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We experimentally demonstrate an atom number detector capable of simultaneous detection of two
mesoscopic ensembles with single-atom resolution. Such a sensitivity is a prerequisite for quantum
metrology at a precision approaching the Heisenberg limit. Our system is based on fluorescence
detection of atoms in a novel hybrid trap in which a dipole barrier divides a magneto-optical trap
into two separated wells. We introduce a noise model describing the various sources contributing to
the measurement error and report a limit of up to 500 atoms for single-atom resolution in the atom
number difference.

PACS numbers: 42.50.-p, 37.10.Gh, 37.25.+k

INTRODUCTION

Single-particle resolution in atom number detection,
i. e. atom counting, represents the ultimate limit in de-
tector efficiency. This level of resolution is needed for
observing a variety of quantum effects, and, perhaps
more so, for using those quantum effects in areas such
as quantum-enhanced metrology [1] and quantum simula-
tion. A paradigm example is metrology at the Heisenberg
limit, where the phase precision in a measurement withN
atoms is given by ∆φ ∼ 1/N . A general model of such a
measurement, describing the most common schemes such
as Ramsey spectroscopy and spatial atom interferometry,
is a coupled two-mode system. Here, N atoms enter a
beam splitter, populating the two modes, evolve through
the two arms of the interferometer, then recombine at
the second beamsplitter, producing two output modes
where the atom number is detected independently. The
ideal detector, enabling phase resolution at the Heisen-
berg limit, determines the exact atom number in each
mode simultaneously. The atom number difference of the
two modes is relevant for standard interferometry and the
sum for SU(1,1) interferometers [2]. For mesoscopic en-
sembles of hundreds of atoms, such a capability has not
been realized experimentally.

In recent years, spin-squeezing and entanglement in
ensembles of neutral atoms has been demonstrated [3–6],
as well as the resulting improvement of phase sensitivity
in atom interferometry [7–9]. The techniques to produce
and analyze these states continue to be developed toward
greater entanglement, higher atom numbers, and ulti-
mately toward real applications. In the majority of these
demonstration experiments, detection noise is already a
limiting factor, and the true quantum resource provided
must be inferred based on calibrating this technical noise
out of the measurement. When using the atoms as quan-
tum sensors in a metrological setting, noise subtraction is
not possible, because technical noise is indistinguishable
from quantum projection noise. As the techniques for
producing entangled states of atoms improve and applica-

tions are developed for quantum enhanced sensors, more
demand will be placed on detector precision. Here, we
demonstrate a method of simultaneous fluorescence de-
tection of two spatially-separated atomic ensembles with
single-atom resolution, suitable for reaching Heisenberg-
limited interferometry with many hundreds of atoms.

Single-atom resolution has been demonstrated previ-
ously via fluorescence detection of small atom numbers
in experiments with magneto-optical traps [10–13] and
optical dipole traps [14–16] as well as freely propagat-
ing atoms [17, 18]. Single-atom sensitivity has also been
achieved by monitoring light either reflected or transmit-
ted through an optical cavity [19–21]. Detecting larger
numbers of atoms at the single-atom level is more diffi-
cult for several reasons. First, the higher signal levels,
are accompanied by higher noise. For example in fluores-
cence detection of N atoms, photon shot noise, which
must remain less than the signal from a single atom,
scales with

√
N . Second, the probability of losing a sin-

gle atom just before or during detection scales with N .
In fact, interactions between atoms often lead to worse
scaling of the loss with atom number. Nevertheless, im-
pressive atom number resolution has been achieved in
experiments with mesoscopic atom numbers. A common
detection technique for Bose-condensed atoms is absorp-
tion imaging [22], which has been optimized [23] to a res-
olution of about four atoms. Extremely high sensitivity
in fluorescence detection of many atoms has been shown
by spatially resolving each atom in an optical lattice [24–
26]. While these systems, with high photon-collection
efficiency and long lifetimes can image and count indi-
vidual atoms in large ensembles, they do not determine
the exact atom number. Due to light-assisted collisions in
the strongly-confining lattice sites, all atom pairs are lost
immediately at the outset of the fluorescence detection.
Another promising approach is cavity based detection of
mesoscopic samples [27], which has shown resolution at
the single-atom sensitivity level. Here, however, inhomo-
geneous coupling of the standing-wave light to the atoms
has prevented detection of the exact atom number.
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Our approach relies on fluorescence detection in a hy-
brid magneto-optical trap split by a dipole-barrier. We
have previously shown single-atom resolution in a con-
ventional MOT for as many as 1200 atoms [28]. In such
a system, the deep trapping potential, enabling high flu-
orescence rates and long lifetimes, can allow for mea-
surements with very high signal-to-noise ratio. Here, we
extend this idea to the problem of simultaneous detection
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FIG. 1. (Color online) Fluorescence imaging in a split
magneto-optical trap. (a) A blue-detuned light-sheet divides
the MOT into two separate regions. The level scheme shows
the laser cooling detuning δ and the light-sheet detuning ∆.
The two light sources are alternately pulsed. (b) The his-
tograms of the individual fluorescence signals from each site of
the split MOT reveal a very clear separation of the calibrated
atom numbers N1 and N2. (c) At about half the maximum
barrier height the individual time traces show anti-correlated
hopping events, while the total atom number changes consid-
erably less.

