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Abstract
In this thesis, we experimentally study the generation of metrologically useful spin squeezed
states and investigate their scalability to large atom numbers. Two different experimental
schemes that generate these entangled spin states are implemented for two internal states of a
Bose-Einstein condensate. We investigate both the previously realized one-axis twisting sce-
nario and a new method which relies on the quantum evolution at an unstable fixed point,
which we term bifurcation squeezing. The temporal evolution and the atom number depen-
dence of the final states are examined for both schemes, and the optimal conditions for the
creation of squeezing are extracted. We find spin squeezing below −7 dB in this two-mode
scenario.
By use of parallelized squeezing generation of up to 30 independent condensates in a one-
dimensional lattice potential, we show that the squeezing of the individual condensates can
be scaled up to the full ensemble containing more than 12 300 atoms. With a differential
analysis, which rejects common mode fluctuations, we find a suppression of fluctuations by
ξ2

rel = −5.3(5) dB for the full ensemble. We directly demonstrate the applicability of this
quantum resource for enhanced magnetometry, which is implemented via a modified Ramsey
sequence. A transfer to a different set of hyperfine states ensures negligible nonlinearity dur-
ing the interrogation time and strongly enhances the magnetic sensitivity. We find a quantum-
enhanced single-shot sensitivity of 310(47) pT with the full ensemble, and apply the technique
for an accurate determination of the magnetic field gradient in our setup.

Zusammenfassung
Diese Arbeit beschäftigt sich mit der Herstellung so genannter gequetschter verschränkter
Zustände in einem Bose-Einstein-Kondensat und deren Skalierbarkeit zu großen Atomzahlen.
Zunächst werden dabei zwei Herstellungsverfahren analysiert. Neben der bereits mehrfach
eingesetzten one-axis twisting-Methode untersuchen wir eine neuartige Technik, die auf der
Quantendynamik an einem instabilen Fixpunkt beruht und als Bifurkations-Methode bezeich-
net wird. Wir analysieren die Zeitentwicklung sowie die Atomzahlabhängigkeiten der Prozesse
in einem einzelnen Kondensat und finden unter optimalen Bedigungen eine Unterdrückung der
Quantenfluktuationen von mehr als 7 dB.
Durch parallele Herstellung gequetschter Zustände in bis zu 30 unabhängigen Kondensaten in
einem optischen Gitter kann diese Rauschunterdrückung auf das gesamte Ensemble von mehr
als 12 300 Atomen übertragen werden. Eine Relativanalyse ergibt eine Reduktion der Fluktu-
ationen von ξ2

rel = −5.3(5) dB für die hochskalierte Teilchenzahl. Die praktische Nutzbarkeit
dieser Quantenressource demonstrieren wir, indem wir sie in einem quantenverstärkten Mag-
netometer einsetzen, das auf einer modifizierten Ramsey-Sequenz beruht. Hierbei wird durch
einen Zustandstransfer während der Phasenevolutionszeit die magnetische Sensitivität erhöht
und die nichtlineare Wechselwirkung stark reduziert. Dieses Magnetometer, das eine quan-
tenmechanisch verbesserte Sensitivität von 310(47) pT pro Messpunkt besitzt, nutzen wir für
die präzise Bestimmung eines Magnetfeldgradienten in unserem Experiment.
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1. Introduction

Since the early days of quantum mechanics, entanglement has been one of its key concepts
and subject of intriguing debates [1], as it constitutes one of the most counterintuitive predic-
tions of quantum theory. In his seminal paper in 1935, Erwin Schrödinger even stated that he
‘would not call that one but rather the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought’ [2].
Decades after these fundamental discussions on quantum correlations, entanglement now ap-
pears to be a central building block for future improvements in a variety of technological tasks,
such as communication, computations or measurements. During the past thirty years, great
advance has been made in the development of techniques for the generation of entanglement
in a broad variety of systems, ranging from photonic [3] over ionic [4] and neutral atom [5] to
solid state [6] implementations.
One of the major challenges in this context is the scalability of the methods both for creation
and characterization of entangled states to large ensemble sizes, as the generation of entan-
gled states with substantial particle numbers is a key prerequisite for practical applicability.
This can be well understood in the context of metrology, where entanglement is a promising
tool for enhancing the sensitivity of the measurement devices. In many of the state-of-the art
instruments, the measurement uncertainty is limited by the statistical quantum fluctuations of
the individual classical particles [7, 8, 9]. Quantum-mechanical correlations can reduce this
uncertainty. Specifically, the sensitivity of a measurement device can be quantified in terms of
the Cramér-Rao bound [10, 11]

∆θ ≥ 1√
FQ
≥ 1

N
, (1.1)

which relates the best attainable phase sensitivity ∆θ of a measurement to its quantum re-
sources, quantified by the quantum Fisher information FQ. This quantity itself is bound by
the number of employed particles FQ ≤ N2, which is saturated only for maximally entangled
states and yields the fundamental Heisenberg limit of the phase sensitivity ∆θ ≥ 1/N [12].
For a classical state without quantum correlations, the maximal quantum Fisher information
is FQ ≤ N and we find the well-known shot noise limit ∆θ ≥ 1/

√
N . This has two conse-

quences: First, a classical state with sufficiently larger atom number can in principle always
outperform entangled input states in phase estimation. Thus, the application of entangled
states only makes sense if the number of particles that can be used is constrained. Secondly,
this means that in such a scenario, quantum entanglement can yield an enormous gain if a large
enough entangled state can be engineered. This is the driving force behind the development
of technologies for entanglement generation, characterization and, finally, the implementation
in actual devices.
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1. Introduction

In the realm of quantum optics, the technological development has reached the level that
squeezed states of light [13] are now routinely employed to enhance the precision of gravi-
tational wave detectors [14], twenty-five years after their first experimental observation [15].
Multiparticle entanglement has been observed for up to eight optical photons [16] and up to
ten qubits by exploiting hyper-entanglement of multiple of the photons’ degrees of freedom
[17]. For these multiparticle entangled states, the scaling to larger photon numbers is limited
by the brightness of the available correlated photon sources [16].
Beautiful experiments in the microwave regime have studied the decoherence of such max-
imally entangled states made up from 11 photons in superconducting cavities [18]. Recent
progress on superconducting solid state devices [19] has enabled the creation of a wide range
of superposition states, including cat states containing up to 111 microwave photons, and a
demonstration of Heisenberg limited phase estimation for up to 22.5 photons [6].

In the atomic world, a large variety of entangled states of several ions has been created,
including an eight-qubit W state [20] and maximally entangled cat states of up to 14 ions
[21, 22]. Proof-of-principle demonstrations with three ions have shown that such states can
be employed for spectroscopy close to the Heisenberg limit [23]. However, the scalability
to larger qubit numbers is difficult due to the necessity to reduce the speed of the entangling
gates caused by the denser mode spectrum [4]. Also, it has been shown that the decay times
of the generated maximally entangled states scale quadratically with the number of qubits [22].

The vast majority of these ionic systems uses a bottom-up approach, which relies on a se-
ries of entangling operations for the individual qubits. In contrast, most strategies that have
been employed for neutral ground state atoms build on collective top-down operations with no
direct experimental access to the single qubits.
Recently, entanglement of at least 13 atoms was detected in Dicke states of 41 atoms, which
were generated in an optical fiber cavity by use of a projective measurement [24].
The most promising route and most active area of research, however, are spin squeezed states
[25], which are relatively robust against decoherence and particle loss [26, 27, 28, 29] and can
be obtained with a variety of different experimental systems and techniques.
Early work focused on transferring photonic entanglement to the atomic systems and the gen-
eration of conditional spin squeezing using quantum non-demolition measurements in thermal
ensembles [30, 31, 32]. Since these first experimental observations, intense research has been
put into generating such squeezed states in the ground states of those systems, creating spin
squeezing that is applicable for Ramsey spectroscopy, and further reducing the back-action of
the quantum non-demolition measurements [33, 34, 35, 36, 37, 38]. Impressive results have
been obtained in this context, generating up to 10.2 dB of metrologically applicable squeezing
for more than 105 atoms [38]. A different technique relying on cavity feedback has demon-
strated 5.6 dB of metrologically relevant unconditional squeezing for 5 × 104 atoms [39].
Experimental demonstrations have shown that these entangled states can be used to improve
the performance of atomic clocks [40, 41] and cold atom magnetometers [37, 42].
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Even though many of these experiments are based on cold atomic clouds, a wide range
of important applications necessitates even colder temperatures due to the requirement of in-
terrogation times in the order of several seconds. For the experiments that are performed in
microgravity or in large atomic fountains, temperatures in the order of 1 nanokelvin have to
be achieved to limit the spread of the atomic cloud during free fall [43]. Additionally, ultralow
temperatures allow to reach higher spatial resolution, as the timescale of diffusion grows with
decreasing temperature. Their high densities and long coherence times make Bose-Einstein
condensates (BECs) ideal systems for such measurements.
In Bose-Einstein condensates, squeezing via atom-light interaction has not yet been demon-
strated so far. Successful generation of spin squeezed states in Bose-Einstein condensates
has been based on interatomic interactions, a scheme which was proposed by Sørensen et al.
as a pathway for creating many-particle entanglement [44]. Proof-of-principle experiments
based on this proposal have shown the controlled creation of two-mode spin squeezed states
in BECs of up to 1800 atoms [5, 45, 46, 47] and demonstrated the applicability of such states
for quantum-enhanced metrology [45, 48].
Entangled states containing larger atom numbers have been created by spin-mixing dynamics
in a three-mode system [49, 50, 51], including −10.3 dB of quadrature squeezing in a SU(2)
subspace of the SU(3) system containing 45 000 particles [52]. However, the actual imple-
mentation of measurement applications using three-mode systems is non-trivial, and it has not
yet been shown that this spin-nematic squeezing can be metrologically exploited. In contrast,
two-mode systems are routinely employed for the measurement of a wide range of quantities,
such as accelerations, rotations, magnetic fields and frequencies [53, 54, 55, 56, 57].
For those squeezed two-mode systems in Bose-Einstein condensates, increasing the number of
atoms to large system sizes has been shown to be challenging due to the presence of increased
losses as well as dephasing and mixing of the different spatial modes [28, 58, 59]. In this
thesis, we will present a method that, based on the controlled generation of many replica in a
one-dimensional lattice potential, allows the scaling of such squeezed states in Bose-Einstein
condensates to large particle numbers. It evades the spurious effects of strongly increased
losses or multi-mode dynamics on the generated states, and transfers the well-controlled gen-
eration of small spin squeezed condensates to the macroscopic regime.
In terms of practical applicability, another difficulty arises in our experimental system from
the fact that the squeezed states are generated on two levels with increased nonlinearity, which
is caused by their asymmetric interaction strengths. This strong nonlinearity is required for
production of the entangled states, but cannot easily be switched off, as it is enhanced by an
interspecies Feshbach resonance. In this thesis, we will demonstrate that the spin squeezed
states can be transferred to a different set of internal levels which have negligible nonlinearity.
As the chosen levels in our situation are magnetically sensitive, we can implement a quantum-
enhanced Ramsey magnetometer with our upscaled resource and use it to measure a magnetic
field gradient in our setup. This experimental demonstration of state swapping could also be
employed for precision measurements of other quantities, depending on the choice of the final
levels, and shows the broad applicability of the generated entangled resource.
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1. Introduction

This thesis is structured as follows. After this introduction, in Chapter 2 we will present a
basic theoretical description for the interacting binary Bose-Einstein condensate with tunable
linear interconversion which was employed for the results presented in this thesis. Chapter 3
will give an overview of our experimental system, including an introduction to the absorption
imaging system that was used for the detection of our atomic clouds, and will show the ex-
perimental characterization of the parameters that govern the internal dynamics in our system.
The basic analysis methods and the resulting dynamics of the one-axis twisting squeezing
Hamiltonian for the condensates in single lattice sites will be described in Chapter 4, along
with a characterization of the generated states in terms of spin squeezing. Chapter 5 will de-
scribe the analogous results for the temporal evolution of a quantum system that is prepared on
an unstable fixed point, and demonstrate that this instability can be employed for generating
entanglement using bifurcation squeezing. In Chapter 6, we will show how the resources of
the single lattice sites can be combined to scale up the number of particles in the two-mode
squeezed states to large system sizes, and analyze the technical fluctuations that limit a direct
analysis. We will conclude this thesis with the demonstration of a quantum-enhanced magne-
tometer building on this upscaled resource, and analyze the performance of this device.
The results dealing with the scalability of the squeezed states and their application for mag-
netometry are summarized in a publication [60]. Related work showing the generation of
entangled non-Gaussian spin states in the unstable fixed point scenario and their character-
ization using Fisher information was published in [61]. A detailed characterization of the
employed absorption imaging system is given in [62], and an alternative detection method
using fluorescence imaging was explored in [63].
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2. Theory of an Interacting Two-Mode
Bose-Einstein Condensate with
Linear Coupling

This chapter provides an introduction into the basic theoretical concepts which are relevant
for this thesis. We will start by discussing the Hamiltonian of an interacting two-mode Bose-
Einstein condensate, and derive a description in a pseudospin representation. Afterwards,
we will show how an internal Bosonic Josephson Junction can be realized in such a system
by the addition of linear interconversion. The basic concepts of coherent spin states, the
visualization of collective atomic states on a generalized Bloch sphere, and spin squeezing will
be introduced. Finally, we will discuss the mean field limit of our Hamiltonian and show how
the quantum dynamics of the system can be understood from the topology of the corresponding
classical phase space.

2.1. Hamiltonian of an Interacting Binary Condensate

In the following, we will consider an interacting Bose-Einstein condensate of atoms in the two
modes |a〉 and |b〉, which are two internal eigenstates of the employed atomic species. The
two atomic states interact via elastic scattering, parametrized by their respective intraspecies
scattering lengths aaa and abb and the interspecies scattering length aab.
The Hamiltonian of this system can be written in the form

H = Ha +Hb +Hab, (2.1)

where Ha and Hb denote the Hamiltonians for each of the individual components, and Hab

describes their interspecies interaction. In second quantization, the single-component Hamil-
tonian for |a〉, occupying the spatial mode ψa(x) and experiencing an external potential Va(x),
is given by [64, 65]

Ha =

∫
d3x ψ̂a

†
(x)

(
− ~2

2m
∇2 + Va(x) +

4πaaa
2m

ψ̂†a(x)ψ̂a(x)

)
ψ̂a(x), (2.2)

where m denotes the atomic mass. The second component |b〉 can be described by an analo-
gous Hamiltonian, and the interspecies interaction is captured by

Hab =
4πaab
m

∫
d3x ψ̂†a(x)ψ̂†b(x)ψ̂a(x)ψ̂b(x). (2.3)

5



2. Theory of an Interacting Two-Mode Bose-Einstein Condensate with Linear Coupling

We define the interaction strengths gij =
4πaij
m

and assume that all atoms of each com-
ponent are in a single spatial wave function, such that we can replace the field operators
ψ̂†a(x) = â†aφa(x) and ψ̂†b(x) = â†bφb(x). Here â†a,b and âa,b are the bosonic creation and anni-
hilation operators fulfilling the commutation relations [âi, â

†
j] = δij and [â†i , â

†
j] = [âi, âj] = 0,

and φa,b(x) are normalized single-particle wave functions. We thus find for the combined
Hamiltonians of the individual species

Ha +Hb =
1

2

∫
d3x

[
φa(x)ωaφa(x)â†aâa + gaa|φa(x)|4â†aâ†aâaâa

+φb(x)ωbφb(x)â†bâb + gbb|φb(x)|4â†bâ
†
bâbâb

]
,

(2.4)

using the single-particle Hamiltonians of each component ωi = − ~2
2m
∇2 + Va(x). The inter-

component interaction term is then given by

Hab =

∫
d3x gab|φa(x)|2|φb(x)|2 · â†aâ

†
bâaâb. (2.5)

Using the definitions

ω̃i =

∫
d3xφi(x)ωiφi(x), (2.6)

χii =

∫
d3x gii|φi(x)|4, and (2.7)

χij =

∫
d3x gij|φi(x)|2|φj(x)|2, (2.8)

we can rewrite the full Hamiltonian in the two-mode approximation:

H = ω̃aâ
†
aâa + ω̃bâ

†
bâb +

χaa
2
â†aâ

†
aâaâa +

χbb
2
â†bâ
†
bâbâb + χabâ

†
aâ
†
bâaâb (2.9)

2.2. Pseudospin Representation

2.2.1. Pseudospin Operators

We can now introduce an angular momentum representation [66] to describe this system,
employing the pseudospin operators

Ĵx =
1

2
(â†aâb + â†bâa) (2.10)

Ĵy =
1

2i
(â†bâa − â

†
aâb) (2.11)

Ĵz =
1

2
(â†bâb − â

†
aâa), (2.12)
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2.2. Pseudospin Representation

which satisfy the SU(2) angular momentum commutation relation

[Ĵi, Ĵj] = iεijkĴk. (2.13)

The z component of the angular momentum is proportional to the population difference N̂b −
N̂a = 2Ĵz of the two components, and the x and y components are the corresponding coher-
ences of the two-level system.
Employing

Ĵ =
1

2

(
â†aâa + â†bâb

)
=
N

2
(2.14)

with N being the constant total number of particles, and

Ĵ2 = J(J + 1) (2.15)

with J = 〈Ĵ〉 = N/2, we find the identities

â†aâa = Ĵ − Ĵz, (2.16)

â†bâb = Ĵ + Ĵz, (2.17)

â†aâ
†
aâaâa = −2Ĵ + Ĵ2 − (2Ĵ − 1)Ĵz + Ĵ2

z , (2.18)

â†bâ
†
bâbâb = −2Ĵ + Ĵ2 + (2Ĵ − 1)Ĵz + Ĵ2

z , and (2.19)

â†bâ
†
bâaâa = Ĵ2 − Ĵ2

z − Ĵ . (2.20)

2.2.2. One-Axis Twisting Hamiltonian in Spin Representation

We can use Eq. 2.16-2.20 to rewrite the Hamiltonian Eq. 2.9 in the pseudospin representation,
yielding

H =
(χaa

2
+
χbb
2

+ χab

)
Ĵ2 + (ω̃a + ω̃b − χaa − χbb − χab) Ĵ

+
(
ω̃b − ω̃a + (2Ĵ − 1)δχ

)
Ĵz + χĴ2

z ,
(2.21)

where δχ = (χbb − χaa)/2 is given by the difference of the intraspecies scattering lengths,
and χ = (χbb +χaa− 2χab)/2 is determined by the difference between intra- and interspecies
interactions. The first two terms of Eq. 2.21 are constant and thus can be neglected. Defining
a mean-field detuning δM = ω̃b − ω̃a + (2Ĵ − 1)δχ, the Hamiltonian reduces to

HOAT = δM Ĵz + χĴ2
z , (2.22)

which is known as the one-axis twisting Hamiltonian [25]. Here, the Ĵ2
z term leads to a

redistribution of the uncertainty of a quantum state, which can be employed for creating spin
squeezed states in two-component Bose-Einstein condensates.
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2. Theory of an Interacting Two-Mode Bose-Einstein Condensate with Linear Coupling

2.3. Rabi Coupling and the Lipkin-Meshkov-Glick
Hamiltonian

The dynamics of this two-component system can be strongly modified by adding linear inter-
conversion of the two species. In second quantization, linear coupling can be captured by the
Hamiltonian

Hcpl = −~Ωr

2

∫
d3x

(
ψ̂a(x)ψ̂†b(x)e−i(δct+ϕ0) + h.c.

)
, (2.23)

where Ωr denotes the Rabi frequency, i.e. the coupling strength, δc is the detuning of the cou-
pling frequency relative to the atomic transition, and ϕ0 denotes the phase between coupling
and the atomic transition dipole. Analogous to section 2.1, in the two-mode approximation
this simplifies to

Hcpl = −~Ω̃

2

(
âaâ

†
be
−i(δct+ϕ0) + h.c.

)
(2.24)

with Ω̃ = Ωr

∫
d3xφa(x)φb(x), which is equivalent to Ωr for perfectly overlapping clouds.

In the pseudospin representation, after transformation to the Schrödinger picture, this can be
expressed as

Hcpl = −~Ω̃

2

(
cos(ϕ0)Ĵx + sin(ϕ0)Ĵy

)
+

~δc
2
Ĵz. (2.25)

Assuming φa = φb and ϕ0 = 0, we can express an interacting two-component BEC with
additional coupling using the Hamiltonians 2.22 and 2.25

HLMG = χĴ2
z − ΩĴx + δĴz, (2.26)

where Ω = ~Ω̃
2

and δ = ~
2
(δM +δc). This is a special case of the well-known Lipkin-Meshkov-

Glick Hamiltonian [67], which has been intensely studied in the context of nuclear physics
and can be used to describe the quantum dynamics of a Bosonic Josephson Junction.
Depending on the choice of the parameters χ,Ω and δ, the dynamics governing the system
drastically change, ranging from Rabi oscillations to nonlinear self-trapping [66, 68, 69, 70].
This can be nicely understood from the corresponding classical mean field Hamiltonian, which
will be discussed in section 2.6.

2.4. Generalized Bloch Sphere and Husimi Q
Representation

Coherent spin states

In the pseudospin picture, a single particle with two levels |a〉 and |b〉 can be described as
a spin with length J = 1/2. In this representation, state |a〉 corresponds to the eigenstate
of Ĵz with jz = −1/2 and |b〉 to jz = +1/2. Every pure state of such a system can be
written in the form |θ, φ〉 = sin (θ/2)|a〉 + cos (θ/2)eiϕ|b〉 and displayed on a Bloch sphere
(see Fig. 2.1). Here, the coordinates are chosen such that the pseudospin operators coincide
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φ
Θ

Jz

φ

Θ

Jz

Jx

Jy

Jz

Jy

Jx Jy

(Θ,φ)
Jx

Figure 2.1.: Bloch sphere representation of spin-1/2 system. Any pure state of a single
particle in a two-level system can be written in the form |θ, φ〉 = sin (θ/2)|a〉 +
cos (θ/2)eiϕ|b〉 and displayed on a Bloch sphere (left panel). The relative phase is
given by the azimuthal angle ϕ (middle), whereas the polar angle θ (right panel)
is related to the population difference of the two levels.

with the definitions given in Eq. 2.10-2.12. This means that the z direction of the spin is
proportional to the population difference, |b〉〈b|−|a〉〈a|, which is described by the polar angle
θ, and the phase φ is determined by the coherences Ĵx and Ĵy.
A general pure state of N particles can be written as the tensor product of all N single particle
states [71]

|Ψ〉 =
N∏
n=1

|θn, φn〉 =
N∏
n=1

sin (θn/2)|a〉+ cos (θn/2)eiϕn|b〉. (2.27)

Assuming exchange symmetry between all particles, which is the case for our system of in-
distinguishable particles, restricts this general 2N dimensional Hilbert space to the subspace
of dimension N + 1, for which the spin length is given by J = N/2.
A natural basis in this subspace are the Dicke states [72], which are the eigenstates of both Ĵ2

and Ĵz. They can be labeled as |J,M〉, where J = N/2 is the spin length and M denotes the
Ĵz projection of the state. However, these number states are not the natural states of uncorre-
lated particles in this system and can be highly entangled. Only the two extremal Dicke states
|J,−J〉 and |J,+J〉, corresponding to all particles in one of the components, naturally occur,
and the generation of all other Dicke states requires elaborate experimental methods [24, 51].
The collective state for N uncorrelated particles which are all occupying the single-particle
state |θ, φ〉 in the symmetric subspace is given by

|N, θ, φ〉 = |θ, φ〉⊗N . (2.28)

These states are analogous to coherent states of a radiation field and thus are referred to as
atomic coherent states [71] or coherent spin states (CSS) [73]. They can be obtained by rotat-
ing an initial extremal Dicke state |J,+J〉 through an angle (θ, φ) in the angular momentum
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2. Theory of an Interacting Two-Mode Bose-Einstein Condensate with Linear Coupling

space, yielding
|N, θ, φ〉 = Rθ,φ|J,+J〉. (2.29)

Such a rotation can be written as Rθ,φ = e−iθ(Jx sin(φ)−Jy cos(φ)) and can be realized through
Rabi coupling as in Eq. 2.25. This allows to obtain the expansion of the coherent spin states
in terms of the Dicke state basis, yielding [71, 74]

|N, θ, φ〉 =
J∑

M=−J

(
2J

M + J

)1/2

sin

(
θ

2

)J+M

cos

(
θ

2

)J−M
e−i(J+M)ϕ|J,m〉. (2.30)

Note that the amplitudes in the Dicke state basis are given by a binomial distribution. This
can be intuitively grasped as being a statistical distribution of N independent particles in a
superposition between the two single-particle states (see section 4.1.1). It also means that the
coherent spin states become more localized for larger particle number.
Coherent spin states are non-orthogonal and their overlap is given by [71]

〈θ̃, φ̃|θ, φ〉 = eiJ(φ−φ̃)

[
cos

(
θ − θ̃

2

)
cos

(
φ− φ̃

2

)
− i cos

(
θ + θ̃

2

)
sin

(
φ− φ̃

2

)]2J

.

(2.31)

Husimi Q representation

In the case of a single particle, the system is fully described by the two variables (θ, φ) and
can thus be displayed on the Bloch sphere without any additional assumptions. This is not the
case for the collective states of N particles in a N + 1 dimensional Hilbert space, where an
exact mapping of the state onto a sphere is not possible. However, many properties of such
states can be grasped from the projection of the collective state onto the coherent states of the
system.
The coherent spin states |N, θ, φ〉 form a complete basis for the symmetric N + 1 dimensional
Hilbert space, and represent the most localized non-entangled collective states in a given di-
rection (θ, φ). A general state in this Hilbert space, described by a density matrix ρ, can thus
be conveniently visualized by calculating its diagonal elements in the coherent state represen-
tation [75]

Q(θ, φ) =
2J + 1

4π
〈θ, φ|ρ|θ, φ〉. (2.32)

This probability distribution corresponds to the normalized Husimi Q representation and can
be displayed on a generalized Bloch sphere. As in the single particle case, the z projection
is proportional to the population imbalance of the two components. The poles of the sphere
denote the collective states |a〉⊗N and |b〉⊗N with all atoms in one of the internal states. Note
that due to the convolution with the CSS, the extension of arbitrary states in the Husimi repre-
sentation will always be larger than the employed coherent states.
As the CSS are non-orthogonal (see Eq. 2.31), the Husimi Q distribution of an arbitrary coher-
ent spin state is non-zero in a specific angular range and spreads over a finite region, as shown
in Figure 2.2.
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φ

Θ

Jz

Jx

Jy

(Θ,φ)

N=300
N=100

N=500

Figure 2.2.: Husimi distribution of coherent spin states on a generalized Bloch sphere.
The collective states of N particles can be conveniently visualized via the Husimi
distribution on a generalized Bloch sphere, which measures the overlap of a gen-
eral state with the coherent spin states of the system. The z projection of the
sphere is proportional to the population difference – the north pole is equivalent
to the collective state |b〉⊗N , and the lower pole to |a〉⊗N . The left panel shows the
coherent state |N = 300, θ = π/3, φ = π/3〉. The coherent states become more
localized for increasing atom number. This is demonstrated by the Husimi dis-
tributions for the coherent states |100, π/3, π/3〉 and |500, π/3, π/3〉 in the right
panel.

2.5. Quantum Uncertainties and Spin Squeezing

The non-vanishing commutator of the pseudospin operators [Ĵi, Ĵj] = iεijkĴk leads to a
Heisenberg uncertainty relation given by

Var(Ĵi)Var(Ĵj) ≥
1

4
|εijk|〈Ĵk〉2, (2.33)

where the variances are given by Var(Ĵi) = 〈Ĵ2
i 〉 − 〈Ĵi〉2.

For a single particle, i.e. J = 1/2, in state |θ, φ〉, this leads to a Heisenberg uncertainty
product of Var(Ĵn1)Var(Ĵn2) = 1

4
· 1

4
for the components n1 and n2 orthogonal to the mean

spin direction. This means that these components have the maximum possible uncertainty,
corresponding to a variance of 1

4
.

The coherent spin states described above are collective states of N uncorrelated particles.
Thus, the corresponding variances for the collective state are simply given by the sum of the
single particle variances

Var(Ĵn1) = Var(Ĵn2) =
N

4
=
J

2
. (2.34)

This means that coherent spin states have isotropic uncertainties and reach the minimal uncer-
tainty product allowed by the Heisenberg uncertainty relation.
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2. Theory of an Interacting Two-Mode Bose-Einstein Condensate with Linear Coupling

The presence of quantum mechanical correlations between the particles allows to redistribute
uncertainties by partly canceling the fluctuations along one direction at the expense of in-
creased uncertainty in orthogonal direction [25]. This concept is called spin squeezing. A
state is squeezed if the variance along a certain direction orthogonal to its mean spin vector
is reduced below N/4. Such states can be generated by introducing correlations via nonlinear
spin-spin interactions [25, 76], quantum non-demolition measurements [32] or interaction of
the atoms with squeezed light fields [30, 31].

