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Bose-Einstein Kondensate im Doppelmuldenpotential:

Eine Möglichkeit der Quanten-Interferometrie

Im Rahmen dieser Arbeit wurde eine neue optische Dipolfalle für die BEC Apparatur
unserer Gruppe geplant und aufgebaut. Der Fallenlaser hat einen minimalen Radius von
5.15µm und ermöglicht deshalb einen starken Einschluß der Atome. Die Konzeption
und der Aufbau erfolgten derart, dass der erreichbare Parameterbereich des bereits ex-
istierenden Doppelmuldenpotentials erweitert wurde. Ziel dabei war es das Fock-Regime
zu erreichen. In diesem sind die Atomzahlschwankungen klein und es sollte möglich
sein ein Wiederkehren der relativen Phase zwischen den beiden Mulden des Potentials
zu beobachten. Dies schließt die Möglichkeit ein, unter das statistische Limit (standard
quantum limit) der Schwankungen zu gehen und würde neue Möglichkeiten für hoch-
genaue interferometrische Experimente eröffnen. Infolge des starken Einschlusses der
Falle werden hohe Atomdichten erreicht was zu einer hohen 3-Körper Verlustrate führt.
Es wird gezeigt das es durch diesen Verlustmechanismus möglich wird die Atomzahl im
Experiment sehr genau zu kontrollieren.

Bose-Einstein condensates in a double well potential:

A route to quantum interferometry

In this work a new dipole trap was designed and added to the BEC apparatus of our
group. The trapping beam has a tight focus of 5.15µm and therefore allows a strong
confinement. With this new trap, the accessible parameter range of our existing double
well system is expanded. The aim is to reach the Fock regime, where the relative atom
number fluctuations are small and a revival of the relative phase between both lattice sites
of the double well system should be observed. This includes the possibility to go beyond
the standard quantum limit and opens new prospects for high precision interferometry
experiments. Due to the strong confinement in the trap, high atomic densities can be
reached. This resulted in a strong 3-body decay of the sample. As will be shown in this
thesis, this loss mechanism allows to prepare a sample with a well defined atom number,
in principle better than shot noise.
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Chapter 1

Introduction

In the year 2001 the nobel prize for physics was awarded to Eric A. Cornell, Wolfgang
Ketterle and Carl E. Wieman “for the achievement of Bose-Einstein condensation in
dilute gases of alkali atoms, and for early fundamental studies of the properties of the
condensates” [1]. This nobel price was awarded to three of the four people who have
been the first to achieve a Bose-Einstein condensate (BEC) in the year 1995.

The effect of Bose-Einstein condensation was predicted by S. Bose [2] in 1924, who
devoted himself to the statistical description of the quanta of light. A. Einstein gener-
alized this idea in 1925 to a gas of noninteracting atoms [3] with an integer spin. After
the discovery of a superfluid phase in liquid helium by J. Allen and D. Misener [4], and
P. Kapitza [5] in 1938 it was F. London [6, 7] who connected this phenomenon with the
Bose-Einstein condensation. Only one month later L. Tisza [8] extended this model and
proposed a “two-fluid” model to explain the behavior of liquid helium. One phase is the
normal liquid and the second one is the superfluid fraction that consists of atoms which
fall into the ground state and undergo Bose-Einstein condensation. In 1941 L. Landau
[9] developed the first self-consistent theory of superfluidity.

On the experimental side it took until the 1970s for the first studies of dilute atomic
gases to be developed. They benefited from the new techniques, developed in atomic
physics, based on magnetic and optical trapping. This made it possible to achieve more
advanced cooling mechanisms. Because of its light mass, the first studies focused on
spin-polarized hydrogen to achieve Bose-Einstein condensation. It was first cooled in a
dilution refrigerator, then magnetically trapped and further cooled by evaporation. But
the BEC was not achieved. With the development of laser-based cooling mechanisms
for neutral atoms like laser cooling and magneto-optical trapping in the 1980s the focus
changed to the alkali atoms. They were well suited for those new techniques, since their
optical transitions are accessible with lasers and their internal energy structure allows
cooling to very low temperatures.

Combining different cooling techniques the groups of E. Cornell and C. Wieman
using rubidium-87 [10], W. Ketterle using sodium-23 [11] and R. Hulet using lithium-7
[12] succeeded in 1995 to create a Bose-Einstein condensate. BEC’s in other species
including spin-polarized hydrogen (1998 by D. Fried et. al [13]) followed a little later.
The observation of a BEC not only in momentum space, but also in real space opened
a completely new field of research. With this technique one has a system at hand with
which it is possible to study directly the quantum mechanical behavior of matter. As an
example in 1997 the first interference patterns of two freely expanding condensates was
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observed [14], which is a direct analog to Young’s double slit experiment.

Josephson Junction

One paradigm effect of quantum mechanics is the tunneling effect. It describes a particle
passing a barrier without having enough energy for this to succeed in a classical sense. Of
course, this only works if the barrier is sufficiently low, where in this context sufficiently
low is still high enough to retain a particle, only familiar with the classical physics. A
known example from solid state and condensed matter physics is the Josephson junction.
Extensive studies of this system have been carried out using two modes of superfluid
helium (see [15] for a review) or two superconductors, which are separated by a thin
isolator. In a BEC one can achieve such a system by inserting a barrier into the trap and
thus creating a double well system. With this, one can split a condensate into two and
ends up with a similar system as in the superconductor case. What all three systems
have in common is the fact, that the particles can tunnel through the barrier from one
side to the other. This is because the wave functions are not strictly localized on each
side of the barrier, but overlap in a small region inside the barrier leading to a tunneling
of the particles. Therefor the relative phase between both wave functions is a sensible
measure and can evolve in time by particles tunneling back and forth. This situation is
described by a weak link.

This effect was predicted by Brian D. Josephson in 1962 [16] . He studied the behavior
of two superconducting metals that are separated from each other by a barrier and
predicted a tunneling current through it, which consists of Cooper-pairs. Only one year
later this prediction was confirmed by P. Anderson and J. Rowell using a thin oxide layer
between two superconducting metals as a weak link [17]. In 2005 the first observation
of Josephson oscillations in a single Bose-Einstein Josephson junction was achieved in
our group using a double well potential [18]. As the Josephson tunneling translates a
phase difference between the two wells of a double well potential into an atom number
difference it is well suited to build an interferometer for BEC’s with this. Suppose a
BEC in each well of a double well potential. At sufficiently high barrier both will evolve
independently, since the tunneling between both is suppressed due to the high barrier.
Each of the BEC’s evolves and picks a phase. By lowering the barrier and according to
this allowing Josephson tunneling between both, the relative phase will be transcribed
to an atom number difference that can be detected by taking an image of the system.
This is the same principle as in an interferometer, where the phase difference between
both arms is transcribed into intensity differences.

Standard-Quantum-Limit

Hence a double well potential can also be used as an atom interferometer. This is in
principle the same as Young’s double slit experiment, except that in this case matter
waves, not light waves, do interfere.

The concept of matter waves is one of the consequences of quantum mechanics, which
was developed in the 1920s. At that time several problems arose that were not consistent
with the classical theory. One of these was the question if light is a wave or a stream of
particles. Up to that time the opinion that light is a wave was well established. Young’s
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double slit experiment and the effect of Fraunhofer diffraction were clear evidences for
this. With A. Einstein’s explanation of the photoelectric effect in 1905 problems with
this picture arose. Light seemed to have particle character. This was confirmed by the
discovery of the Compton effect in 1923. L. de Broglie proposed in 1924 the wave-particle
duality that states that all matter has a wavelength [19]. C. Davisson and L. Germer
[20] confirmed this in 1927 by measuring the diffraction of electrons from a crystal of
nickel. Before electrons were thought to be particles, because E. Rutherford showed that
it is possible to guide them through the vacuum from a cathode to an anode. Quantum
mechanics avoided this problem, by describing particles and waves with a (possibly
complex) wave function which is the probability distribution of the considered object.

This description also yields that two conjugate variables like position and momenta
(or in this case: atom number and phase) cannot be measured with arbitrarily high
accuracy, but are limited to a lower boundary given by Heisenberg’s uncertainty relation.
In an beam splitting procedure one is also limited by the statistics underlying this process.
Since the splitting of a beam into two is a Poissonian process, the uncertainty of the atom
number in each of the split arms is limited to the square route of the average number N .
This limit is denoted as the standard quantum limit (SQL) or shot-noise limit (SNL).
With a quantum mechanical interferometer one can even beat this limit and approach
the Heisenberg limit, which is 1/N [21]. This corresponds to the minimal achievable
uncertainty.

Contents of this Thesis

The present work is divided into two parts. In the first part (chapters 2 and 3) the
basic theory associated to our system is explained, in addition the apparatus and the
general experimental procedure to achieve a BEC is described. Chapter 2 deals with
the possibility to use a double well system as a quantum interferometer and it’s the-
oretical description using the two-mode model in two different approaches. These are
the Bose-Hubbard model, where the behavior of the system is described using creation
and annihilation operators and the Gross-Pitaevskii equation, a non-linear Schrödinger
equation that includes the interatomic interaction. This model is used in a mean field
description, where the interatomic interactions are modeled as an interaction between
one particle and an effective potential, given by all the other particles. Also the relevant
parameters to characterize the system depending on the trapping geometry in the outline
of the new dipole trap are presented. In chapter 3 a short description of the apparatus
and the steps to achieve a condensate are presented. The imaging setup and the way
how to deduce the atom number and the temperature is described.

The second part consists of chapters 4 and 5, where the first one deals with the
trapping properties of the new beam and the generated dipole trap. Also the optical
setup is presented. In chapter 5 the first measurement benefiting from the increased
confinement in the new dipole trap is presented. The three-body loss rate could be
increased and a loss measurement and its theoretical description is presented. At the
end of the thesis a conclusion and an outlook for further experimental work is presented.
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Chapter 2

BEC in a double well as a quantum
interferometer

With the precise control of systems of ultracold atoms it is possible to use the BEC as
a measurement tool for other physical quantities. A possible application of double well
systems would be the realization of an atomic gyroscope. This rotating interferometer
measures the frequency of rotation very precisely using two counter propagating beams.
Using this device with matter waves instead of photons can exceed it’s performance by
a factor of 104 as it is shown in [22, 23]. Also the phase sensitivity of a standard inter-
ferometer, which is limited to 1/

√
N with N denoting the number of particles counted,

can be surpassed by matter wave interferometers using non classical states as an input
to the interferometer [21].

Pure quantum effects of a double well potential should be accessible with BEC’s.
One example is the collapse and the revival of the relative phase between both arms of
the interferometer. In a classical system the relative phase would diffuse. At no time
after this process the phase would have a defined, non random value again.

In this chapter the reader will be introduced to a matter wave interferometer using
BEC’s in a double well potential. The aim is to get a good estimation of the atom number
in the wells and their relative phase. The theoretical background will be explained and
the timescale for the revival of the relative phase between both wells will be given for
our setup.

2.1 Quantum Interferometry

The double well system can be treated as an interferometer by writing the problem in
the following way, see fig. 2.1.