of two ensembles. These ensembles could be derived, for
example, by Stern-Gerlach separation of a two compo-
nent quantum gas, or directly as the output of an atom-
interferometer in spatial degrees of freedom. We show
that the lifetime and scattering rates in each of the two
zones is sufficient for single-atom resolution in ensembles
of hundreds of atoms. In what follows, we first describe
our implementation of the hybrid atom trap. We then
review the sources of noise that limit the precision of flu-
orescence measurements and present a detailed analysis
of the noise observed in our system.

THE SPLIT MAGNETO-OPTICAL TRAP

We simultaneously detect the individual atom num-
bers of two atomic ensembles in a novel hybrid trap, as
shown in Fig. 1(a). A blue-detuned focused light-sheet
is superimposed on a 87Rb MOT to create a potential
barrier between the two sites of the resulting double-well
system. Once the atoms are loaded into the split MOT,
we perform fluorescence imaging on the D2 line to extract
the atom number. In Fig. 1(b) discrete peaks in the two
fluorescence histograms demonstrate single-atom resolu-
tion for the two wells. By properly adjusting the height
of the barrier between the two wells, we can clearly ob-
serve hopping events, Fig. 1(c), where a single atom has
gained enough energy to surmount the barrier resulting
in an anti-correlated step in the fluorescence between the
two sites.

In our trap, the MOT laser beams are red-detuned by
a frequency δ, nearly equal to the transition linewidth.
The precise determination of the atom numbers in each
site requires a large potential barrier that suppresses par-
ticle exchange. For a given laser power a higher poten-
tial barrier height can be achieved by tuning the fre-
quency of the light-sheet closer to resonance. We chose
the D1 transition between 52S1/2 and 52P1/2 at 794 nm
for the light-sheet and employ a narrowband optical fil-
ter at 780 nm in order to avoid stray light on the de-
tected images. The natural linewidth of this transition is
Γ = 2π×5.7 MHz and the saturation intensity, assuming
π-polarisation, is Isat = 44.86 W/m2. The waists of the
light-sheet’s elliptical cross section are w1 = 6 µm and
w2 = 400 µm and the laser power is near 200 mW. The
corresponding Rabi frequency is Ω = Γ

√
I/2Isat, where

I is the light-sheet intensity at the peak of the poten-
tial. If we assume |∆| � Ω, where ∆ is the detuning
of the light-sheet, the barrier height can be expressed as
Ud = ~Ω2/4∆. With a detuning of ∆ = 2π× 13 GHz, by
taking into account the transverse profile of the MOT,
we expect an effective barrier height near 13 mK, much
larger than the MOT temperature of ∼ 80 µK. Scattering
from the light-sheet can happen at a maximum rate of
Γsc = ΓUd/~∆ ≈ 2π × 0.2 MHz for an atom at the cen-
ter of the dipole barrier, although the mean scattering



3

rate is much lower, since the atoms are repelled from the
position of highest intensity. In any case, the scattering
rate Γsc is considerably smaller than the scattering rate
Rsc from the MOT light, which is close to saturation.

The light-sheet, an elliptical Gaussian beam with a
large aspect ratio, is generated using an optical setup that
allows for the easy optimization of the aspect ratio over
a large range. A circular Gaussian beam with a waist
of w0 = 6 mm is focused using an achromatic doublet
with a focal length of f1 = 100 mm. Without any beam
shaping, we measure a resulting radially symmetric waist
of w1 = 6.1(4) µm. In order to produce an elliptically
shaped beam in the focal plane we use two cylindrical
lenses of focal lengths f2 = 200 mm and −f2, separated
by a distance d and placed before the final focussing lens.
This results in an axial offset between the positions of
horizontal and vertical foci, giving a dipole barrier with
adjustable aspect ratio at the position of the atoms. The
larger waist, given by w2 ' dw0f1/f

2
2 , can be adjusted

by varying d. Limited laser power favors a small waist
in order to increase the intensity, while a larger waist is
necessary to realize a high homogeneous barrier over the
whole MOT size to prevent unwanted hopping. With this
in mind, we chose a horizontal waist of w2 = 400 µm as
the final configuration.