Spin squeezing requires quantum correlations between the particles. Thus, as shown by
Sørensen et al. [44], it can be employed as an entanglement witness. Specifically, this can be
quantified in terms of the spin squeezing parameter

ξ2
S =

NVar(Ĵn1)

〈Ĵn2〉2 + 〈Ĵn3〉2
, (2.35)

where Ĵni
denotes three mutually orthogonal spin components. If the spin squeezing inequal-

ity
ξ2

S < 1 (2.36)

is fulfilled, this means that the state of the atoms is entangled. Furthermore, the depth of en-
tanglement of the many-particle state can be detected by measuring the variance in one spin
direction and the coherence of the system, i.e. the mean spin length of the state [77]. The
depth of entanglement denotes the minimum number of particles that are entangled, which
means that the density matrix of the full ensemble cannot be decomposed into products of
density matrices which are smaller than this number. Both quantities that are required for this
criterion can be straight-forwardly detected in the experiment. This has enabled the identifica-
tion of multiparticle entanglement of up to 170 particles in experimentally generated squeezed
states [45, 46, 47]. Note that the spin squeezing inequality is a sufficient, but not a necessary
criterion for entanglement, and states can be entangled but not squeezed.
A detailed description of how spin squeezed states in Bose-Einstein condensates can be ex-
perimentally generated and characterized will be given in Chapter 4.

2.6. Mean Field Hamiltonian: The Classical
Description

As depicted in Fig. 2.2, the coherent spin states |N, θ, φ〉 become more and more localized for
larger atom numbers. For N → ∞, the spin can be treated as a classical quantity, and the
operators are replaced by c-numbers [78], i.e.

Ĵ → N

2
(sin θ cosφ, sin θ sinφ, cos θ) . (2.37)
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Λ = 0.1 Λ = 0.5 Λ = 1 Λ = 1.5 Λ = 2 Λ = 2.5

z z z z z z

z z z z z z

y y y y y y

yyyyyy

Figure 2.3.: Classical phase space of the resonant Lipkin-Meshkov-Glick Hamiltonian for
different values of Λ. Depending on the choice of Λ, the topology of the classical
phase space, governed by the Hamiltonian Eq. 2.41, strongly changes. The upper
row shows the classical phase space on the region of the sphere around φ = 0 for
the resonant case (δ̃ = 0), in which the dynamics only depend on Λ. Larger in-
teractions, corresponding to larger Λ, lead to stronger deformation of the plasma
oscillations. The lower panel depicts the other side of the sphere (φ = π). Here,
at Λ = 1, the formerly stable (as marked with a green dot) fixed point Fπ becomes
unstable (red cross), and two new stable fixed points F+ and F− appear above
and below Fπ. The trajectories around these fixed points are separated from the
plasma oscillations by an eight-shaped separatrix, which passes through the unsta-
ble fixed point. For even stronger interaction (Λ > 2), the separatrix encloses the
poles. Note that in our experiment, the situation during the strong coupling pulses
corresponds to Λ = 0.1, where the deviations from regular Rabi oscillations are
still small. For the experiments that demonstrate the generation of spin squeezing
in the bifurcated scenario, Λ ≈ 1.5 is employed.

This implies that the expectation values of the product of operators factorize. In this descrip-
tion, the polar angle θ is determined by the expectation value of Ĵz by θ = arccos

(
2〈Ĵz〉
N

)
, and

the phase is given from the expectation values of the coherences φ = arctan
(
〈Ĵy〉
〈Ĵx〉

)
.

Replacing the operators in the Hamiltonian by the classical expectation values allows us to
obtain insights into the underlying classical phase space and the corresponding dynamics.
Specifically, for the one-axis twisting Hamiltonian (Eq. 2.22), we find the classical mean-field
Hamiltonian

HMF_OAT =
N2χ

4
z2 +

Nδ

2
z, (2.38)

using z = cos θ.
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2. Theory of an Interacting Two-Mode Bose-Einstein Condensate with Linear Coupling

The corresponding equations of motion obtained from ż(t) = −∂H
∂φ

and φ̇(t) = ∂H
∂z

are
given by

ż(t) = 0 and (2.39)

φ̇(t) =
N2χ

2
z +

Nδ

2
. (2.40)

Thus, the dynamics of the one-axis twisting Hamiltonian does not alter the population imbal-
ance and solely leads to an imbalance-dependent phase evolution. This causes a redistribution
of quantum uncertainty and results in spin squeezing of initially isotropic quantum states.

The situation is much more complex for the Lipkin-Meshkov-Glick Hamiltonian (Eq. 2.26).
Here, replacing the operators with the classical expectation values leads to a mean-field Hamil-
tonian reading

HMF_LMG =
NΩ

2

(
Λ

2
z2 −

√
1− z2 cosφ+ δ̃z

)
, (2.41)

where the system parameters have been absorbed as Λ = χN/Ω, and δ̃ = δ/Ω. The corre-
sponding canonical equations of motion yield

ż(t) = −NΩ

2

√
1− z2(t) sinφ(t), (2.42)

φ̇(t) =
NΩ

2

(
Λz +

z√
1− z2

cosφ+ δ̃

)
. (2.43)

These equations of motion can be solved numerically or analytically in terms of Jacobian and
Weierstrassian elliptic functions [69]. The corresponding trajectories for a set of initial con-
ditions reveal the underlying topology of the mean field Hamiltonian, which strongly depends
on the choice of the parameters Λ and δ̃.

Let us for simplicity consider the resonant case first, i.e. δ̃ = 0. Interestingly, in this case
the Hamiltonian 2.41 is equivalent to the description of a non-rigid pendulum with tilt angle
φ, angular momentum z and length

√
1− z2 [69].

The topology of the dynamics for this system solely depends on the parameter Λ = χN/Ω,
which is determined by the relative strength of the nonlinear interaction and the linear inter-
conversion. Fig. 2.3 depicts the dependence of this classical phase space on the parameter Λ.
The timescale of the corresponding dynamics is set by the prefactor NΩ/2, and thus depends
on the coupling strength and the atom number.
In the case of dominant Rabi coupling (Rabi regime, Λ < 1), the system features two sta-
ble fixed points at F0 = (z, φ) = (0, 0) and Fπ = (0, π). The dynamics are given by Rabi
oscillations which are deformed in the presence of the nonlinear interaction, called plasma
oscillations for the trajectories enclosing F0 and π oscillations for those around Fπ [69, 70].
These oscillations differ in speed and shape. The oscillation frequency of the plasma oscilla-
tions is enhanced and given by

ωpl = Ω
√

1 + Λ (2.44)
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Figure 2.4.: Classical phase space for various δ̃ and Λ = 1.5. The classical phase space
of the system is strongly altered by the presence of a finite detuning δ̃. For the
plasma oscillations, this induces a tilt of the rotation axis, corresponding to a shift
of the stable fixed point (upper panel). On the π side of the sphere, the bifurcated
scenario with one unstable and two stable fixed points is only recovered for weak
detunings. In the case of a large detuning, one of the stable fixed points F+/− and
the unstable fixed point Fπ vanish, and only one stable fixed point remains.

for small amplitudes, whereas the π oscillation frequency is given by

ωπ = Ω
√

1− Λ. (2.45)

This can be understood from the fact that on the π side of the sphere, the rotation of the
coupling and the nonlinear interaction counteract, whereas they enhance each other on the
other side. Both kinds of oscillations have been observed in the experiment [79, 80, 70].

The dynamics of this system drastically changes for Λ > 1. This situation is called the
Josephson regime, as the dynamical effects occurring in this situation are similar to the Joseph-
son effect in weakly linked superconductors. In this regime, the formerly stable fixed point
Fπ becomes unstable, and two additional stable fixed points F+ = (+

√
1− 1/Λ2, π) and

F− = (−
√

1− 1/Λ2, π) appear on the π side of the sphere (see lower panel of Fig. 2.3). In
this bifurcated system, the trajectories around F+ and F− have, in contrast to those around
F0 and Fπ, a non-vanishing expectation value of z. This situation is referred to as macro-
scopic self-trapping [69, 70]. The corresponding trajectories are separated from the plasma
oscillations by an eight-shaped separatrix, which is centered at the unstable fixed point Fπ.
With further increasing Λ, the stable fixed points move towards the poles, and for Λ > 2, the
separatrix encloses the poles.
The topology of the phase space becomes more complex by the addition of a finite detun-
ing δ̃. Depending on the relative size of Λ and δ̃, the corresponding phase space distinctly
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z z

yy

one-axis twisting bifurcation squeezing

Figure 2.5.: Squeezing generation and classical trajectories. The generation of squeezing
can also be intuitively understood from the mean field trajectories. In the one-
axis twisting case (left), the equations of motion (Eq. 2.39) show that the phase
evolution φ̇ ∝ z. An initial coherent state of N particles spreads over a region
of size 1/

√
N in z direction, and thus gets deformed by the z dependent phase

evolution. In the Lipkin-Meshkov-Glick model, squeezing can be generated on
the unstable fixed point in the bifurcated regime (right panel). Here, the classical
trajectories lead to a compression of the state along one direction of the separatrix,
and elongation along the other axis, as indicated by the black arrows.

changes. This is demonstrated in Fig. 2.4, which depicts the classical phase space for Λ = 1.5
and various detunings δ̃. In the case of strong detuning, one of the stable fixed points F+/−
and the unstable fixed point vanish. The bifurcated situation is recovered only for relatively
small detunings. Note the strong sensitivity on small parameter changes: For our typical ex-
perimental parameters of Nχ = 2π × 30 Hz, the depicted situation is given for a coupling
strength of Ω = 2π × 20 Hz. Thus, the corresponding detunings in Fig. 2.4 are as small as
δ = 2π × [−4, −2, 0, +2, +4] Hz. A detailed description of the mean field dynamics of this
system can be found in [81].

Squeezing generation in the bifurcated regime

A state that evolves under the one-axis twisting Hamiltonian is squeezed by the redistribution
of the finite quantum uncertainty along the z direction caused by the Ĵ2

z term, as described
above (Fig. 2.5).
The instability in the bifurcated regime can also be employed to generate squeezing [82]. This
can be intuitively understood from the trajectories of the classical phase space. In the bifur-
cated regime, the fixed point Fπ is a saddle point in the potential landscape. An initial isotropic
coherent spin state which is prepared onto this unstable fixed point is compressed along one
direction and elongated due to rapid spreading along the other axis of the separatrix (see right
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panel of Fig. 2.5). This process is expected to generate squeezing on faster timescales com-
pared to the one-axis twisting scenario. For longer evolution times, the generation of highly
entangled non-Gaussian states is expected [78]. In this thesis, we will study the short-time
dynamics and the associated generation of squeezed states. The long-time dynamics and the
corresponding entangled states are beyond the scope of this thesis and described elsewhere
[61].
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3. The Experiment: Generation,
Characterization and Detection of
the Condensates

Having introduced the basic theoretical concepts in the previous chapter, we will now discuss
the system which we employ for experimentally realizing these Hamiltonians. We will shortly
present the experimental setup that generates an array of 87Rb Bose-Einstein condensates, and
show how Rabi coupling and nonlinearity are implemented in our experiment. Afterwards,
we will characterize some important properties of our condensates, such as the strength of
different atomic loss channels and atom number dependences of the experimental parameters.
In the last section of this chapter, we will describe the absorption imaging procedure which is
employed for state-selective detection of the particle numbers in the condensates.

3.1. An Array of Bose-Einstein Condensates of 87Rb
The atomic resource for the measurements presented in this thesis consists of an array of
around 30 independent Bose-Einstein condensates, which is generated by a shallow dipole
trap with a superimposed optical lattice potential. In the following, we we will shortly review
the current state of the setup. A more detailed description of the experimental system can be
found elsewhere [83].
To attain our ultracold atomic cloud, we start with laser-cooled 87Rb atoms in a 3D magneto-
optical trap (MOT) that is loaded out of a cold atomic beam from a 2D MOT. The trapped
atoms are subsequently exposed to sub-Doppler cooling during a short period in an optical
molasses, optically pumped into the F = 1 manifold of the ground state and loaded into a
magnetic trap with time-orbiting potential (TOP) [84]. In the TOP trap, evaporative circle-of-
death cooling further lowers the temperature to slightly above Tc, the critical temperature for
Bose-Einstein condensation. Our evaporation scheme yields around 106 atoms close to Tc after
25 s of evaporative cooling. This cold cloud is subsequently loaded into a crossed dipole trap
created from a single 1030 nm commercial diode pumped solid state laser source (Innolight
Corona IR). A second stage of evaporation is performed in the optical trap by lowering the
intensity of one of the trapping beams, yielding a pure BEC with up to 105 atoms. For the
spinor physics discussed in this thesis, further evaporation reduces the particle number down
to approximately 104 atoms.
After these evaporation ramps, one of the dipole trap beams is slowly switched off, and the
condensate is allowed to expand within the shallow potential of the remaining trapping beam,
which has a large aspect ratio of ≈ 50. Subsequently, a 1D lattice potential is ramped up
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Figure 3.1.: Level scheme of 87Rubidium at 9.1 G and trapping geometry a) We condense
the atomic clouds in a single hyperfine state |c〉 = |F = 1,mF = −1〉 of the elec-
tronic ground state. Subsequently, a rapid adiabatic passage transfers all atoms to
|a〉 = |1,+1〉. A Feshbach resonance at 9.1 G is employed to tune the nonlin-
earity χ between the levels |a〉 and |b〉 = |2,−1〉. Coupling between those levels
is implemented via combined radio frequency and microwave radiation with the
resonant two-photon Rabi frequency Ω2γ = 2π × 310 Hz. One-photon coupling
between |b〉 and |c〉 with a Rabi frequency of Ω1γ = 2π × 7 kHz can be applied
using microwave radiation. b) The initial condensate is split into up to 30 in-
dependent condensates using a 1D lattice with 5.5 µm spacing. Each lattice site
contains several hundred atoms. State selective imaging allows detecting all hy-
perfine components with an atom number resolution of σDet = ±4.

to create around 30 independent condensates, each containing several hundred atoms. This
standing wave potential is created by the interference of two laser beams which are obtained
from the same source, a Coherent 899 Ti:Sapphire laser running at 820 nm wavelength. They
are crossed under a small angle such that the lattice spacing is 5.5 µm. The intensity of the
lattice beams is chosen high enough such that tunneling is negligible on the experimental
timescales, yielding 30 independent condensates.
The resulting trap frequencies for the single lattice sites are 130 Hz in radial and 660 Hz in
lattice direction, leading to condensate wave functions that are slightly smaller than the spin
healing length of the condensate. Thus, each of the condensates in the individual lattice sites
can be considered to be in a single spatial mode, and interplay between external and internal
dynamics is negligible.
During the cooling procedure, a homogeneous magnetic bias field is ramped to 9.12 G, which
is in the vicinity of an interspecies Feshbach resonance of 87Rb [85, 86] (see section 3.2).
All condensed atoms are initially prepared in the magnetically trappable state |c〉 = |F =
1,mF = −1〉. After the cooling scheme, a rapid adiabatic passage transfers these atoms to the
state |a〉 = |1,+1〉, which is the starting point for further experiments. The pulse sequences
for the spinor experiments are implemented via resonant microwave and radio frequency (RF)
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Figure 3.2.: Interspecies Feshbach resonance of 87Rb at 9.09 G. A Feshbach resonance be-
tween the levels |a〉 and |b〉 allows to tune the interspecies scattering length aab
by changing the magnetic offset field, and thus makes a significant nonlinear in-
teraction strength χ attainable in our system. The left panel shows the measured
values of χ obtained from plasma and π oscillations (Eq. 3.1). The solid line is
a fit of type f = δB/(B − B0), indicating the typical shape of a Feshbach reso-
nance. For the choice of the working field, also the enhanced loss rate close to the
Feshbach resonance has to be considered (right panel). In our experiments, we
choose B = 9.12 G, which combines significantly increased nonlinear interaction
with modest loss rates. Unless stated otherwise, all error bars in this thesis denote
statistical 1.s.d. intervals.

radiation, as described in section 3.3. After these pulse sequences, the atoms are detected via
state-selective absorption imaging, which will be explained in more detail in section 3.6.

3.2. Feshbach Resonance for Nonlinearity Tuning

Our spinor experiments are carried out in the vicinity of a Feshbach resonance [87, 88] of
87Rb, which can be used to tune the interspecies scattering length between the levels |a〉 and
|b〉 = |2,−1〉 by changing the magnetic bias field. The background scattering lengths of 87Rb
are almost equal between all hyperfine components. Consequently, in our system a change
of the interspecies scattering length is essential for attaining significant nonlinearities, which
are the basic ingredients for the generation of entangled states. The Feshbach resonance em-
ployed in our experiment is centered at a magnetic field of B0 = 9.09 G [85, 86], and has a
width of 1.6(2) mG [89]. In our setup, this bias field is provided by a pair of large Helmholtz
coils (edge length 1 m) and actively stabilized by use of a fluxgate magnetometer (Bartington
Instruments Mag-03MS1000) near the experimental chamber [90]. This stabilization reduces
the shot-to-shot variation of the field down to 30 µG at our working field. Including slow drifts
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3. The Experiment: Generation, Characterization and Detection of the Condensates

due to the temperature dependence of the fluxgate sensor, we achieve a long-term stability of
45 µG over the course of a several days.
The Feshbach resonance allows tuning the interspecies interaction aab by around 30% and
thus changing the strength of the nonlinearity χ by a large factor (see Fig. 3.2). Experimen-
tally, we can extract this change from frequency measurements of small amplitude plasma and
π oscillations. Using Eq. 2.44 and 2.45, we find

χ =
ω2

pl − ω2
π

N
√

2(ω2
pl + ω2

π)
. (3.1)

We experimentally observe strongly increased interaction strength close to the resonance (left
panel of Fig. 3.2). For choosing a specific magnetic field as the working point, however, also
the increased atom loss close to the Feshbach resonance has to be taken into account (right
panel of Fig. 3.2). The strong enhancement of the loss rates close to the resonance makes
this regime unsuitable even though the interaction is strongly increased. Far away from the
resonance, we observe long lifetimes but only small interaction strengths. For the experiments
described in this thesis, we thus choose a field of 9.12 G in the intermediate regime, which
offers both enhanced interaction and suitable lifetimes for the generation of entangled states.
At this field, we find typical nonlinear interaction strengths of Nχ = 2π × 30 Hz for 500
particles (see also section 3.5 for a discussion of the dependence on atom number). This
implies that the experimental timescale for the generation of squeezed states is on the order of
tens of milliseconds.

3.3. Coupling with Radio Frequency and Microwave
Radiation

Coupling between the different Zeeman substates is achieved by shining resonant microwave
and radio frequency (RF) radiation onto the atoms. In this thesis, two relevant transitions are
addressed, for which the implementation of the coupling differs. We will describe the details
of those schemes in this section.

Two-photon coupling between |a〉 and |b〉

Coupling between the levels |a〉 and |b〉 is implemented by a combined two-photon RF and
microwave transition. These are the levels exhibiting the interspecies Feshbach resonance
(section 3.2). Resonant two-photon coupling on this transition is achieved by detuning both
the microwave and the radio frequency source by−200 kHz from the respective single-photon
transitions |1,+1〉 ↔ |2, 0〉 and |2, 0〉 ↔ |2,−1〉. The combined two-photon Rabi frequency
is Ω2γ ≈ 310 Hz. It is measured using Rabi flopping, i.e. changing the length of the coupling
pulse at fixed power and performing a sinusoidal fit to the resulting population imbalance of
the two levels. Note that this transition is only in second order sensitive to magnetic fields, as
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3.3. Coupling with Radio Frequency and Microwave Radiation

the linear Zeeman shifts of |a〉 and |b〉 cancel. A detailed discussion of the magnetic sensitivi-
ties can be found in Appendix A.
We can conveniently control the power and phase of the coupling with an arbitrary waveform
generator which is used as the radio frequency source. The ability of performing fast and
reproducible phase changes of the coupling is an important prerequisite for the generation,
manipulation and application of entangled spin states in interferometry.
One important aspect of this two-photon transition is the light shift which is induced by the
AC Zeeman effect of the off-resonant coupling radiation. The off-resonant radio frequency
and microwave radiation cause shifts of ∆fRF ≈ 70 Hz and ∆fMW ≈ 120 Hz, respectively,
which are measured using Ramsey spectroscopy. This detuning is compensated by shifting
the RF frequency accordingly.
For reaching the bifurcated situation in the Lipkin-Meshkov-Glick Hamiltonian, i.e. Λ =
Nχ/Ω > 1, the coupling strength has to be smaller than the nonlinearity, which is on the
order of Nχ = 2π × 30 Hz for our system. Even though such a low coupling strength can
in principle also be attained by only reducing the RF power, this is impractical due to the re-
maining strong light shifts of the full-power microwave radiation. Thus, we attenuate both our
microwave source by 10.8 dB by use of a switch in combination with a fixed attenuator, and
lower the output power of our RF source by 14 dB. This yields a total attenuation of 24.8 dB
and a coupling strength of Ωatt ≈ 2π × 18 Hz, equivalent to Λ ≈ 1.6. The remaining light
shifts during the attenuated coupling are strongly reduced down to 10 Hz for the microwave
and 3 Hz for the RF coupling, respectively. Note that switching between full power and at-
tenuated microwave induces an additional phase shift from the attenuator. This shift can be
extracted by minimizing the amplitude of resonant plasma and π oscillations, and is then com-
pensated with the RF phase.

To attain reproducible conditions for our experiments, we periodically perform automated
Ramsey experiments in the presence of off-resonant microwave radiation on this transition.
These measurements are used to compensate both small changes in light shift and slow tem-
perature dependent drifts of the fluxgate sensor that is employed for the active stabilization of
the magnetic bias field.

One-photon coupling between |b〉 and |c〉

The second relevant coupling transition connects the levels |b〉 = |F = 2,mF = −1〉 and
|c〉 = |F = 1,mF = −1〉 via resonant one-photon microwave coupling. This transition is
magnetically sensitive as the linear Zeeman shifts of those two levels are in opposite direction,
making it susceptible to magnetic field noise. However, the larger one-photon Rabi frequency
of 7 kHz ensures good reproducibility even in the presence of small fluctuations of the mag-
netic bias field.
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Figure 3.3.: Gradient of the Rabi coupling strength Ω over the cloud. The gradient of the
Rabi frequency Ω2γ is minimized by careful alignment of position and orientation
of the employed loop antennas, yielding a maximal difference of 0.53% over a
spatial range of 165 µm (left panel). In this configuration, the individual gradients
of RF and microwave are stronger (1.4% for the microwave contribution, as shown
in the right panel), but in opposite direction and thus compensate each other in the
case of two-photon coupling.

Spatial homogeneity of the coupling

The spatial extension of the cloud over more than 100 µm requires the minimization of gra-
dients in the coupling power to ensure homogeneous conditions over all lattice sites. This is
achieved by carefully optimizing the position and orientation of the loop antennas employed
for irradiating the radio frequency and microwave coupling onto the atoms. For the two-photon
coupling, the remaining gradient of Ω2γ over the whole cloud (30 lattice sites, corresponding
to 165 µm) is reduced to 0.53% (Fig. 3.3). The underlying gradients of RF and microwave
coupling are larger but compensate each other, as can be seen from the remaining microwave
gradient of 1.4% on the transition |1,+1〉 ↔ |2, 0〉 over the same spatial range in Figure 3.3.

3.4. Atom Loss in the Two-Component BEC

There are two major atomic loss processes which are relevant on the timescales of our experi-
ments. Spin relaxation loss removes two particles from the excited state |b〉 and is unavoidable
as it occurs even far away from the Feshbach resonance. The second relevant loss mecha-
nism is enhanced inelastic loss close to the interspecies Feshbach resonance. Losses caused
by background collisions and scattering of photons from the dipole trap light are on the time
scale of 15 s and thus not relevant for our experiments.
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Figure 3.4.: 1/e lifetime τ versus initial atom number N0 for different population imbal-
ances. The atomic loss rates at 9.12 G are strongly enhanced due to the close
vicinity of the Feshbach resonance. For an equal superposition of the two com-
ponents (z = 0), we find a strong dependence of τ (obtained from an exponential
fit) on the initial atom number N0 (left panel). This is well described by the func-
tional dependence τ ∝ N

−4/5
0 expected for three-body loss (solid line), whereas

a fit of τ ∝ N
−2/5
0 , which would be expected for two-body processes, does not

yield good agreement with the experimental data (dashed line). This points at
three-body loss as the dominant process close to the Feshbach resonance. For
500 atoms, we find τz=0 = 107(2) ms. Spin relaxation loss of the excited state
|b〉 = |F = 2,mF = −1〉, which is also present far away from the Feshbach reso-
nance, can be independently characterized by preparing a pure sample of all atoms
in |b〉 (right panel). A fit of the atom number dependence with τ ∝ N

−2/5
0 yields

good agreement (dashed line). For this loss process, we find τz=1 = 210(8) ms
for 500 atoms.

Spin relaxation loss

Spin relaxation loss is caused by spin-changing collisions of two atoms in the excited state
|b〉 = |F = 2,mF = −1〉. As the hyperfine quantum number F is not a conserved quantity,
one of the atoms can relax to the F = 1 hyperfine manifold during the collision [91, 92]. The
energy difference between the hyperfine states of 6.8 GHz is much larger than the trap depth,
which is on the order of kHz, and causes both atoms to leave the trap.
As this process is caused by two-body collisions, it depends on the density of the atomic
species nb and thus on the atom number of the BEC. Specifically, one expects

Ṅ(t) ∝
∫

d3rΓbbn
2
b(r, t) (3.2)
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with the two-body loss coefficient Γbb. In the Thomas-Fermi regime, the chemical potential
is µ ∝ N2/5 [93]. The corresponding scaling of the wave function leads to loss rates of
Ṅ(t)/N ∝ N

2/5
0 for two-body loss and Ṅ(t)/N ∝ N

4/5
0 for three-body processes [94].

We experimentally extract this atom number dependence by preparing different initial atom
numbers in state |b〉 and varying the hold time. Up to 140 ms, we see no deviation from an
exponential decay and thus parametrize the corresponding loss rate with the 1/e lifetime τ
of the atomic cloud. We find strong dependence on atom number and a lifetime of τz=1 =
210(8) ms for N0 = 500 atoms (right panel of Fig. 3.4). A fit of τz=1 versus initial atom
number N0 of the form τ ∝ N

−2/5
0 , which is expected for a Thomas-Fermi profile, yields

good agreement with the experimental data.

Inelastic Feshbach loss

Close to the Feshbach resonance, the loss for binary mixtures of atoms in |a〉 and |b〉 is
strongly increased due to the coupling to a molecular level, which enhances inelastic two-
and three-body collisions [88, 87, 92]. These loss processes occur due to molecule formation
and enhanced scattering into lower internal states, which releases the corresponding energy.
Depending on the process, this energy is on the order of the corresponding Zeeman shift (in
our case ≈ 6 MHz), the hyperfine spacing (in our case ≈ 6.8 GHz), or the vibrational energy
of the excited molecular state (in the infrared range). For all cases, this is much larger than the
depth of the trapping potential, and the atoms are removed from the trap.
These loss rates depend on the density of both components and thus are maximized for
equal atom numbers Na = Nb in both components, i.e. for the population imbalance z =
(Nb −Na)/(Nb +Na) = 0.
Here, we focus on this situation (see left panel of Fig. 3.4), as we prepare our atoms in equal
superpositions of the two components for the generation of spin squeezing. We find a strong
dependence on the total number of atoms, which is well described by τ ∝ N

−4/5
0 , point-

ing at three-body processes as the dominant loss source, and a lifetime of τz=0 = 107(2) ms
for an initial atom number of N0 = 500. This means that during typical evolution times of
tevo = 20 ms for the generation of squeezed states, approximately 85 atoms are lost from the
condensate, corresponding to 17% of the total ensemble size.

3.5. Parameter Dependence on Atom Number

In our system, both nonlinear interaction strength χ and the mean-field detuning δ depend on
the total number of atoms, as can be seen from the Eq. 2.7 and 2.21. The exact dependences
of these parameters are non-trivial as they are governed by the change of the single-particle
wave functions φi(x) with atom number. In principal, this can be calculated by numerically
determining the ground state wave functions from the corresponding Gross-Pitaevskii equa-
tion for different atom numbers. However, such results critically depend on the exact values
of the trap parameters and the different scattering lengths, which are not known well enough
for a precise prediction of the behavior in our system.
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Figure 3.5.: Extraction of the collisional shift from the N dependent phase shift of a
Ramsey sequence The atom number dependence of the collisional shift can be
extracted from Ramsey measurements away from the Feshbach resonance. We
find an atom number dependent population imbalance after the Ramsey sequence,
corresponding to different phase shifts during the evolution time of 30 ms. We
fit an empirical dependence of δ(N) = δn

√
N according to Eq. 3.3 and find

δMFS = −0.79(2)
√
N . This corresponds to a linearized shift of 57 atoms/Hz for

500 atoms.