The atoms enter the interferometer with a wave function being normalized to the
atom number N . The first beam splitter splits the incident beam in two. Each of them
is reflected by a mirror and then both beams are overlapped again by a second beam
splitter. The wave function at each path is given in the sketch of the system given in fig.
2.1.

The signal detected by detector A can be derived by taking the absolute square of
the wave function at that point, giving the mean atom number which will be counted
there as a function of the difference of both path lengths to the detector la − lb.
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A

B

Figure 2.1: Sketch of a Mach-Zehnder interferometer where the wave functions at the appro-
priate positions are given. A and B are the detectors where the atoms are counted. We
assume that every reflection introduces a phase shift of π/2 for simplicity. ϕ1 and ϕ2

denote the phase shifts added by passing the beam splitters 1 and 2 respectively.

〈NA〉 =
|Ψ|2

2

∣∣∣(ei( 3π
2

+kla) + ei(ϕ1+ϕ2+π
2
+klb)

)∣∣∣2 (2.1)

=
|Ψ|2

2

(
2 + ei(π−ϕ1−ϕ2+k(la−lb)) + e−i(π−ϕ1−ϕ2+k(la−lb))

)
(2.2)

=
N

2
(2− 2 cos k(la − lb)) (2.3)

= N sin2 ϕab

2
(2.4)

Here the relative phase between both arms ϕab = k(la − lb) and the wave vector
k = 2π/λ with λ being the wavelength has been introduced and the phases added when
transmitting the beam splitters has been set to ϕ1 = π = ϕ2 for simplicity. It was also
used that the initial wave function is normalized to the total atom number N . Deriving
the signal on the second detector yields:

〈NB〉 = N cos2 ϕab

2
(2.5)

The uncertainty of the phase in terms of the uncertainty of the atom number mea-
surement can be written in the following way.

∆N =

∣∣∣∣∂N∂ϕ
∣∣∣∣∆ϕ (2.6)

Calculating the uncertainty of the atom number measurement using (∆N)2 = 〈N2
i 〉−

〈N〉2 yields (see [22, 23]):

〈∆Ni〉 =

√
N

2
sinϕab (2.7)

From this the phase uncertainty is derived as

∆ϕab =
1√
N

(2.8)
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(a) (b) (c) (d)

Figure 2.2: Interferometry with a BEC in a double well potential trap. At first the BEC is
prepared in one lattice site. Then the barrier is lowered (a) and raised again (b), which
corresponds to a beam splitter. Both split condensates can the evolve in time (c). To
convert the phase difference to atom number difference a second beam splitter is applied
and the atom number is counted in each lattice site. An experimental sequence for an
atom interferometer in a double well potential would be: (a) ⇒ (b) ⇒ (c)⇒ (d) ⇒ (b)
⇒ image

There are also ways to overcome this limit by using correlated particles at both
input ports of the interferometer. In [24] the authors show that one can even reach the
Heisenberg limit 1/N for the detection of the relative phase by using entangled Bose-
Einstein condensates. This limit is also achievable using correlated fermions [25]. For a
review article on the precision limits of a quantum interferometer see [21] and references
therein.

The above mentioned description is not only valid for an spatial interferometer as de-
picted in fig. 2.1. In an experiment using Bose-Einstein condensates, the interferometer
would be in time. An analog procedure is depicted in fig. 2.2. In the beginning the BEC
is located in one well of the double well system, corresponding to one interferometer
input (see fig. 2.2a). The first beam splitter is modeled by reducing the barrier and
therefore allowing the BEC to populate both wells. In the next step the barrier is raised
(see fig. 2.2b) and the condensates in both lattice sites can evolve independently (fig.
2.2c). To overlap both again as in the case of an interferometer for light, the barrier is
lowered and the phase difference is transcribed to an atom number difference (fig. 2.2d).
The above mentioned detectors A and B are now replaced by the two lattice sites of the
trap, where the atom number is counted in each well. An experimental sequence for an
atom interferometer in a double well potential would be: (a) ⇒ (b) ⇒ (c)⇒ (d) ⇒ (b)
⇒ image.

This can be described theoretically using the Bose-Hubbard Model. The following
description follows derivation given in [26].

2.2 Theoretical description of a BEC interference

experiment

If the energy splitting between the ground state and the first excited state in the double
well potential is small compared to the splitting between the first excited state and all
higher states the two-mode model is a good description of the system. In that model, only
the two lowest states are treated and all the higher ones are neglected. To describe the
interference experiment of a BEC in a double well potential the two-mode Bose-Hubbard
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model can be used. In this description the Hamiltonian reads:

H = −EJ

N

(
a†b+ b†a

)
+
Ec

4

(
a†a†aa+ b†b†bb

)
(2.9)

where a and b are the annihilation operators for the left/right side of the double well
potential. a† and b† denote the corresponding creation operators. The first term in this
equation corresponds to the particle exchange between both wells, as it describes the
annihilation of one particle on one side and the creation of one particle on the other
side which corresponds to a tunneling of the particle through the barrier. Hence EJ is
denoted as the Josephson tunnelling energy. In this description the number of atoms in
the left [right] well can be calculated by nl = a†a [nr = N −nl = b†b], so the term on the
right side of eq. (2.9) is proportional to the atomic density squared and describes the
on-site interaction between the particles. The total atom number is given by N = nl +nr

and Ec is denoted as the charging energy and labels the energy needed to bring one atom
from infinity to the trap.

The most general state vector according to eq. (2.9) in the number state basis (Fock
basis) is a superposition of all the number states

|Ψ〉 =
∑
nl

cnl
|nl, N − nl〉 (2.10)

where |nl, N − nl〉 =

(
a†
)nl

√
nl!

·
(
b†
)N−nl√

(N − nl)!
|0, 0〉 (2.11)

The coefficient cnl
assigns the initial state of the system. With this ansatz the action

of the Hamiltonian (2.9) is

H
∑
nl

cnl
|nl, N − nl〉 =

∑
nl

[
Ec

4

(
nl(nl − 1) + (N − nl)(N − nl − 1)

)
cnl

−EJ

N

(√
(nl + 1)(N − nl)cnl+1 +

√
nl(N − nl + 1)cnl−1

)]
|nl, N − nl〉 (2.12)

In a Fock state basis this equation can be written in a tridiagonal form with (N + 1)
x (N + 1) entries.

In the limit of large atom numbers (N � 1) the difference between N and N − 1 is
negligible and the approximation of N(N − 1) = N2 is valid. Introducing the relative
atom number difference between the left and the right well

n =
1

2
(nl − nr) (2.13)

yields for the atom number in those wells nl and nr:

nl/r =
N

2
± n (2.14)

With this expression the term
√

(nl + 1)(N − nl) ≈
√
nl(N − nl) turns into
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√
(nl + 1)(N − nl) ≈

N

2

√
1− 4n2

N2
(2.15)

leading to the action of the Hamiltonian:

H
∑
nl

cnl
|nl, N − nl〉 =

∑
nl

[
Ec

4

(
nl(nl − 1) + (N − nl)(N − nl − 1)

)
cnl

−2EJ

(
cnl+1 ·

√
1− 4n2

N2
+ cnl−1 ·

√
1− 4n2

N2

)]
|nl, N − nl〉 (2.16)

2.3 Phase Revival

In the limit Ec � EJ the second term in eq. (2.16) can be neglected. This limit
corresponds to the Fock regime where quantum fluctuation are enhanced as will be
pointed out later. The action of the Hamiltonian reads:

H
∑
nl

cnl
|nl, nr〉 =

∑
nl,nr

Ec

4

(
nl(nl − 1) + nr(nr − 1)

)
cnl
|nl, nr〉 (2.17)

This equation yields, that in this limit the number states |nl, nr = N − nl〉 are the
eigenstates of the system. The time evolution of every eigenstate is then given by

|nl, nr〉t = exp

[
it

~
Ec

4

(
nl(nl − 1) + nr(nr − 1)

)]
|nl, nr〉t=0 (2.18)

Since every number state |nl, nr = N − nl〉 is an eigenstate of the Hamiltonian the
time evolution is just a phase factor. Every number state picks its own phase, depen-
dent on its population. Given that the initial state is a sum over many number states
(see eq. (2.10)) its phase gets completely random - the phase diffuses. By performing
an interference experiment with both well sites populated interference fringes can be
observed in every realization. As it is shown by J. Dalibard two BEC’s, each of them
containing a well defined number of atoms will show a perfect fringe visibility as they are
released from the trap [27]. This is explained by the “build up” of the phase during the
measurement process. An averaging of many realizations indeed yields that the fringes
are smeared out, which denotes that the relative phase is random between both wells.

The phase of every number state is Ect/4~·(nl(nl−1)+nr(nr−1)) and the initial state
revives if the phase of every number state is a multiple of 2π. Note that nl/r(nl/r − 1) is
always an even number, leading to the following expression for the revival time (m ∈ N):

tm =
4π~m
Ec

(2.19)

So when averaging over many experimental realizations at each time step one would
first see the interference fringes vanishing. When the evolution time gets close to tm the
fringes would come back, or in other words revive.

In the double well system the external potential can be described by

Vext =
1

2
m
(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

+
1

2
V0

[
cos

(
2π

q0
x

)
+ 1

]
(2.20)
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Figure 2.3: First revival time (m=1) for different barrier heights as a function of the transver-
sal trapping frequency. The different lines account for different barrier heights V0, start-
ing at V0 = 4 kHz in steps of 2 kHz. The parameters used for this calculations have
been: 2000 atoms, the longitudinal trapping frequency was kept constant at 2π · 250
Hz, and the lattice spacing was 4.8µm
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with ωi being the trapping frequencies in direction i, m the mass of 87Rb and q0 the
spacing between two maxima of the periodic potential, created by a standing light wave.
V0 denotes the barrier height of the double well.

In fig. 2.3 the time of the first revival (m=1) is plotted as a function of the transversal
trapping frequency ω⊥. The different lines denote different barrier heights V0, starting
at V0 = 4 kHz and increasing V0 is steps of 2 kHz. The increasing values of the barrier
height are plotted in the direction indicated by the red arrow. The revival time is plotted
in units of seconds and the trapping frequency in units of 2π.

Gross-Pitaevskii approach

In order to discuss other regimes of the behavior of the double well system we follow a
different approach given in [28]. Since this way of describing a double well potential is
already discussed in PhD and Diploma theses of our group [29, 30, 31, 32] and can also
be found in several articles [28, 33, 34] only a brief overview is presented here.

To describe a system of many bosons where interactions between the atoms play a
role, a mean field approach can be used meaning that the interatomic interactions of one
particle are described by an average effective potential describing all the other particles
at zero temperature. This approach was introduced by E. Gross [35, 36] and L. Pitaevskii
[37].