The Stark shift induced by the light-sheet increases the
energy of the ground state, thereby disturbing Doppler
cooling, and we observe a reduced lifetime when both
beams are on at the same time. To avoid this, the
light-sheet beam and the MOT beams are pulsed alter-
nately using acousto-optic modulators at a frequency of
125 kHz, which is faster than the characteristic motional
frequencies but slow compared to the lifetime of the ex-
cited state. Pulsing the lasers in this way produces an ef-
fective trapping potential equivalent to the time-average
over one pulse cycle. While this reduces the maximum
barrier height and the observed fluorescence rate by the
respective duty-cycles of the dipole barrier and the MOT,
it is essential for reaching trap lifetimes near those of the
MOT alone.

The imaging system used in the experiment is designed
to resolve the two ensembles over a depth of field equal
to the size of the MOT. Our objective has a numerical
aperture of 0.23, and we use a magnification of 5.17(7).
We estimate the depth of field to be 60 µm. The resolu-
tion of the imaging system was measured by fitting an
Airy function to the intensity profile of a test image and
equals 4.3 µm in object space.

NOISE LIMITS IN FLUORESCENCE IMAGING

In measurements of the atom number N , the two
limiting contributions to the measurement uncertainty
are fluorescence noise and atom loss. While a long in-
tegration time t reduces the fluorescence noise, it in-

FIG. 2. (Color online) The atoms reside at the two minima of
the dissipative double-well potential. In addition to thermal
loss (τ1, τ2) and collisional loss (β1, β2), particle exchange
across the potential barrier of height Ud can be initiated by
thermal activation (τ12, τ21) and collisional activation (β12,
β21).

creases the probability of atom loss during the detec-
tion. The optimal time minimizes the signal variance
σ2 = N/ηRsct + Nt/2τ , where η is the detection effi-
ciency, Rsc the photon scattering rate and τ the trap life-
time. Other possible noise sources include fluorescence
fluctuations due to noise in the excitation laser and loss
due to light-assisted collisions. Assuming Gaussian white
noise, the first contributes to the variance as (αN)2/t,
where α is a measure for the stability of the atom fluo-
rescence. The second contribution takes the form βN2t,
where β is the rate of light-assisted collisions. Assum-
ing uncorrelated noise sources, the total signal variance
is then given by [28]

σ2 =
N

ηRsc
t−1 + (αN)2t−1 +

N

2τ
t+ βN2t, (1)

where we have assumed that t � τ and t � βN , condi-
tions that are both valid in all our measurements. To
achieve the best measurement fidelity, defined as the
probability of determining the exact atom number N
present at the beginning of the detection, one has to ac-
count for the mean atom loss in the experiment during
the detection time t. Given a detected number N ′ the
atom numberN is inferred byN = N ′(1+t/2τ+βN ′t/2).

NOISE ANALYSIS FOR THE SPLIT MOT

For the simultaneous detection of two ensembles the
split MOT is imaged onto a low-noise CCD camera and
the signal is integrated for typically 100 ms. Two re-
gions of interest are used to determine the individual flu-
orescence signals. An example of observed histograms
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for small numbers of atoms, N1 and N2, are shown in
Fig. 1(b). For this data, the number of counts per
atom, which depends on the overall detection efficiency
and may vary with the alignment, is measured to be
62 900(200) s−1 for site 1 and 63 900(100) s−1 for site 2.
We have confirmed the linearity of the camera signal at
the level of 0.02% up to hundreds of atoms. Example
time traces for an integration time of 400 ms are shown
in Fig. 1(c).

In order to quantify the detection noise for mesoscopic
particle numbers we analyse the two-sample variance
Var(Sn+1 − Sn)/2, where Sn and Sn+1 are consecutively
integrated signals. The noise model for the total atom
number, given in Eq. 1, needs to be extended to the si-
multaneous measurement of two individual atom num-
bers, taking into account particle exchange between the
sites. We now consider the number of particles N1 and
N2 in site 1 and 2, respectively, and quantify the rates
of loss due to collisions with the background gas by the
lifetimes τ1 and τ2. Loss due to light-assisted collisions
is described by the rates β1 and β2. Additionally, atoms
can hop from one site to the other, either by thermal
activation, with mean duration between hopping events
denoted as τ12 and τ21, or in the process of a light-assisted
collision (β12 and β21). All the processes are illustrated
in Fig. 2.