Experimentally, the determination of these quantities is challenging because their size is
on the order of a few Hertz, which necessitates measurement times of tens of milliseconds.
Especially for large atom numbers, the loss processes described in section 3.4 are on similar
time scales and complicate the extraction of the parameters as they change during the detection
process.

Mean field detuning

Changes of the transition frequency due to collisional shifts can be characterized by measuring
atom number dependent phase shifts in Ramsey sequences. These shifts are proportional to
δχ = (χbb − χaa)/2 and thus independent of the interspecies interaction strength χab. This
allows us to determine the atom number dependence of the mean field detuning at magnetic
fields further away from the Feshbach resonance, where the performance of the Ramsey se-
quence is not degraded by nonlinear effects during the interrogation time.
Fig. 3.5 shows the dependence of the detected population imbalance after a Ramsey sequence
with 30 ms evolution time at a magnetic field of 9.2 G, where the nonlinear interaction induced
by the Feshbach resonance is negligible. We empirically model the detuning dependence with
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Figure 3.6.: Strength of the nonlinearity Nχ versus atom number. The atom number de-
pendence of the nonlinear interaction is clearly visible from the change of the fre-
quencies of plasma (squares) and π (circles) oscillations with atom number (left
panel), which is given by ωpl/π = Ω

√
1± Λ. The resulting strength of the nonlin-

earity Nχ is shown in the right panel. An empirical fit of a
√
x− b is given as a

guide to the eye. For typical atom numbers around 500, we findNχ ≈ 2π×30 Hz.

atom number as δn
√
N , yielding an atom number dependent imbalance of

zN = Vsin
(

2π[δn
√
N − δ0]tint

)
(3.3)

using the visibility V of the Ramsey fringe, the detuning offset δ0 and the Ramsey interrogation
time tint. Such a square root dependence is expected from the fact that our BEC is close to
the Thomas-Fermi regime, where the interaction energy scales as N2/5 [93]. Fitting Eq. 3.3
to the experimental data, we find δMFS = −0.79(2)

√
Nf for the atom number Nf detected

after 30 ms evolution time at 9.2 G (see Figure 3.5). This corresponds to a linearized shift
of 57 atoms/Hz for 500 atoms. Note that atom loss during the evolution time caused by spin
relaxation from F = 2 is not included in this analysis. As the dependence was calculated
for the final atom number, which is compressed by the loss process, the actual dependence
on the initial atom number is expected to be ≈ 5% lower. Also, for the strongly increased
loss close to the Feshbach resonance, the observed dependence of the parameters on the final
atom number after the same evolution time appears stronger. This is because the nonlinear
loss processes decrease differences in particle number, and thus rescale the atom number axis.

Nonlinearity

The atom number dependence of the strength of the nonlinearity can be extracted from plasma
and π oscillations after appropriate postselection on atom number using Eq. 3.1. We experi-
mentally find a clear dependence of both frequencies on atom number (left panel of Fig. 3.6).
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The resulting change of the nonlinear interaction also empirically resembles a square root be-
havior for larger atom numbers (right panel of Fig. 3.6). For our typical number of 500 atoms,
we find a nonlinear interaction strength of around 2π × 30 Hz.

3.6. High Intensity Absorption Imaging

The precise knowledge of both the atom numbers in the different hyperfine components and
the corresponding detection noise is essential for applications and also for the proper character-
ization of the generated states and the limits of our experimental system. Absorption imaging
is the most common and well-established imaging method for ultracold quantum gases, as it
offers high sensitivity in the regime of low and medium densities [95]. In this section, we will
give a short introduction into the current setup and the theoretical background, and identify
the limits for this technique. We will also shortly discuss alternative imaging scenarios such
as phase-contrast imaging or fluorescence detection, which might even allow the detection of
mesoscopic BECs with single atom resolution in the future [63].

3.6.1. Experimental Details

In our setup, the atom numbers of the different Zeeman sublevels of both hyperfine man-
ifolds in the ground state of 87Rb are detected via high-intensity absorption imaging after
Stern-Gerlach separation of the different magnetic sublevels. Here, we shortly summarize the
imaging procedure used throughout this thesis, which is described in detail in [62].
In the experiment, we use an objective with a numerical aperture of 0.45 and a focal length of
f1 = 31.23 mm (see [96] for a detailed description). A secondary lens with a focal length of
f2 = 1000 mm images the cloud onto a back-illuminated deep depletion CCD camera (Prince-
ton Instruments PIXIS BR1024), which is operated in Fast Kinetics Mode. The corresponding
magnification of the imaging system including all optical elements is 30.96. The depth of
field is 6.8 µm, which is much larger than the spatial extent of the atomic cloud. Taking into
account the quadratic pixel size of 13 µm of the CCD camera, this setup yields a pixel size in
object space of 420 nm, which is smaller than the attainable resolution of 1.1 µm according to
the Rayleigh criterion. This is important in order to ensure the validity of the Beer-Lambert
law employed in the imaging analysis, as detailed below. Additionally, the spatial resolution
of 1.1 µm allows optically resolving the single lattice sites, which are separated by 5.5 µm.
Stray light from the dipole traps, in particular caused by the lattice beams at 820 nm which

also enter the imaging system, is filtered out by two interference filters (Semrock BrightLine
HC 780/12). These are centered at the employed D2 line of 87Rb at 780 nm and have a width
of 24 nm. The total quantum efficiency of the imaging system including all optical elements
and the CCD camera is calculated to be 79%.
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Figure 3.7.: Schematic setup of the imaging system including all optical components. The
atomic cloud is imaged with an imaging beam (waist ≈ 2 mm) which enters the
experimental chamber under an angle of 5° to avoid etalon effects at the glass
surfaces. The shadow of the atomic cloud is then imaged onto a PIXIS BR1024
CCD camera using a custom made objective (NA of 0.45, f1 = 31.23 mm) and
a secondary lens (f2 = 1000 mm). Off-resonant stray light is blocked by two
bandpass filters centered at the D2 line of 87Rb. Before the start of the imaging
sequence, a mechanical shutter keeps out spurious resonant stray light.

Imaging sequence

After each experimental pulse sequence, all atoms from state |b〉 are transferred to |c〉 using
a resonant microwave π pulse. This prevents further spin-relaxation loss from the F = 2
manifold and thereby allows a controlled ramp-down of the magnetic bias field to around 1 G,
where the imaging sequence is performed. Additionally, this has the advantage that both spin
states are imaged under symmetric conditions and in a single shot, reducing the effects of
technical imperfections.
After a hold time of 300 ms, which is necessary to achieve stable conditions after the ramp-
down of the field, the imaging sequence is started. We record 5 subsequent CCD images in
frame shift mode, which is set to an exposure time of 600 µs and 656 µs for shifting of the
frame. The first four images are exposed to imaging light, whereas the last ’dark’ frame is
used to extract the level of the offset added by the readout amplifier before the analog-to-
digital conversion.
The sequence is initiated by switching off the dipole trap and applying a Stern-Gerlach gra-
dient pulse to spatially separate the different mF states. At the end of the first exposure time,
we apply a resonant π polarized imaging pulse on the 5S1/2, F = 2 ↔ 5P3/2, F

′ = 3 cycling
transition with a duration of 15 µs and typical intensities of I ≈ 10 saturation intensities. This
first pulse images the atoms in the F = 2 manifold of the ground state. All atoms resonant
to the imaging light are accelerated out of the trap by the radiation pressure of the pulse (see
[62] for details). After the frame shifting time, repumping light is shone onto the atoms. This
transfers all atoms from the F = 1 manifold of the ground state to F = 2 and allows sub-
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sequent imaging with a second imaging light pulse after a total time-of-flight of 1.3 ms. A
reference image that does not contain atoms is recorded 1.25 ms later, employing the same
pulse duration and light intensity. On the fourth frame, this is repeated to ensure that residual
light scattering on the previous shifted frames is equivalent on the absorption and the reference
image.

3.6.2. Theory of High-Intensity Absorption Imaging

The basic analysis method in high-intensity absorption imaging of ultracold atomic clouds
is the integration of the Beer-Lambert law with the inclusion of saturation effects [97]. In
this section, we will give a brief introduction and derive the relevant results for our imaging
system.
The Beer-Lambert law for the intensity I of resonant light in a saturable absorber with density
n(x, y, z) reads

dI

dz
= −n(x, y, z)σ0 ·

(
1

α + I
Isat

)
· I, (3.4)

where σ0 is the (polarization dependent) scattering cross section of the transition, Isat denotes
the effective saturation intensity and α is a dimensionless parameter correcting for polarization
and optical pumping effects.
Rearranging the terms yields(

1

αIsat
+

1

I

)
dI = −n(x, y, z)σ0

α
dz. (3.5)

This differential equation can be solved by integrating both sides over the extent of the cloud,
yielding the column density

n(x, y) =

∫ zf

zi

n(x, y, z) dz = − α
σ0

[
ln
(
If

Ii

)
+
If − Ii

αIeff

]
, (3.6)

using the initial and final intensities Ii and If before and after the cloud. Further integration in
x and y direction over each pixel yields the atom number for a single pixel

Npix =

[
−α · ln

(
If

Ii

)
− ccam ·

(If − Ii)

Isat

]
·
d2
p

σ0

, (3.7)

using the pixel size in object space dp and a calibration constant ccam which takes into account
the calibration of the CCD camera, the quantum efficiency of the imaging system and the
duration of the light pulse. Note that the last integration is only valid if the pixel size is
smaller than the optical resolution of the imaging system, as it assumes∫

pixel
ln
(
If

Ii

)
= ln

(∫
pixel If∫
pixel Ii

)
, (3.8)
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3. The Experiment: Generation, Characterization and Detection of the Condensates

which only holds in the case of small variation across a pixel.
The spatial variation of the light intensity over the image, caused by interference fringes due
to the coherent nature of the imaging light as well as other inhomogeneities, necessitates to
record both an absorption and a reference image and evaluate Eq. 3.7 for each pixel. The total
atom number of the atomic cloud is then obtained by summing over all pixels in a selected
region of interest.

3.6.3. Calibration of the Imaging System

Using Eq. 3.7, we can calculate the atom number in each pixel if α and Isat are known. As these
parameters depend on the microscopic details of the system (residual detuning of the imaging
light, polarization etc.), they have to be determined experimentally. This is done using the
projection noise of atomic superposition states with equal population in the two hyperfine
levels, as described in [62]. For these coherent spin states, which can be generated with radio
frequency and microwave pulses, the variance of the atom number difference N− = N2 −N1

of the two hyperfine levels has to be equal to the sum N+ = N2 +N1 of both components, i.e.
Var[N−] = N++VarDet(I) for all atom numbers and all imaging intensities I (see section 4.1.1
for a derivation). Here, VarDet(I) is the intensity dependent detection noise of the imaging
process. An accurate calibration of α and Isat can thus be obtained if a linear dependence with
unity slope is found for the relation of Var[N−] versus N+ in a wide range of intensities.

3.6.4. Estimation of Detection Noise

The detection noise of our imaging system can be extracted from repeated measurements of
images containing no atoms, or evaluation of regions on absorption images where no atoms
are found, e.g. above or below the atomic clouds.
The main source of detection noise in our setup is photon shot noise, as our imaging procedure
is performed with a classical light source with fluctuating photon number. On each pixel, for
a mean photon number 〈Nphot〉, we expect fluctuations of at least σNphot =

√
〈Nphot〉, which

are present on both the absorption and the reference image. This directly translates into an
uncertainty in the detected atom number, as can be seen from error propagation of Eq. 3.7
with respect to the detected intensities Ii and If. This yields

VarDet(Npix) =
d4
p

σ2
0

([
α

If
+

ccam

Isat

]2

Var(If) +

[
α

Ii
+

ccam

Isat

]2

Var(Ii)

)
. (3.9)

We can obtain Var(Ii) and Var(If) from the pixel intensities Ii and If using a noise calibration
of the CCD camera. This is performed employing homogeneous illumination of the chip with
an incoherent light source and evaluating the corresponding variances in the count number for
each mean number of counts. For this analysis, variations in the sensitivity of the single pix-
els, which cause a quadratical noise contribution for large count numbers, are canceled using
a flat-field correcting analysis.
Using this error propagation, we can assess the photon shot noise contribution for each single
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3.6. High Intensity Absorption Imaging

experimental realization on all lattice sites according to the local intensities during the chosen
shot. As photon shot noise is the dominant contribution to the detection noise (≈ 80 %), we
use solely this photon shot noise contribution and neglect the other noise sources for subtrac-
tion of detection noise (see Sec. 4.1.1). This ensures that we actually subtract the detection
noise at the position of the cloud and the result is not perturbed by spatial inhomogeneities of
our detection system.
Other noise sources in our imaging system are residual fringes due to the coherent imaging
light. Stationary fringes are corrected by the pixel-by-pixel analysis. However, if vibrations
of the setup induce movement of the fringe position on the CCD camera between absorption
and reference image, they are not perfectly canceled and cause excess noise. Improvements
of the experimental stability have reduced this contribution to around 20%. The noise of the
readout amplifier of the CCD camera is much smaller than fringe noise and photon shot noise
(≈ 1 %) and can be neglected in the analysis.
For the full atomic cloud, the corresponding detection noise depends on the size of the evalu-
ated region of interest, as it is given by the sum over all pixels, i.e. VarDet =

∑
roi VarDet(Npix).

It is thus optimal to only evaluate the pixels actually containing atoms in order to avoid ex-
cess noise. We first manually select rectangular regions of interest around each lattice site. In
post-processing, we subsequently select an area around the atomic sample that has the same
elliptical shape as the cloud. We make sure that no atomic signal is lost by this elliptical
mask by varying the size of the ellipse in both directions. The optimal shape of the mask
is chosen such that the deduced atom number inside the selected region is well saturated.
This reduction of evaluation size allows to reduce the detection noise by almost 50% [62],
yielding typical values of σDet(Ni) =

√
VarDet(Ni) = 5 − 6 atoms for a single cloud. Note

that for binary condensates as in the experiments discussed within this thesis, two of these
atomic clouds have to be imaged, leading to a detection noise in the atom number difference
of σDet(N−) =

√
2σDet(Ni).

Further noise reduction can be obtained by applying a fringe removal algorithm, which con-
structs an optimal reference image as a linear combination from a set of reference images Rx,j

[98]. The coefficients cj for the optimal reference image Qx =
∑

j cjRx,j are attained by min-
imizing the least squares difference between the absorption and reference images in a region
containing no atoms, i.e. above and below the atomic clouds. This procedure was originally
developed to minimize the large fringe noise contribution in atom chip experiments, but also
strongly reduces the photon shot noise of the reference image due to the averaging over many
images. We routinely apply this algorithm in post analysis using 700 reference images. This
reduces the detection noise down to σDet(Ni) = 3.7 atoms for a single cloud [62], correspond-
ing to σDet(N−) = 5.2 atoms for atom number differences. For a two-component ensemble
containing 600 atoms, this should allow the observation of interferometric precision down to
−13.5 dB below the standard quantum limit.
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3.6.5. Limits of Absorption Imaging and Alternatives
In our setup, the attainable sensitivity for atom number detection with absorption imaging is
limited by photon scattering, which both exerts radiation pressure and heats up the sample.
For our settings, the maximum duration of the imaging pulse is 15 µs, as after this time the
atoms have moved out of the focal plane of the imaging system [62]. This limits the best
achievable sensitivity to the level of 3-4 atoms. A detailed discussion about these limitations
can be found in [99].
Further improvement in the detection procedure would thus require alternative routes. Flu-
orescence imaging has shown the feasibility of detecting mesoscopic ensembles with single
atom resolution [63] at the cost of losing spatial resolution. Here, one of the major chal-
lenges is the additional implementation of a scheme for state-selective simultaneous detection
of several components. Near-resonant phase contrast imaging should also deliver a superior
signal-to-noise ratio for our densities [99], but involves further complication in imaging setup
and analysis.

Note that these improvements will be relevant for the detection of quantum interference, e.g.
of non-trivial entangled states, at the single-particle level. For implementation of quantum-
enhanced interferometry with squeezed states, this is not crucial, as the atom shot noise of the
quantum state is much larger than the currently obtainable detection noise and no features in
the distribution functions on the single-atom level are expected.
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4. One-Axis Twisting: Spin
Squeezing in a Two-Mode BEC

In the previous chapters, we have introduced the basic experimental properties and the cor-
responding Hamiltonians that govern the internal dynamics of the individual condensates in
each of the lattice sites. In the following, we will theoretically describe and experimentally
investigate these dynamics and verify the generation of spin squeezed states by use of the one-
axis twisting Hamiltonian (Eq. 2.22) in such a two-mode system.
We will start by introducing the experimental procedure for the extraction of the squeezing
properties of those states and the corresponding parameters, ξ2

N for number squeezing and ξ2
S

for spin squeezing, which is relevant for quantifying the quantum resources contained in the
system. In addition, we will introduce a relative squeezing parameter that measures the fluctu-
ations between two condensates in a differential analysis, and thus gives access to the quantum
fluctuations of the system without being sensitive to technical common mode noise. Subse-
quently, we will show the theoretical prediction for the temporal evolution of states under the
one-axis twisting Hamiltonian, and analyze the influence of atom loss on the generation of
squeezed states. Finally, we will discuss how this scheme is implemented in the experiment
and study the temporal evolution and the atom number dependence of the squeezing parame-
ters in our system.

4.1. Experimental Characterization of Squeezing
The experimental characterization of quantum states is one of the essential tasks in quantum
metrology. For mesoscopic systems, a full quantitative tomographic reconstruction of the
density matrix is unfeasible due to its extreme size and the inability to detect populations with
single atom resolution.
Gaussian states are fully characterized by their means and variances. They can thus be charac-
terized by measuring the quantum uncertainty along multiple directions, which can be quanti-
fied in terms of squeezing parameters.
Squeezed states have elongated uncertainty distributions. Its key parameters are given by the
extension of the elongated long axis of the state as well as the compressed short axis of min-
imal fluctuations, and the angle αmin along which these fluctuations are minimized (Fig. 4.1).
Experimentally, we can access the quantum uncertainty along the z direction from the fluctu-
ations of the population imbalance z = (Nb − Na)/(Nb + Na) of the two states in repeated
measurements. Here, Na and Nb denote the number of atoms in each of the two components.
A tomographic analysis, i.e. the measurement of the state’s quantum uncertainty along differ-
ent directions, can be implemented by rotating the state around itself before reading out the
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Figure 4.1.: Characterization of a squeezed state. The uncertainty of a squeezed state is
characterized using three parameters (left panel): The extension along the elon-
gated direction of the state (long axis), the length along the short axis of optimal
number squeezing with the corresponding spin squeezing parameter, and the to-
mography rotation angle αmin to rotate the state onto this axis of optimal squeez-
ing. The squeezing parameters are obtained from the variance of the fluctuations
along the z direction (right panel). A tomographic analysis is implemented by
rotating the state around itself via two-photon coupling.

atomic populations. In our experiment, such a rotation can be induced by phase-controlled
two-photon coupling.
In this section, we will show how the obtained fluctuations can be quantified in terms of
squeezing factors and discuss the meaning and applicability of the different squeezing param-
eters.

4.1.1. Classical Limit: Fluctuations for N Independent Particles

We will start by examining the lower classical limit for the quantum fluctuations, which is
reached by a coherent spin state (see section 2.4). For such a state, we expect isotropic quan-
tum uncertainty and a binomial probability distribution. This can be intuitively understood
in terms of a probabilistic analysis of N particles [100], each of which is in an independent
superposition state |ψ〉 =

√
1− p|a〉 +

√
p|b〉, where p = (〈z〉 + 1)/2 is the probability of

finding the single atom in state |b〉. For N independent particles, the probability of measuring
Nb particles in state |b〉 is thus given by

P (Nb;N, p) =
N !

Nb!(N −Nb)!
pNb(1− p)N−Nb . (4.1)

The variance of this binomial distribution can be shown to be

Var(Nb;N, p) = Var(Na;N, 1− p) = p(1− p)N, (4.2)
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and the covariance
Cov(Na, Nb; p) = −p(1− p)N (4.3)

has the same absolute value but opposite sign. Using Eq. 4.2 and 4.3, we consequently expect
fluctuations in the difference of the particle number in the two states of

Var(Na −Nb)CSS = Var(Na) + Var(Nb)− 2 Cov(Na, Nb) = 4p(1− p)N (4.4)

for a coherent spin state of N particles. This variance is maximal for an equal superposition
[Var(Na −Nb) = N for p = 0.5] and vanishes for maximal population imbalance [p = 0, 1].
In terms of fluctuations of the population imbalance z = (Nb −Na)/N , this translates into

Var(z)CSS =
Var(Na −Nb)

N2
=

4p(1− p)
N

=
1− 〈z〉2

N
. (4.5)

4.1.2. Fluctuation Suppression: Number Squeezing ξ2N

A suppression of fluctuations below this classical limit can be parametrized by the so-called
number squeezing factor

ξ2
N =

Var(z)exp

Var(z)CSS
=
N · Var(z)exp

4p(1− p)
. (4.6)

In the experiment, the observed fluctuations Var(z)exp are not solely given by the quantum
fluctuations of the state. Additionally, the detection noise of the imaging system as well as
technical fluctuations during the state preparation add to these quantum fluctuations. For
a proper characterization of the state’s properties and resources, we can correct for known
noise sources by subtracting the independently characterized fluctuations induced by these
processes.
Of the above mentioned additional noise sources, the dominant contribution in our setup is
the well-characterized detection noise of the absorption imaging [62]. A detailed description
of the imaging procedure, our setup and its characterization is given in section 3.6. For a
single lattice site, the detection noise yields additional fluctuations of VarDet(Ni) ≈ 15 atoms
for each detected component Ni. The largest contribution of these fluctuations is caused by
photon shot noise of the imaging light.
Additional technical noise due to imperfections during state preparation can be characterized
by exploiting the parallelized production of independent BECs (see section 6.3). These fluc-
tuations scale quadratically with atom number and are small if one analyzes single lattice sites
in our system. In the case of large atom numbers, these fluctuations will eventually dominate
and require a differential analysis, which will be detailed in section 4.1.4.
For the following analysis in this thesis, we only subtract the detection noise VarDetPS , which
accounts for the photon shot noise contribution, from the observed experimental variances, as
this can be independently characterized for each shot. Including this subtraction, the inferred
number squeezing parameter is given by

ξ2
N =

N · (Var(z)exp − VarDetPS/N
2)

4p(1− p)
. (4.7)
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4.1.3. Spin Squeezing

The parameter that is directly connected to the entanglement properties and the phase sensitiv-
ity in an interferometer is the spin squeezing factor ξ2

S [25, 101], which was already introduced
in section 2.5. In addition to the suppression of fluctuations, the parameter ξ2

S also accounts for
the coherence of the quantum state. In particular, the mean spin length of a squeezed state is
reduced due to the elongated nature of the quantum state. This results in a decreased visibility
for the fringes obtained in Ramsey experiments.

Spin squeezing parameter using classical expectation values

In the two-mode approximation, in which all particles in each state share the same spatial mode
φi(x), the mean spin length can be directly extracted from the extension of the uncertainty of
the state. If we assume that our state is a squeezed state which is strongly elongated along a
certain axis and compressed in orthogonal direction, this mean spin length will be determined
by the extension of the long axis.
Assuming that the pseudospin points in x direction, i.e. 〈Ĵy〉 = 〈Ĵz〉 = 0, and the long axis
of the state is aligned with the equator, the mean spin length for large N and small population
imbalance z can be approximated by using the mean-field description as in Eq. 2.37, yielding

〈Ĵ〉 = 〈Ĵx〉 =
N

2
〈cos(φ)〉, (4.8)

where φ = arctan(Jy/Jx) [45] . This can be used to quantify the underlying spin squeezing
[101, 44, 45] with the spin squeezing parameter

ξ2
S =

2J · Var(Ĵz)

〈Ĵ2
x〉+ 〈Ĵ2

y 〉
=

ξ2
N

〈cos(φ)〉2
, (4.9)

where we neglect the extension of the state along its short axis.
In this approximation, ξ2

S can be directly extracted from a tomographic squeezing analysis.
This will be employed for characterizing the squeezing of the single lattice sites – for which
the two-mode approximation is valid – as it does not require additional measurements of the
visibility that can be obtained with the final states. However, in the case of squeezing in sums
of several lattice sites, the two-mode approximation and thus Eq. 4.8 does not hold, and this
method is not applicable.
Recall that spin squeezing serves as an entanglement witness [44, 77, 102, 103], which has
been used to identify atomic entanglement for mesoscopic ensembles in several experimental
realizations [5, 45, 46, 47]. This quantum resource can be employed for enhancing the perfor-
mance of atomic clocks [40, 41], quantum metrology [45, 37, 48] and generally be used as a
resource for quantum information tasks [104].
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Metrological spin squeezing parameter

The metrological spin squeezing parameter ξ2
R, as defined by Wineland et al. [101], is valid

beyond the two-mode approximation, as it extracts the spin length directly from the experi-
mentally obtainable fringe visibility V . Thus, this parameter also takes into account technical
imperfections of the experimental system that lead to a reduced visibility and consequently
quantifies the actual gain that can be achieved in a measurement. It is defined by

ξ2
R =

ξ2
N

V2
, (4.10)

which results in a possible improvement of ξR for the phase sensitivity in comparison to a
classical state, i.e. ∆φ = ξR/

√
N . Intuitively, this can be understood from error propagation

for the phase φ ∝ arcsin(z/V) estimated from a sinusoidal Ramsey fringe. Here, the number
squeezing decreases the phase uncertainty due to the decreased fluctuations in z, whereas the
reduced visibility V reduces the slope of the sinusoidal fringe and thus deteriorates the sensi-
tivity. A more detailed discussion on the phase estimation with spin squeezed states will be
given in chapter 7.1.

4.1.4. Relative Squeezing

An analysis relying on the fluctuations of repeated measurements does not directly quantify
the quantum uncertainty of the state. It is also sensitive to detection noise and additional noise
sources connected to shot-to-shot variations of the experimental parameters, such as detunings
induced by magnetic fields or preparation errors due to power fluctuations of the microwave
sources.
Our 1D lattice setup allows the simultaneous generation of multiple squeezed ensembles in
a single experimental realization. Technical fluctuations of homogeneous fields affect all lat-
tice sites in the same way. This is why an analysis of the relative fluctuations between the
lattice sites is insensitive to these common mode variations, and thus gives insights into the
true quantum fluctuations of the state. In the following, we will develop the tools for a such
a differential analysis. We will introduce a squeezing parameter ξrel which quantifies the sup-
pression of relative fluctuations between two atomic ensembles. This parameter is connected
to the gradiometric sensitivity for these detectors, and equivalent to the number squeezing pa-
rameter in the case of equal atom numbers in both samples.
For the relative analysis, we analyze two atomic clouds with the respective population imbal-
ances z1 = N1−

N1+
and z2 = N2−

N2+
, where Ni+(−) are the sum (difference) of the populations of the

states |a〉 and |b〉 in cloud i. The relevant noise suppression in the relative analysis is found in
the imbalance difference δz = z1 − z2. It is intuitive that common mode variations of both
samples due to technical noise do not contribute to the fluctuations of δz, as they are canceled
by the subtraction.
Analog to the case of a single two-component cloud, we first examine the classical limit of
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this system. Here, in analogy to section 4.1.1, the classical limit is given by

Var(δz)class =

[
Var
(
N1−

N1+

)
+ Var

(
N2−

N2+

)]
class

=
c1

N1+

+
c2

N2+

, (4.11)

using the binomial factors c1 = 4p1(1 − p1) and c2 = 4p2(1 − p2) accounting for the mean
imbalances 〈z1〉 and 〈z2〉. Note that in the case of equal atom numbers and 〈z1〉 = 〈z2〉 = 0,
this simplifies to Var(δz)class = 4/N with the total number of atoms N = N1+ +N2+.
Also, we find that the minimal value for Var(δz)class is obtained for N1+ = N2+, assuming
〈z1〉 = 〈z2〉 = 0. This can be seen by replacing N2+ = kN (with 0 ≤ k ≤ 1) and N1+ =
(1− k)N , yielding

Var(δz)class ∝
1

k(1− k)
, (4.12)

which is minimal for k = 1/2. This shows that it is best to distribute N particles into two
clouds of equal size, as otherwise the increased quantum noise of the cloud with lower parti-
cle number dominates the variation of δz. As this variance Var(δz) is related to the attainable
sensitivity in gradiometric operation, this also shows that the best performance of a gradiome-
ter is attained with two samples of equal size.
Analogous to the number squeezing analysis, the relative squeezing factor is defined as the
ratio between the experimentally measured variance and the classical limit, yielding

ξ2
rel =

Var(δz)exp

Var(δz)class
≈ Ntot

4
· Var(δz)exp, (4.13)

where the last approximation holds for N1+ ≈ Ntot/2 and 〈z1〉 ≈ 〈z2〉 ≈ 0 as above.
We will now examine how this relative squeezing parameter ξ2

rel is related to the number
squeezing parameter ξ2

N of the sum of both samples. In the absence of technical (i.e. com-
mon mode) fluctuations, we find that

ξ2
rel = k · ξ2

N1
+ (1− k) · ξ2

N2
, (4.14)

using the individual number squeezing parameters ξ2
N1

and ξ2
N2

and assuming c1 = c2. Sum-
ming the atom numbers of the individual components in both samples and calculating the
number squeezing parameter yields

ξ2
Ntot

= (1− k) · ξ2
N1

+ k · ξ2
N2
. (4.15)

Thus, for similar atom numbers or identical individual number squeezing parameters, ξ2
rel is

equivalent to the number squeezing parameter of the total cloud. In our case, both of these
conditions are well fulfilled and ξ2

Ntot
≈ ξ2

rel, allowing direct comparison between the two
parameters.
To obtain the sensitivity for metrological applications, in analogy to the number squeezing
evaluation, the visibilities of the Ramsey fringes V1 and V2 have to be taken into account. For
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equal visibilities V , the corresponding gradiometric spin squeezing parameter is thus given by

ξ2
Srel

=
ξ2

rel

V2
. (4.16)

4.2. Creating Spin Squeezing in a Bose-Einstein
Condensate

We will start this section by shortly reviewing the pathways that have been experimentally re-
alized for generating spin squeezed states in BECs so far, and then add a detailed discussion of
the one-axis twisting scenario, which has up to now been the standard route for spin squeezing
in the internal states of Bose-Einstein condensates.