The interaction is described by a point-like interaction with strength g = 4π~2a/m,
that only depends on the mass and the s-wave scattering length since it is assumed to
be at very low temperatures where all higher angular momentum collision processes are
frozen out. The obtained equation is the Gross-Pitaevskii equation (GPE) which reads

i~
dΨ(r, t)

dt
=

[
− ~2

2m
∆ + Vext + g|Ψ|2

]
Ψ(r, t) (2.21)

In this description the wave function is normalized to the total atom number N as∫
dr|Ψ(r, t)|2 = N . The stationary solution can be obtained with the ansatz Ψ(r, t) =

Ψ(r) exp [−iµt/~], where the chemical potential µ = ∂E/∂N of the atoms is introduced.
With this the GPE reduces to(

− ~2

2m
∆ + Vext − µ+ g|Ψ(r)|2

)
Ψ(r) = 0 (2.22)

The chemical potential is fixed by the above mentioned normalization condition to
the atom number.

Deriving the energy spectrum of the GPE yields that the spacing between the first
excited state and the higher ones is much bigger than the spacing between the ground
state and the first exited state1 (see fig. 2.5). Therefore only the two lowest modes are
taken into account. This is done by determining the lowest symmetric φ+ and antisym-
metric φ− solutions of the stationary system and then taking the linear combinations of
them (see fig. 2.4).

φl,r(r) =
1√
2

(
φ+(r)± φ−(r)

)
(2.23)

Note that
∫
|φi|2dr = 1 where i ∈ {+,−, l, r}.

1and of course the temperature must be sufficiently low
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Doing this the wave function is assumed to be a superposition of the new left/right
states φl,r with some complex, time dependent amplitudes2 ψl,r =

√
Nl,r(t) e

iϕl,r(t). Ac-
cording to this the wave function reads

Ψ(r, t) = φl(r)
√
Nl(t) e

iϕl(t) + φr(r)
√
Nr(t) e

iϕr(t) (2.24)

This ansatz in inserted into the time dependent GPE (2.21) using as new variables
the relative phase between both wells and the relative atom number difference (2.13) as
defined in the previous discussion concerning the Bose-Hubbard model.

Φ(t) = ϕr(t)− ϕl(t) (2.25)

n(t) =
1

2
(Nl(t)−Nr(t)) (2.26)

With this approach the Hamiltonian for the system reads

HTM =
1

2
Ec n(t)2 − EJ

√
1− 4n(t)2

N2
cos Φ(t) (2.27)

Wherein EJ is the Josephson coupling energy which gives an estimate for the overlap
of the wave functions of the left and right site of the double well and hence describes
the tunneling of the particles between both wells. Ec is the on-site interaction energy
(or charging energy) and describes the local interaction within both wells.

Ec = 8κ+− (2.28)

Ej =
N

2
(µ− − µ+)− N(N + 1)

2
(κ−− − κ++) (2.29)

where κi,j =
g

2

∫
|φi|2|φj|2dr with i, j = (+,−) (2.30)

These expressions are taken from the paper of T. Bergeman [28].
By expanding now the last term of eq. (2.27) in a series up to the 2nd order and

neglecting all higher parts, the Hamiltonian gets the form of a harmonic oscillator with
the plasma-frequency

ωp =
1

~

√
EJ

(
Ec +

4EJ

N2

)
(2.31)

This is the typical timescale of the dynamics, since tunneling between the wells
happens on this scale.

The Gross-Pitaevskii Equation (2.21) describing the double well system has now been
simplified in a way that it can be written as a classical pendulum with new coordinates
Φ and n. The quantum equation this Hamiltonian is obtained by replacing the variables
n and Φ by their operators such that [Φ, n] = i (see for example [38] and references
therein).

2Since
∫
|Ψ|2dr = N and

∫
|φl,r|2dr = 1 the complex amplitudes have to be normalized such that∫

|ψl,r|2dr = Nl,r in order to fulfill the condition N = Nl +Nr
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Fock Josephson Rabi

Ec � EJ
EJ

N2 � Ec � EJ Ec � EJ

N2

(∆Φ)2 ≈ 1
2

√
Ec

EJ
� 1 (∆Φ)2 ≈ 1

2

√
Ec

EJ
� 1 (∆Φ)2 ≈ 1

N
� 1

(∆n)2 ≈ 1
2

√
EJ

Ec
� 1 (∆n)2

N
≈ 1

2

√
EJ/N2

Ec
� 1 (∆n)2 ≈ 1

4
N � 1

Table 2.1: Phase and atom number uncertainty for three different regimes of Ec and EJ

derived from eq. (2.32)

Deriving the number and phase fluctuations of the ground state leads to the following
result

〈∆n〉2 =
1

2

√
EJ

Ec + 4EJ

N2

(2.32a)

〈∆Φ〉2 =
1

2

√
Ec + 4EJ

N2

EJ

(2.32b)

So the product of the uncertainties in the relative phase and the relative atom number
equals one half (∆Φ∆n = 1/2). From these expressions for the uncertainty of the relative
phase and the relative atom number it can be seen that there are three regimes for their
behavior. These regimes are denoted by Fock, Josephson and Rabi regime and are shown
in table 2.1. In the Rabi regime the phase is very well defined whereas the relative
atom number fluctuates ∝

√
N . In the intermediate regime (the Josephson regime)

both, the relative phase and the atom number difference are well defined. The opposite
case is the Fock regime where the relative phase is completely undefined but the atom
number fluctuations are very small. The atoms do not occupy a single macroscopic wave
function any more and therefore the mean field approximation is not true any more.
This regime was already discussed above using the Bose-Hubbard model, where no mean
field approach was done.

2.4 Parameters EJ and Ec

The previously mentioned Gross-Pitaevskii equation was used to derive the parameters
EJ and Ec. The calculations have been done, solving the GPE in three dimensions,
using a split step Fourier method as described in [29, 32, 39, 40]. The calculations were
done using 2000 atoms, a longitudinal trapping frequency of 2π · 250 Hz and a lattice
spacing of 4.8µm. Due to the cylindrical symmetry of the trap the transversal trapping
frequencies are in both directions and have been varied during the calculations.

In fig. 2.6 the necessary barrier heights and trapping frequencies are plotted in order
to reach EJ/Ec = 1. In fig. 2.6a the ratio EJ/Ec is plotted for different values. The
corresponding trap frequencies and barrier heights were found by taking those values
corresponding to the minimal values of (EJ/Ec − 1)2. In fig. 2.6b the charging energy
Ec is shown as a function of the transversal trapping frequency for different, fixed values
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Figure 2.6: Plot of different barrier heights and trapping frequencies to estimate EJ/Ec. In
(a) the barrier height vs. the transversal trapping frequency is plotted for different
ratios of EJ/Ec where the blue circles denote a ratio of 1, the green diamonds a ratio
of 100 and the red stars 1/100. In (b) Ec is plotted vs. the trapping frequency for
different values of the barrier height V0. V0 increases in the indicated direction by 2
kHz for each line drawn, starting at V0 = 4 kHz. Note that Ec is noted in multiplies
of Planck’s constant h, whereas the trapping frequency is in multiples of 2π. For this
calculation we used 2000 atoms, the longitudinal trapping frequency was kept constant
at 2π · 250 Hz, and the lattice spacing was 4.8µm.

of the barrier height V0. The barrier height is increased in steps of 2 kHz as indicated by
the arrow, starting at 4 kHz. In these calculations the gravitational sag was not taken
into account, as it scales as 1/ω2 and is consequently negligible.
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Chapter 3

How to get a BEC

A great effort has to be taken in order to reach the transition temperature to get a
condensate of bosons. Typical transition temperatures are in the range of several nano-
Kelvin and therefore 10 orders of magnitude below the room temperature. In comparison
to this, the temperature of the cosmic microwave background (CMB) has been measured
to be 2.725(2) K, using the COBE satellite (Cosmic Background Explorer) [41]. This is
the temperature of the of the space and hence the temperature of the coldest place in
nature. And it is still 8 orders of magnitude above the critical temperature for Bose-
Einstein condensation. In order to reach that low temperatures, methods of laser cooling
and trapping are used, developed in the 1980s. In the following section the main steps
necessary to achieve a BEC of 87Rb atoms will be pointed out. Since this was part of
many other works [30, 31, 42, 43, 44] only the most important steps will be presented.

3.1 Magneto-Optical Trap

Since the transition temperature to reach the BEC phase is typically in the nK regime
one needs to isolate the system as good as possible against any sources that introduce
heat to the system. To get rid of collisions with the background gas the whole experiment
is done in an ultra-high vacuum chamber (UHV) at a pressure below 10−11 mbar in a
glass cell in order to have good optical access to the system.

87Rb dispensers are used as an atom source for the experiments which are placed in a
separate part of the chamber, connected to the UHV part by a small hole which acts as
a differential pumping stage. In this part we work at a pressure of approximately 10−9

mbar.
As a first cooling stage a 2D+ magneto-optical trap (MOT) [45] is used to gather the

atoms released by the dispensers. This configuration produces an atomic beam (called
funnel) [42, 46] which is captured by a 3D MOT [47].

Our laser system that provides the necessary frequencies consists of a Coherent MBR
110 Titanium-Sapphire (Ti:Sa) ring cavity laser pumped by a Verdi V10 frequency
doubled, diode pumped Nd:YVO4 (neodymium-yttrium-vanadate) laser. The output
power of the Ti:Sa is approximately 1.3 W after the optical isolator and it is locked by
doppler free absorption spectroscopy to the first F = 2 → F ′ = 3 crossover peak.

This beam is split into three parts and each of them is shifted by means of an acousto-
optic modulator (AOM) to the right frequency to get the beams for the funnel, the MOT
and the imaging beam. The imaging beam is also used to pump the atoms after the MOT
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Figure 3.1: Rubidium-87 line level structure. We use the F = 2 → F ′ = 3 transition of the
D2 line as cycling transition for cooling. The BEC will occur in the |F = 2,mf = 2〉
ground state. The laser frequencies are indicated by the solid arrows

phase into the low field seeking |F = 2,mF = 2〉 state which is used to trap the atoms
magnetically.

Since some atoms leave the cycling transition |F = 2,mF = 2〉 → |F ′ = 3,m′
F = 3〉

by falling in the F = 1 ground state we need to pump them back. Therefore we use
a Distributed Feedback Laser (DFB) by Toptica Photonics which provides an output
power of 80 mW at maximum.

After trapping the atoms magnetically, optical dipole traps are used for further cool-
ing. Therefore a Nd:YAG (neodymium-doped yttrium aluminium garnet Nd:Y3Al5O12)
laser by Spectra Physics with a maximal output power of 7 W is used1.

For creating the double well potential a second Ti:Sa laser is used. This one is a
Coherent 899-01 Ring Laser and is pumped by a second Verdi V10.

3.2 Time-Orbiting Potential Trap

The potential energy for a dipole in a magnetic field reads

V (r) = −µB(r) = mFgFµB|B(r)| (3.1)

with µB being Bohr’s magneton and gF the hyperfine Landé factor. Since the Maxwell
equations forbid a maximum of the magnetic field in free space only states for which

1We run this laser at ≈ 3 W as otherwise it does not run single mode anymore and we can not get
more power through our single mode fibre
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the energy is minimized at a field minimum are magnetically trapable. In our case the
|F = 2,mF = 2〉 state is used.

