results in a spreading in real
space due to the different group velocities involved anddeaa the observed background. The
change of the quasimomentum due to the transverse motidwibjtsoa further significant in-
crease in momentum width, since the whole momentum digioibis shifted out of the critical
negative mass regime at t=14ms.

The long time dynamics of the slowly spreading wave packet@sly given by the momen-
tum distribution marked with the shaded area for t=14ms g B{c). The subsequent motion
is dominated by the change of the quasimomentum due to thevieese motion. This leads to
a periodic change from normal to anomalous dispersion ansl tthe linear spreading is sup-
pressed. This is an extension of our previous work on digpersanagement for matter waves
- continuous dispersion management.

5.2. Preparation I

This preparation scheme reveals in more detail the trafsiditonic propagation leading to the
significant spreading in momentum space. This results ifitiisg of the wave packet which
cannot be understood within a linear theory. The resultshogvn in Fig. 4 and the observed
splitting is confirmed by our numerical simulations.

In contrast to the former preparation scheme the momentstriidition is prepared as a
whole in the critical negative mass regime. Our numericalusations reveal that the wave
packet compresses quickly in real space after t=4ms whielcgempanied by an expansion
in momentum space. The momentum distribution which stagalilbed in the negative mass
regime reveals further solitonic propagation characeetriay an expansion in real space and
narrowing of the momentum distribution (t=5-10ms). Thengeerse motion shifts this mo-
mentum distribution into the normal dispersion regimeraftams of propagation resulting in a
wave packet moving with positive group velocity (i.e. mayto the right in fig. 4(b)). The ini-
tial compression at t=4ms even produces a significant ptpaolaf atoms in the normal mass
regime which subsequently move with negative group vejaitowing up as a wave packet
moving to the leftin Fig. 4(b). Thus the splitting in real spas a consequence of the significant
nonlinear broadening in momentum space.

6. Conclusion

In this paper we report on experimental observations ofineal wave packet dynamics in
the regime of positive and negative effective mass. Our ix@atal setup realizing a BEC
in a quasi-one dimensional situation allows the obseraaifovave dynamics for short times,
where the nonlinearity due to the atom-atom interaction idates and also for long times,
where linear wave propagation is revealed.

We have shown that a slowly spreading wave packet can beeddlly changing the quasi-
momentum periodically from the normal to anomalous disparsegime. This can be viewed
as an implementation of continuous dispersion manageriémfturther investigate in detail
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Fig. 4. Wave packet dynamics for preparation Il. (a) Experital results on wave packet
propagation. (b) Result of the numerical simulation asugised in the text. The simulation
reproduces the observed wave packet splitting. The thealigtobtained (c) quasimomen-
tum distribution and (d) real space distribution are givantlie initial 14ms of propagation.

The inset reveals that the transient formed wave packet flasghase indicating solitonic

propagation.

the formation process of these packets, which are a resthieaihitial spreading in momen-
tum space due to nonlinear compression. A second experimegstigates in more detail the
nonlinear dynamics in the negative mass regime where tlitersiclpropagation leads to a sig-
nificant broadening in momentum space. This shows up in tperarent as splitting of the
condensate into two wave packets which propagate in opgdiséctions.

The developed theoretical description utilizing the effecmass tensor models the experi-
mental system in one dimension and can explain all main featbserved in the experiment.
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