4.2.1. Nonlinearity and Squeezing in a Two-Component BEC
Spin squeezing in Bose-Einstein condensates has been achieved employing a variety of exper-
imental methods. In the external degrees of freedom, squeezing was realized using controlled
tunnel coupling between adjacent lattice sites, which can be precisely adjusted via the optical
or magnetic trapping potentials [5, 47]. These experiments employed adiabatic ramping of the
barrier height to generate spin squeezing in the population imbalance of the two sites.
In the internal states, the attainable nonlinearities are much lower, which makes the adiabatic
methods unfeasible due to atom loss during the consequential long ramping times [89]. Here,
squeezing has to be realized employing diabatic methods such as one-axis twisting.
As shown in chapter 2, the required nonlinear interaction in the internal degrees of freedom
between the states |a〉 and |b〉 is given by

χ ∝ aaa

∫
dr|φa(r)|4 + abb

∫
dr|φb(r)|4 − 2aab

∫
dr|φa(r)|2|φb(r)|2 (4.17)

and thus depends on both the scattering lengths aij between the particles and the shape of
the spatial wave functions φi(r). For 87Rb, the background scattering lengths between all
hyperfine states of the 5S1/2 ground state are very similar. For example, for the states consid-
ered in this thesis, the intra- and interspecies scattering lengths are given by aaa = 100.44 aB,
abb = 95.47 aB [86] and aab = 97.7 aB [105], where aB denotes the Bohr radius. This means
that ∆aNL = aaa + abb − 2aab = 0.51 aB is negligible. Thus for condensates in two perfectly
overlapping spatial modes, i.e. φa(r) = φb(r), the nonlinearity vanishes.

Experimentally, two different pathways have been employed for increasing this nonlin-
ear interaction. In the group of Philipp Treutlein, significant interaction strength has been
attained by applying state-dependent potentials [46]. This leads to a spatial separation of
the two wave functions φa(r) and φb(r) and consequently decreases the overlap integral∫

dr|φa(r)|2|φb(r)|2. Thus, the three terms in Eq. 4.17 do not cancel and significant non-
linearity prevails, which is strong enough to be employed for entanglement generation [46].
In our setup, we follow a different approach [89] and tune the interspecies scattering length aab
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Figure 4.2.: Ideal theoretical one-axis twisting evolution. The initially isotropic quantum
uncertainty of a coherent spin state (Husimi distribution in leftmost panel in up-
per row) gets redistributed due to the shearing which is caused by the nonlinearity.
In the first stage of the evolution, an elongated squeezed state is generated (upper
row). The aspect ratio of the state grows for longer evolution times as squeezing
is enhanced. For even larger evolution times, the state evolves into a regime of
non-trivial states with non-Gaussian uncertainty distribution, which are no longer
squeezed (lower row). Eventually, this scenario theoretically allows the gener-
ation of maximally entangled states. The Husimi plots were obtained for 500
atoms and the experimentally obtained nonlinearity of Nχ = 2π×30 Hz by diag-
onalizing the Hamiltonian 2.22. Loss and time-dependence of parameters, which
strongly alter the evolution, are not included in these simulations.

by use of an interspecies Feshbach resonance at 9.1 G [85, 86], which is experimentally char-
acterized in section 3.2. For our system, due to the similar scattering lengths we can assume
φa(r) ≈ φb(r) = φ(r). In this case, Eq. 4.17 simplifies to

χ ∝
∫

dr|φ(r)|4 [aaa + abb − 2aab] . (4.18)

The nonlinearity in our system thus only depends on the shape of the spatial wave function
and the distance of the magnetic field to the Feshbach resonance. As shown in the previous
section, at the chosen magnetic field of 9.12 G – which is a trade-off between increased non-
linearity and strongly decreased lifetime due to Feshbach losses closer to the resonance – we
find Nχ ≈ 2π × 30 Hz for typical atom numbers of N ≈ 500, and a 1/e lifetime of 110 ms.
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Figure 4.3.: Spin squeezing generated by one-axis twisting vs time. In the ideal theory,
spin squeezing builds up in the early part of the time evolution and reaches its
optimum after 47 ms (upper left panel). Subsequently, spin squeezing rapidly
vanishes, which is mainly due to the reduction of the mean spin length 〈J〉 (lower
left panel) due to the increasing extension of the long axis (solid black line, upper
right panel), but also caused by reduced best number squeezing (solid gray line,
upper right panel). The angle of optimal squeezing decreases with time, as the
state gets stretched further and further by the nonlinear interaction (lower right
panel).

4.2.2. Generating Spin Squeezing with One-Axis Twisting

The one-axis twisting Hamiltonian H = χĴ2
z + δĴz (see Eq. 2.22) thus can be realized by

preparing atoms in an independent superposition of the two levels by use of a strong linear
coupling pulse, and then evolving the state under the influence of the nonlinearity. As the
Hamiltonian only consists of terms containing Ĵz and higher orders, no change in relative
population is caused by the nonlinear evolution. In the Bloch sphere picture, the detuning term
δĴz induces a rotation around the z axis, leading to a time-dependent phase of the quantum
state without changing its shape. In contrast, the nonlinear χĴ2

z term causes a rotation around
the z axis whose speed depends on the population imbalance z. For a quantum state, which
has a finite width in z direction due to its intrinsic quantum uncertainty, this causes a shearing
along the z axis and thus redistributes the quantum uncertainty of the state. This generates
squeezing in the early parts of the time evolution and is connected with the introduction of
quantum correlations between the particles.

This scenario for the creation of spin squeezed states was proposed by Kitagawa et al. in
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1993 [25] and experimentally realized in Bose-Einstein condensates in 2010 [45, 46]. Note
that also some procedures which rely on atom-light interaction, such as the cavity feedback
squeezing scheme realized with cold atomic clouds [39], are based on similar Hamiltonians.
A simulation of the idealized temporal evolution for an initial coherent state subjected to the
one-axis twisting Hamiltonian is depicted in Fig. 4.2 on a generalized Bloch sphere. It was
calculated using exact diagonalization of the one-axis twisting Hamiltonian Eq. 2.22. We find
that the isotropic quantum uncertainty of the initial coherent spin state is redistributed, lead-
ing to an elongated state with reduced quantum uncertainty in the direction orthogonal to its
longest extension, i.e. a spin squeezed state. The projection along the z direction does not
change and remains at the classical shot noise limit, which necessitates further rotations of the
state before it can be read out or exploited for quantum-enhanced interferometry.
Longer squeezing times lead to a larger aspect ratio, until the state starts to stretch around
the whole sphere. At this point, highly entangled quantum states with non-trivial structure
are formed and spin squeezing is lost. The characterization and application of these states
requires more advanced schemes which do not rely solely on variances [11, 61]. Note that in
our experiment this regime is inaccessible due to the inherent atom loss, which happens on a
timescale on the order of 100 ms and strongly modifies the dynamics for long evolution times.
In the further course of this thesis, we will focus on the early part of the temporal evolution
and characterize the corresponding spin squeezed states that are generated during this period.
We now turn to a quantitative analysis of the spin squeezing parameter ξ2

S versus evolution
time. We first investigate the ideal case using realistic experimental conditions (500 atoms,
Nχ = 2π × 30 Hz), but neglect detunings and the effect of losses. These processes lead to a
time dependence of the interaction strength Nχ and the detuning δ, and additionally deterio-
rate the squeezing due to the stochastic nature of the loss [28].
The theoretical analysis for this ideal system shows that optimal squeezing of ξ2

S = −17.1 dB
can be attained for an evolution time of 47 ms (Fig. 4.3). At this time, the state already extends
over a large part of the sphere, meaning that the mean spin length 〈Ĵ〉 has already strongly de-
creased. The angle of minimal quantum uncertainty, which is relevant for the readout rotation,
also depends on the evolution time (right panel).

We now address the two most important imperfections of our system. The major source of
complication is the effect of the inevitable losses, which strongly alters this idealized evolu-
tion. The presence of these losses, caused by spin relaxation from the excited state and the
proximity of the Feshbach resonance, limits the 1/e lifetime of our system to τ ≈ 110 ms.
As the parameters χ and δ both depend on the total atom number, this strongly modifies the
subsequent dynamics.
The fundamental problem, however, is the stochastic nature of the loss process, which causes
decoherence and limits the attainable best squeezing. Fig. 4.4 shows the influence of the de-
coherence caused by the different loss processes on the attainable spin squeezing, neglecting
the effects of parameter changes at first. These results were obtained from Monte Carlo simu-
lations of the time evolution following the approach of Mølmer et al. [106, 107] for an initial
atom number of N0 = 500 atoms, with Nχ = 2π × 30 Hz and δ = 0 constant in time. The
corresponding loss parameters for two-body spin relaxation loss from the excited state Γbb
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Figure 4.4.: Decoherence due to atom loss and their effect on spin squeezing. The results
depicted in this figure are obtained from numerical Monte Carlo simulations of the
one-axis twisting scheme in the presence of different loss processes, for constant
parametersN0 = 500,Nχ = 2π×30 Hz and δ = 0 Hz. The different colors depict
the different loss scenarios: No loss (black), spin-relaxation two-body loss (dark
gray), three-body Feshbach loss (medium gray) and both two-body and three-
body loss (light gray). We find a strong degradation of the best attainable spin
squeezing ξ2

S from both loss effects (left panel), accompanied with a shift of the
optimal squeezing time from 47 ms to 32 ms. The optimal rotation angle αmin

(middle panel) as well as the extension of the long axis (upper branch in right
panel) change only slightly due to the losses, whereas the best number squeezing
is strongly affected (lower branch in right panel).

and three-body loss from the Feshbach resonance Γabb = Γaab were adjusted according to the
experimentally determined lifetimes of τ2body ≈ 210 ms and τ3body ≈ 110 ms, respectively.
The results of the Monte Carlo method show that both loss processes cause decoherence and
modify the attainable squeezing even without parameter change. The isolated effect of the
inevitable two-body spin relaxation limits spin squeezing to ξ2

S2body
= −12.7 dB and lowers the

optimal time to 37 ms. Similar effects are obtained for three-body loss from the Feshbach res-
onance, for which the optimal squeezing reduces to ξ2

S3body
= −11.5 dB. The combined effect

of both loss sources is predicted to limit the spin squeezing parameter to ξ2
Sloss

= −10.5 dB,
which can be attained after an optimal time of 32 ms. Both the length along the long axis and
the angle of minimal fluctuations αmin are only slightly affected by these processes.
The previously discussed calculations only take into account the fundamental limitations due
to decoherence caused by the atomic loss. In a realistic experimental scenario, the dynamics
will be further modified by the parameter change caused by the loss process. This is demon-
strated in Fig. 4.5, where a parameter dependence of χ ∝ 1/

√
N and δ ∝

√
N is assumed

(see section 3.5), starting with Nχ = 2π × 30 Hz and δ = 0. Due to the reduced nonlinearity
during the squeezing process, the speed of the squeezing generation is reduced. This leads to a
smaller extension of the state and a larger optimal rotation angle αmin. Additionally, we find a
further deterioration in the best attainable spin squeezing, which is now given by ξ2

S = −10 dB
after 28 ms evolution time.
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Figure 4.5.: Influence of losses including the change of parameters. During the one-axis
twisting evolution, the parameters δ and Nχ are time-dependent, as they change
with the decaying number of atoms. This leads to a further degradation of the
attainable spin squeezing (left panel, light gray solid line) in comparison to the
case of time independent parameters, where only the effect of decoherence from
two- and three-body loss are considered (dashed dark gray line), and the lossless
case (dotted black line). Due to the reduced mean nonlinearity, both the optimal
angle gets larger (middle panel) and the long axis is shortened (right panel). These
results were obtained from Monte Carlo simulations assuming Nχ ∝

√
N and

δ ∝
√
N .

Another important experimental imperfection is the presence of technical fluctuations of the
experimental parameters, for example uncontrolled jitter of the detuning δ. After an evolution
time τ , a fixed finite detuning δ does not degrade the generation of squeezed states in the one-
axis twisting scheme, but leads to a phase shift ϕ = 2πδτ for the optimal readout rotation.
Fluctuating detunings, however, which are experimentally inevitable due to the finite stability
of the magnetic offset fields, lead to varying readout phases and thus affect the measured
squeezing parameters. Experimentally, this necessitates the implementation of a spin-echo
sequence, in which a π rotation in the middle of the nonlinear evolution reduces the influence
of the phase noise. A detailed analysis of these technical fluctuations and the performance of
the π pulse in the presence of nonlinearity will be given in section 6.3.

4.2.3. Experimental Implementation of the One-Axis Twisting
Scenario in an Interacting BEC

The Feshbach-enhanced nonlinearity can be employed for the generation of spin squeezed
states using the one-axis twisting scheme, as was demonstrated by Gross et al. with two-mode
Bose-Einstein condensates [45]. In this section, we will show how the creation and charac-
terization of these states is implemented in the experiment and focus on the dynamics of the
individual condensates, ignoring the existence of the lattice at first.

The experimental procedure for the generation of squeezed states starts with all atoms in the
state |a〉 at the homogeneous magnetic bias field of 9.12 G in close proximity to the Feshbach
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Figure 4.6.: Experimental implementation of one-axis twisting scheme. For the generation
and characterization of spin squeezed states, we first prepare an equal superposi-
tion of both components by use of a two-photon π/2 pulse. This initial coherent
spin state subsequently evolves under the influence of the nonlinear interaction,
which is enhanced due to the proximity of the Feshbach resonance. After half of
the evolution time, a spin-echo π pulse (phase φ = 3π/2 + 3°) is performed to
reduce the influence of detuning fluctuations. After a second period of nonlin-
ear evolution, a readout pulse with variable duration (phase φ = 3π/2 + 3° for
−180° < α < 0° and φ = π/2 + 3° for 0° < α < 180°) rotates the final state by
the angle α around itself.

resonance, yielding an interaction strength in the order of 2π×30 Hz for 500 atoms. In the first
step, we create an equal superposition of the two components |a〉 and |b〉 by applying a π/2
pulse of resonant two-photon microwave and RF radiation (see Fig. 4.6). The Rabi frequency
for all pulses employed in this scenario is set to Ω = 2π × 310 Hz. Note that the nonlinearity
is also present during the coupling pulses and shifts the initial phase of the created coherent
spin state by ≈ 3°. This phase shift is accounted for by adjusting the phases of the subsequent
pulses accordingly.
After this pulse, the coupling is switched off, and the state evolves under the influence of the
nonlinearity. This experimentally realizes the one-axis twisting Hamiltonian. To reduce the
effects of detuning fluctuations resulting from the finite stability of the magnetic bias field,
we apply a spin-echo π pulse with two-photon coupling after half of the total evolution time,
i.e. t = tevo/2. This pulse has a phase of φ = 3π/2 + 3°. Note that the rotation angle is
effectively shortened by 5% due to the nonlinear interaction, which reduces the frequency of
the π oscillations. Section 6.3.2 will give a detailed analysis of the effects resulting from this
imperfection, as this will be relevant for the scalability of number squeezing within the 1D
array. Also, the shorter rotation slightly reduces the angle αmin of minimum quantum uncer-
tainty after the pulse, which changes the dynamics in the second half of the time evolution
and thus has to be accounted for in the simulations. Specifically, the smaller angle leads to a
reduced spread of the quantum uncertainty in z direction and thus reduces the squeezing rate
for the second part of the evolution.
After the spin-echo pulse, we let the state evolve for another period of duration tevo/2. Fi-

nally, tomographic characterization is implemented with a two-photon pulse that rotates the
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Figure 4.7.: Tomographic squeezing evaluation after 20 ms of one-axis twisting evolution.
After the evolution, the final state is rotated around itself with a two-photon pulse
of variable length. For a state with N0 = 500 atoms, we observe a strong an-
gular dependence of the fluctuations in the population imbalance z for repeated
measurements (left panel), and a slightly varying mean imbalance. This is caused
by a small imbalance of the final state resulting from losses, and a slight phase
mismatch of the final rotation pulse. The observed fluctuations (the gray shaded
band denotes the 95% confidence interval obtained from a sinusoidal fit to the
variance) along a certain axis are reduced below the expected values of a classical
coherent spin state (red shaded band). This can be quantified in terms of the num-
ber squeezing parameter ξ2

N (right panel), which shows a distinct minimum at the
tomography angle αmin = 14°. Here, we find ξ2

N = −6.2(3) dB below the classical
limit. In orthogonal direction, along the long axis of the state, the fluctuations are
increased by a factor of 10.

state around itself. To avoid long coupling times, the phase for this readout pulse is adjusted
such that φ = 3π/2 + 3° for −180° < α < 0° and φ = π/2 + 3° for 0° < α < 180°. To
avoid further spin relaxation loss after the experimental sequence, the atoms are transferred
to the state |c〉 using a one-photon microwave pulse. Subsequently, the magnetic bias field is
ramped down to 1 G, and after 300 ms the two components are imaged using resonant absorp-
tion imaging. This procedure is repeated several hundreds of times for each tomography angle,
and the fluctuations of these measurements are employed for a tomographic characterization
of the state.
The results of such a tomographic analysis are shown in Fig. 4.7 for a state generated after an
evolution time of tevo = 20 ms with the spin-echo sequence described above. The observed
fluctuations of the population imbalance z vary for different readout rotation angles α in a si-
nusoidal manner. As expected for a squeezed state, for a certain angular range the fluctuations
are smaller than those expected for a coherent spin state, and enlarged in orthogonal direction.
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Note that also the mean value 〈z〉 after the readout rotation has a small sinusoidal dependence
on the tomography angle α. This is due to both a finite population imbalance before the read-
out pulse due to the asymmetric influence of spin-relaxation loss, and a slight phase mismatch
of the readout rotation axis.
For a quantitative analysis, we calculate the number squeezing parameter ξ2

N according to
Eq. 4.7, which compares the measured fluctuations of z to the quantum uncertainty of a clas-
sical coherent spin state with the same number of particles. For this particular realization, we
find suppressed fluctuations by ξ2

N = −6.2(3) dB for the optimal rotation angle αmin = 14°,
and an increased uncertainty of more than 10 dB along the orthogonal direction.

4.2.4. Experimental Investigation of the Time Evolution

We now experimentally examine the temporal evolution of a state under the one-axis twist-
ing Hamiltonian. Specifically, we want to find the optimal time for generating spin squeezed
states with the spin-echo scheme described in the previous section. To do so, we implement
this sequence for different evolution times tevo and perform a tomographic squeezing analysis
for each time. For our analysis, we postselect atom numbers according to the experimentally
determined loss rate of τ = 110 ms, starting with an atom number window of N0 = 500± 20
at tevo = 0.
The initial evolution in the obtained experimental data behaves qualitatively similar to the pre-
diction of the ideal theory. We find that the spin squeezing parameter ξS decreases for longer
evolution times, and observe a corresponding behavior of the optimal tomography angle αmin.
Our results also show a continuously increasing extension of the long axis of the state for
larger interaction times, as the state gets stretched around the sphere.
Quantitatively, however, we find that spin squeezing settles off in the range of ξ2

S ≈ −6 dB for
tevo ≥ 20 ms, and no further decrease can be observed. As shown in the previous section, we
can attribute this partly to the presence of losses, which cause decoherence at a rate that can-
cels the additional squeezing obtained from the nonlinear evolution, and increasing influence
of technical fluctuations at longer times.
Both of these effects are included in a Monte Carlo simulation of the exact pulse sequence,

assuming an initial nonlinearity of N0χ = 2π × 30 Hz and detuning fluctuations of σDet =
2π × 0.45 Hz, which corresponds to our long term stability of the magnetic field of 45 µG.
The loss rates for three-body Feshbach loss and two-body spin relaxation loss were chosen to
match the experimentally observed timescales of 110 and 210 ms, respectively, and the change
of nonlinearity and detuning was modeled with a

√
N dependence. These simulations yield

perfect agreement with the experimental data for the long axis and the optimal rotation angle,
but predict the optimal spin squeezing to be in the order of ξ2

S ≈ −9 dB (solid black lines in
Fig. 4.8).
If we include additional known sources of increased noise during the detection process, we
find an optimal squeezing value on the order of ξ2

S ≈ −7.5 dB and thus better agreement with
the experimental observations (dashed gray line in Fig. 4.8). The noise sources included here
are the effect of fringe noise of the detection scheme, which was not subtracted for this anal-
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Figure 4.8.: Experimental results for the temporal evolution of squeezing using one-axis
twisting. Starting with a coherent spin state, we implement the one-axis twisting
Hamiltonian using the pulse sequence shown in Fig. 4.6 with varying evolution
time. We find that the spin squeezing parameter quickly decreases in the ini-
tial evolution and then settles off in the range of ξ2

S ≈ −6 dB for tevo ≥ 20 ms
(left panel). The corresponding optimal tomography angle αmin decreases as ex-
pected (middle panel). The extension of the long axis grows monotonically also
for longer evolution times, indicating that the state is twisted even further. Monte
Carlo simulations including the spin-echo pulse, parameter changes and techni-
cal fluctuations yield perfect agreement for the optimal tomography angle and
the long axis (solid lines). The simulated value for the spin squeezing parameter
reaches its minimum around ξ2

S = −9 dB. Including an estimate of the additional
noise caused by imperfections, i.e. loss during hold time and fringe noise on the
image, during the detection process yields better agreement with the experimental
data (dashed gray line).

ysis and is equivalent to a variance of approximately 10 atoms. We also take the loss due to
background collisions or scattering of photons from the optical dipole traps during the hold
time of 300 ms before the imaging sequence into account. These processes limit the lifetime
of the BEC in the F = 1 manifold to approximately 15 seconds. Even though this only cor-
responds to the loss of around 8 atoms, this effect becomes an important contribution for the
highly squeezed states.
Additional fluctuations that could explain the remaining difference between experiment and
theory could be caused by the one-photon state transfer to the state |c〉 to stop spin relaxation
loss before the imaging process. This transfer is on a two times Zeeman sensitive transition
and thus could be affected by the fluctuations of the offset field.

Atom number dependence

The exact shape and characteristics of the final state depend on the initial atom number N0 at
the beginning of the state generation. This is because the parameters χ and δ that govern the
evolution in the one-axis twisting Hamiltonian both depend on atom number, as described in
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Figure 4.9.: Dependence of the final state on atom number. Due to the dependence of the

parameters χ and δ on atom number (see section 3.5), the properties of the final
state after tevo = 20 ms of one-axis twisting evolution also vary with the number of
atoms. The strongest variations take place for atom numbers below 300. Above
this, both the spin squeezing parameter ξ2

S (left panel) and the optimal rotation
angle αmin (middle panel) depend only weakly on N , even though the extension
of the state along the long axis still increases (right panel). The solid lines are
the results of Monte Carlo simulations assuming Nχ ∝

√
N and δ ∝

√
N . The

dashed gray line in the left panel additionally includes known noise sources during
the detection process.

section 3.5. The effects of this atom number dependence are shown in Fig. 4.9, which depicts
the key parameters ξ2

S, αmin and the extension ξ2
N along the long axis for the final states with

different final atom numbers after 20 ms of nonlinear evolution.
We find that for small atom numbers, both the inferred spin squeezing parameter and the op-
timal rotation angle αmin strongly depend on atom number. A larger nonlinearity leads to
stronger shearing of the uncertainty and thus results in better spin squeezing, a lower optimal
rotation angle and a longer extension of the state. For atom numbers above 300, however, the
dependence of the nonlinearity on N is weaker and results only in small changes for both ξ2

S
and αmin. This is an important prerequisite for obtaining simultaneous squeezing in all lattice
sites in the presence of an inhomogeneous atom number distribution, which enables the scal-
ing of squeezing to large atom numbers. This will be discussed in chapter 6. The extension of
the long axis, which does not have a strong influence on the scalability, increases with growing
atom number even for N > 300.
These results are qualitatively reproduced with our Monte Carlo simulations, in which we in-
clude the spin-echo pulse, the atom number dependence of δMFS = −2π × 0.63

√
N Hz and

Nχ = 2π × 1.3
√
N Hz and a change of the loss rate with atom number to match the scaling

found in the experiment. We find that this theoretical description yields good agreement for
larger atom numbers, but deviates in the regime of small atom numbers. This could be caused
by the fact that for the BECs with smaller atom numbers, the Thomas-Fermi description is no
longer valid. This leads to the strong decrease of nonlinearity which is experimentally found
below 300 atoms with an extraction based on plasma and π oscillations, as shown in Fig. 3.6.
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This lower nonlinearity leads to a steeper angle of the final state for small atom numbers.
Even though technical fluctuations of σDet = 0.45 Hz are included in the simulation, the sim-
ulated spin squeezing is stronger than the experimentally obtained values and falls below
ξ2

S = −9 dB. In analogy to the study of squeezing for different evolution times, including
known additional noise sources during the detection process, such as loss during hold time
and fringe noise, yields better agreement.

For the further experiments in this thesis, we choose the earliest time for which the squeez-
ing value has saturated, which is an evolution time of 20 ms. With this scheme, we can gen-
erate states of several hundred atoms with spin squeezing of more than 6 dB in the single
lattice sites and only little dependence on the atom number in the relevant regime. This is
an important prerequisite for the scalability to large atom numbers, which we will assess in
chapter 6.
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5. Instability and Squeezing
Dynamics in a BEC

In this chapter, we will investigate the quantum dynamics on the unstable fixed point in the
bifurcated regime of the Lipkin-Meshkov-Glick Hamiltonian, and study the dynamical gener-
ation of squeezing in this scenario. This system corresponds to an internal bosonic Josephson
junction which is created in the spin degree of freedom, and is experimentally realized with an
interacting binary Bose-Einstein condensate in the presence of weak interconverting coupling.
It is predicted that the preparation of a quantum state onto this unstable fixed point gives ac-
cess to a rich class of entangled states on a short time scale, ranging from spin squeezed to
maximally entangled states [78, 82]. We will study the dynamics of this scenario, and ana-
lyze the resulting states in terms of spin squeezing. The results will show the generation of
spin squeezed states and thus entanglement in the first part of the time evolution – we will
term this dynamical generation scheme bifurcation squeezing. For later times, the evolution
yields non-Gaussian spin states, where more advanced methods for detecting and exploiting
the entanglement have to be employed. This has also been demonstrated experimentally and
is summarized in a publication [61].

5.1. Quantum Evolution on a Classically Unstable
Fixed Point

We will start this chapter by reviewing the quantum dynamics of an idealized system in the
bifurcated regime, and investigate how this can be employed for entanglement generation.
In the previous chapter, we discussed the dynamics corresponding to the one-axis twisting
Hamiltonian, which was experimentally realized with a binary BEC in the presence of non-
linear interaction. As shown in section 2.6, the topology of the corresponding classical phase
space is strongly changed by the addition of linear interconversion. In the pseudospin picture
of the quantum description, the Hamiltonian then takes on the formHLMG = χĴ2

z −ΩĴx+δĴz
(Eq. 2.26), which is a special case of the Lipkin-Meshkov-Glick Hamiltonian. On resonance
(δ = 0), the corresponding classical phase space exhibits a bifurcation when coupling and
interaction strength are equal, i.e. Λ = Nχ/Ω = 1. In this situation, an unstable fixed point
appears at the position (φ = π, z = 0), which is accompanied by the emergence of two stable
fixed points above and below the equator.
The rich dynamics of such a bosonic Josephson junction has been extensively studied in theory
[69, 68, 78, 82]. Previous work in our group demonstrated an experimental realization of such
a system in the internal states and mapped out the classical phase space for varying values of
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Figure 5.1.: Evolution of a quantum state in a double well potential. The quantum dynam-
ics in the bifurcated situation can be captured by the evolution of a Gaussian wave
packet which is prepared onto the unstable fixed point of the corresponding dou-
ble well potential in Fock space, i.e. along the z direction (left panel). Initially,
the expulsive potential of the unstable fixed point leads to a fast spreading of the
wave packet along the potential (middle panel). This increased uncertainty is ac-
companied with squeezing in a different direction, which we will analyze later
in this chapter. The presence of the two stable fixed points manifests itself for
longer evolution times, when peaked probability distributions around the classi-
cal turning points of the potential can be found (right panel). At this time, the
corresponding quantum state is highly entangled and has a non-Gaussian struc-
ture. Thus, the full entanglement properties of the state can not be detected with
a squeezing analysis.