The change in the atom numbers N1 and N2 can be
described by(

Ṅ1

Ṅ2

)
=

(
−(τ−11 + τ−112 ) τ−121

τ−112 −(τ−12 + τ−121 )

)(
N1

N2

)
+

(
−(β1 + β12) β21

β12 −(β2 + β21)

)(
N2

1

N2
2

)
, (2)

where the first and second terms account for one- and
two-body dynamics, respectively. In analogy to Eq. 1
the variances in site 1 and 2 can be expressed as

σ2
1 =

N1

ηRsc
t−1 + (αN1)2t−1 +

N1

2τ1
t+

N1

2τ12
t+

N2

2τ21
t

+ β1N
2
1 t+ β12N

2
1 t+ β21N

2
2 t (3)

and

σ2
2 =

N2

ηRsc
t−1 + (αN2)2t−1 +

N2

2τ2
t+

N2

2τ21
t+

N1

2τ12
t

+ β2N
2
2 t+ β21N

2
2 t+ β12N

2
1 t, (4)

where we have assumed that the photon shot noise pa-
rameter ηRsc and the fluorescence noise parameter α are
independent of the site. We see that the variance in one
site depends on the atom number in the adjacent one.
In order to simplify the model and extract the relevant
experimental parameters, we consider the case in which
N1 ≈ N2. Furthermore, we introduce a noise term γt−1

into our model. This term, independent of the atom num-
ber, quantifies noise due to stray light, which averages

down with increasing integration time. For i = 1, 2 we
obtain

σ2
i =

Ni

ηRsc
t−1 + γt−1 + (αNi)

2t−1 +
Ni

2τ̃i
t+ β̃iN

2
i t, (5)

with τ̃−1i = τ−1i + τ−112 + τ−121 and β̃i = βi + β12 + β21.
Based on an independent calibration, for this data, we
fix ηRsc = 58 496 s−1 and fit the noise model to the ex-
perimentally obtained two-sample variance Var(Sn+1 −
Sn)/2. The fit is performed simultaneously for a range
of four different integration times and ten different mean
atom numbers. Fig. 3(a) shows a representation of this
fit for a fixed atom number of 450. We find an optimal
integration time between 80 ms and 120 ms. In Fig. 3(b)
we plot the variance as a function of the atom number
for a fixed integration time of 120 ms in order to find the
single-particle resolution limit σ2

i = 1. Since the atom
numbers N1 and N2 were kept nearly equal in the ex-
periment, the noise is similar in both sites and we find
a limit for single-particle resolved detection of up to 470
atoms in each site.

For many measurement scenarios we will be interested
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of simultaneous fits to a range of integration times and atom
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in each site reaches the single-particle resolution limit σ2
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at 470 atoms.
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TABLE I. Fit parameters for the different noise models.

Noise model γ [s] α [s1/2] τ̃ [s] β̃ [s−1]

σ2
1 4.6(7) × 10−3 3.6(3) × 10−4 120(52) 1.4(7) × 10−5

σ2
2 7.6(12) × 10−3 4.1(4) × 10−4 110(67) 1.1(10) × 10−5

σ2
+ 1.2(2) × 10−2 2.6(2) × 10−4 120(59) 5(30) × 10−7

σ2
− 1.2(2) × 10−2 2.9(3) × 10−4 100(51) 1.2(5) × 10−5

in the total atom number, N = N1 + N2, and the atom
number difference, N1 −N2. For the total atom number
the noise model reads

σ2
+ =

N

ηRsc
t−1 + γ+t

−1 + (α+N)2t−1 +
N

2τ
t+ βN2t.