After the MOT phase the atoms are pumped in that state and are then trapped in
a time orbiting potential (TOP) trap [48]. The problem of a simple quadrupole trap is
its zero field in the center of the trap. As temperature gets lower the probability of the
atoms to be at the minimum of the trap increases. At zero field the atoms can undergo
spin flips to magnetically not trapped states and leave the trap.

In a TOP trap one overcomes this limitation by adding a rotating bias field. If
the frequency of this rotation is much lower than the Larmor frequency of the atoms
but much higher than the resulting trapping frequency the atoms see a time averaged
potential with a nonzero minimum. The zero is shifted to outside the center and rotates
around. The trajectory of the zero field is called “circle of death” because one looses the
atoms there. This fact is used to cool the cloud evaporatively by decreasing the radius
of the circle of death. The hot atoms which can reach the rim of the trap disappear and
therefore the remaining cloud gets colder due to re-thermalization.

With this technique one is able to reach condensation but for studying the dynamics
of BEC one has to switch off the trap very fast which is problematic. Hence the cloud
is kept uncondensed in the TOP trap and is transferred into an optical dipole trap.

3.3 Optical Dipole Traps

For the trapping of atoms in a magnetic field the magnetic moment µ of the atoms was
used. As an electric dipole moment ~d is introduced to the atoms due to the interaction
with the external electro-magnetic field they will interact with this light field ~E where
the interaction strength is given in the dipole approximation by the Hamiltonian −~d ~E.
In the dipole approximation one assumes the electric field (on the order of the wavelength
λ) to be constant over the atom (order Bohr radius a0), which is a good approximation
since λ � a0. Then this potential can be written in terms of the Rabi frequency Ω
and the detuning ∆ of the incident laser beam with respect to the atomic transition
∆ = ωLaser − ωatom as follows

V (r) =
~|Ω(r)|2

4∆
(3.2)

with |Ω|2 =
Γ2I(r)

2Isat
(3.3)

Γ denotes the natural line width of the transition and the saturation intensity Isat
is given by Isat = πchΓ

3λ3 . Here we used the Rotating wave approximation (RWA) which
neglects the terms proportional to 1/ωLaser comparing to 1/∆ and the detuning was
assumed to be much bigger than the natural linewidth (δ � Γ). For further details on
the derivation of equation (3.2) see [49].

If the incident laser beam can be assumed to have a gaussian shape with a waist2 σ0,
its intensity as a function of the axial distance from the beam center r and the distance
from its waist in longitudinal direction z is

2waist here means the minimal transversal distance from the center where the intensity drops to 1/e2
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I(r, z) = I0

(
σ0

σ(z)

)2

exp

[
− 2r2

σ(z)2

]
(3.4)

with σ(z) = σ0

√
1 +

(
z

zR

)2

(3.5)

zR denotes the Rayleigh range zR =
πσ2

0

λ
and gives the distance where the beam radius

increases by a factor of
√

2 compared to the waist.
Combining eq. (3.2) and (3.4) arises the trapping potential with the trap depth

V0 = ~Γ2P0

4πσ2
0Isat

2
3

(
1

2∆D1
+ 1

∆D2

)
(see fig. 3.2a), where the maximal intensity is replaced via

I0 = 2P0

πσ0
by the beam power P0. The factor 2

3
considers the Clebsch-Gordon coefficient

for the different hyperfine transitions and the factor of 2 is due to the fact that the D2

line is twice as strong as the D1 line. By expanding eq. (3.4) to the 2nd order one can
derive the trapping frequencies in radial and longitudinal direction.

ω⊥ =

√
4|V0|
mσ2

0

ω‖ =

√
2|V0|
mz2

R

(3.6)

Since the trap depth is proportional to the intensity of the beam, evaporative cooling
in an optical dipole trap is done by lowering the beam power. Thereby the trap depth
is reduced and hot atoms can escape.

The spontaneous emission rate can be considered by calculating the probability to be
in the excited state and multiplying this expression by the line width Γ which is nothing
but the decay rate of the excited state. This approach arises for the spontaneous emission
rate Γspon

Γspon =
Γ3I0
8Isat

2

3

(
1

2∆2
D1

+
1

∆2
D2

)
(3.7)

Since for our experiments the spontaneous emission rate is below 1 Hz (see fig. 3.2b)
its influence can be neglected.

3.3.1 Waveguide and Crossed Dipole Trap

The measurements concerning Noise Thermometry [50, 51] have been performed in a
1D optical lattice which arises by crossing two focussed laser beams. The waveguide
beam (WG) makes a confinement in y and z direction with a waist of 60µm and the
crossed dipole trap beam (XDT) a confinement in x direction (see fig. 3.3). The XDT
beam was expanded by a cylindrical lens in z direction. The WG had a power of up to
500 mW whereas in the XDT up to 800 mW were used. For the Noise Thermometry
measurements the trapping frequencies have been ωx = 2π·90(2) Hz and ωy,z = 2π·100(2)
Hz respectively. A minimal temperature of T = 15(4) nK could be achieved.

For those measurements it was important to be in the Josephson-regime (see table
2.1) where quantum fluctuations are negligible and the phase fluctuations are of thermal
and technical reasons only. To change into the Fock regime one needs to increase the
charging energy Ec.
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Figure 3.2: The trapping frequency for the charger in axial direction is used to plot (a) the
depth of the dipole trap and (b) the spontaneous emission rate against it.

3.3.2 The new dipole Trap

To obtain this the idea was to increase the trapping frequencies (ω ∝
√
P0/σ

2
0 to the kHz

regime. Since one also needs the spontaneous emission rate (Γspon ∝ P0/σ0) to be rather
small, increasing the laser power a lot could not be the solution. Thus a new dipole trap
beam with a smaller focus (charger) was installed to increase the charging energy Ec.
For further details the reader may be referred to chapter 4.

3.3.3 Double Well Potential

To create a double well potential we use two gaussian beams, which are large compared
to the dipole trap, interfering at the position of the atoms in x-direction. We overlap
them and align the resulting interference pattern to the XDT. In the red detuned case
an interference maximum in the center3 of the trap is needed to create a double well
potential. This resulting potential can the be described by eq. (2.20) and is shown in
fig. 3.3.

3.4 Imaging

To image the atoms the destructive absorption imaging technique is used. Therefore
σ+ polarized light with a gaussian beam shape is shined in which is resonant to the
F = 2 → F ′ = 3 transition of the D2 line. A constant magnetic field is present in the
imaging direction in order to keep the atoms spin-polarized. At a random field only a
fraction of atoms would be imaged as the light polarization depends of the quantization
axis which is given by the magnetic field.

The imaging system provides a magnification of approximately 10 and uses a com-
mercial objective (Zeiss Plan-Apochromat S, focal length f = 10 cm) to image the atoms

3for the interference pattern being blue detuned an intensity minimum in the center is needed since
the atoms are then “low field seeking”
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Figure 3.4: Schematic view on the absorption imaging setup. The atoms (red) are illuminated
by a gaussian beam with σ+ polarisation and imaged by a 10fold magnification objective
onto a CCD chip

on a CCD-Chip (Q-Imaging Retiga EXi) which consists of 1392 x 1040 pixels with a pixel
size of 6.45 x 6.45µm. The optical resolution of this setup is rSparrow = 2.7µm using the
Sparrow criterion [31]. The Sparrow criterion corresponds to the distance where the sum
of the two Airy-functions of two point sources do not form a clear minimum any longer.
This criterion is below the Rayleigh criterion which indicates the distance at which the
maximum of one Airy function is at the position of the first minimum of the neighboring
Airy function of a point source. For further details on imaging techniques see [42, 52].

As the atoms are heated during the imaging pulse the BEC is destroyed at every
picture taken. Hence every picture has to be a new realization of the experiment under
the same conditions. Only one picture of the atoms can be taken per shot where all the
information has to be extracted. The next picture will be one experimental sequence
duration away, which is approximately one minute.

In total we take three pictures per sequence, which is the picture with the atoms Ipic,
one reference picture Iref under the same conditions as the atom picture but without
atoms.The reference picture is used to remove fringes which occur due to the glass cell
or the objective4.

From these pictures one can derive the relative transfer function T (x, y) where the
fringes are removed from the picture and only the atom cloud survives.

T (x, y) =
Ipic

Iref
(3.8)

The transfer function then contains the atom density ρ(x, y, z) integrated along the
imaging direction z which is the column density n(x, y). The light propagating through
the cloud is absorbed as dI = −ρ(x, y, z)σ(z)Idz per length element dz where σ(z) is
the scattering cross section and should not be mixed up with the radius of a gaussian
beam (see eq. (3.5)). The cross section is given by

σ(z) =
Γ

2
· hν
Isat

· 1

1 + I(r)
Isat

+
(

2∆
Γ

)2 (3.9)

Since we image on resonance (∆ = 0) and we are only interested in the column
density we can write

4The objective we use is not anti-reflection coated
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−n(x, y) = −
∫ ∞

−∞
ρ(x, y, z)dz =

2Isat
Γhν

∫ Iout

Iin

[
1

I
+

1

Isat

]
dI (3.10)

n(x, y) =
2Isat
Γhν

[
− log

Iout

Iin
+
Iout

Isat
− Iin
Isat

]
(3.11)

This equation gives the column density for each position n(x, y). Since we are in-
terested in the atom number per pixel we have to consider the pixel size A and the
magnification M of the imaging system and we end up with

Npix =
2Isat
Γhν

A

M2

(
od+

Iin
Isat

− Iout

Isat

)
(3.12)

where we introduced the optical density of the atomic cloud as follows

od = − log
Iout

Iin
= − log T (x, y) (3.13)

Since it is hard to measure the absolute intensity Iout precisely we skip the term
(Iin − Iout)/Isat in the calculation which leads to an overestimation of the atom number
of approximately 10%. This overestimation could be decreased by using an intensity,
where the atomic transition is not saturated, i.e. I � Isat. A more detailed description
of our imaging system can be found in [42, 29].

3.5 Deducing Temperature

To deduce the temperature of the atomic cloud being trapped in the experiment, the
thermal cloud (or the thermal background in case we image a BEC) is fitted with a
Maxwell distribution. If the imaging is done in situ5 then the spacial distribution of
the cloud can be seen. On the other hand if time-of-flight (TOF) images are taken by
releasing the cloud suddenly from the confining potential, its momentum distribution is
imaged. In the following a short estimation of the expected widths will be given.

The cloud can be described by the following Hamiltonian, letting ωi be the trapping
frequency in direction i and m the mass of 87Rb.