Λ, confirming the occurrence of a bifurcation [70]. However, during these experiments the
technical stability did not allow a reproducible preparation of the states close to the unstable
classical fixed point, where the quantum dynamics are strongly modified by the finite quantum
uncertainty of the state and an analysis solely of the mean values does not suffice.
In the following, we will investigate these quantum dynamics of a state prepared onto the
unstable fixed point in the bifurcated scenario. This scheme is predicted to enable the dy-
namical generation of entangled states on fast timescales [78, 82] compared to the one-axis
twisting Hamiltonian. Note that a similar situation is created in the case of spin-exchange
dynamics in a three-mode BEC. Employing such a system, unstable quantum dynamics and
spin-nematic squeezing have been observed in a two-dimensional subspace of the three-mode
BEC [108, 52]. In our system, we realize this situation directly in two modes, where the
generated quantum resources are accessible with standard techniques, e.g. for metrological
applications using Ramsey spectroscopy.

We will start with a closer theoretical examination of the bifurcated system at an experi-
mentally feasible Λ = 1.6 in the region around φ = π, where the unstable fixed point appears
in the classical phase space. The essential features of the quantum dynamics in such a system
can be grasped in terms of a double well description in its configuration space, which is the
corresponding classical potential along the z-axis in this situation (see Fig. 5.1).
If a classical particle – which has no extension in configuration space – is positioned close to
the central maximum of such a double well potential, the subsequent dynamics of this particle
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t = 70 mst = 50 mst = 40 ms t = 100 ms

y

z

t = 30 msCoherent spin state t = 10 ms t = 20 ms

Figure 5.2.: Quantum evolution on an unstable classical fixed point. A coherent spin state
(Husimi distribution on the leftmost sphere in the upper row) that is prepared
on the unstable fixed point in the bifurcated case of the Lipkin-Meshkov-Glick
Hamiltonian initially gets compressed along one direction and stretches out along
the other axis of the eight shaped separatrix of the corresponding classical phase
space. The quantum evolution is obtained by diagonalization of the Hamiltonian
Eq. 2.26 with Nχ = 2π × 30 Hz, Ω = 2π × 18 Hz and δ = 0. The black lines are
the corresponding classical trajectories for these parameters. The dynamics leads
to strong squeezing in the early part of the time evolution. Squeezing is lost when
the state starts to bend around the two stable classical fixed points. The dynamics
eventually creates a highly entangled question mark shaped state before it evolves
back onto the unstable fixed point. Note that the timescale for the generation of
non-Gaussian entangled states is much shorter than in the one-axis twisting case
(Fig. 4.2).

is constrained to either the left or the right well of the potential.
The intrinsic quantum uncertainty of the particle drastically changes the situation in a quan-
tum mechanical description, as the wave function of the quantum particle can spread over the
maximum of the double well, and thus subsequently evolve into both wells of the potential
at the same time. These quantum dynamics of our system, an internal bosonic Josephson
junction with a mesoscopic number of particles, can be captured within a semiclassical WKB
approximation [109]. Within this approximation, the many-particle quantum dynamics for the
bifurcated scenario is well described by the quantum evolution of a single particle in a double
well potential in Fock space (i.e. along the z direction).
In this description, a coherent state is characterized by a Gaussian wave packet, where the
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quantum uncertainty is captured by the width of the distribution ~eff = 1/
√

N. The prepa-
ration of such a Gaussian wave packet on the maximum of the double well potential leads
to a rapid expansion in Fock space, which is caused by the expulsive harmonic potential of
the unstable fixed point. The wave packet spreads further until it reaches the minima of the
double well potential, which correspond to the two stable fixed points in the classical phase
space. The presence of these minima subsequently manifests itself in peaked probability dis-
tributions associated with the classical turning points. In the early part of the evolution, this
rapid spreading of the wave packet in the z direction leads to squeezing along a different axis
[82].
For a more quantitative description of the dynamics in our experiment, we now turn to the
Bloch sphere representation of the temporal quantum evolution for an initial coherent spin
state that is prepared onto the unstable fixed point, which we obtain from exact diagonal-
ization of the Hamiltonian. In the ideal (i.e. lossless and resonant) scenario, the state will
initially get squeezed along one axes of the separatrix in the corresponding classical phase
space (Fig. 5.2). This can be understood in terms of its finite quantum uncertainty that spreads
over a large region of this phase space. The classical trajectories within this region compress
the state along one of the axes of the eight shaped separatrix, and rip it apart along the other
axis.
This initial strong squeezing is lost when the state starts to bend around the two stable fixed
points, forming a complex question mark shaped state with non-Gaussian structure. This state
is predicted to be highly entangled [78]. Eventually, it will evolve further and the quantum
uncertainty will again accumulate in the region around the unstable fixed point.
These quantum dynamics are of great interest for the generation of highly entangled non-
Gaussian states, as the timescale for the creation of such states is strongly reduced compared
to the one-axis twisting scenario [78]. In this chapter, however, we will focus on the study of
mean and variance properties and investigate the generation of squeezing in the early part of
the time evolution.

Detuning dependence of the dynamics

As shown in section 2.6, the presence of a finite detuning δ strongly alters the shape of the
classical phase space, and thus distinctly changes the quantum dynamics of the system. This
can be intuitively understood in terms of the classical double well potential in Fock space,
which is tilted in the presence of a detuning. This tilt shifts the position of the unstable fixed
point along the z axis. Thus, in the detuned case a preparation of an equal superposition will
not result in a symmetric preparation on the unstable fixed point, and the quantum state will
move in the direction of the tilt (Fig. 5.3). In terms of the classical phase space, the quantum
state will evolve around one of the stable fixed points above or below the unstable fixed point,
leading to an oscillation of the mean population imbalance 〈z〉 and phase 〈φ〉. In contrast, the
situation is symmetric for the resonant case, in which the mean population imbalance and the
phase remain 〈z〉 = 〈φ〉 = 0 for all times.
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Figure 5.3.: Detuning dependence of the quantum evolution. The quantum evolution of the
state strongly depends on the choice of the nonlinear interaction strength χ, the
Rabi coupling strength Ω and the detuning δ. A change of the detuning δ can be
understood in terms of a tilt on the corresponding double well potential in Fock
space (cut along z for φ = π, left column). The upper row depicts the quantum
evolution for Nχ = 2π × 30 Hz, Ω = 2π × 18 Hz and δ = −2π × 1.5 Hz, the
central row depicts the corresponding resonant case (δ = 0), and the lower row
the evolution for δ = +2π × 1.5 Hz. Such a detuning difference corresponds to a
difference in the initial atom number of ∆N0 ≈ 85 atoms. The three cases show
qualitatively very different behavior even for short evolution times, demonstrating
the high sensitivity of the dynamics on detuning.

This criticality due to the presence of an instability manifests itself in the sensitivity on the
chosen parameters. For realistic experimental parameters, assuming a nonlinear interaction
strength of Nχ = 2π × 30 Hz and a Rabi frequency of Ω = 2π × 18 Hz, even a detuning
on the order of 1 Hz strongly changes the quantum evolution. Fig. 5.3 depicts the simulated
quantum evolution for three different detunings, δ = −1.5 Hz, δ = 0 Hz and δ = +1.5 Hz.
Due to the dependence of the collisional shift on the number of atoms, which is experimentally
determined to be δMFS = −0.79(2)

√
N0, a shift of 1.5 Hz corresponds to a difference in initial

atom number of ∆N0 ≈ 85 for our typical range of atom numbers.

5.2. Experimental Implementation

We now turn to an experimental investigation of the quantum dynamics in this bifurcated sys-
tem. To study this, we prepare an initial coherent spin state on the unstable fixed point using
a two-photon π/2 pulse with high coupling strength (Ω = 2π × 310 Hz), and then switching
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Figure 5.4.: Quantum evolution on an unstable fixed point in the experiment. The exper-
imentally obtained time evolutions of z (upper row) and the conjugate variable
y = sin(φ) (bottom) show a strong dependence on atom number due to the differ-
ence in collisional shift. This is shown with the single shots (black dots) as well
as the mean and standard deviation of the distribution for each time step (col-
ored circles and error bars). For an initial atom number N0 = 340 (left panel),
the state evolves around the upper stable fixed point, as δ > 0. For the case of
N0 = 440 (center), which is on average ‘resonant’ during the evolution time,
the mean population imbalance does not change, but the instability manifests it-
self in a fast spread of the quantum fluctuations. For even larger atom numbers
(N0 = 540, right panel), δ is negative and the state evolves around the lower fixed
point. These experimental results are well reproduced by a Monte Carlo simula-
tion using the experimental parameters (solid line and shaded uncertainty area).
Note that in the experimental analysis, atom loss on the timescale of 110 ms was
included in the postselection on atom number.

the phase of the Rabi coupling by 3π/2 and attenuating the power by 24.8 dB to enter the
bifurcated regime. Subsequently, we let quantum state evolve for different evolution times
tevo and read out the complementary variables z or y = sin(φ), which is obtained from a final
tomography rotation with angle α = 90°. The frequency of the coupling radiation is care-
fully adjusted to resonance, canceling the light shifts and the collisional shifts for a certain
atom number. Nevertheless, the parameter dependence of detuning and nonlinear interaction
requires a postselection of the data on the total number of atoms.

The results of this procedure are depicted in Fig. 5.4 and show the strong atom number
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Figure 5.5.: Expectation values for the temporal evolution on the unstable fixed point with
different N0. The three panels depict the temporal evolution of the expectation
values 〈z〉 and 〈y〉 for the evolution times tevo = 0, 2.5, ..., 50 ms and initial atom
numbers of N0 = 340 atoms (left panel), N0 = 440 (middle) and N0 = 540
(right panel) observed in the experiment (black crosses). The postselection on
atom number was adjusted with time according to the loss rate, corresponding to
a fixed initial atom number N0. The error bars depict the 1 s.d. width of the state
after 0,10,...,50 ms, showing that the state eventually spreads over a large region in
phase space. The temporal evolution of the expectation values closely resembles
the trajectories of the classical mean-field description for δ > 0 (left panel), δ ≈ 0
(middle) and δ < 0 right panel. For the detuned cases, the state is not prepared
exactly on the unstable fixed point and thus performs oscillations around the en-
ergetically lower lying stable fixed point. The results of Monte Carlo simulations
using the experimental parameters show good agreement with the experimental
data (solid colored lines).

dependence for the quantum evolution of the state. No change in the mean population is ob-
served for an initial atom number of N0 = 440 atoms, whereas the state oscillates around the
upper stable fixed point for lower atom number (shown for N0 = 340), and around the lower
fixed point for larger numbers (N0 = 540). We find the strong spreading of the fluctuations
that is characteristic for the unstable fixed point. In the approximately resonant situation with-
out temporal change in the mean population imbalance (N0 = 440), we observe deviations
from a Gaussian probability distribution for longer evolution times, where, as expected from
the simple double well picture, the measurements of z tend to accumulate near the classical
turning points of the potential.
For a deeper understanding, we have to keep in mind that the atom number changes during the
evolution due to the inherent loss processes. This is accounted for by changing the postselected
atom number according to the independently determined loss rates (section 3.4). However, the
consequential significant change of the parameters due to the altered atom number is visible
in a slight variation of the phase even for the resonant case, which is only resonant on average
during the observed time evolution.
These results are in good agreement with numerical simulations using the experimental pa-
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Figure 5.6.: Variance in z and y direction for the quantum evolution on the unstable fixed
point. The variance in both conjugate variables z and y = sin(φ), quantified
using the number squeezing parameter ξ2

N, exhibits strong initial growth due to
the preparation on the unstable fixed point. This is depicted for three different
initial atom numbers with δ > 0 (340 atoms, left panel), δ ≈ 0 (440 atoms,
central panel), and δ < 0 (540 atoms, right panel). As expected from the shape
of the classical phase space, the spread in z direction (color) grows faster than in
the conjugate variable (black), as the trajectories of the separatrix are stretched
towards the z direction. We find good agreement with a theoretical description
based on Monte Carlo simulations using the experimental parameters (solid lines).

rameters and taking into account the loss processes, based on a Monte Carlo wave function
approach [106, 107]. These simulations assume a square root dependence for the mean field
detuning (δMFS = −2π × 0.63

√
N Hz) and the strength of the nonlinearity, which was mod-

eled with Nχ = 2π × 30 Hz for 500 atoms. The coupling strength was assumed to be
Ω = 2π × 18 Hz. In Fig. 5.4, the resulting mean and standard deviation of the calculated
distribution functions in the population imbalance z and the coherence y are shown as a solid
line and shaded area and yield a good description of the experimentally obtained values (error
bars).

For the time evolution of the corresponding mean values 〈z〉 and 〈y〉 of the experimen-
tal data, we find that the quantum states indeed follow the familiar pattern known from the
corresponding classical phase space, in good agreement with the results of the numerical sim-
ulations. For the detuned case with δ > 0 (N0 = 340 atoms), we find that the expectation
values of both variables oscillate around a fixed point above the equator, whereas a fixed point
below the equator is enclosed in the case of δ < 0 (N0 = 540 atoms).
A quantitative analysis of the variance in z and y direction shows an increase in both directions
(Fig. 5.6). Initially, this is caused by the rapid expansion of the quantum uncertainty of the ini-
tial state on the unstable fixed point due to the corresponding expulsive potential. For the later
part of the time evolution, the subsequent bending around the stable fixed points leads to an
accumulation of the density beyond these fixed points, which further increases the variance.
We find that the variance along the z direction increases faster, as expected from the shape
of the separatrix in the classical phase space, which is stretched in z direction. This is also
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Figure 5.7.: Squeezing in the ideal theoretical evolution on the unstable fixed point. For
the ideal temporal evolution of spin squeezing using the bifurcation squeez-
ing scheme (solid black line, left panel) with typical experimental parameters
(N = 500, Nχ = 2π × 30 Hz, Ω = 2π × 18 Hz, δ = 0 Hz), we find faster
initial squeezing compared to the corresponding evolution in the one-axis twist-
ing scenario (gray solid line). Optimal squeezing in the bifurcation scheme yields
ξ2

S = −13.1 dB after 18 ms. Both minimal number squeezing (dotted black line)
and spin squeezing subsequently vanish due to the bending of the state around the
stable fixed points. We expect to find both a larger optimal rotation angle αmin

(middle panel) and stronger elongation of the long axis (right panel) in compari-
son to the one-axis twisting scheme.

reproduced by the Monte Carlo simulations of the system, where detuning fluctuations due to
technical noise are also included. To attain quantitative agreement with the experimental data,
detuning fluctuations on the order of σδ = 2π × 0.45 Hz are assumed, which is the typical
amplitude of the fluctuations over the course of several days.
The fast initial spreading of the quantum uncertainty points at a squeezed axis of reduced fluc-
tuations at an intermediate angle. To investigate these squeezing properties, we thus have to
perform a tomographic analysis in order to find the axis of minimal fluctuations.

5.3. Bifurcation Squeezing: Generating Squeezed
States on an Instability

For the previously measured corresponding conjugate variables z and y, we could observe an
increase of fluctuations with evolution time. We now have to find the axis of minimal uncer-
tainty with a tomographic analysis.

We first investigate the spin squeezing that can be theoretically obtained in the idealized
time evolution, assuming a resonant evolution with our typical experimental parameters (atom
number N = 500, nonlinearity Nχ = 2π × 30 Hz, coupling strength of Ω = 2π × 18 Hz) and
neglecting loss and technical noise contributions. Compared to the one-axis twisting scheme,
we find a faster squeezing rate in the early stages of the time evolution. An optimal value of
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Figure 5.8.: Experimental pulse sequence for bifurcation squeezing. For the implementa-
tion of a squeezing scheme on the unstable fixed point in the bifurcated regime, we
first prepare an equal superposition of both components by use of a two-photon
π/2 pulse, as in the one-axis twisting scenario. We subsequently attenuate the ra-
dio frequency as well as the microwave coupling by a combined 24.8 dB to reach
Ω = 2π × 18 Hz and switch the coupling phase to φ = 3π/2. With this, we en-
ter the bifurcated regime and prepare our initial state on the unstable fixed point
of the corresponding classical phase space. After half of the evolution time, we
perform a high-power spin-echo π pulse around φ = 3π/2 to reduce the influ-
ence of detuning fluctuations. We then again attenuate the two-photon coupling
to perform a second period of bifurcated evolution, and finally rotate the state
around itself with readout pulse (φ = 3π/2 for −180° < α < 0° and φ = π/2 for
0 < α < 180°).

ξ2
S = −13.1 dB should ideally be attainable after 18 ms, as shown in Fig. 5.7. Afterwards,

squeezing rapidly vanishes and the optimal tomography angle increases due to the bending of
the state around the stable fixed point.

Experimentally, we implement the tomographic analysis by use of a variable readout pulse
in analogy to the one-axis twisting sequence described in section 4.2.3. We also add an anal-
ogous spin-echo scheme to reduce the susceptibility of the dynamics to technical detuning
fluctuations. This is necessary due to the observed strong sensitivity of the dynamics on de-
tuning, which was shown in the previous section. Recall that the detuning jitter caused by
the finite magnetic field stability corresponds to fluctuations on the order of hundreds of mil-
lihertz, whereas for the experimentally required Rabi frequency below 20 Hz the dynamics
show a distinct change already for detunings on the order of 1 Hz (Fig. 5.3).
The experimental implementation of the bifurcation squeezing scheme thus follows the same
route as the previously shown measurements of the temporal evolution of z and y, with the
addition of the spin-echo pulse with Ω = 2π × 310 Hz at half the evolution time with a phase
of φ = 3π/2, and a variable tomography pulse around φ = 3π/2 for −180° < α < 0 and
φ = π/2 for 0 < α < 180°. The corresponding experimental pulse sequence is depicted in
Fig. 5.8.
The resulting temporal evolution of the squeezing parameter ξ2

S for an initial state with atom
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Figure 5.9.: Temporal evolution of bifurcation squeezing for N0 = 500 atoms. The result-
ing states of the bifurcation squeezing scenario (black error bars) with different
evolution times are characterized via the obtained spin squeezing parameter ξ2

S
(left panel), the optimal tomography angle αmin (middle panel) and the extension
of the long axis (right panel). The corresponding data for the one-axis twisting
scheme is shown for comparison (gray error bars). We experimentally find that
with the bifurcation scheme, spin squeezing quickly builds up in the initial evo-
lution, and reaches ξ2

S = −7.1(3) dB after tevo = 15 ms. After this optimal time,
the effects of the bending around the stable fixed points become visible both in
the loss of spin squeezing and the increase in optimal rotation angle. The strong
increase in the size along the long axis emphasizes the instability that drives this
process. The results show good agreement with a Monte Carlo simulation for the
experimental parameters (black solid lines for bifurcation, gray solid lines for one-
axis twisting). The dashed lines in the left panel indicate the theoretical squeezing
values including additional noise sources during the detection process.

number N0 = 500 ± 15 atoms is shown in Fig. 5.9. In analogy to the evaluation of the one-
axis twisting evolution, the decay time of τ ≈ 110 ms is taken into account in the postselection
process. We find, as expected, strong initial spin squeezing, quantified by a fast decrease of
the spin squeezing parameter ξ2

S. After an evolution time of tevo ≈ 15 ms, the best squeezing of
ξ2

S = −7.1(5) dB is found for an optimal tomography angle of αmin = 55°. Without subtrac-
tion of detection noise, this corresponds to a bare spin squeezing value of ξ2

S = −4.5(2) dB.
As theoretically predicted, the squeezing rate of the bifurcation squeezing scenario is slightly
faster than in the one-axis twisting case. This can also be seen from the stronger growth of the
state’s extension along its long axis.
After this optimal time, spin squeezing rapidly vanishes, which is caused by the fact that the
variance of the state grows in all directions as it bends around the stable fixed points of the
classical phase space. This also results in the build-up of higher order moments in the corre-
sponding experimental probability distributions which are not detected in the squeezing pa-
rameters. The absence of spin squeezing does not mean that these states are not entangled, as
a variance analysis can not fully characterize such non-Gaussian states. Indeed, an experimen-
tal extraction of the Fisher information for these states, which builds on the full distribution
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Figure 5.10.: Atom number dependence of states generated after 15 ms of bifurcation
squeezing. Due to the dependence of both interaction strength χ and detun-
ing δ on atom number, the properties of the generated states strongly depend on
N . We find that spin squeezing, parametrized by ξ2

S, improves for larger atom
number (left panel) and shows a stronger dependence than the corresponding
states generated by one-axis twisting. The decrease of the optimal angle αmin for
larger N (middle panel) can be understood from the fact that the separatrix gets
less steep for larger values of Λ (see e.g. Fig. 2.3). The long axis of the state
grows with increasing atom number, as the nonlinearity increases and the pro-
cess becomes more resonant (right panel). The solid black lines are the results
of Monte Carlo simulations of the applied spin-echo sequence employing the
experimental parameters and assuming Nχ ∝

√
N and δMFS ∝

√
N , the dashed

gray line in the left panel also takes into account known additional noise sources
during the detection process.

functions and thus also takes the higher moments into account, shows that entanglement also
exists at the time when squeezing has vanished [61].

Comparing the generated squeezed states in the early time evolution of the bifurcation
squeezing scheme with the ones obtained from the one-axis twisting scenario, we observe
larger optimal tomography angles αmin, and thus the generation of states which are closer to
the phase squeezed situation. The angle of optimal squeezing αmin increases with time, which
can be attributed to the bending of the state around the fixed points.
The experimental results are in good agreement with Monte Carlo simulations of the full se-
quence including the spin-echo pulse and the time dependence of the parameters (solid lines in
Fig. 5.9), which were obtained for the corresponding experimental values for nonlinearity and
coupling strength, including the atom number dependence of χ and δ and detuning fluctua-
tions of σδ = 2π×0.45 Hz. As in the one-axis twisting scenario, the squeezing values that are
predicted from the simulation are significantly lower than what is experimentally observed.
The inclusion of known additional noise sources during the detection process as described in
section 4.2.3 yields better agreement (dashed lines in Fig. 5.9).
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We now turn to a detailed analysis of the resulting squeezed states created by our spin-echo
scheme for the optimal evolution time of tevo = 15 ms, and study the atom number dependence
of these states. The experimental results show that spin squeezing ξ2

S improves for larger atom
number, but has a stronger dependence over the whole range of atom numbers compared to the
corresponding states generated by one-axis twisting (Fig. 5.10). The improvement at larger
numbers is caused by the stronger nonlinearity, which leads to a larger expulsion in the early
time evolution. Also, for these measurements, the resonance condition was shifted to higher
initial atom numbers, which results in better squeezing for states with larger N .
Similarly, a stronger dependence is found for the optimal tomography angle αmin, which de-
creases with increasing atom number. This angle is determined by the steepness of the sepa-
ratrix, which decreases for larger values of Λ when the stable fixed points are moving further
apart (see Fig. 2.3). The long axis of the state also shows a strong dependence on N . Simi-
larly to the spin squeezing parameter, the growth with increasing atom number is caused by
the larger nonlinearity and the fact that the process becomes more resonant for higher atom
numbers.

In conclusion, these results demonstrate that spin squeezed states can be generated in the
early stages of the quantum dynamics in such a bifurcated system. The criticality of the dy-
namics on the employed parameters manifests itself in a stronger dependence of the final
states on atom number in comparison to the one-axis twisting scenario. Still, due to the large
amount of attainable squeezing, also with this new dynamical scheme the creation of simulta-
neous squeezing in all lattice sites seems feasible. We will investigate the scalability for these
states in the following chapter.
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6. Scaling Squeezed States to Large
Atom Numbers

The best attainable sensitivity for phase estimation in an interferometer employing a spin
squeezed input state of N particles is given by ∆θ = ξR/

√
N [101], where ξR is the metrolog-

ical spin squeezing parameter. In principle, this opens two possible pathways for improving
the measurement precision. One option would be further reducing the squeezing parameter.
Given the inherent loss during the generation of the quantum correlations, this route seems
improbable, as these processes limit the attainable spin squeezing above the values that can be
obtained in principle. Thus, for high-performance interferometry, input states with large atom
number are required. In Bose-Einstein condensates, however, the production of squeezed en-
sembles has been limited to small particle numbers below 2500 atoms. In this chapter, we
will explain the obstacles which have limited the attainable atom numbers so far. Subse-
quently, a scalable method for the creation of macroscopic squeezed states will be presented,
which builds on an array of individually squeezed small condensates and thus circumvents
these issues. We will analyze the characteristic scaling behavior, the influence of classical
noise sources, and implement the differential analysis method explained in section 4.1.4. This
analysis is insensitive to the technical fluctuations and thus gives direct access to the quantum
uncertainties of the generated states. The results presented in this chapter are also summarized
in a publication [60].