(6)

If we assume decay parameters τ ≡ τ1 ≈ τ2 and β ≡
β1 ≈ β2, as well as exchange parameters τex ≡ τ12 ≈ τ21
and βex ≡ β12 ≈ β21, we can express the total atom
number variance as σ2

+ = σ2
1 + σ2

2 + 2Cov(N) with the
atom covariance

Cov(N) ≡ −1

2

(
N

τex
+ βexN

2

)
t. (7)

The atom covariance is always negative, since particle
exchange events have an anti-correlated effect on N1 and
N2. This behavior can be observed in Fig. 1(c). The
variance of an atom number difference measurement can
be expressed as σ2

− = σ2
1 + σ2

2 − 2Cov(N). Both sum
and difference variances, as well as the sum of the indi-
vidual variances, are shown in Fig. 4. Since σ2

− is always
larger than σ2

+ due to noise from particle exchange, the
measurement of the atom number difference favours a
shorter integration time of 80 ms compared to the opti-
mal integration time of 120 ms for the sum measurement.
We find a single-particle resolution limit of σ2

+ = 1 for a
total atom number of 800 and σ2

− = 1 for 500 particles.
The detection performance can be expressed as a mea-
surement fidelity, defined as the probability of detecting
exactly the initial atom number. For N = 100, the fi-
delity of the sum measurement is 87.4%, while for the
difference measurement it is 87.3%. The reduced perfor-
mance compared to previous measurements in a single
MOT [28] is mainly due to increased fluorescence noise.

Table I shows the parameters obtained from the dif-
ferent noise models. Comparing the results for σ2

1 and
σ2
2 we find that, within the error of the measurement,
α is indeed independent of the site, as expected. The
same holds for the one-body parameter τ̃ and the two-
body parameter β̃. For the derivation of Eq. 7 we have
used γ+ = 2γ and

√
2α+ = α. This is confirmed by the

obtained fit parameters. For σ2
+ the one-body param-

eter τ̃ and coincides with the appropriate parameter in
σ2
i , corresponding to the lifetime of the trap. From this

we deduce that our maximum potential barrier height is
large enough, such that thermal hopping between the two
sites of the double-well is negligible, and the one-body
limitation is solely given by the loss from the trap. The
situation is different for dynamics due to light-assisted
collisions. From σ2

+ we obtain a two-body parameter

which is orders of magnitude smaller than the β̃ param-
eter in σ2

i and σ2
−, where hopping activated by collisions

dominates the loss. With the given barrier height we are
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total atom number of 500. (b) For an integration time of
120 ms, optimised for measuring the total atom number, we
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the individual variances (blue dashed line).
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in a regime in which thermal hopping between the sites
is strongly suppressed, however, light-assisted collisions,
due to their longer-ranged exponential energy distribu-
tion still contribute significantly.

CONCLUSION

In summary, we have shown simultaneous determina-
tion of the total atom number with single-atom reso-
lution in two spatially separated mesoscopic samples –
a prerequisite for achieving Heisenberg-limited interfer-
ometry. The hybrid trap, consisting of a dipole barrier
superimposed on a MOT is designed for a high fluores-
cence rate and long trap lifetime, enabling fluorescence
measurements with high signal-to-noise ratios. We use
a model that includes all known sources of noise. Fits
of this model to experimental noise measurements yield
a set of parameters describing the particle loss and ex-
change rates, both due to collisions with background
gas and light-assisted collisions, as well as fluorescence
noise parameters. By comparing fits for the two individ-
ual zones, the atom number sum and difference we find
these parameters are internally consistent and match sep-
arate calibrations where available. Independent of the
accuracy of the noise model, we have directly measured
a single-particle resolution limit for detecting the atom
number difference at a total of 500 atoms in the ensemble.

Since we have chosen a detection time that minimizes
the measured variance, the remaining noise is equally due
to fluorescence noise and atom loss. Both of these can in
principle be further reduced. In the case of fluorescence
noise we have not reached the photon shot noise limit,
so more careful stabilization of the laser frequency and
intensity may yield an improvement. We find that the
loss and exchange rates include important contributions
from both a linear loss process, presumably due to colli-
sions with background gas, and light-assisted collisions.
To significantly reduce the linear loss it would likely be
necessary to reduce the vacuum pressure in our chamber.
The light assisted collisions might be further reduced by
lowering the trap density.

Our general strategy of dividing a MOT into separate
zones using a dipole barrier can be applied in a straight-
forward way to different atomic species and more com-
plicated multi-zone trap geometries. For state-selective
detection of a two-component Bose gas, we plan to first
separate the two magnetic sublevels with a Stern-Gerlach
pulse, and load them into the two trap zones for fluo-
rescence detection. If this can be performed with high
fidelity, our system could be used to significantly re-
duce detection noise in existing spin-squeezing experi-
ments [29]. An exact atom counter for the two spin states
will allow for the realization of an atomic analog to the
N -particle Hong-Ou-Mandel experiment [30] from quan-
tum optics.
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Science 344, 180 (2014).

[7] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K.
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