H =
p2

2m
+

1

2
m
(
ω2

xx
2 + ω2

yy
2 + w2

zz
2
)

(3.14)

The phase space density of a thermal cloud is given by the Boltzmann distribution

n(r, p) = z exp

[
−β
(
p2

2m
+

1

2
m
(
ω2

xx
2 + ω2

yy
2 + w2

zz
2
))]

(3.15)

The factor z in this description denotes the fugacity such that n(r, p) is normalized to
the total atom number N . If an in situ image is taken, an integration over the momenta
in the upper equation has to be done, ending up with a density

5this is imaging the trap directly
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n(r) =

∫
n(r, p)

d3p

(2π~)3
(3.16)

=
z

λ3
T

exp

[
−β

2
m
(
ω2

xx
2 + ω2

yy
2 + w2

zz
2
)]

(3.17)

The atomic cloud on the taken pictures might be fitted with a gaussian distribution
n(x) = exp [−x2/2σ2

i ] /
√

2πσ2
i . By deducing the width of this fit and comparing it to

eq. (3.17) one can estimate the temperature of the cloud as

σ2
i =

kBT

mω2
i

(3.18)

where kB denotes Boltzmann’s constant.
In a TOF image one looks at the momentum distribution of the cloud and therefor has

to integrate over spatial coordinates. The momentum distribution can be rewritten by
changing from momentum to velocity p→ v. If one expresses the velocity as the distance
an atom has moved since the cloud was released, the spacial coordinate is introduced
again and can be compared with a gaussian. The observed waist in TOF images is

σ2
i =

kBT

mω2
i

+
kBT

m
t2 (3.19)

where t denotes the falling time of the cloud. Note that this description is also valid
for the condensate fraction in the far field, i.e. the time has to be much larger than the
inverse of the trapping frequency (ωt� 1). For a deeper insight see for example [53].
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Chapter 4

The new, strong confining dipole
Trap: A way to increase Ec

In this chapter the reader will be introduced to the new optical dipole trap (charger),
built to increase the charging energy Ec of the double well system. For an insight into the
previous setup the reader may be referred to [31, 32, 39]. As already mentioned before,
another way of increasing the confinement in the trap would be to increase the power
of the laser. This would also increase the spontaneous emission rate and therewith the
heating of the atoms in the trap. The third possibility to increase the on-site interaction
would be to tune the scattering length via Feshbach resonaces using high magnetic fields.

4.1 Optical Setup: beam preparation

Since the Nd:YAG laser cannot be operated at a higher output power than approximately
3 W in order to keep it single-mode,splitting the laser output another time for the third
dipole trap was not possible. Single mode fibres are used to clean the mode before going
into the experiment to have a gaussian beam profile for the traps. Increasing the laser
power further resulted in less output from the fibres indicating a multi mode operation
of the laser. The power was needed for the already existing dipole traps of the waveguide
(WG) and crossed dipole trap (XDT), which should both be kept.

The new setup is depicted in fig. 4.1. As before the beam coming form the Nd:YAG
laser is split by a polarizing beam splitter (PBS) into two. Each of them is passing an
acousto-optic modulator (AOM, 80 MHz Isomet) to control their intensity before being
coupled to a polarisation maintaining single mode fibre made by Schäfter + Kirchhoff.
These fibres are then guided to the experiment whereas the optics after the fibre was
reduced to a minimum in order to conserve the TEM00 mode coming out of the fibre as
good as possible. The combination of a λ/4 and a λ/2 wave plate is used to clean the
polarization.

For the charger the zeroth order of the WG arm is used. It is reflected out by a
cut mirror, passes a 110 MHz Crystal Technology AOM and is then coupled to another
polarisation maintaining singlemode fibre.
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Figure 4.1: The laser beam is produced by a Nd:YAG Laser and split by a polarizing beam
splitter into two, each of them passing an AOM to control the intensity coupled to the
fiber. The zero order beam from the waveguide arm is used to produce the charger
beam
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Figure 4.2: After the Fibre: The yellow beam path depicts the charger and the red one the
WG. The charger leaves the fibre divergent, is collimated by an achromatic lens and
focused again. The WG is reflected in over a PBS and focused by the same achromat.
A pellicle beam splitter is used as a pickup for locking the power of the beams
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Figure 4.3: Electronics setup of the intensity lock of the charger. The PI Loop regulates the
amplitude of the SRS signal.

4.2 Setup: behind the fibre

The beam setup of the XDT remained unchanged. It leaves the fibre through an out-
coupler and is focused by a lens to a waist of 70µm.

For the WG and the charger a new massive mount was built, containing both fibres.
Both beams are overlapped on a PBS. To fix the charger a fibre holder without any
collimation optics is used. The beam leaves the fibre divergent under a half aperture
angle of 6.8◦. It is collimated by a coated achromatic lens and focused again by an
achromat (both lenses: Melles Griot: 06LAI011/126 ).

In order to lock the intensities of both beams, WG and charger, a pellicle beam
splitter is used, reflecting 8% of the intensity. Due to their perpendicular polarization,
a Glan-Taylor prism divides both beam paths again. The pickup photodiode for the
charger is placed in the focal plane, where the WG beam is reflected by another glass
plate to further reduce the intensity falling on the photodiode. To distinguish both
beams also in the electronics the charger is modulated with 100 kHz whereas the WG
is not. We installed a low pass filter onto the WG pickup photodiode to remove the
charger signal. Since a high pass filter and a lock-in amplifier is used to read out the
charger signal there will also be no information of the WG on it.

The setup used to stabilize the charger intensity is depicted in fig. 4.3. The actual
value of interest is set by a computer. We use a feedback loop to control the AOM
actively. This gives an output signal, which is modulated by a Stanford Research Systems
DS345 (SRS) arbitrary waveform generator with a frequency of 50 kHz with a peak-to-
peak amplitude given by the PI Loop. This modulated signal is sent to the AOM driver
which modulates the beam intensity with twice the frequency. After passing the fibre
the signal is monitored by a pickup-photodiode as shown in fig. 4.2 and the signal is
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Figure 4.4: In fig. (a) the principle of the measurement is depicted. One moves a razor blade
(grey shaded area) through the beam and detects the signal on a photodiode. The
detected signal vs time (see fig (b)) is then an complementary error function

detected with a Femto Lock-In amplifier which receives the reference signal directly from
the SRS and detects the signal in the doubled frequency band. This signal is directed
to the loop amplifier which regulates the sum of it and the computer signal to zero.

4.3 Spot Size Measurement

To obtain a value for the expected trapping frequencies and trap depths one needs to
know the spot size of the trapping beams. Therewith one can also estimate the power
needed to create a sufficiently deep trap for loading the atoms from the TOP trap. The
first measurement was done by moving a razor blade through the focus. Once the beam
was installed and atoms where trapped in it, the spot size was measured with the atoms.

4.3.1 Razor Blade method

In the following the beam is assumed to have a gaussian shape. By cutting it at a
sharp edge and measuring the total power falling on a photodiode the measured signal
corresponds to the complementary error function, which is the integral over a gaussian
function

∫∞
x
e−z2

dz/
√
π, as a function of the position where the beam was cut. If the

cutting edge is now moved through the beam profile, the complementary error function
is directly measured and can be fitted to estimate the beam radius.

Since the waist is defined as the minimal beam radius, only the focus has to be found
and the measurement has to be performed there. The data from this measurement is
shown in fig. 4.5a for the charger and in fig. 4.5b for the WG. The razor blade has been
mounted on a translation stage and was moved with a Oriel motor at constant velocity
of 200µm s−1 through the beam. By moving the whole setup with a second stage in
longitudinal direction, the focal point could be found easily.
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Figure 4.5: Measurement of the spot size by moving a razor blade through the beam. In (a)
the data for the charger is depicted. The blue stars denote the measured data and the
red line the fit to these, giving a waist of 4.5µm, in (b) the measured data (blue circles)
and the fit (red dashed line) for the waveguide is shown giving a waist of 31.7µm.

This data was taken using no glass plate between the last lens and the focus. In the
experiment the beams have to pass the vacuum cell of course which will influence the
wave fronts and slightly blur the focus size. Due to this reason a better estimate for the
spot size can be found by using the atoms as a probe.

Measuring the Trap Frequency

Measuring the trapping frequencies of a trap is quite important as this parameter is
needed for all theoretical calculations on the system. Since a detailed description can be
found in [29, 43] only the concept is to be presented here.

The idea is to excite a harmonic oscillation in the trap and measure the position of
the cloud as a function of trapping time. From the observed oscillation one can deduce
the trapping frequency as shown in fig. 4.6a. We use this procedure to calibrate the
charger in longitudinal direction as well as to calibrate a trap made by WG and XDT. To
calibrate the double well potential a similar sequence is used. One loads a condensate in a
harmonic trap, ramps up the barrier quite fast while reducing the harmonic confinement
at the same time and such splits the cloud in two, each of them oscillating in the double
well potential in one lattice site. By measuring the relative distance between them, the
potential height of the barrier can be estimated(for a detailed description see [39]).

Since the optical resolution of the imaging system is 2.7µm [31] oscillations in the
transversal direction of the charger are not observable in the harmonic limit. Simple
speaking, the trap is too small. Therefore a parametric heating procedure to measure
this trapping frequency is used. That is exciting the trap with a certain frequency and
measure the width of the cloud (see fig. 4.6b). If the excitation is done with the right
frequency heat is introduced to the system, the atoms are excited and the cloud size
increases. Right frequency here means modulating with twice the eigenfrequency of the
system which is the trapping frequency. This can be understood quite easily since every
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Figure 4.6: Measurement of the trapping frequencies of a atom trap with the charger in
(a) longitudinal direction by direct observation of an oscillating wave packet yielding
ω‖ = 2π · 86 Hz. In transversal direction (b) by means of parametric heating, note
that the resonance accords to twice the trap frequency of ω⊥ = 2π · 1850 Hz. The blue
circles denote the measured data points and the red line the fitted curve.

child does exactly the same when “exciting” a swing. There the oscillation is encouraged
by changing the effective length of the pendulum with a frequency which is twice the
eigenfrequency. The same is done with the atoms.

4.3.2 A direct observation of the trapping geometry using the
atoms as a probe

After installing the charger in the setup and loading atoms with it one can also estimate
the spot size using trap frequency measurements.

If the trapping frequencies in longitudinal and transversal direction are known, di-
viding both equations (3.6) leads to the following result and therewith to the spot size
of the beam.

ω⊥
ω‖

=

√
2πσ0

λ
(4.1)

From this equation and using the measured charger trapping frequencies ω‖ = 2π · 86 Hz
and ω⊥ = 2π · 1850 Hz the spot size can be obtained to be σ0 = 5.15µm. This value is
slightly bigger than the measurement using the razor blade. This deviation is an effect
of the glass cell, that deforms the wave fronts of the trapping beam and therewith blurs
the spot size of the beam.
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Chapter 5

Three-body loss process in a tight
Trap

In the previous chapters a motivation for a tightly confining trap and its properties
have been pointed out. The aim for this strong confinement was to increase the on-site
interaction in a double well potential, without increasing the spontaneous emission rate of
the atoms too much. A high spontaneous emission rate would have increased the heating
effects in the trap and would have lead to a rapid loss of the atoms. The loss process due
to high atomic densities was studied in the new trap as will be described in the following
chapter. The loss procedure could be found to be one and three-body collisions. A
theorectical description of these processes yielded that three-body collisions include the
possibility to go below shot noise in the precision of the atom number preparation.