6.1. Squeezing with Large Atom Numbers in BECs
In interferometry, the attainable precision is directly connected to the distinguishability of
two different phase settings in a measurement. For Gaussian states, this distinguishability
can be quantified in terms of the uncertainty of a phase measurement, which is given by
∆θ = ξR/

√
N (see section 7.1). Thus, for constant ξR, the phase uncertainty can always be

reduced by increasing the atom number of the input state. This in turn means that in practice,
it is only reasonable to generate squeezing if the number of usable particles is limited.
Such limitations can be given from the requirement of high spatial resolution and a simulta-
neous upper bound on density [48], low temperatures, or by other technical constraints that
limit the attainable particle number (e.g. three-body loss as an upper limit for the condensate
size [110]). To enable a sensitivity improvement in high-precision measurements, it is thus
desirable to generate squeezed states whose atom numbers reach this obtainable size of the
classical sources.
Bose-Einstein condensates have particularly attractive properties for interferometric measure-
ments, such as their long coherence times and the ultralow temperatures. These are prereq-
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uisites for some of the most intriguing applications in atom interferometry, such as high-
precision measurements of the gravitational constants, gravitational wave detection and tests
of the weak equivalence principle [111, 112]. Interrogation times on the order of one second
have been achieved in microgravity [43], necessitating temperatures in the range of hundreds
of picokelvin to limit the spread of the cloud at the end of the interferometric sequence. Simi-
lar situations are found in atomic fountains, where interrogation times of up to 2.3 s have been
achieved [113]. Additionally, applications that require high spatial resolution, such as mag-
netic field microscopy [114], favor ultracold samples, for which the timescale of diffusion is
longer than in thermal clouds.
For thermal atomic clouds, efficient production of large spin squeezed ensembles has been
performed based on atom-light-interaction. Conditional spin squeezing of up to −10 dB has
been attained for atom numbers ranging up to 106 atoms by use of quantum-non-demolition
measurement techniques [34, 35, 36, 37, 38]. A cavity squeezing technique also allowed for
the generation of unconditional spin squeezed states with a metrologically relevant noise re-
duction of ξ2

R = 5.6(6) dB for 5× 104 cold thermal atoms [39].
In contrast to these experiments with thermal atoms, in Bose-Einstein condensates those
schemes relying on atom-light interaction have not been successfully implemented so far.
However, it has been theoretically proposed [44] and experimentally demonstrated that spin
squeezed states can be generated with schemes that are based on interatomic interaction
[5, 46, 45, 47]. In terms of scalability with atom number, all techniques that rely on atomic
scattering suffer from similar difficulties, as the obtainable nonlinearities are small compared
to the interactions between atoms and light fields. The typical size of the attainable interatomic
nonlinearities is on the order of tens of Hertz. This implies that the generation times for entan-
gled states are in the range of tens of milliseconds, which is on the same order as the typical
timescales for loss or external dynamics of the atomic clouds. Raising the atom number means
either increasing the density or the trap volume, or both. Due to the emerging spurious effects
of spatial dynamics or atomic loss, this implicates that both routes lead to severe constraints
on the accessible atom numbers and squeezing factors.
In the case of higher densities, loss will not only eventually limit the total atom number, but
also destroy the coherence that is a prerequisite for high-performance measurements. Note
that for spin squeezing of internal states, the requirement of magnetic insensitivity during
state generation implicates the use of a system with an excited state that is subject to spin
relaxation loss. This implies that loss is present even in the absence of a Feshbach resonance
(see section 3.4).
In the absence of losses, the best squeezing is shown to scale as ξ2

opt ∝ N−2/5 [25, 28]. This is
strongly modified if atomic loss processes take place during state generation. Such processes
typically have a strong dependence on the number of particles in the cloud. In the Thomas-
Fermi approximation, the chemical potential scales as µ ∝ N2/5, and the corresponding wave
function is given by φ(r) ∝

√
µ− V (r). Thus, for harmonic traps, the strength of the non-

linear interaction has a proportionality of χ ∝ N−3/5, leading to a scaling of the combined
nonlinearity ofNχ ∝ N2/5. The loss rate for two-body processes is expected to have a similar
proportionality Γ2 ∝ N2/5 in the Thomas-Fermi regime, but the three-body loss rate scales as
Γ3 ∝ N4/5 and thus increases faster than the nonlinear interaction [28]. With a combined loss
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rate Γ =
∑

mmΓm, with m indicating the number of particles lost in each process, it can be
shown analytically [28] that the presence of atom loss alters the time evolution of squeezing
as

ξ2(t) = ξ2
0(t)

[
1 +

Γt

3ξ2
0(t)

]
, (6.1)

where ξ2
0(t) is the squeezing in the no-loss case. This demonstrates the sensitivity of the ob-

tainable squeezing on the losses, which can lead to significant degradation depending on the
loss rate and the amount of squeezing. For three-body loss, which appears to be the dominant
loss process in our system (see section 3.4), it can be shown that spin squeezing degrades for
large atom number even without additional noise sources [28].
If the trap sizes is increased by lowering the trap frequencies, higher spatial modes of the
condensate will eventually be populated. Such a multi-mode situation completely alters the
behavior in comparison to a two-mode system. It puts lower bounds on the best achiev-
able squeezing due to random dephasing introduced by the non-condensed quasi-particles, as
shown by Sinatra et al. [58, 115]. These theoretical works suggest that squeezing for large
systems should still be attainable, but is distinctly degraded compared to the two-mode sce-
nario.
Additional problems occur due to the varying squeezing rates of the different modes and com-
plex nonlinear coupling between the spatial modes of the trapped condensates. This can dis-
turb mode-matching and mix fields with different phase evolution, which can lead to rapid loss
of squeezing [59]. Additionally, the degraded mode-matching during the final readout pulse
leads to a deteriorated conversion of quadrature squeezing into number squeezing. Johnsson
et al. [59] state that these effects could be minimized for extremely weak trapping, which is
experimentally challenging. Generally, from an experimental perspective, ensuring the repro-
ducibility of a system with multiple external modes is a hard task and requires a high level of
control over the technical parameters of the system. In our setup, attempts to generate squeez-
ing in a multi-mode BEC of 104 atoms were only able to show that fluctuations along one
spin direction increased, but suppression of fluctuations below the classical limit could not be
detected.
In this chapter, we examine an alternative approach for scaling up the number of particles that
evades these limitations. The basic idea is to use an optical lattice to generate many identical
copies of the well-controlled situation in the single lattice sites. We tune the potential height of
the lattice such that tunneling is negligible on the timescale of the experiments and thus realize
a system of many independent replica. Combining all the individually squeezed ensembles re-
alizes a controlled multi-mode scenario where nevertheless coupling to higher spatial modes
does not take place, and allows increasing the particle number without changing the mean
density of the cloud. Under the assumption that the parameters of the system are homoge-
neous over the extension of the array, this should allow the generation of squeezed states with
macroscopic particle numbers. In the following sections, we will examine experimental re-
sults following this route and show that this provides a viable pathway for the well-controlled
generation of squeezed states with large particle numbers.
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Figure 6.1.: Scalability of number squeezing obtained from one-axis twisting. We inves-
tigate the scalability of number squeezing to large particle numbers by summing
up more and more adjacent lattice sites of our 1D lattice (left panel). For the
state generated after 20 ms of one-axis twisting evolution using a spin-echo se-
quence, we still observe number squeezing for 12 300 particles at the optimal
rotation angle, but degradation with growing atom number (middle panel). We do
not observe such effects for the classical reference (coherent spin state, open gray
diamonds), indicating that technical phase fluctuations during the state genera-
tion cause the deterioration. A tomographic analysis reveals that the fluctuations
of the squeezed state are increased for all tomography angles (right panel, black
squares for 12 300 particles) compared to the ones for single lattice sites (gray
squares). The solid lines are sinusoidal fits to the experimental data, the dashed
lines indicate the classical limit.

6.2. Scalability of Squeezing: A Direct Analysis

To investigate if the squeezing obtained with the single lattice sites also translates into sup-
pressed fluctuations of the sum over the full array, we first perform a direct analysis of ξ2

N,
which is done by quantifying the fluctuations of repeated measurements.
We can gain knowledge on the scaling behavior by evaluating the number squeezing ξ2

N for
growing sample size. We implement this starting with a single lattice site that contains Na

i

atoms in state |a〉 and N b
i atoms in state |b〉. For this site, we calculate the number squeez-

ing from the observed fluctuations of z1 =
(
N b
i −Na

i

)
/
(
N b
i +Na

i

)
. Subsequently, we

sum the atom numbers of more and more adjacent sites. For the sum over n sites, we ob-
tain zn =

(∑n
j=1N

b
j −

∑n
j=1N

a
j

)
/
(∑n

j=1N
b
j +

∑n
j=1N

a
j

)
and analyze the corresponding

squeezing factor for each sample size.
We first examine the data obtained after 20 ms of one-axis twisting with a spin-echo pulse in
the middle of the time evolution, as this scenario yields optimal performance for the single
lattice sites. We carry out the analysis procedure as described above, starting with a single
lattice site in the center of the cloud, then adding more and more adjacent sites, and even-
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Figure 6.2.: Scalability of number squeezing in the bifurcation squeezing scenario. Simi-
larly to the states generated by one-axis twisting, we observe decreasing number
squeezing ξ2

N with growing atom number for the state generated after 15 ms of
bifurcation squeezing (left panel). However, the scaling is more favorable and
still yields ξ2

N = −3.3(4) dB for 10 200 atoms. Similarly to the one-axis twist-
ing scheme, the tomographic analysis shows growing fluctuations in all directions
(right panel, gray points for single wells and black data for the sum over all sites).

tually summing up to 24 lattice sites. Analyzing the corresponding number squeezing ξ2
N

(Eq. 4.7), we find a significantly degraded suppression of fluctuations with growing sample
size. Figure 6.1 depicts this scaling behavior for a final tomography rotation of α = 12°,
which corresponds to the angle of best squeezing both for the single lattice sites and the full
ensemble. Tomographic comparison between the squeezing in single lattice sites and the full
summed ensemble (12 300 atoms) shows that the observed fluctuations grow for all investi-
gated tomography angles. However, for a classical coherent spin state, which is obtained by
implementing a resonant π/2 pulse using two-photon coupling, we do not observe additional
fluctuations. This points at the presence of common mode fluctuations during the nonlinear
evolution that mask the quantum uncertainty of the squeezed state for larger particle numbers.
We will show in section 6.3 that this is indeed the case.
Even with these additional fluctuations, we still observe a reduced variance of the population
imbalance for 12 300 atoms, which is suppressed by ξ2

N = −1.5(6) dB. It has to be noted that
the photon shot noise contribution from the imaging process, which in these measurements
corresponds to approximately 10% of the projection noise of a corresponding coherent spin
state, has been subtracted for all squeezing results presented in this chapter.

We find qualitatively similar behavior for the scalability of states generated by the bifur-
cation squeezing scheme. Figure 6.2 shows the results obtained after an evolution time of
15 ms with a spin-echo sequence. Compared to the one-axis twisting scenario, we find a
more favorable scaling at the optimal tomography angle (52°), leading to number squeezing
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Figure 6.3.: Scaling of the visibility V with ensemble size. Rabi flopping with the squeezed
state of the full ensemble of 104 particles still yields high visibility (left panel).
We find V = 0.952(3) after 20 ms of one-axis twisting and V = 0.942(1) after
15 ms of bifurcation squeezing and almost constant values for all ensemble sizes
(right panel). The slight tendency to increasing V for the bifurcation scenario
(circles) is due to the atom number inhomogeneity. For the central lattice sites,
the larger mean atom number leads to a shorter mean spin length compared to the
lower numbers at the edge of the cloud, which causes an effective increase in V
when summing also over lattice sites far from the center. This is not visible for
the one-axis twisting scenario (squares), where the squeezing dynamics and the
extension of the long axis are less critical on atom number.

of ξ2
N = −3.3(4) dB for the full sample of 10 200 atoms. As in the one-axis twisting case, a

tomographic comparison between the single lattice sites and the full sample shows that fluc-
tuations increase in all directions. The better scaling at the optimal rotation angle can be
explained by a more favorable geometry of the technical fluctuations, as will be shown in sec-
tion 6.3.

The corresponding spin squeezing parameter for the summed ensemble can be obtained
using the Wineland criterion (Eq. 4.10). To do so, we perform resonant Rabi flopping with
the final state and deduce the visibility V from a fit of the oscillation amplitude. Here, the
resonance condition is ensured using Ramsey spectroscopy on the same transition.
To analyze the scaling of the visibility with growing sample size, we sum more and more
adjacent sites in analogy to the number squeezing analysis. We find almost constant vis-
ibility for all ensemble sizes, yielding V = 0.952(3) after 20 ms of one-axis twisting and
V = 0.942(1) after 15 ms of bifurcation squeezing for the full ensemble (Fig. 6.3). This yields
a combined spin squeezing of ξ2

s = −1.0(5) dB for 12 300 atoms in the one-axis twisting case,
and ξ2

s = −2.8(4) dB for 10 200 atoms using bifurcation squeezing. An interesting aspect in
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Figure 6.4.: Squeezing at large atom number without spin-echo sequence. After 15 ms
of one-axis twisting without spin-echo pulse, the technical fluctuations dominate
over the quantum uncertainty. This is showcased by a squeezing analysis of ξ2

N
versus tomography angle for a single lattice site (gray) and the full ensemble of
104 particles (black). The strong influence of classical fluctuations becomes ap-
parent in a shift of the axis with minimal fluctuations towards smaller tomography
angles α, as it is expected for strong phase fluctuations.

the calculation of the spin squeezing parameter is the fact that it cannot be obtained using
〈cos(φ)〉 as in the two-mode model. This is because in the summed ensemble, the atoms are
no longer indistinguishable due to their spatial separation by the 1D lattice. Thus, we have
realized a controlled multi-mode situation, and the system cannot be treated as being solely in
two modes. Effectively, this leads to a reduced spin length, as the overall spin length is given
by the sum of the spin vectors from the individual lattice sites – which are reduced from the
elongation of the state during the squeezing process – and not by the sum of all individual
spin-1/2 particles in the full ensemble.

For a deeper understanding of the scalability, we have to investigate the source and the
impact of the additional fluctuations that limit the number squeezing at larger atom numbers.
The importance of such fluctuations is demonstrated in Fig. 6.5, which depicts the upscaled
number squeezing for a one-axis twisting sequence without spin-echo pulse. Here, classical
fluctuations start to dominate over the quantum uncertainties, which becomes apparent in a
shift of the optimal angle αmin of the squeezing tomography for larger atom numbers. In the
following section, we will analyze this behavior and its causes in detail.
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6.3. Assessing and Reducing Classical Noise During
State Generation

In the previous section, we have examined the scalability of number squeezing with system
size and found substantial deterioration of the performance with growing atom number. In this
section, we will show that this is mainly caused by classical technical fluctuations that mask
the quantum resources of the states at large atom numbers. We will examine the origin and
the geometry of these classical fluctuations and investigate how they can be suppressed by use
of a spin-echo technique. Understanding these mechanisms, we will find that an optimized
spin-echo sequence can further reduce the sensitivity of the generation procedure to technical
fluctuations.

6.3.1. Magnetic Field Stability: The Source for Classical
Fluctuations

The finite stability of our magnetic bias field, which varies by σB = 30 µG from shot to shot,
induces classical fluctuations in our system. Specifically, the field fluctuations σB enter in the
one-axis twisting Hamiltonian Eq. 2.22 via the detuning δ, which changes as

σδ = 2πSabσB, (6.2)

where Sab is the magnetic field sensitivity of the two-photon transition. Both levels |a〉 and |b〉
have the same linear Zeeman dependence, but the quadratic shift of 72 Hz/G2 of the two levels
is in opposite direction, leading to a linearized sensitivity of S2γ ≈ 10 kHz/G at the operating
field of 9.12 G (see Appendix A ).
After a finite evolution time tevo with a detuning δ, the state acquires a phase of φ = δtevo.
Thus, the fluctuations of the magnetic offset field translate into a phase uncertainty

σφ = 2πSabtevoσB. (6.3)

For a π/2 pulse and subsequent nonlinear evolution, we consequently expect dephasing with
an amplitude that is proportional to the evolution time. Specifically, for our long-term stabil-
ity of σB = 45 µG, which also includes slow drifts over the course of a weekend, we expect
a classical phase uncertainty of σφ ≈ 0.04 radians for a typical nonlinear evolution time of
15 ms. This is equivalent to the quantum fluctuations of a coherent spin state with 550 atoms,
and the dominant noise source for larger atom numbers, as the quantum noise scales as 1/

√
N .

Figure 6.5 shows that we indeed observe increased classical technical noise along the phase
direction for a nonlinear evolution of 15 ms in a tomographic analysis. In the following, we
will explain how these technical fluctuations can be quantified in the experiment.

The classical technical noise contribution can be characterized by taking advantage of our
lattice system [62, 45]. For this analysis, we add up the atom numbers of the two components
over more and more adjacent lattice sites and calculate the corresponding variance in the atom
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Figure 6.5.: Classical fluctuations in the one-axis twisting scenario. The strength of classi-
cal fluctuations for a specific tomography rotation can be quantified from a linear
fit f = ξ2

N0
+ β2Ntot to the scaling of the averaged number squeezing ξ2

N with the
total atom number Ntot (left panel). We obtain this by summing more and more
adjacent lattice sites and averaging the results over the whole sample, which can-
cels atom number dependent effects due to different populations in the individual
sites. A tomographic analysis after 15 ms of one-axis twisting evolution without
spin-echo pulse shows that the classical fluctuations are directional and have a
distinct maximum in phase direction (right panel, black diamonds). Assuming
detuning fluctuations of σδ = 2π × 0.45 Hz, corresponding to the independently
measured field stability of σB = 45 µG, a numerical analysis considering the fluc-
tuations of the expectation values yields perfect agreement with the experimental
data points (solid line).

number difference Var(Nb −Na), similar to the analysis of number squeezing in the previous
section. To extract solely the classical noise contribution and get rid of atom number depen-
dent effects of the single sites, we average all possible combinations of adjacent sites and
calculate their mean fluctuations. A system without classical fluctuations should show a linear
dependence Var(Nb−Na) = VarDet + αNtot versus total atom number Ntot = Na +Nb, where
VarDet is given by the detection noise of the experimental system. In contrast, classical noise
sources show up as a quadratic contribution β2N2

tot. Intuitively, this can be understood from the
fact that classical fluctuations lead to an angular variation on the Bloch sphere which is inde-
pendent of atom number, whereas the normalized quantum fluctuations decrease with 1/

√
N

in standard deviation [62]. We experimentally extract β2 from a linear fit f = α + β2Ntot to
the squeezing factor ξ2

N = Var(Nb − Na)/(4p(1 − p) · Ntot), as depicted in the left panel of
Fig. 6.5.
For the one-axis twisting scenario without spin-echo pulse, the dependence of the classical
noise on tomography angle in Fig. 6.5 confirms that during the nonlinear evolution, technical
fluctuations occur only in phase direction (fringe with maximum 90°), whereas no classical
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fluctuations can be found for the unrotated state. This shows that the generation of squeezed
states is mainly affected by phase fluctuations originating from jitter of the magnetic field
as described above, and that amplitude fluctuations in the coupling power of the initial π/2
pulse, which would result in technical noise for the unrotated state, are negligible. The solid
black line in Fig. 6.5 shows the results obtained from a numerical simulation of the squeezing
sequence taking into account magnetic field fluctuations of σB = 45 µG (as independently
characterized from the scatter of repeated Ramsey measurements on a first-order Zeeman sen-
sitive transition). The analysis of the fluctuations in the corresponding expectation values of
the final states yields excellent agreement with the experimental results.

6.3.2. Reduction of Technical Noise: Spin-Echo Pulse in the
One-Axis Twisting Scenario

The phase fluctuations induced by the magnetic field fluctuation can be strongly reduced with
the implementation of a spin-echo π pulse in the middle of the nonlinear evolution. For a ho-
mogeneous offset field, the phase acquired in the second part of an ideal spin-echo sequence
exactly cancels the phase that was accumulated in the first half (see Fig. 6.6 a).

Pulse imperfections and how they affect the noise cancellation

In our experiment, however, things are complicated by the presence of the nonlinear interac-
tion χĴ2

z , which is also present during the coupling pulses of the spin-echo sequence. Even
though during these strong pulses, the system is deep in the Rabi regime of dominating cou-
pling (λ = Nχ/Ω ≈ 0.1), the presence of interaction significantly alters the resulting dynam-
ics during the pulse. In our sequence, the spin-echo pulse is performed as a rotation with pulse
length τ = π/Ω and a phase of φ = 3π/2, at which the nonlinearity counteracts the effect of
the rotation. This results in π oscillations [69, 70], which have a reduced rotational frequency
of ωπ = Ω

√
1− λ (see Eq. 2.45). For λ = 0.1, the corresponding frequency is ωπ ≈ 0.95Ω.

Thus, after a pulse length of τ , the state is rotated by only 171°. It is important to note that
this also leads to a finite population imbalance z after the pulse, which is proportional to the
accumulated phase and thus to the detuning of the sequence.
In the case of a linear evolution in the second part of the sequence, phase noise is still can-

celed to a level of ≈ 1%, and about 15% of the noise is transferred to the z direction. This can
be seen in Fig. 6.6b, which depicts the resulting expectation values 〈zδ〉 vs. 〈φδ〉 for different
detunings δ after 7.5 ms of linear evolution time with H = δĴz, a subsequent π pulse in the
presence of nonlinearity, and a second period with 7.5 ms of linear evolution. The resulting
angular dependence of the technical noise has a strongly suppressed amplitude with a maxi-
mum in z direction (blue line in right panel). This can be explained by the fact that the phase
noise compensation of the spin-echo pulse is still almost perfect (cosine dependence on errors
in rotation angle of the pulse), whereas the fraction of the fluctuations that is transferred into
the imbalance direction cannot be canceled during the second period of linear evolution.
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Figure 6.6.: Spin-echo π pulse and imperfections with linear evolution. We numerically sim-
ulate 15 ms of quantum evolution with H = δĴz for initial states with N0 = 500 atoms at
〈z0〉 = 〈φ0〉 = 0 and varying detuning δ = 2π × [−3... + 3] Hz. A spin-echo pulse (phase
3π/2) is applied in the middle of the time evolution. The left panels show the expectation values
〈z〉 vs. 〈φ〉 before the spin-echo pulse (dotted green line), after the pulse (dashed red line) and after
the full sequence (solid blue line). The right panels show the resulting variance in the expectation
value for tomographic readout, assuming Gaussian detuning fluctuations of σδ = 2π × 0.45 Hz
(units of a coherent state with 104 particles). While an unperturbed π-pulse perfectly cancels all
fluctuations (a), this is not the case if the pulse is performed in the presence of nonlinearity [(b)
for Λ = 0.1], as this effectively shortens the rotation. A similar effect is observed if the detuning
fluctuations σδ are included in the pulse without interaction [(c)]. For a pulse phase of 3π/2, the
effects add up [(d)]. In the case of linear evolution, this leads to maximal technical fluctuations in
z direction (solid lines on right panel). The presence of nonlinear interaction during the second
half of the evolution strongly alters this result (see Fig. 6.7).
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Figure 6.7.: Technical noise amplification by one-axis twisting evolution. The technical
fluctuations are amplified by the presence of the nonlinearity χĴ2

z during the sec-
ond part of the sequence. Again, this can be visualized by plotting the expectation
values 〈z〉 vs. 〈φ〉 obtained from numerical simulations for δ = 2π×[−3...+3] Hz,
and the corresponding technical noise amplitudes obtained for σδ = 2π× 0.45 Hz
after tomographic readout. As in the linear scenario, after the spin-echo pulse a
part of the phase noise is transferred into fluctuations of the population imbalance
(the dotted green line shows fluctuations before, the dashed red line after the π
pulse). The nonlinearity during the second part of the evolution leads to a z de-
pendent rotation frequency. Thus, the rotation frequency at finite z is increased.
This inhibits the cancellation in phase direction and amplifies the amplitude of
the fluctuations (solid blue lines vs. solid gray line, which depicts the result for a
linear sequence as in Fig. 6.6).

A second imperfection which has similar consequences is the fact that the varying detuning
which is caused by the jitter of the offset field is also present during the spin-echo π pulse.
This leads to an effective tilt of the rotation axis by θr = arcsin

(
δ/(
√

Ω2 + δ2)
)
, which is

correlated with the phase that is acquired during the first evolution period (i.e. δ < 0 leads to
θr < 0 and vice versa). Even though these variations in the rotation axis are very small for
our parameters – a field offset of 45 µG translates into a tilt of just θr ≈ 0.1° – this becomes
important due to the correlation with the acquired phase. This is because the tilt of the rotation
axis also redistributes a fraction of the classical fluctuations into fluctuations of the population
imbalance after the π pulse. Surprisingly, for our parameter regime, this effect is of compara-
ble size with the influence of the nonlinearity during the pulse (see Fig. 6.6 b,c).
The above analysis is done for a linear phase evolution with H = δĴz. For the generation
of squeezed states, however, the resulting classical noise along the z direction is significantly
modified by the presence of a Ĵ2

z term that acts on the detuning dependent imbalance. This
strongly increases the fluctuation amplitude in phase direction and thus changes the angular
dependence and the amplitude of the technical fluctuations. This effect can be seen in Fig. 6.7,
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Figure 6.8.: Technical noise reduction with optimized pulse. Changing the phase of the
spin-echo rotation to φ = π/2 allows to almost perfectly cancel the technical
fluctuations even for a nonlinear evolution. The dotted green line represents the
expectation values before the pulse, the dashed red line directly after the pulse, and
the solid blue line is the result after the second period of nonlinear evolution. With
this opposite rotation phase, the effects from nonlinearity and detuning during
the spin-echo pulse cancel each other, allowing to suppress the resulting classical
noise by more than an order of magnitude (detail in inset of right panel) compared
to a pulse with φ = 3π/2.

which shows that for the typical experimental parameters, a significant increase in fluctuations
is caused even for a short total evolution time of tint = 15 ms, and the angular dependence is
distinctly changed.

A route for improvement: Changing the pulse phase

Both imperfections can be taken care of by implementing an optimized spin-echo pulse. For
our parameter regime, almost perfect cancellation can be achieved by either increasing the
duration of the spin-echo pulse to 1.1π, or by simply changing the phase of the coupling radi-
ation to π/2. Here, nonlinear effects are effectively canceled by the effect of the tilted rotation
axis due to the detuning fluctuations (Fig. 6.8). With these small modifications of the pulse
sequence, the number squeezing parameter should be unaffected by the technical instabilities
even for large ensemble sizes (inset of right panel in Fig. 6.8), rendering a differential analysis
unnecessary.
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Figure 6.9.: Technical noise for one-axis twisting evolution. The implementation of a spin-
echo pulse reduces the noise amplitude by almost 5 dB (black squares) compared
to an evolution without π-pulse (gray diamonds). However, from our classical
noise modeling, we expect a stronger suppression for a detuning variation of
σδ = 2π × 0.45 Hz (solid black line), which fits excellent in the case of no spin-
echo pulse. This difference could be explained by additional detuning variations
during the π pulse (dashed black line), potentially caused by fluctuation of the AC
Zeeman shifts from our microwave source or spurious feedback of the radiation
on the magnetic field stabilization.

Experimental results

As shown in the previous paragraphs, for our experimental settings we expect classical noise
also in a spin-echo sequence. In Fig. 6.9, we compare the classical noise model with the ex-
perimental results which were obtained after 15 ms of evolution time with a π pulse around
φ = 3π/2. We find good qualitative agreement with the theory, assuming detuning fluctua-
tions of σδ = 2π × 0.45 Hz, but experimentally observe stronger fluctuations that are incon-
sistent with the data obtained without spin-echo pulse. Thus, these fluctuations have to be
related to the spin-echo pulse itself. We find that additional random detuning fluctuations of
σδPulse = 2π × 1.3 Hz can capture this increased variance. These fluctuations might be caused
by fluctuating light shifts during the strong two-photon pulse (δLS ≈ 200 Hz) or a perturbation
of the magnetic field stabilization from the high-power radio frequency radiation during the
pulse, and cannot be reduced by a simple change of the coupling phase.

6.3.3. Technical Noise for Bifurcation Squeezing

The effect of fluctuations of the magnetic bias field becomes even more subtle in the bifurca-
tion squeezing scenario due to the presence of coupling during the nonlinear evolution time. In
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Figure 6.10.: Technical noise for bifurcation squeezing. In the bifurcation squeezing sce-
nario, detuning fluctuations manifest themselves not only in the phase, but also
in the population imbalance. The preparation on the unstable fixed point makes
the system critical on small fluctuations, which can be seen from the fact that
after 15 ms of evolution without a spin-echo pulse, the fluctuations in the bi-
furcation scenario (gray diamonds) are a factor of 1.6 larger than for one-axis
twisting. These fluctuations in the bifurcation scenario can be reproduced by
numerical simulations with σδ = 2π × 0.45 Hz (solid gray line). Similar to
the one-axis twisting scenario, a spin-echo pulse can be employed to reduce the
fluctuations (black circles). As in the one-axis twisting case, additional fluctua-
tions of the π pulse detuning have to be assumed to reproduce the amplitude of
the observed fluctuations (dashed black line, solid black line without additional
noise).

this case, the dynamics also in z direction strongly depends on the value of δ (see section 2.6).
A numerical analysis for the evolution of the expectation values 〈zδ〉 vs. 〈φδ〉 for different
detunings shows that, using the parameters employed in the experiment, the resulting classical
variation is ≈ 1.6 times larger than in the one-axis twisting scheme. This amplification can
be understood from the fact that the classical fluctuations are enhanced by the presence of
unstable fixed point dynamics, which are very sensitive on tilts of the corresponding double
well potential.
For an evolution time of 15 ms without a spin-echo pulse and our experimental parameters
(Nχ = 2π × 30 Hz, Ω = 2π × 18 Hz), experimental data and numerical simulation yield
perfect agreement assuming classical detuning fluctuations of σδ = 2π× 0.45 Hz, which were
also well suited to model the technical fluctuations in the one-axis twisting scenario without
spin-echo.
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zleft zright

Figure 6.11.: Evaluation of relative squeezing in a 1D lattice. For our relative squeezing
evaluation, we split our lattice in two equal halves. The scaling with system size
is observed by symmetrically summing more and more sites in both halves and
evaluating the fluctuations of the difference between the respective population
imbalances zleft and zright.

Even the implementation of a perfect spin-echo pulse does not lead to a complete cancella-
tion of detuning fluctuations in the bifurcation scenario, as the phase space in the presence of
a detuning is no longer symmetric. Despite not yielding a perfect compensation, we still find
a reduction of the final state’s susceptibility to classical fluctuations (see Fig. 6.10). As in the
one-axis twisting case, including the known imperfections due to nonlinearity and detuning
into the spin-echo sequence is not sufficient to explain the full classical variation observed in
the experiment (solid line): The amplitude of the fluctuations suggests additional fluctuations
in the pulse detuning (σδPulse = 2π × 1.3 Hz in Fig. 6.10 [dashed line]).
The fact that we obtain better number squeezing using the bifurcation scenario is due to the fact
that for our experimental parameters, the angle αmin of minimal squeezing and the one with
minimized technical fluctuations α0tech almost coincide. The scaling in the one-axis twisting
scenario with the imperfect spin-echo pulse is worse due to the fact that δα = α0tech − αmin

is larger. Recall that for the extreme case of the one-axis twisting scenario without spin-echo
pulse, the strong classical fluctuations start to dominate for large atom numbers and the angle
of best observed number squeezing approaches α0tech = 0° (see Fig. 6.4).

6.4. Relative Squeezing: Directly Assessing the
Quantum Uncertainty of the State

In the previous section, we have characterized the nature and origin of the classical fluctuations
in our system, which limit ξ2

N for large atom numbers. As shown in section 4.1.4, a differen-
tial analysis between two independent samples that are created in the same experimental shot
allows to directly assess the true quantum resources of the state, as this approach is insensi-
tive to such classical fluctuations of homogeneous fields. In addition, the relative squeezing
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Figure 6.12.: Relative squeezing in the one-axis twisting scenario. Evaluating the relative
squeezing parameter ξ2

Rel for different system sizes, we find comparable values
for all system sizes after 20 ms of one-axis twisting with spin-echo pulse (black
squares in the left panel). For the full sample of 12 300 atoms and the optimal to-
mography angle, this yields ξ2

rel = −5.3(5) dB. The corresponding classical ref-
erence remains unchanged (CSS, black diamonds in left panel). A tomographic
analysis shows that the obtained values for the relative squeezing surpass the di-
rect number squeezing ξ2

N evaluated for the same data set (gray squares) along
all directions and correspond to the values of ξ2

N for the single lattice sites (sinu-
soidal fit to the data as dashed gray line).

parameter ξ2
Rel is directly connected to the attainable quantum enhancement for gradiometric

measurements.
We now investigate the scaling of ξrel with system size. To do this, we proceed in a similar

fashion as in the number squeezing evaluation. We divide our sample in two equal halves and
start with two single adjacent lattice sites in the center, for which we calculate δz = zleft−zright

from the respective population imbalances. With this and the respective atom numbers Nleft

and Nright, we obtain the relative squeezing parameter according to Eq. 4.13. We then sym-
metrically add more and more sites to both parts, recalculate δz and extract the corresponding
relative squeezing factor.
The results for the state obtained after 20 ms of one-axis twisting are shown in Figure 6.11.
As the analysis is insensitive to the detuning fluctuations, we find that squeezing remains on
an almost constant level, only slightly altered for large numbers where the atom number in-
homogeneity of the lattice becomes relevant. For 12 300 atoms, we still find a suppression of
fluctuations by ξ2

rel = −5.3(5) dB. For all tomography angles, we find less fluctuations com-
pared to the direct number squeezing evaluation of the same data.
Taking into account the visibility of V = 0.952(3), this yields an effective spin squeezing pa-
rameter of ξ2

S = −4.9(5) dB. Recall that this value is inferred by subtraction of detection noise.
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Figure 6.13.: Relative squeezing using the bifurcation scheme. The relative analysis also
shows reduced fluctuations for the state produced by 15 ms of bifurcation
squeezing (left panel: circles for the best tomography angle, black diamonds
for ξ2

Rel of a CSS), yielding ξ2
rel = −4.5(4) dB for 10 100 atoms. However, the

dependence of the obtained relative squeezing ξ2
Rel on the atom number inhomo-

geneities is stronger than in the one-axis twisting case. A comparison with the
weighted mean of the number squeezing parameters obtained from the single
lattice sites (gray points with gray uncertainty area) shows that this decreasing
suppression factor is due to the fact that the outer lattice sites are less squeezed,
leading to a reduced mean squeezing. The right panel compares the squeezing
tomographies for ξ2

N (gray) and ξ2
rel (black), showing a larger suppression for the

differential analysis along all directions.

For an interferometric measurement with our setup, the bare value without detection noise sub-
traction determines the sensitivity. Without this subtraction, we find ξ2

S = −3.8(5) dB of spin
squeezing with 12 300 particles, directly applicable for quantum-enhanced interferometry.

The relative analysis works similarly well for the bifurcation squeezing scenario, where
classical fluctuations are also suppressed in all directions (Fig. 6.13). Here, we find the best
relative squeezing for the full sample to be ξ2

rel = −4.5(4) dB, equivalent to ξ2
S = −4.0(4) dB,

but a stronger dependence on the ensemble size. This is because the parameters that define
the unstable fixed point dynamics critically depend on atom number, leading to even qualita-
tively different final states for different particle numbers (see Chapter 5). Thus, for our system
the effects of an inhomogeneous atom number distribution over the different sites are more
important and lead to inferior scaling behavior at large numbers. This can be seen from a
comparison of the weighted mean of the number squeezing parameters obtained from the sin-
gle lattice sites that takes these inhomogeneities into account and is in good agreement with
the relative squeezing factor obtained for different sample sizes.
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Figure 6.14.: Relative squeezing after 15 ms of one-axis twisting without spin-echo. In
contrast to the number squeezing analysis (solid gray), the tomographic evalu-
ation of relative squeezing (solid black) of the full ensemble remains almost at
the single lattice site level (dashed gray line) and shows no significant shift in the
optimal tomography angle. For this optimal rotation angle, the relative analysis
yields a reduction of fluctuations by more than 5 dB since it is insensitive to the
classical noise that dominates the number squeezing analysis at this point.

Even for the one-axis twisting sequence without spin-echo pulse, we still find more than
ξ2

rel = −3 dB of relative squeezing for the full sample. The tomographic evaluation of the full
ensemble does not show the characteristic shift in the optimal tomography angle that is found
in the number squeezing analysis (see Fig. 6.14), showing that our analysis is insensitive even
in the case of stronger classical noise contributions.

In this chapter, we have shown that the only limitation for the scaling of squeezing to large
atom numbers are the atom number inhomogeneities of the lattice, which especially in the
one-axis twisting scheme only lead to slight deterioration of the attainable resource. The max-
imum number of atoms for the squeezed states generated in our 1D lattice is currently only
limited by the trapping geometry of the experiment, which allows the reproducible generation
of up to 30 independent BECs. To attain larger numbers, the same approach can in principle be
extended to a three-dimensional lattice, increasing the atom number by a factor of up to 103.
This can be achieved using three pairs of beams, each crossed under a small angle, in analogy
to the 1D lattice setup. Note that both the generation procedure and the readout do not rely
on the ability to spatially resolve the single lattice sites, which would be a difficult task for a
three-dimensional system. Hyperfine–state-resolved imaging of the two components suffices
in this situation. For 87Rb, this is experimentally feasible due to the large hyperfine splitting
of 6.8 GHz between the two states.
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This scalable generation procedure for squeezed states thus opens the route for the creation
of large quantum-enhanced resources in Bose-Einstein condensates that can readily be em-
ployed for precision measurements in atom interferometry [116]. In the next chapter, we will
show how such an interferometric measurement scheme can be implemented, and experimen-
tally demonstrate quantum-enhanced magnetometry with our upscaled resource.
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with Bose-Einstein Condensates

A multitude of today’s precision measurements builds on atom interferometry [116], which
enables the precise determination of phase shifts induced by the measured quantity. Using this
technique, state-of-the-art measurements of quantities like frequencies [57], accelerations [53,
54], rotations [55] and electromagnetic fields [48] have been performed. Many of these atom
interferometers operate at or near the classical limit for measurement precision [7, 8, 9], which
is given by the atomic projection noise [100] in the employed two modes. It has been shown
that this limit can be surpassed by employing entangled states at the input of the interferometer
[12].
In this chapter, we will present a scheme for the entanglement-enhanced measurement of static
magnetic fields. Our input states are spin squeezed states in two internal modes of a Bose-
Einstein condensate, for which the generation and characterization procedure was discussed
in the previous chapters.
In the first section of this chapter, we will review how squeezed states can be employed to
improve the precision of a Ramsey interferometer, and how such an interferometer can be
implemented in the experiment. In the following section, we will discuss the effects caused by
nonlinear evolution during the measurement time, and show how we can swap the squeezed
state to different internal levels to strongly reduce the strength of the nonlinearity and improve
the sensitivity on a desired quantity. In the third section, we will show that this can be used to
perform quantum-enhanced magnetometry, discuss the limitations of our system and compare
the obtained sensitivity to those achieved with other state-of-the-art techniques. Lastly, we will
present gradiometric measurements of static magnetic fields in our experiment, and analyze
the corresponding sensitivities of our device. The results shown in this chapter are summarized
in a publication [60].

7.1. Ramsey Interferometry with Squeezed States
Ramsey’s method of separated oscillatory fields [117] has nowadays become a standard tool
for the precise determination of phase shifts in atomic systems. It consists of two π/2 pulses
separated by a phase evolution time, and is the atomic equivalent to an optical Mach-Zehnder
interferometer [118]: The first π/2 pulse creates an equal superposition of two atomic states
| ↑〉 and | ↓〉, which accumulate a relative phase θ during the subsequent phase evolution. The
second π/2 pulse maps this phase θ into a population imbalance z = (N↑ − N↓)/(N↑ + N↓)
between the two states. Thus, the acquired phase can be extracted by detecting the populations
of the two states after the Ramsey sequence.
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Figure 7.1.: Ramsey interferometer with a squeezed input state. The implementation of
a squeezed Ramsey sequence starts with the generation of a spin squeezed state
using a π/2 pulse and subsequent nonlinear one-axis twisting (Bloch spheres in
upper left panel). To obtain increased phase sensitivity, the state is rotated onto the
phase squeezed axis. Subsequent phase evolution is followed by a final π/2 pulse,
which maps the differential phase into a population imbalance. This population
imbalance is determined from the detected atom numbers in the two components.
The experimental pulse sequence is depicted in the middle panel. Such a sequence
is formally equivalent to a Mach-Zehnder interferometer in which the two modes
are entangled after the first beam splitter (lower panel).

By varying the readout phase Φ of the second π/2 pulse with respect to the atomic phase, the
output of a Ramsey sequence yields a sinusoidal fringe in the population imbalance

z(Φ) = V cos(Φ + θ) (7.1)

with the fringe visibility V ≤ 1.
The relative phase θ can thus be estimated by inverting Eq. 7.1, yielding

θ = arccos
( z
V

)
− Φ, (7.2)
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and by error propagation we find

Var(θ) =
Var(z)

V2 − z2
. (7.3)

The sensitivity of such a Ramsey sequence with uncorrelated particles is bounded by the clas-
sical limit for phase precision, the so-called standard quantum limit (SQL). This limit is im-
posed by the intrinsically isotropic quantum uncertainty of the classical input state, which
translates into finite fluctuations of Var(z) = (1 − 〈z〉2)/N for a mean output imbalance of
〈z〉 and the total number of atoms N (Eq. 4.5). For a perfect classical interferometer [V = 1
and Var(z) = (1− 〈z〉2)/N ], this yields the standard quantum limit

∆θSQL =
1√
N
. (7.4)

However, this is not the fundamental limit and only valid for uncorrelated ‘classical’ particles.
Employing entangled input states, the phase uncertainty can be reduced down to the funda-
mental Heisenberg limit ∆θHL = 1/N [12, 119] imposed by quantum mechanics.
Among the most promising classes of entangled states for applications in quantum metrol-
ogy are spin squeezed states [25, 101], which are comparatively robust against environmental
noise and losses [26, 27, 28, 29]. In an interferometric sequence, spin squeezed states can out-
perform the standard quantum limit at a level quantified by the metrological spin squeezing
parameter ξR = ξN/V (see Chapter 4.1.3), yielding a phase sensitivity of [101, 12]

∆θsq = ξR ·∆θSQL =
ξR√
N
. (7.5)

Using Eq. 7.3, this can be straight-forwardly seen from the fact that the fluctuations in the
population imbalance z are suppressed by Var(z) = ξ2

N(1 − 〈z〉2)/N , while the amplitude of
the Ramsey fringe is reduced to V .
In the photonic case, squeezed states are already routinely employed to enhance the sensi-
tivity of optical gravitational wave detectors [14]. In the atomic realm, proof-of-principle
experiments have shown various methods for creating spin squeezed states in systems ranging
from high-temperature vapors to ultracold Bose-Einstein condensates (BEC) [31, 5, 34, 45,
46, 39, 35, 36, 37, 47, 38]. The feasibility for applications has been shown in demonstrations
of quantum enhancement in atom interferometry [45, 48], atomic magnetometers [37, 42], and
atomic clocks [40, 41].

The experimental implementation of a spin squeezed Ramsey sequence in a two-level sys-
tem was demonstrated in [45, 48, 40, 41] and is schematically depicted in Fig. 7.1. It starts
with a π/2 pulse, followed by nonlinear evolution for the creation of a spin squeezed state. To
attain maximum phase sensitivity, the state is subsequently rotated around itself such that the
axis of minimum fluctuations is along the phase direction. After the subsequent phase evo-
lution time, a final π/2 rotation converts the accumulated phase into a population imbalance
and thus rotates the axis of minimal fluctuations in readout direction (i.e., converts the phase
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Figure 7.2.: Pulse sequence for Ramsey interferometry with state swapping. In addition
to the ‘standard’ squeezed Ramsey sequence, which is depicted in Fig. 7.1, in
this sequence the internal states are swapped at the beginning of the interrogation
time. To do this, a one-photon microwave π pulse transfers the population of the
level |b〉 = |2,−1〉 to the hyperfine state |c〉 = |1,−1〉. The states |a〉 and |c〉
feature a large magnetic field sensitivity, while their nonlinear interaction strength
is negligible. After a hold time thold for phase evolution, the atoms are transferred
back to |b〉 for the final readout rotation.

squeezed state into a number squeezed state). Using cold atom systems, implementations of
atomic clocks building on such a squeezed Ramsey sequence have been shown in the groups
of Vladan Vuletić and Eugene Polzik. In the Polzik group, an entanglement-assisted clock
using conditional squeezed states at the input demonstrated 1.1 dB improvement for interro-
gation times of 10 µs [40], whereas for longer interrogation times quantum enhancement was
lost due to the dominant classical noise sources. An improvement in the variance of 4.5 dB
over the standard quantum limit was reached for interrogation times of 200 µs in the group of
Vladan Vuletić group using unconditional cavity squeezing [41].
In Bose-Einstein condensates, a first proof-of-principle demonstration of squeezed atom in-
terferometry showed a quantum enhancement of 1.4 dB for an interrogation time of just 2 µs
[45]. Recently, a spin squeezed BEC demonstrated quantum-enhanced sensing of near-field
microwave radiation at a level of ξ2

R ≈ −4 dB below the standard quantum limit with in-
terrogation times in the range of milliseconds, and demonstrated quantum enhancement in a
scanning probe interferometer configuration.

7.2. State Swapping for Interaction Switching

In principle, if spin squeezed states have been successfully generated in the experiment, a
Ramsey sequence with these squeezed input states as described in the previous section can
be straight-forwardly implemented [41, 40, 45, 48]. However, for many metrological applica-
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Figure 7.3.: Squeezing after state swapping. A squeezing tomography after the full interfer-
ometric sequence, consisting of state swapping, a hold time of 1 µs, and swapping
back, verifies that relative squeezing between left and right part of the full array of
ξ2

rel = −5.1+0.6
−0.7 dB is present (left panel). For a Ramsey fringe obtained after the

same hold time of 1 µs and a π/2-pulse with varying readout phase, we find a vis-
ibility V = 0.950(5) (right panel). Combined, using the Wineland criterion [101],
this yields metrologically relevant spin squeezing of ξ2

R = −4.7(6) dB after sub-
traction of detection noise and directly applicable squeezing of ξ2

R = −3.4(5) dB
without noise subtraction.

tions with Bose condensed clouds, two major problems remain to be solved:

The first issue is the fact that spin squeezing is generated on two particular internal states of
the Bose-Einstein condensates. However, this set of states might be insensitive to the quantity
which we want to measure. For example, in our experiment, the squeezed states are gener-
ated on the two hyperfine states |a〉 = |1, 1〉 and |b〉 = |2,−1〉, which are only quadratically
sensitive on magnetic fields and thus optimal for reproducibility of the generation procedure.
However, if we want to measure magnetic fields, this low magnetic sensitivity consequentially
renders the system impractical.
Secondly, in our setup, the nonlinear interaction cannot easily be switched off, as it is gener-

ated by a Feshbach resonance. Controlled ramping away from the resonance is experimentally
challenging and suffers from shot-to-shot fluctuations during the ramps, which translate into
increased phase noise and deteriorate the quantum resource.

Both of these problems can be resolved by swapping the squeezed state to different hyper-
fine levels during the interrogation time. This makes the nonlinear interaction negligible and
enhances the sensitivity, e.g. for magnetic fields, by orders of magnitude. In the following,
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we implement this technique to perform quantum-enhanced magnetometry after swapping the
condensate atoms from hyperfine state |b〉 = |2,−1〉 to the state |c〉 = |1,−1〉 in the electronic
ground state manifold of 87Rb.
For an interferometry sequence with state swapping, we first generate a squeezed state in the
levels |a〉 and |b〉 using nonlinear one-axis twisting with an evolution time of 20 ms, as shown
in chapter 6. A subsequent two-photon pulse (φ = 3π/2+3°, α = −75°) rotates the state onto
the phase squeezed axis, where the sensitivity of the interferometer is maximal (see Fig. 7.2).
Afterwards, state swapping is implemented by applying a one-photon microwave pulse res-
onant to the transition between |b〉 and |c〉. This transfers the atoms from |b〉 to |c〉 with an
efficiency of at least 99%, leading to a squeezed atomic state between the internal states |a〉
and |c〉. After a hold time thold for phase evolution, the population is transferred back to the
original levels, where the phase-controlled readout pulse is performed on the magnetically
insensitive two-photon transition. It is important to note that the phase interrogation time
tint = thold + 2tπ of the Ramsey sequence includes both the hold time thold and the duration of
the two microwave π pulses tπ during state transfer, which have the same magnetic sensitivity
as the evolution in the states |a〉 and |c〉. Another interesting aspect of this state swapping is
the fact that it inhibits spin-relaxation loss during the hold time in |a〉 and |c〉, as both species
are in the F = 1 manifold of the ground state.
To confirm the applicability for quantum-enhanced measurements, we show that the level of
squeezing is maintained during state swapping. For this, we perform an interferometric se-
quence with thold = 1 µs followed by a tomographic squeezing analysis, summing over the full
array of condensates (Fig. 7.3). In the relative analysis, we find the expected sinusoidal shape
and ξ2

rel = −5.1+0.6
−0.7 dB at the optimum tomography angle, revealing no significant reduction

of the squeezing that was obtained before the state swapping sequence. Note that the optimum
tomography rotation has an angle that is shorter than the value of αminPS = 90° that would be
expected for a phase squeezed state, as we experimentally find αmin = 85°. This reduction is
caused by the nonlinear interaction that is present during the two-photon pulse time of 750 µs,
which effectively increases the rotation angle by 5 degrees due to the larger plasma oscilla-
tion frequency. Also note that for observing squeezing in this scenario, the relative analysis is
essential. The shot-to-shot variation of the homogeneous bias field at 9.1 G induces classical
phase fluctuations during the state transfer that are much larger than the quantum fluctuations
of the squeezed states even for the single lattice sites. Thus, they mask the squeezing in a
direct analysis of the system.
A Ramsey fringe is obtained by replacing the readout tomography rotation with a final π/2
pulse with variable pulse phase φ. We observe a Ramsey fringe visibility of V = 0.950(5)
[Fig. 7.3b)]. Employing the Wineland criterion, we thus find spin squeezing of ξ2

R = −4.7(6) dB
after the state transfer. Without subtraction of detection noise, the relative squeezing reduces
to ξ2

rel = −3.8(5) dB, which corresponds to applicable spin squeezing of ξ2
R = −3.4(5) dB.

This resource can be directly exploited in a quantum-enhanced magnetometer, as shown in the
next section.
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7.3. Quantum-Enhanced Magnetometry with
Bose-Einstein Condensates

The state transfer described in the previous section enhances the magnetic field sensitivity
from Sab ≈ 1 Hz/µT (second order Zeeman shift at the operating field of B0 = 9.12 G) to
S ≈ 140 Hz/µT (first order Zeeman shift) – a detailed calculation of these magnetic sensi-
tivities can be found in Appendix A. Additionally, the state swapping strongly reduces the
nonlinearity, as there is no Feshbach enhancement of the interaction strength on the final lev-
els |a〉 and |c〉 at this field.
With the implementation of a Ramsey sequence, the array of Bose-Einstein condensates can
thus be employed as a sensitive detector for magnetic fields. However, in our setup the sen-
sitivity for measuring homogeneous magnetic fields is limited by the shot-to-shot fluctuations
of the Feshbach field at 9.1 G, which are on the order of 30 µG. This is much larger than the
sensitivity that can be obtained with our detector, which is in principle better than 10 µG for
interrogation times in the range of hundreds of microseconds. Thus, the magnetic field sen-
sitivity of the detector cannot be properly characterized from repeated measurements of the
homogeneous field, as such a measurement would rather provide a measure for the field sta-
bility than for the actual sensitivity of the device.
A different route for extracting the single shot sensitivity is a differential measurement be-

tween two independent parts of the BEC array. Such a measurement is sensitive to field
gradients, which are comparably stable in our setup, and rejects the fluctuations of the homo-
geneous bias field. In the previous section, we have shown the feasibility of this approach by
demonstrating relative squeezing after the full state transfer sequence, which is the relevant
parameter for such a procedure.
For characterizing the sensitivity of our device, we divide our array of BECs into two equal
halves. At the output of a Ramsey sequence, a field difference of magnitude δB translates into
a differential phase δϕ of the Ramsey fringes obtained in the two distinct parts of the array. If
the readout is performed with a fixed phase for the final π/2 pulse, this yields a difference of
the two corresponding population imbalances of δz = zleft − zright. Assuming equal visibili-
ties V of the two fringes, we find that δz is related to the phase difference δφ = φright − φleft

between left and right part of the array by

δz = V [sin (φleft)− sin (φleft + δφ)] (7.6)

= −2V sin

(
δφ

2

)
cos

(
δφ

2
+ φleft

)
(7.7)

= −2V sin (φdiff) cos (φmean) , (7.8)

with the mean phase φmean = (φleft + φright)/2 and the deviation of the individual phases
φdiff = δφ/2. The value of δz thus depends on the readout phase and is, in the case of small
phase shifts, maximal around the zero crossings of the single fringes.
The corresponding difference in the magnetic field is directly connected to the fringe ampli-
tude δzmax = 2V sin

(
δφ
2

)
. Using δφ = 2πStint · δB with the magnetic field sensitivity S of the
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Figure 7.4.: Ramsey magnetometry beyond the standard quantum limit. The presence of a
magnetic field gradient induces a phase shift between the Ramsey fringes obtained
in the left and the right half of the BEC array, as shown for an interrogation time of
342 µs (left panel). The difference of the population imbalances δz = zleft − zright

shows a sinusoidal dependence on the readout phase (lower panel). The amplitude
δzmax of this fringe is proportional to the difference δB between the magnetic
fields. The magnetic field sensitivity of the sensor (right panel, see Eq. 7.10) can
be estimated from the experimentally measured variance of δz around the optimal
working point, which is at zi ≈ 0. Employing the full array, we find quantum
enhancement up to interrogation times of 342 µs with a single-shot magnetic field
sensitivity of 310(47) pT for this interrogation time. In comparison, the classical
limit at this interrogation time for a perfect classical device is 382 pT. The gray
shaded area depicts the region which can be reached with classical states, and the
dashed black line indicates the best classically obtainable sensitivity including the
effect of the detection noise from the absorption imaging procedure.

employed states and the interrogation time tint, we find

δB =
2 arcsin

(
δzmax
2V

)
2πStint

. (7.9)

For small fringe amplitudes, we can linearly approximate δzmax, i.e. arcsin
(
δzmax
2V

)
≈ δzmax

2V
(for the complete expression, see Appendix B). The magnetic field sensitivity σB around the
working point, where the amplitude of the difference fringe is maximal, can then be extracted
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Figure 7.5.: Field sensitivities for a single lattice site. We deduce the magnetic field sensitiv-
ity for a single lattice site from the differential analysis of the two central wells,
and observe quantum enhancement for all interrogation times. After tint = 342 µs,
we find a single-shot sensitivity of 1.20(17) nT, corresponding to 7.2 nT/

√
Hz.

by error propagation of Eq. 7.9, yielding

σB =
σ(δzmax)

2πVStint
. (7.10)

Using this relation, the gradiometric field sensitivity can be deduced from the experimen-
tally observed variance of δzmax. The sensitivity for the measurement of magnetic fields in
gradiometric operation is determined by the summed noise from the two detectors. Assuming
that the corresponding sensitivity can also be attained in combined operation, we can estimate
the single-shot magnetic field sensitivity of the full array from these measurements.
In Fig. 7.4, we employ this gradiometric evaluation to analyze the magnetic field sensitivity of
the full sample for Ramsey sequences with different interrogation times. The corresponding
classical limit attainable with the same atom number is calculated assuming Var(z) = 1/

√
N

and V = 1, yielding a sensitivity limit of

σB(SQL) =
1

2πStint
√
N
. (7.11)

We experimentally find quantum enhancement for interrogation times up to 342 µs, with
a reduction in variance of up to 41%. For tint = 342 µs, we find a single-shot sensitivity of
310(47) pT compared to the shot noise limit of 382 pT obtained from Eq. 7.11. For longer in-
terrogation times, our method based on the difference δz of the two Ramsey fringes no longer
yields quantum enhancement, as the fluctuations of the homogeneous offset field translate into
a significant reduction of the mean Ramsey contrast (see Fig. 7.6). This decrease is solely due
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Figure 7.6.: Visibility reduction due to dephasing. The fluctuations of the homogeneous bias
field translate into shifts of the offset phase φmean that are growing with time. This
becomes apparent by the growing spread of the single experimental realizations in
the Ramsey fringes after different interrogation times (left panels). As a result, the
mean visibility V of the fringes decreases with interrogation time (right panel).

to shifts of the offset phase φmean, and we find that the single shot contrast does not decrease
with interrogation time, showing that no significant loss of coherence takes place on the ex-
perimental timescales. With a more stable offset field, it would be possible to harness the
quantum resources of the input state also at longer interrogation times with the same evalua-
tion method.
The single-shot sensitivity of 310(47) pT attained after 342 µs of phase evolution, combined

with our experimental cycle time of 36 s for creating and detecting the BEC array, translates
into a sub-shot noise sensitivity of 1.86(28) nT/

√
Hz for the detection of static magnetic fields

with our device. Currently, the sensitivity of the magnetometer is limited by the technical
stability of our experiment, which limits the maximum interrogation time. The ultimate phys-
ical limitation of this system is the residual nonlinearity between the two levels |a〉 and |c〉,
which becomes important only on much longer timescales. This can be estimated from the
values of the different corresponding scattering lengths, as the strength of this nonlinear inter-
action is determined by χ|a〉|c〉 ∝ aaa + acc− 2aac (see Chapter 2.2.2). According to literature,
aaa = acc ≈ 100.4 aB [86, 120, 121], where aB is the Bohr radius. In the F = 1 manifold,
two atoms can couple to a total spin of either F = 0 or F = 2. These scattering lengths are
calculated to be aF=0 = 101.8(2) aB and aF=2 = 100.4(1) aB. The difference between those
scattering lengths is thus theoretically predicted to be ∆ath = −1.38 aB [122], and was exper-
imentally determined as ∆a = −1.07(8) aB by analyzing spin-exchange dynamics [123]. In
the absence of a Feshbach resonance, all scattering lengths in the F = 1 manifold are linear
combinations of aij = c1aF=0 + c2aF=2 with the Clebsch-Gordon coefficients c1 + c2 = 1.
This constrains the relevant difference of scattering lengths for the nonlinear interaction to
|aaa + acc − 2aac| ≤ 2.2 aB.
We can compare this upper bound to the corresponding value on the two-photon transition
between |a〉 and |b〉. Assuming the parameters of the Feshbach resonance from [89], we find
aab ≈ 91aB at 9.12 G, and consequently |aaa + abb − 2aab| ≈ 14 aB for the two-photon tran-
sition. This corresponds to a nonlinearity of Nχ|a〉|b〉 ≈ 2π× 30 Hz, and thus the upper bound
for the nonlinearity between |a〉 and |c〉 can be given as Nχ|a〉|c〉 / 2π × 4 Hz. Experimen-
tally, it has been shown that interrogation times of 250 ms can be realized with the same set of
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hyperfine states in a similar magnetometry scheme [124], pointing at a nonlinear interaction
strength significantly below this upper limit.
The sensitivity of this Ramsey magnetometer can thus be further improved by increasing the
interrogation time as well as decreasing the cycle time for the generation of the BEC array.
We can project the sensitivity that should be attainable with this technique, assuming the ex-
perimentally established interrogation time of 250 ms and a realistic cycle time of 5 s for an
all-optical BEC apparatus. With these parameters, a sensitivity of ∼ 1 pT/

√
Hz is feasible,

using the current atom number and a probe volume of only 90 µm3.

7.3.1. Comparison to Other Magnetometry Techniques

To benchmark the performance of our BEC array magnetometer, we now compare the attained
sensitivity to the corresponding values obtained with comparable state-of-the-art devices.
There are numerous different magnetometry techniques, covering a wide range of sensitivi-
ties, spatial resolution and frequencies at which the fields are measured. Fig. 7.7 shows the
sensitivities and probe volumes for a number of state-of-the-art devices employing different
measurement techniques, along with the frequency at which they operate. In the following,
we will give a short overview over these different techniques which are employed in precision
magnetometry.