In the first part this theoretical description is derived, whereas the second part deals
with the measurement of the loss process. For a better understanding of the picture
analysis done, a short introduction to CCD-imaging (charged coupled device) and it’s
noise is pointed out.

5.1 Loss Processes in ultracold gases

Many processes lead to heating effects and losses of atoms from the trap. One procedure
is the heating due to collisions with the background gas in the cell. In our case this
effect is negligible, as the vacuum is good enough to reduce such collisions. The beam
intensity of the trapping beams is actively stabilized to remove intensity fluctuations and
therewith fluctuations in the trapping potential which also heats the gas. Fluctuations
in the pointing of the beams are not corrected, the beams are only mounted on a massive
holder and thus we rely on the passive stability of the system. The whole area around
the cell is darkened to prevent stray light from heating the atoms.

To model the loss process in a trapped gas of ultracold atoms a rate equation approach
is used as it is done in [54]

∂N(t)

∂t
= −K1N −K2N 〈n〉 −K3N

〈
n2
〉

(5.1)

In this expression K1 is the one-body loss coefficient taking into account all the
loss mechanisms which are independent of the atomic density like power and pointing
fluctuations of the trapping beam or the influence of collisions with the background gas,
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or the stray light influence. The two-body loss coefficient K2 accounts for the loss due to
dipolar relaxation of the atoms from the (F = 2,mf = 2) state which was magnetically
trapped and the losses due to evaporative cooling. This process depends on the mean
atomic density 〈n〉. Three-body collisions are considered by K3. These are events when
two atoms form a diatomic molecule and collide with a third one where all the atoms
gain the binding energy of the triatomic molecule which is enough to leave the trap.
This process depends on 〈n2〉 which reads 〈n(x, t)2〉 = 1

N(t)

∫
V
n(x, t)3d3x and represents

the probability of three atoms being close enough that these collisions can occur.

In agreement with [54, 55] we found the two-body loss rate to be negligible compared
to the three-body process. As pointed out in [56] this anomaly is due to the coincidence of
the scattering lengths for elastic collisions in the |F = 2,mF = 2〉 and |F = 1,mF = −1〉
states. So for further considerations K2 is assumed to be zero.

5.1.1 Loss Process: Master Equation

To model the atom loss of a confined atom cloud by considering one and three body
loss processes a master equation is used. The loss process is adopted to be a markovian
process, i.e. the history of the system has no influence on the loss rates. If P (N, t)
denotes the probability of finding N atoms in the trap at a given time t, then its time
evolution is given by

∂

∂t
P (N, t) =

∑
N ′

W (N ′, N)P (N ′, t)−W (N,N ′)P (N, t) (5.2)

where the rate coefficients W (N,N ′) were introduced. The gain results from tran-
sitions from all other states N ′ into the considered state N with a rate W (N ′, N).
W (N,N ′) is the rate of loss from state N into all others with a probability P (N, t).

The probability to lose one atom via one-body-loss is NK1 times the probability
to be in state N which is P (N, t). For a three body loss process the probability is
N(N − 1)(N − 2)K3 where the first particle can be chosen out of N particles whereas
the next out of (N − 1) and so on. So the master equation considering one and three
body losses reads

∂

∂t
P (N, t) = K1 [(N + 1)P (N + 1, t)−NP (N, t)]

+
K3

3
[(N + 3)(N + 2)(N + 1)P (N + 3, t)−N(N − 1)(N − 2)P (N, t)] (5.3)

Since in literature the three-body loss coefficient K3 is defined in a way that one
atom gets lost per collision process, in the above equation a factor of 1/3 was introduced
because here three atoms per event are lost.

In the experiment the mean atom number 〈N〉 and the variance (∆N)2 = 〈N2〉−〈N〉2
is measured, so the time evolution of them has to be calculated using the above master
equation. Therefore we first calculate the time evolution of the k-th momenta as follows
considering here for simplicity only one-body losses.
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∂

∂t

〈
Nk
〉

=
∑
N

Nk ∂

∂t
P (N, t) (5.4)

=
∑
N

NkK1 [(N + 1)P (N + 1, t)−NP (N, t)] (5.5)

=
∑
N

K1

[
(N − 1)kN −Nk+1

]
P (N, t) (5.6)

During the last step the summation index was changed in the first term such that
N → N + 1. Since the summation then has to start from 1, but a term proportional to
N(N − 1)k occurs, a zero is added by starting the summation from zero again.

If three-body losses are included in these calculations the above equations read:

∂

∂t

〈
Nk
〉

=
∑
N

K1

[
(N − 1)kN −Nk+1

]
P (N, t)

+
K3

3

∑
N

[
(N − 3)k(N − 2)(N − 1)N −Nk+1(N − 1)(N − 2)

]
P (N, t) (5.7)

With this equation the time evolution for the mean atom number (k = 1) and for
the atom number squared (k = 2) can be written as follows:

∂

∂t
〈N〉 = −K1 〈N〉 −K3

[〈
N3
〉
− 3

〈
N2
〉

+ 2 〈N〉
]

(5.8a)

∂

∂t

〈
N2
〉

= K1

[
〈N〉 − 2

〈
N2
〉]

+K3

[
6 〈N〉 − 13

〈
N2
〉

+ 9
〈
N3
〉
− 2

〈
N4
〉] (5.8b)

By introducing the abbreviations for the mean atom number m = 〈N〉 and for the
variance v = (∆N)2,the equations for the time evolution of them turn into:

∂m

∂t
= −K1m−K3

[〈
N3
〉
− 3

〈
N2
〉

+ 2m
]

(5.9a)

∂v

∂t
= K1m− 2K1v +K3

[
−2
〈
N4
〉

+ 9
〈
N3
〉

+ 2m
〈
N3
〉]

−K3

[
6m3 + 9m2 − 6m+ 6mv + 13v

] (5.9b)

If only one-body losses are treated, K3 is set to zero in eq. (5.9) and the ratio v/m
can easily be derived as a function of time.

v

m
(t) = 1 +

( v
m

∣∣∣
t=0

− 1
)

exp[−K1t] (5.10)

From this equation it can be seen that the ratio v/m tends to one for long evolution
times which means that independently of the initial distribution an atom number will
be shot noise limited. This is an effect of the gain term K1m in equation (5.9a), which
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only arises for discrete atom numbers. If this term is skipped, the ratio v/m tends to
zero.

If the three-body loss terms in eq. (5.9) are taken into account, the system is not
closed anymore. The equations contain higher momenta which lead to an infinite set of
coupled differential equations.

Gaussian Ansatz

To overcome this problem of an infinite set of differential equations, the initial probability

distribution is assumed to have a gaussian shape P (N, t = 0) = exp
[
− (N−N0)2

2σ2 /
√

2πσ2
]
.

When solving the master equation numerically it is observed that the distribution can
always be approximated by a gaussian. Since the atom number can only be positive, the
probability to find zero atoms remains small all the time.

If the probability distribution is supposed to be gaussian at any time the higher
moments can be calculated to be

〈
N3
〉

= N3
0 + 3N0σ

2 (5.11)〈
N4
〉

= N4
0 + 6N2

0σ
2 + 3σ4 (5.12)

Inserting this in eq. (5.9) yields these coupled differential equations

∂N0

∂t
= −K1N0 −K3

[
−N3

0 − 3N0σ
2 + 3N2

0 + 3σ2 − 2N0

]
(5.13a)

∂σ2

∂t
= K1N0 − 2K1σ

2 +K3

[
−6σ4 + 3N3

0 − 9N2
0 − 6N2

0σ
2
]

+K3

[
21N0σ

2 − 13σ2 + 6N0

] (5.13b)

A comparison of the time evolution of the master equation and its gaussian approx-
imation is plotted in fig. 5.1 for the mean atom number and the ratio of the variance
over mean atom number v/m. From these plots it can be seen that the gaussian approx-
imation fits the master equation quite well.

Going below shot noise

It is also obvious, that the ratio v/m is decreasing below shot noise (v/m = 1) which is
an effect of the three-body collisions.

This can be observed by looking at the long time limit of three body collisions which
is the stationary state for the ratio v/m.

∂

∂t

v

m
=

1

m

∂v

∂t
− v

m2

∂m

∂t
= 0 (5.14)

Keeping in mind that σ ∝
√
m and keeping only the higher order terms one finds for

the time derivative of the ratio v/m:

∂

∂t

v

m
≈ K3

(
−5mv + 3m2

)
= 0 (5.15)

v

m
=

3

5
(5.16)
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Figure 5.1: Comparison of the solution of the master equation (green circles) with the gaus-
sian approximation (solid red line) of the cloud density during time propagation. In
(a) the evolution of the mean atom number is plotted, in (b) the ratio variance over
mean atom number v/m is shown. The parameters for the plot where: K1 = 0.1 s−1,
K3 = 1 · 10−6 s−1, N0 = 1000 and σ = 2.5 ·

√
N0

If both, one and three-body loss processes are present they will compete and the
noise level can go below shot noise. For long time scales, the ratio v/m will level off to
one, being shot noise since with decreasing density three-body losses get less pronounced
and the loss rate will be dominated by one-body losses. An example for this behavior is
plotted in fig. 5.1b where the mean atom number at the beginning is N0 = 1000 with a
standard deviation of 2.5 ·

√
N0 and one and three-body loss coefficients of K1 = 0.1 s−1

and K3 = 1 · 10−6 s−1 respectively.

5.1.2 Loss Process: Rolling a Dice

Another way to simulate one and three body losses is a Monte Carlo simulation of the
process. A dice is rolled for losing the atoms. The probability to lose an atom via one-
body loss is K1dt where dt denotes the time step one goes further. By starting with a
gaussian distribution for the atom number at the beginning and rolling a dice for each
atom in every time step for one and three-body loss independently the loss process can
be simulated. The three-body loss probability is given via K3/3 ·N2dt where three atoms
leave the trap. The factor of 1/3 was introduced to be consistent with the literature,
where in case of three-body loss with a rate K3 only one atom is lost.

After each time step the atom number is recalculated and further calculations are
done with this new atom number. With this method the time step has to be sufficiently
small. If the time step is chosen too large the probability for having a loss process, either
one or three-body loss is too big and several atoms get lost in each time step. On the
other hand by choosing the time step too small the processing time necessary to calculate
the loss increases rapidly. Since several runs have to be averaged, calculating would last
an unpractical time. The MatLab code for calculating the loss rate with this method is
attached in the appendix A on page 51. To improve the calculation time this method
was also implemented using C. A comparison of both methods also with the gaussian
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Figure 5.2: Comparison of the three-body loss using Monte Carlo methods implemented in
MatLab (red) and using C (blue). The green circles are calculated with the master
equation using the gaussian shape approximation. In (a) the mean value is plotted
whereas (b) shows the variance over the mean value. The following values were taken:
K1 = 0.1 s−1, K3 = 1 · 10−6 s−1 and N0 = 1000 atoms with an initial waist of 2.5 ·

√
N0

using MatLab 1500 runs were calculated, using C 3000 runs.

approximation of the master equation is plotted in fig. 5.2. It can be seen that both
methods overlap quite well. The slight difference is an artefact of the limited number of
runs which were made to calculate both curves.