Nanometer scale resolution can be achieved with sensors building on nitrogen vacancy cen-
ters (NV centers) in diamond. In these diamond defects, a nitrogen atom substitutes a carbon
atom, leading to a lattice vacancy. The ground state of this system constitutes a spin-1 mani-
fold. Due to the Zeeman splitting of the different spin states, this can be used as an effective
two-level system, which can be employed for Ramsey sequences. The relative population
of the two levels can be read out via the spin-dependent fluorescence strength of an optical
transition to an excited state. For static fields, the sensitivity of NV centers is limited by the
dephasing caused by other defects and the presence of 13C impurities in the diamond crystal.
The dephasing time is typically on the order of milliseconds, limiting the DC sensitivity on
the µT/

√
Hz level [56]. It can be extended by applying spin-echo sequences, which allow the

detection of AC fields with sensitivities down to 2.5 nT/
√

Hz [130].
Optical magnetometers based on vapor cells allow to reach sensitivities down to 160 aT/

√
Hz

[134], but employ much larger probing volumes (typically ≈ cm3). These magnetometers
use optical pumping to create a long-lived spin orientation in a vapor typically consisting of
alkali atoms. In the presence of a magnetic field, the atoms undergo Larmor precession, which
modifies their optical absorption and dispersion properties. This can be used for the precise
determination of the magnetic field inside the vapor cell.
The precision of such magnetometers is ultimately limited by collisions with the walls of the
glass cell, which destroy the coherence. Even though this favors larger cell sizes, sensitivities
of down to 70 fT/

√
Hz have been attained for a microfabricated vapor cell with a volume of

just 6 mm3 [132].
One important aspect for both NV centers and optical vapor cell magnetometers is that they
allow the detection of magnetic fields at ambient temperatures. This is technologically im-
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Figure 7.7.: Sensitivity for different types of state-of-the-art magnetometers vs. probe
volume. Different magnetometry techniques cover a wide range of sensitivities,
field frequencies and offer a large variety in spatial resolution. NV centers can
achieve nanoscale spatial resolution and sensitivities down to a few nT/

√
Hz [125]

(NV1,2) and [126, 127, 128, 129, 130] (NV 3-7), which is also the case for mag-
netic resonance force microscopy (MRFM) [131]. Best overall sensitivities at the
cost of lower spatial resolution are attained with optical vapor cell and cold atom
magnetometers (OM 1-4) [132, 133, 134, 37] and large SQUIDs (SQUID 2,3)
[135, 136]. In the intermediate regime, Bose-Einstein condensates (BEC1, 2 and
3) [137, 124, 138], Hall probes 1-3 [139] and micro-SQUIDs (SQUID 1 [140])
operate at spatial resolutions of a few up to tens of micrometers. The magnetome-
ter discussed in this thesis (red triangles) is competitive with other state-of-the-art
devices using similar probe volume, and the projected performance would surpass
the sensitivities of these devices. Filled symbols indicate that the given sensitivity
was obtained using differential field analysis, which suppresses common mode
field fluctuations.

portant and advantageous e.g. for the detection of magnetic fields in living cells [141], which
requires short distances between probe and detector.
Similar detection schemes can also be employed using cold and ultracold atomic systems,
which have the advantage of larger coherence times and slow diffusion and thus an increased
spatial resolution in the micrometer range. In this context, a sensitivity of down to 8.3 pT/

√
Hz

has been shown with a Bose-condensed Rubidium cloud by monitoring the Larmor precession
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with non-destructive phase contrast imaging [124]. A spin squeezed magnetometer with cold
thermal atoms in an optical trap achieved a sensitivity of 55 pT/

√
Hz with a millimeter sized

probe volume [37]. Microwave magnetic fields have been detected with a quantum-enhanced
sensitivity of 77 pT/

√
Hz in a probe volume of just 20 µm3 with a Bose-condensed scanning

probe interferometer [48].
Ultracold atomic systems on atom chips have been employed for ultracold atom magnetic field
microscopy [137]. Here, the modification of the trapping potential for magnetically trapped
atoms which is imposed by spatially inhomogeneous offset fields imprints the structure of the
field onto the atomic density. Such a technique can be used to study the shape and transport
properties of wires with a spatial resolution of 3 µm and sensitivities down to a few nT/

√
Hz

[114]. This technique relies on changes of the absolute value of the field, and the magnetic
trapping makes operation in vector mode unfeasible, as this would require a tunable orienta-
tion of the trapping fields.
Superconducting quantum interference devices (SQUIDs) also operate at cold temperatures
and require cryogenic cooling. These detectors are based on superconducting loops contain-
ing Josephson junctions and build on the magnetic flux quantization inside the loop. The
sensitivity of these devices depends on the area enclosed by the loop. They are built from
micro- and nanoscale to centimeter sizes and can reach sensitivities on the order of fT/

√
Hz

for the large scale devices [136] and in the range of pT/
√

Hz for devices with tens of microns
in diameter [140]. In contrast to optical magnetometry techniques, SQUIDs only measure rel-
ative fields, but are not limited to small absolute values.

In comparison to these state-of-the-art devices, the spin squeezed ultracold atomic magne-
tometer presented in this thesis offers a sensitivity on a competitive level for devices operating
on the micrometer scale. The projected sensitivity of 1 pT/

√
Hz shows that it is feasible to out-

perform all current state-of-the-art devices by increasing the interrogation time and decreasing
the experimental cycle time. This offers inter alia prospects for increasing the sensitivity in
high-resolution magnetic field microscopy, where squeezing allows to enhance the perfor-
mance on small scales. Also, the optical trapping allows for vector operation of our device
by changing the direction of the bias field. This could be straight-forwardly implemented in
our setup with two additional sets of coils perpendicular to our current bias field configuration.

7.4. Gradiometric Measurements with a
Bose-Condensed Sensor

In the previous section, we have employed a differential analysis of two independent parts of
the lattice as a tool to characterize the magnetic field sensitivity of the full BEC array. We
will now discuss the sensitivity of this device for measurements in a gradiometric configura-
tion, and present a precise measurement of the magnetic field gradient along the atomic cloud.
Finally, we will discuss a gradiometric evaluation method based on ellipse fitting and its ap-
plicability to our measurements.
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Figure 7.8.: Fringes in δz for different Ramsey interrogation times. The difference in the
population imbalances δz between the left and right part of the lattice shows a
sinusoidal dependence on the readout phase, with an amplitude which grows lin-
early with interrogation time (black squares in main plot). This is expected for a
time-independent field gradient, which translates into linear growth of the accu-
mulated differential phase δφ = 2πSδB · tint. The insets show three exemplary
fringes of δz for different interrogation times. The phase φmean of the fringes shifts
for the different evolution times due to an homogeneous overall detuning of the
one-photon coupling for the given bias field.

7.4.1. Gradiometric Sensitivities

As shown in Eq. 7.9, in a Ramsey sequence a difference in the total magnetic field of δB
shows up as a sinusoidal oscillation in the difference of the population imbalances δz(φ). As
the amplitude of this oscillation is related to the value of the field difference, and the distance
between the detectors is known, we can hence precisely determine the magnetic field gradients
in our experimental system.
Fig. 7.8 shows exemplary fringes of δz(φ) for different interrogation times, employing the full
BEC array divided into two parts of equal size. The fringe amplitude δzmax, which is propor-
tional to the phase difference accumulated between left and right part of the BEC array, grows
linearly with interrogation time, as expected for a time-independent field gradient. Note that
the phase of the fringes in δz(φ) shifts for the different evolution times due to a homogeneous
detuning, which leads to a temporal evolution of the mean phase φmean of the individual Ram-
sey fringes.
The gradiometric sensitivity depends not only on the magnetic field sensitivity of the two
sensors, but also on the baseline length d between them. The magnetic field gradient can
be deduced from the fringe amplitude δzmax (in analogy to Eq. 7.9) and the baseline length,

100



7.4. Gradiometric Measurements with a Bose-Condensed Sensor

yielding
∂B

∂x
=

2 arcsin
(
δzmax
2V

)
2πStintd

. (7.12)

Analogous to section 7.3, this results in a gradiometric sensitivity around the optimal working
point of

σgrad =
σ(δzmax)

2πVStintd
. (7.13)

For a spatially homogeneous gradient field, the gradiometric sensitivity increases linearly with
the baseline length d. However, in the case of spatial inhomogeneities, this increased sensitiv-
ity comes at the price of decreased spatial resolution.
If we use single lattice sites as the magnetic field detectors for the evaluation of the gradient,
the relevant baseline length d is simply given by the distance between the individual lattice
sites, i.e. d = n · 5.5 µm for a separation of n sites. The situation is more complicated in the
case of summed ensembles containing several lattice sites, which can have spatially inhomo-
geneous atom number distributions. Here, for spatially homogeneous gradients (which is the
case in our setup, see Fig. 7.10), the relevant baseline length is given by the distance between
the centers of gravity of the two clouds. Taking into account the individual atom numbers Ni,j

of the different sites, this yields

d =

(∑
left wells ni ·Ni∑

left wells Ni

−
∑

right wells nj ·Nj∑
right wells Nj

)
· 5.5 µm. (7.14)

We analyze the the gradiometric field sensitivity for these two different approaches. At first,
we examine the sensitivity using single lattice sites with increasing distance, starting with ad-
jacent wells in the center of the array and ending with the maximum separation given by the
size of the cloud. The results are shown in Fig. 7.9 for an evolution time of 342 µs, analyzed
around the optimal working point of the Ramsey fringe (i.e. around zmax). We find that the
sensitivity increases for larger distances between the employed lattice sites and is below the
standard quantum limit (two detectors with N/2 atoms, V = 1) for all distances. The devia-
tion from the expected linear increase is due to the decreasing atom number at the edges of the
cloud, which leads to larger fluctuations in δzmax corresponding to σzmax ∝ 1/Nleft + 1/Nright

and thus reduces the differential field sensitivity.
We can increase the magnetic field sensitivity of the two detectors by summing the atom num-
bers of several lattice sites. The baseline length d, calculated using Eq. 7.14, increases with
the number of summed sites, and so does the gradiometric sensitivity. One has to keep in mind
that the maximum attainable baseline length d for the summed ensemble is smaller than in the
case of single lattice sites. Still, the gain in magnetic field sensitivity overcompensates this
and yields a better sensitivity for the sum of many BECs in comparison to the analysis of two
single lattice sites at the edges of the array, as can be seen in Fig. 7.9.
As the squeezing is scalable up to the full ensemble size, we find a performance beyond the
standard quantum limit for all summing sizes. Optimal sensitivity is attained if we divide the
array in two parts and sum over all the sites in both halves, yielding σgrad = 12(2) pT/µm
with a resolution of 50 µm for a single experimental run. Operating at the best attainable spa-
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Figure 7.9.: Gradiometric sensitivity for tint = 342 µs. In the relative analysis of sin-
gle lattice sites (triangles), the sensitivity for magnetic field gradients increases
with baseline length d, and surpasses the corresponding classical limit (SQL,
upper dashed line) at all distances. The deviation from the expected linear be-
havior at large d is caused by the decreasing atom number toward the edges of
the array. Summing over several adjacent sites further increases the gradient
sensitivity (squares) at the expense of degraded spatial resolution for the indi-
vidual sensors. The summed ensembles also beat the corresponding standard
quantum limit (lower dashed line). We find an optimal gradient sensitivity of
σgrad = 12(2) pT/µm when all lattice sites are employed.

tial resolution of 5.5 µm using individual lattice sites, we achieve a single-shot sensitivity of
310 pT/µm.
This sensitivity is on a competitive level with other gradiometers operating at this length scale,
which achieved for example 20 pT/µm with a spatial resolution of 50 µm in a cold atom gra-
diometer [142], or σgrad ≈ 400 pT/µm and a resolution of 3 µm with ultracold atoms [137].

7.4.2. Measurement of the Magnetic Field Gradient in our Setup

As shown in the previous paragraphs, the differential Ramsey technique allows the precise
determination of the gradient of a static magnetic field in our system. From the differential
fringes shown in Fig. 7.9, we can directly extract the strength of these gradients by use of
Equation 7.12. Employing the full array, we find an average value of ∂B

∂x
= 19.6(6) pT/µm.

This small residual gradient is due to magnetic materials in the surroundings of the experi-
ment, such as an ion pump, which have been partially compensated by careful positioning of
permanent magnets in the vicinity of the science cell.
Note that these measurements are effectively vectorial measurements, as the large bias field
of 9.1 G strongly reduces the sensitivity of our magnetometer in the orthogonal directions
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Figure 7.10.: Magnetic field measurement at varying distances to the center of the array.
Evaluating the magnetic field at different positions of the cloud by referencing
the single lattice sites on the central well of the array, we do not observe signif-
icant deviations from a linear behavior. This indicates that higher order terms
are negligible over the length scale of our array. The absolute value of the field
changes by less than 20 µG over the full extension of the cloud.

and thus determines the sensitive axis. This is because the Ramsey sequence is sensitive to
the Zeeman shift of the atoms, which is proportional to the absolute value of the field |B| =√
B2
x +B2

y +B2
z . Assuming that the bias field is in z direction, i.e. B = (Bx, By, Bz) =

(0, 0, B0), we find that the absolute value of the field depends on the components of the gradi-
ents ∂Bi

∂x
in x direction (i.e. along the lattice) as

|B(x)| ≈ B0 +
∂Bz

∂x
x+

[(
∂By

∂x

)2

+
(
∂Bx

∂x

)2
]

2B0

x2. (7.15)

Components that are orthogonal to the bias field thus contribute only quadratically and are
suppressed by a factor of 2B0 compared to the gradient which is aligned with the offset field.
In our experiment, we do not observe a significant deviation from a linear behavior of the
measured field at varying distances (see Fig. 7.10). Note that in principle, the full vectorial
behavior can be mapped out by changing the direction of the bias field.

7.4.3. Beyond Differential Fringe Analysis: Ellipse Fitting

The extraction of the magnetic field gradient based on the differential analysis of the two
Ramsey fringes fails in the case of strong fluctuations of the underlying homogeneous bias
field. This is because such variations lead to shifts in the offset phase φmean and thus reduce
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Figure 7.11.: Elliptical fits for gradiometric evaluation. In principle, the gradiometric mea-
surement can be evaluated by fitting an ellipse to the interdependence of the two
sinusoidal signals zleft and zright. The data points and the corresponding fitted
ellipses are shown for interrogation times of tint = 143 µs (left panel) and 542 µs
(right panel), for which a small phase shift between the signals becomes apparent
by the deviation from the linear behavior (see inset without fit). In the current
working regime, the elliptical fits do not yield reliable results due the presence
of amplitude noise. This broadens the short axis of the ellipse, and thus leads to
a smaller eccentricity of the fitted ellipse and an overestimation of the acquired
phase [143]. Note that the long axis of the ellipse remains constant for the longer
interrogation time, which indicates that the loss of fringe contrast is solely due
to dephasing.

the visibility V of the fringes. In the extreme case that the fluctuations of φmean are so strong
that the phase is shifted over the full oscillation period, the resulting signal in δz for many
repetitions of the experiment vanishes. However, the correlations between the measurements
of the two parts of the cloud still exist, but cannot be extracted with this differential method.
An alternative, well-established approach for gradiometric phase estimation in the presence
of large common-mode fluctuations is the so-called ellipse-fitting method [143], which was
introduced in the context of gravity gradiometry in the group of Mark Kasevich.
The ellipse-fitting method relies on the elliptic relationship of the two sinusoidal signals zleft

and zright. Plotting the results of zleft for many realizations against the corresponding outcome
for zright yields an ellipse whose eccentricity is related to the phase shift δφ between the two
signals. In the case of δφ = 0, this collapses onto a straight line. Quantitatively, the relative
phase can be extracted using an elliptical fit of the form

A · z2
right +B · zleftzright + C · z2

left +D · zright + E · zleft + F = 0 (7.16)
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and using δφ = arccos(−B/2
√
AC) [143]. In contrast to the differential fringe analysis, this

method requires multiple shots for evaluation and is typically applied after several hundreds
of measurements.
Fig. 7.11 shows the elliptical shapes obtained from our data for interrogation times of tint =
143 and 542 µs. As we work in the limit of small phase differences, the data points almost
collapse onto a line and show a deviation only for larger interrogation times. The length of
the long axis of the ellipse remains constant, indicating that the decrease of the Ramsey fringe
visibility at longer evolution times is solely due to the dephasing caused by common mode
fluctuations, as also indicated in Fig. 7.6.
However, as our gradiometer operates in the regime of small phase shifts δφ ≈ 0, the ellipse
fitting routine does not yield reliable results due to the presence of amplitude noise [143],
which is in our case mainly caused by the projection noise of the samples. This amplitude
noise broadens the short axis of the ellipse and thus leads to an overestimation of the acquired
phase. Also, the elongated nature of the squeezed states leads to quantum enhancement in
only in a specific range of phases of the Ramsey fringes. As the ellipse fitting method requires
sampling over many phases, quantum advantage is most likely lost during this process. Thus,
this alternative approach can in principle be employed in our setup even for interrogation
times where the fringe visibility is strongly reduced by common mode fluctuations of the bias
field. However, it is not reliable for the currently employed parameters that yield small phase
shifts, and cannot straight-forwardly exploit the full quantum advantage that we find with the
differential fringe method.
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In this thesis, we have demonstrated a scheme for scaling the atom number of spin squeezed
states in Bose-Einstein condensates to macroscopic system sizes. In addition, we have shown
that this larger quantum resource can be applied for high-precision magnetometry by swap-
ping the population to different internal levels of the atoms.

We experimentally studied two different diabatic schemes for the generation of highly en-
tangled spin squeezed states in the internal levels of an interacting binary Bose-Einstein con-
densate in a single spatial mode. An experimental and theoretical analysis was presented for
both the temporal evolution and the atom number dependence of the well-established one-axis
twisting scheme and also for a new method exploiting an unstable fixed point in the system’s
classical phase space, the bifurcation squeezing scheme. We could show that both scenarios
allow the generation of spin squeezed states containing a few hundred atoms. Under optimal
conditions, we found a fluctuation suppression of more than 7 dB with little dependence on
the atom number. This is an important prerequisite for our scaling procedure in the presence
of atom number inhomogeneities.

Our scheme for scaling up the atom number employs an array of up to 30 independently
squeezed small condensates, which we prepare by use of a 1D lattice. This method allows
increasing the number of atoms and maintaining the well-controlled generation scenario on
the single lattice sites at moderate densities at the same time, avoiding enhanced losses or un-
controlled multi-mode dynamics.
The upscaling was demonstrated for both squeezing schemes and yielded number squeezing
of up to ξ2

N = −3.3(4) dB for 104 particles using bifurcation squeezing, and ξ2
N = −1.5(6) dB

with the one-axis twisting scenario. The limiting factor for the scalability of number squeez-
ing, which was extracted from the fluctuations of repeated measurements, was shown to be
phase noise resulting from technical fluctuations that were mainly caused by the residual jitter
of the magnetic bias field. Our analysis indicates that the influence of technical noise sources
can be further suppressed by use of an optimized spin-echo sequence that accounts for the
changes in the rotation angle, which are caused by the inherent nonlinearity during the pulse.
To get direct access to the quantum fluctuations of the states, we introduced a differential
analysis which quantifies the relative fluctuations between two independent parts of the BEC
array. This method is insensitive to technical fluctuations of homogeneous fields, and thus di-
rectly reveals the underlying quantum resources of the state. Taking into account the visibility
that can be attained in an interferometric measurement, the corresponding relative squeez-
ing parameter determines the sensitivity of a gradiometric measurement. For our upscaled
resource, we found ξ2

rel = −5.3(5) dB of relative squeezing and a visibility of V = 0.95. With-
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out subtraction of detection noise, this resulted in metrologically relevant spin squeezing of
ξ2

S = −3.8(5) dB, which indicates the directly employable quantum resource of the full 1D
array.

This applicability was finally demonstrated with the implementation of a magnetic gra-
diometer operating beyond the classical precision limit. In the employed scheme, the crucial
step was the transfer of the squeezed states to a different set of hyperfine levels in the ground
state manifold of Rubidium. The magnetometer is based on a modified Ramsey sequence that
exploits the quantum resource of the squeezed states, and combines a spatial resolution of
down to 5.5 µm with a high magnetic field sensitivity. It might thus improve magnetic field
microscopy, which can for example be employed for surface characterization and flow patterns
in solid state devices [114].

The sensitivity of our device might be further increased by extending the lattice geome-
try to two or even three dimensions, increasing the number of squeezed atoms by orders of
magnitude. Additionally, a reduction of the technical fluctuations should allow enlarging the
interrogation times to hundreds of milliseconds, until the residual nonlinearity of the transition
comes into play.
Going further, the experimental demonstration of state swapping with a squeezed ensemble
opens up new possibilities for applications, as the quantum resource can in principle be trans-
ferred to arbitrary other levels. Each set of levels is most sensitive to a specific quantity –
for the chosen levels |a〉 and |c〉, this was the static magnetic field. Other levels which are
insensitive to magnetic fields can be used for the detection of light shifts or for the imple-
mentation of spin squeezed atomic clocks [57], even though one has to keep in mind that the
large collisional shifts make Bose-Einstein condensates a rather unlikely system for an accu-
rate high-performance clock. Transfer to motional states of the BEC could be implemented
by use of Raman beam splitters for state swapping. These spin squeezed motional states could
be employed for the precise measurement of external forces, such as gravitation and other
accelerations, using atom interferometry [55, 54, 53, 8]. The enhanced sensitivity of such
measurements might enable improved precision tests of general relativity [112] or the detec-
tion of gravitational waves [111].

Apart from the practical applicability of these methods for generating large entangled ul-
tracold ensembles, the BEC array with many individually entangled subsystems and tunable
inter-site interaction is also ideally suited for the investigation of other fundamental questions.
In the single-mode situation of the individual sites, further studies of the bifurcated system
could be able to reveal a divergence in the density of states and consequently yield deeper
insights into the physics of excited state quantum phase transitions [144]. In the limit of van-
ishing potential barriers, the instability of the resulting quasi one-dimensional system and the
connected quantum phase transition offer prospects for accessing the role of entanglement in
quantum phase transitions [145, 146].
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For a two-well system, there are proposals to generate EPR entanglement by combining
internal and external squeezing procedures [147, 148, 149]. Studies employing the full array
of BECs which are independently entangled in the internal degree of freedom should allow
investigations of the spread of quantum correlations [150, 151] in the continuous variable
limit. This experimental system could thus provide a basis for addressing a multitude of
exciting questions in the future, both from the fundamental physics perspective and in terms
of practical applications.
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A. Calculation of the Magnetic
Sensitivities
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Figure A.1.: Magnetic field dependent energy shifts for 87Rb.. The magnetic field depen-
dent energy shifts are calculated by use of the Breit-Rabi formula with the pa-
rameters from table A.1 for the F = 1 (left) and the F = 2 (right) hyperfine
manifolds of the ground state of 87Rb. The linear shifts for the same magnetic
quantum number mF are opposite for F = 1 and F = 2. For obtaining the mag-
netic sensitivities on the two-photon transition (between |a〉 = |F = 1,mF = 1〉
and |b〉 = |2,−1〉, red dotted arrow) and during the interferometric sequence (be-
tween |a〉 and |c〉 = |1,−1〉, blue dotted arrow), we calculate the derivative of the
corresponding frequency shifts on these transitions.

The magnetic field dependence for the energies of the hyperfine levels of the electronic
ground state of 87Rb can be calculated using the Breit-Rabi formula [152]. For Rubidium, this
is given by

EF,mF
(B) = gImFµBB + (−1)F · Ahfs

√
1 +mFx+ x2 (A.1)

where Ahfs denotes the hyperfine splitting of the different substates F , mF is the magnetic
quantum number, gI is the nuclear g factor, µB is the Bohr magneton, B is the magnetic field
and x = µBB · (gJ − gI)/(2Ahfs). Here, gJ denotes the fine structure Landé g-factor.

111



A. Calculation of the Magnetic Sensitivities

0 5 10
0

0.02

0.04

0.06

0.08

B field (G)

f B
(M

H
z)

0 5 10

4

6

8

10

x 10
−3

B field (G)

S
 (

M
H

z/
G

)

|1, -1〉 ↔ |1, +1〉

|1, +1〉 ↔ |2, -1〉

0 5 10
0

5

10

15

B field (G)

f B
(M

H
z)

0 5 10

1.40471

1.40472

1.40473

1.40474

B field (G)

S
 (

M
H

z/
G

)

Figure A.2.: Magnetic field sensitivity S. The magnetic field sensitivity can be obtained by
calculating the frequency shifts on a chosen transition (left panels) and linearizing
this shift with a derivative (right panels). This is done for our two-photon transi-
tion between |a〉 = |1, 1〉 and |b〉 = |2,−1〉 (upper panel) and the levels used dur-
ing the magnetometry sequence, |a〉 and |c〉 = |1,−1〉. The dotted lines indicate
the working field of 9.12 G, where we find a sensitivity of Sab = 10.654 kHz/G
for the two-photon transition and S = 1.404715 MHz/G for the levels used in the
Ramsey magnetometer.

Fig. A.1 shows the magnetic field dependence of all Zeeman sublevels in the ground state,
calculated with the parameters stated in Table A.1. The linear shifts of the magnetic sublevels
in the F = 2 manifold are in opposite direction compared to the dependence of the F = 1
manifold.
For our experiments, we are especially interested in the sensitivities of two sets of hyperfine
states: The two-photon transition between the levels |a〉 = |F = 1,mF = 1〉 and |b〉 =
|2,−1〉 (marked in red), which both have the same linear Zeeman shift, and the levels |a〉 and
|c〉 = |1,−1〉 which are employed in the magnetometry sequence (marked in blue). The shifts
of the transition frequencies for different magnetic fields, obtained from the difference of the
Breit-Rabi results, are shown in Fig. A.2, along with the corresponding linearized magnetic
sensitivities S. As the levels |a〉 and |b〉 only shift quadratically, we find for a field of 9.12 G
a magnetic sensitivity of Sab = 0.010654 MHz/G. The shifts are much larger for the levels |a〉
and |c〉 which are employed in the magnetometry sequence, as their linear shift is in opposite
direction. Here, the magnetic sensitivity at 9.12 G is found to be S = 1.404715 MHz/G.
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Parameter name Value
µB 1.399 624 MHz/G [153]
gI −0.000 995 141 4 [154]
gJ 2.002 331 [155]
AHFS

1
2
· 6834.682610 904 29 MHz [156]

Table A.1.: List of constants that were employed for the calculation of the magnetic field
sensitivity.
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B. Exact Calculation of Gradiometric
Sensitivity from Two Ramsey
Fringes

In the following, we will give a derivation of the exact expression for the gradiometric sen-
sitivity without the assumptions of equal population imbalances z1 = z2 = 0 and visibilities
V1 = V2. We will start with the sensitivity calculation of a single Ramsey fringe. In this case,
for a Ramsey fringe with visibility V1, we find a sinusoidal connection between imbalance z1

and the corresponding phase φ1

z1 = V1sin(φ1). (B.1)

The phase φ1 can thus be estimated by inversion of Eq. B.1, yielding

φ1 = arcsin
(
z1

V1

)
. (B.2)

Taking into account the projection noise Var(z1), we find the phase sensitivity by error propa-
gation of Eq. B.2, yielding

Var(φ1) =

(
∂φ1

∂z1

)2

· Var(z1) =
1

V2
1 − z2

1

· Var(z1), (B.3)

where we made use of the identity ∂
∂x

arcsin
(
x
y

)
= 1

y
√

1−x2/y2
.

We can proceed analogously in the case of differential phase estimation from two fringes z1 =
V1sin(φ1) and z2 = V2sin(φ2), where we want to estimate the differential phase δφ = φ2− φ1

from the difference in the population imbalances δz and the imbalance z1. We can obtain the
differential phase by inverting identity

δz = V2sin(φ1 + δφ)− V1sin(φ1), (B.4)

yielding

δφ = arcsin
(
δz − z1

V2

)
− arcsin

(
z1

V1

)
. (B.5)
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The full expression for the differential phase sensitivity is then obtained from error propagation
of Eq. B.5 in respect to δz and z1. For the first part, we find(

∂δφ

∂δz

)2

· Var(δz) =
1

V2
2 − (δz − z1)2

· Var(δz), (B.6)

whereas the second term yields(
∂δφ

∂z1

)2

· Var(z1) =

(
1√

V2
2 − (z1 − δz)2

− 1√
V2

1 − z2
1

)2

· Var(z1). (B.7)

Thus, the complete expression for the differential phase sensitivity is given by

Var(δφ) =
1

V2
2 − (δz − z1)2

· Var(δz) +

(
1√

V2
2 − (z1 − δz)2

− 1√
V2

1 − z2
1

)2

· Var(z1).

(B.8)
Note that for z1 = δz = 0 and V1 = V2, the second term vanishes, and Eq. B.8 reduces to the
simple form

Var(δφ) =
Var(δz)

V2
= ξ2

S · Var(δz)class. (B.9)

This shows that for differential phase estimation, the classical sensitivity is increased by the
relative spin squeezing factor ξS, in analogy to the direct spin squeezing analysis with a single
Ramsey fringe.
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