For our calculations the time step dt was chosen to be a factor of 103 smaller than the
minimal loss rate at the beginning of the process. Hence the probability to lose atoms is
very small. The initial atom number follows a Poissonian distribution with a selectable
width. The initial atom number as well as the loss coefficients and the initial noise level
were taken from the measurements.

In order to proof the influence of the initial noise level 2000 runs were calculated,
varying the initial noise. These calculations revealed no big influence of the initial noise
level on the possibility to go below the shot noise level. The advantage of the Monte
Carlo method to simulate the loss process is, that there is no gaussian ansatz necessary
to solve the problem. The good agreement of both methods yields the correctness of the
gaussian ansatz to solve the master equation.

5.2 CCD Imaging and its Noise

Since all the information of the system is extracted from the images the technical noise
of them has to be known quite well and should be reduced as far as possible. In this
section the reader will be introduced to the main causes of technical noise and ways to
reduce them. As two pictures are taken - the atom picture and the reference picture with
everything but the atoms - one has to be sure that the imaging system doesn’t move
more than a reduced pixel size1 during the exposure of the pictures. This is achieved by

1The reduced pixel size is given by A/M2, where A is the area of one pixel and M is the magnification
of the imaging system
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Figure 5.3: Measuring the optical density (od) of a cloud with a CCD by absorption imaging.
Without a cloud N2 photons would reach the detector. With the cloud the number of
photons on the detector is N1

a massive mount for the imaging system.

5.2.1 Quantum Efficiency

For detecting the signal of the imaging beam a CCD camera by QImaging is used. In
a CCD many photosensitive areas of a depleted semiconductor are arranged in an array
which is read out by an electronic device, step-by-step by shifting the charges to the
side of the chip where the detection of the photoelectrons takes place. The detection
of the photons relies on a good photon-to-electron conversion rate, known as quantum
efficiency. An ideal quantum efficiency of 1 (100%) would state that every photon excites
an electron in the conducting band which is then detected. Achievable values are in the
range of 40% for good CCD’s and up to 95% for electron multiplier CCD’s (EMCCD’s)2.
The bigger the quantum efficiency, the smaller the exposure time necessary at a given
photon flux to get the same signal. The quantum efficiency of our camera is ≈ 30%.

5.2.2 Photon Number fluctuations

The fluctuations of the number of photons incident on the CCD during the exposure
time can not be influenced by the camera design. Since the number of photons follows a
Poissonian distribution the number of photons can only be counted with an error of the
square route of the incident number of photons N .

∆Nphoton =
√
N (5.17)

If a configuration is assumed as sketched in fig 5.3 with N1 being the number of
photons incident on a CCD chip after passing an atom cloud with optical density od the
number of counted photons would be N1 ±

√
N1. If the illuminated object is removed,

N2±
√
N2 photons would be counted. So the optical density od which is our signal s can

be estimated to be:

s = log
N2

N1

= od (5.18)

If the noise of the counted photon number is taken into account, the signal reads:

2see for example the websites www.qimaging.com or www.hamamatsu.com or
www.roperscientific.com

www.qimaging.com
www.hamamatsu.com
www.roperscientific.com
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s = log
N2 + ∆N2

N1 + ∆N1

≈ od+
∆N2

N2

− ∆N1

N1︸ ︷︷ ︸
∆s

(5.19)

In this step the log was expanded, assuming ∆N � N . The root-mean-square
deviation is calculated to be:

〈
∆s2

〉
=

∆N2
2

N2
2

+
∆N2

1

N2
1

=
1

N2

+
1

N1

(5.20)

In this calculation the noise of N2 and N1 is assumed to be uncorrelated. Thus the
mean of the product of both vanishes.

If all noise sources which are related to the camera could be neglected, the noise level
would still be on the order of eq. (5.20) on the picture.

5.2.3 Dark Current

Another source of noise is the thermally induced dark counting rate. In a CCD an
incoming photon is counted whenever it excites a valence electron over the gap into the
conduction band. This electron can then be counted by the read out electronics. But a
valence electron can also be thermally excited into the conduction band. This wrongly
excited electron will be counted as if it came from a photon signal since it can not be
distinguished anymore. This wrongly counted electrons are termed as dark current.

This effect is strongly dependent on temperature. By cooling the CCD the dark
current can be reduced to a negligible level.

One can correct the pictures by taking pictures without opening the camera shutter.
These pictures have to be of the same exposure time as those which are to be corrected.
One can then simply subtract a mean dark image from the pictures. In our setup the
dark current is negligible.

5.2.4 “Hot” Pixels

Since not all the pixels on a CCD chip have the same sensitivity a homogeneously
illuminated surface will not cause the same amount of excited electrons in each pixel.
To estimate this effect on the noise a flat field image is taken. This is done by imaging
a homogeneously lighted surface and searching for hot pixels which have a much bigger
counting rate than a mean pixel. Also dark spots like dust can be found in that way.

Such effects can be corrected by dividing the picture by the flat field image after
correcting it for the dark current. For our CCD the flat field showed no hot pixels thus
we skipped the flat field correction in the images.

5.2.5 Read Out Noise

Also the electronics used to read the CCD introduces some noise. The pixels of the
CCD chip are read out and the signal is multiplied by a constant gain factor which can
be set by the software. After that a constant offset is added to the signal in order to
prevent negative counting rates and the up to here analog signal is converted into a
digital one. Note that every amplifier adds noise to the signal. If this noise is assumed
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to be uncorrelated, its influence can be decreased to a negligible value by taking many
pictures. QImaging specifies the total read noise of our camera to be 8 e− per pixel where
the pixel saturates at 22 · 103 e− at a binnig of 2 x 2. From this it can be seen that this
camera is not limited by the read noise.

5.2.6 Binning

One way to enhance the signal-to-noise-ratio (SNR) is to bin some pixels before reading
out the signal. By binning the pixels in that way several pixels are treated as one with
an increased effective pixel size. Therefore the signal is enhanced for a given exposure
time whereas the read noise is the same as for a single, unbinned pixel.

5.3 Loss Process: Measurements

A three-body loss measurement was performed by loading approximately 7 · 104 atoms
in an optical trap formed by the charger. The trapping frequencies were ω‖ = 2π · 166
Hz and ω⊥ = 2π · 3.58 kHz. Since the trapping frequency in the direction of gravity is
that high, the gravitational sag is negligible as it scales with ω−2.

As the trap is formed by a single beam holding the atoms in all three directions, the
trapping frequencies in longitudinal and transversal direction are no longer independent
of each other. Both are linked by the geometry of the trap via

ω⊥ =

√
2πσ0

λ
ω‖ (5.21)

where σ0 stands for the waist and λ for the wavelength of the trapping beam, which
are both known.

After cooling in the magnetic trap, the atoms are loaded into the charger at the above
mentioned trapping frequencies. After holding them in the trap for a variable time the
atomic cloud is released and a TOF image is taken after a falling time of 1.15 ms with a
binning of 4 times 4 of the CCD camera. The imaging pulse had a length of 400µs and
its intensity was I = 0.1 · Isat.

To analyze the pictures and deduce the atom number from them several steps are
done which will be explained in the following.

Directly after being imaged, a gaussian fit of the pictures is applied where the center
position of the cloud and the gaussian width is deduced. Also a cut of the pictures is
done where only a 160 x 160 pixel wide area around the position of the atoms is saved. In
the final evaluation process the mean center position and the mean width are computed.
This is a good measure of the clouds position since the position varies less than 0.2
binned pixel size.

Bad pictures where the atom number is too poor or not yet stable occur mainly at
the beginning of the measurement procedure. So the first 500 shots have been removed.
In the later measurements the atom number showed no global drifts.

In the next step that part of the picture is selected where the atoms are by taking
an ellipse of the form

(x− cx)
2

(Rσx)2
+

(x− cy)
2

(Rσy)2
< 1 (5.22)
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where cx and cy denote the mean center position of the cloud in x and y direction
respectively and σx and σy the related widths. R is chosen such that 0.1% of a gaussian
distribution would be outside the cut which means for a final atom number of 3000 atoms
that 3 of them are cut whereas shot noise would be 55 atoms. Hence the error of the cut
is far below the noise level.

In the next step the noise of the pictures outside the cut region where no atomic
cloud is is analyzed. A box is taken out in every direction, a summation is performed
over the “short side” (shown in the 2D plots of fig. 5.4) and a fit with a linear function
is applied. If the slope of this fit exceeds a critical value the picture is rejected. An
example of such cuts and the noise pictures are shown in fig 5.4.

After that the reference picture is normalized to the background of the atom picture
in the region outside the elliptical cut. This normalization factor is always close to one.
By doing so small fluctuations in the imaging beam between both pictures are removed.
The final picture is achieved with the normalized reference picture, where the atom
number is deduced simply by summing over the area within the cut. The noise is then
the standard deviation of all the pictures taken.

In order to remove the photon noise eq. (5.20) is used where the sum is taken over the
area inside the elliptical cut in the normalized reference picture and in the atom picture
to estimate the number of photons before and after passing the atomic cloud. This
photon noise is removed from the estimated noise of the pictures by weighting it with
the quantum efficiency of the camera of approximately 30%. The comparison between
the noise level before and after removing the photon noise is shown in fig. 5.5 where the
variance over the mean atom number is plotted with blue stars representing the noise
level before removing the photon noise and the red diamonds after it. It can be seen
that both curves are inside the errorbars of each other, where one point corresponds to
the average of approximately 90 measurements.

After doing this procedure for all the taken pictures we can have a look at the cloud
size as a function of the holding time of the atoms in the trap. This plot is shown in
fig 5.6a. As it can be seen from this the size decreases with the trapping time which
indicates that the cloud cools down due to the loss process [57]. This is the same effect
that leads to a cooling due to evaporation. With the help of eq. (3.19) the temperature
of the cloud during the loss process can be derived as plotted in fig. 5.6b

If this temperature change should be considered in the loss theory we have to look
at the loss on an atomic scale. Let us denote the local three-body loss constant as k3.
Since the measurements are in a thermal gas the cloud’s density can be approximated
to have a gaussian shape. With this approach the local loss coefficient can be integrated
over the cloud to estimate the mean loss coefficient K3 as follows

K3 =

∫
k3n(r)3d3r =

∫
k3

(
N

(2π)3/2σxσyσz

)3

exp

[
−3x2

2σ2
x

− 3y2

2σ2
y

− 3z2

2σ2
z

]
(5.23)

= k3
N3

(2π
√

3)3(σxσyσz)2
(5.24)

= k3
m3ω̄2

(2π
√

3kB)3

N3

T 3
(5.25)

In the last step it was used that the width of a thermal gaussian cloud is given by
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Figure 5.4: Examples for a good (left) and a bad picture (right). In (a) the picture of the
atomic cloud is shown. In (b) a cut was done around the cloud. The inner part will
be summed up after normalizing the reference picture to deduce the atom number. (c)
and (d) show rectangular cuts of the outer region of (b) where the noise is analyzed.
The pictures are summed up over the short side (2D plots) and fitted with a straight
line. The pictures on the left hand side show a uniform noise, whereas on the right
hand side a clear structure is visible in the noise - such pictures are removed during the
analysis. Note that both pictures are not part of the same measuring cycle, therefore
the cuts shown in (b) differ.
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Figure 5.5: Comparison of the noise level before and after the removal of the photon noise.
Plotted is the variance over the mean atom number as a function of the holding time
in the trap. The blue stars show the data before and the red diamonds the data after
the removal. Each point is measured approximately 90 times.
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Figure 5.6: In (a) the size of the atomic cloud after TOF is shown as a function of time in
the trap. The x direction is denoted by the red circles whereas the blue stars mark the
size in y direction. In (b) the deduced temperatures are shown.
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Figure 5.7: Mean atom number vs holding time in the trap, the black crosses denote the
measured data, in (a) the red and blue curves correspond to the fitted curves using the
deduced temperature data from x and y direction respectively as is plotted in fig. 5.6b.
Both fit the measured data quite well giving an initial atom number of N0 = 62000,
K1 = 0.025 s−1 and K3 = 7.46 · 10−10 s−1. In (b) these data is reduced to red stars and
blue circles respectively and the loss is simulated by the master equation ansatz using
the gaussian approximation of the cloud’s shape. This data is shown as a green line

the Boltzmann distribution as eq. (3.18) σ2
i = kBT/mω

2
i and additionally the geometric

mean trapping frequency was introduced as ω̄3 = ωxωyωz.
Now the term K3N 〈n2〉 in eq. (5.1) can be replaced by (5.25) and the temperature

dependent rate equation for one and three-body loss processes occurs.

∂N

∂t
= −K1N −K3

N3

T 3
(5.26)

This equation together with the deduced temperature information of the cloud is
used to fit the measured loss data as can be seen in fig 5.7a.

In fig. 5.7b those fitted curves have been reduced to the red stars and blue circles for
x and y direction respectively and the simulation is inserted in the figure which fits quite
well. The fit results for the loss coefficients were K1 = 0.025 s−1 and K3 = 7.46·10−10 s−1.
Those values and the measured initial noise level have been used for the simulation of
the loss process using the master equation with the approximation that the shape of the
cloud has always a gaussian profile.

If we now have a look at the noise of the pictures it can be observed (see fig. 5.8)
that at the beginning of the holding time of the atoms in the trap the noise decreases
rapidly. This process is due to the high three-body loss probability at that time. With
increasing holding times the three-body losses get less pronounced and at high trapping
times the loss is only dominated by the one-body loss mechanism.

In comparison to the expected theoretical curve, the noise level is higher which indi-
cates that we are limited by the imaging system. The general behavior of noise reduction
due to the loss process can be observed, but the measurements are still a factor of two
above shot noise and a factor of three above the predicted value. This deviation from the
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Figure 5.8: Noise plot of the measured data (solid blue line) and the expected curve (dashed
red line) using the fitted values of K1, K3, N0 and level of initial noise. Plotted is
the variance over the mean value of time in the trap. The errorbars mark the value of
1/
√
n of the actual value at that point where n is the number of data points taken for

the considered trapping time which is at average 90 measurements

predicted curve indicates a problem of the imaging setup used. A non-coated objective
was used that absorbs the beam. This damping leads to a shot noise limitation of the
photon number, since it is a linear process (see for example the behavior of the noise
level when only one-body losses are present). The same explanation is valid for our glass
cell. This is also not coated and hence absorbs the beam. The theoretical curve was
calculated using the gaussian approximation of the master equation. Since the mean
atom number is in good agreement with the theory the origin of the deviation of the
measured to the predicted curve is most likely due to technical reasons. The imaging
duration of 400µs and its intensity of I = 0.1 · Isat indicate a movement of the atoms
during the imaging pulse of 0.8 mm. This is much more than the rayleigh range of of
imaging setup of about 40µm. The changing velocity of the atoms yield a doppler shift
of the imaging laser of approximately 0.86 ·Γ. This effect leads to a wrong atom number
estimation.

Suppose the atom number measurement is wrong by a constant factor α. This yields
that the estimated mean atom number and the estimated standard deviation of the atom
number change:

N → αN (5.27)

〈N〉 → α 〈N〉 (5.28)

∆N =
1

n− 1

√√√√ n∑
i=1

(Ni − 〈N〉)2 → α∆N (5.29)

In the noise plot the ratio of the variance of the atom number measurement vs. the
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mean atom number is plotted.

(∆N)2

〈N〉
→ α

(∆N)2

〈N〉
(5.30)

This means an overestimation of the atom number would lead to a higher noise level.
For our measurement plotted in fig. 5.8 an factor of α ≈ 3±1 would lead to an agreement
of the measured data with the theory curve. Although approximately 90 measurements
have been done for every depicted data point, the errorbars are still to big to give this
factor more precise.
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Chapter 6

Conclusion and Outlook

In our setup a double well system is used. This allows the measurement of thermal and
quantum fluctuations. The measurement of the thermal fluctuations has already been
achieved [39, 50, 51] in our system, but for a measurement of the quantum fluctuations
the accessible parameter range of the system had to be expanded. Therefore the scope of
this work was to introduce the new trapping beam (the charger). A short introduction
to the two-mode model was given, which can be used to describe the dynamics in our
double well system. Since the experimental conditions can be set such that only two
wells are populated, it is relatively easy to deduce the phase between both lattice sites,
compared to a setup that uses an optical lattice for instance. The relevant parameters
for the dynamics of a Bose-Einstein condensate confined in a double well potential are
charging energy Ec, which is a measure for the on-site interaction, and the Josephson
tunneling energy EJ which is an estimate of the coupling strength between the wells. The
old setup consisting of the waveguide and the crossed dipole trap yielded a good control
of EJ , but Ec stayed always well below the tunneling coupling and even well below the
typical temperature scale of the experiment. Hence the experiment was always limited to
the Josephson regime, where EJ � Ec � EJ/N

2. To come into a regime where quantum
fluctuations are observable both of them have to be increased at least to approximately
the same value as the thermal energy scale. Therefore the confinement in each well has
to be enhanced while still having control of the separating barrier height. With the old
setup the only way to reach this would be increasing the optical power which would have
also increased the scattering rate to a value where the condensate would be destroyed at
a timescale too short for the experiment. This solution would also raise the temperature
to a higher level, resulting in a higher value needed for Ec to be comparable to the
temperature. So a low power solution is favorable, which is to increase the confinement
by decreasing the spot size of the trapping beam. This has been realized with the charger,
which has a 1/e2 waist of 5.15µm.

The properties of this beam have been discussed and a first measurement taking
advance of the strong confinement has been done which is the study of the decay of a
trapped thermal gas due to one and three-body losses. A theoretical description of the
loss procedure was developed, starting from the rate equation formalism. From this a
master equation was deduced and the problem was tackled using the approximation that
the cloud’s density has always a gaussian shape. The theoretical results are found to be
in quite good agreement with the exact solution calculated at low atom numbers. It was
also compared to a Monte-Carlo method of solving the rate equation and found to fit
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well. Although the theoretical description predicts the uncertainty of the atom number
in the trap to go below the shot noise limit, this could not be observed in the experiment.

Outlook

Since this deviation from the theoretic behavior might also be a problem of the imaging
system, a new setup using a new objective built as a diploma work by T. B. Ottenstein
[52] is just installed. With this one should have a closer look to this loss measurements
again and it should be possible to overcome the shot noise threshold in the atom number
fluctuations. By doing the same in a double well potential with Bose condensed particles
the three body loss could be used to prepare a number squeezed state as an input state to
an BEC interferometer [58]. A squeezing in the atom number has already been observed
by M. Greiner et al. [59] in an optical lattice, but has not yet been observed in a double
well, where one would have a “pure” interferometer with only two paths.

Another goal would be to go towards the Fock regime and try to see quantum fluc-
tuations. One effect would be the observation of phase diffusion and the revival of the
phase in a double well potential [60, 61, 62]. The phase revival has already been observed
in an optical lattice by M. Greiner et al. [63]. The optical lattice has two advances
compared to a double well system which makes it “easy” to find the right evolution time:
At first in a lattice only very few atoms can be loaded reliable in the system per lattice
site. In the above mentioned experiments 1 to 3 atoms have been used in every lattice
site. As a second point, in a double well system the contrast in a single interference
picture is always high, independent of the randomness of the relative phase. Many shots
have to be averaged to decide if the relative phase is fixed or completely random. In an
optical lattice this information can be observed by one experimental realization. If the
relative phase between the lattice sites is random no interference fringes will occur, since
the averaging is done by the system itself. This averaging of the system is also the main
disadvantage of the optical lattice in comparison to a double well system. At half the
revival time of the relative phase, the system should be in a phase cat state [64]. This
state is not observable in a lattice, as the mean phase is random. But this randomness
is produced by only two discrete phases of π/2 and −π/2. This state is only observable
in a double well system, where clear interference fringes are visible at every time of the
experiment. It therefore allows the creation of a phase cat state of 500 to 1000 atoms.
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Appendix A

MatLab code for rolling dice method

The following code was written in MatLab to calculate the one and three-body loss rate
of a sample of atoms in a trap. This code uses the Monte Carlo approach, by rolling a
dice for one and three-body collisions respectively as mentioned in section 5.1.2 on page
37.

Since MatLab is not very fast in computing loops the computation was rewritten as
a C program, which is called by MatLab to give the necessary parameters.

As the method in the C and MatLab programs are the same, only the MatLab code
is shown here.

% some necessary inputs

K1 = double (0.1); % one -body loss rate

K3 = double (1e-6); % three -body loss rate

N0 = 100; % initial atom number

tmax = 10; % calculate up to tmax seconds

loop = 1000; % number of runs to calculate the decay

w = 2.5; % initial shot noise level

n=[]; dt=[]; m=[]; N=[]; t = []; Natom = []; Natm = [];

% calculate time step

dt = min(1e-3/K1 ,1e-3/(K3*N0^2));

for v=1: loop
Nrand = round(N0+w*sqrt(N0)*randn (1));
if Nrand <0 Nrand =0; end
Natm = Nrand;

% roll the dice for loosing all the atoms once

for u=1:( tmax/dt)

% one body losses

l= rand(1,Nrand);
n(l<=K1*dt)=1;
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% three body losses

l= rand(1,Nrand);
m(l<=K3/3*( Nrand -1)*(Nrand -2)*dt)=3;

% calculate new atom number

Nrand = Nrand -sum(n)-sum(m);
if Nrand <0 Nrand =0; end
Natm = [Natm Nrand];
n = []; m=[]; l=[];

end

N = [N ; Natm];

% display the improvement of the calculation

disp([’progess noiselevel: ’ num2str(w) ’ is now: ’
num2str(v/loop *100) ’%’])

end

% create time step vector

t = dt:dt:dt*size(N,2);

% calculate mean value and standard deviation

Nav = mean(N);
stdN = std(N);
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seine Gruppe haben entscheidend zum gelingen dieser Arbeit beigetragen. Auch
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