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Zusammenfassung
In dieser Dissertation werden Experimente zur Quantendynamik von Materiewellen in einem
eindimensionalen periodischen Potenzial vorgestellt. Ein 87Rb Bose-Einstein Kondensat wird in
einem eindimensionalen Wellenleiter im untersten Band eines überlagerten optischen periodischen
Potenzials präpariert.

Durch die Wirkung eines schwachen periodischen Potenzials läßt sich die lineare Wellendis-
persion verändern. Wir konnten Dispersionsmanagement realisieren, indem wir während der
Evolution von normaler zu anomaler Dispersion wechseln. Die anfängliche Expansion eines
Wellenpaketes konnte zu einer Kompression umgekehrt und damit effektiv das Auseinanderlaufen
verhindert werden. Mit dieser Kontrolle der Dispersion wurde es möglich erstmals helle atomare
Gap-Solitonen – nicht auseinanderlaufende Wellenpakete – zu beobachten. Diese entstehen,
wenn die Atomzahl und die Potenzialtiefe so eingestellt werden, dass die Wirkung der repulsiven
Wechselwirkung von 87Rb und die Wirkung der anomalen Dispersion sich kompensieren.

Für tiefe periodische Potenziale wird unser System von einer diskreten nichtlinearen Schrö-
dingergleichung beschrieben, deren Dynamik durch das Tunneln zwischen den einzelnen Poten-
zialtöpfen und der nichtlinearen Phasenentwicklung bestimmt wird. Im Hauptteil dieser Arbeit
berichte ich über die erstmalige experimentelle Beobachtung von nichtlinearem Self-Trapping von
Materiewellen. Der Übergang vom diffusen Regime, charakterisiert durch eine stetige Expansion
eines Wellenpaketes, in das Self-Trapping Regime wurde durch eine Erhöhung der atomaren
Dichte realisiert. Die dadurch erhöhte repulsive Wechselwirkung führt dazu, daß die anfängliche
Expansion stoppt und die Breite des Wellenpaketes endlich bleibt. Der Vergleich mit einer
durchgeführten numerischen Analyse zeigt, dass die Wirkung der nichtlinearen Phasenentwick-
lung das Tunneln zwischen den einzelnen Gitterplätzen verhindert.

Abstract
In this thesis I report on experiments on the quantum dynamics of matter waves in a one-
dimensional lattice potential. A 87Rb Bose-Einstein condensates is prepared in a one-dimensional
waveguide in the lowest band of a superimposed optical lattice potential.

The action of a weak lattice potential allows to modify the linear wave dispersion. We
realized dispersion management by switching from normal to anomalous dispersion during the
evolution. In this way the initial expansion of a wave packet is reversed to a compression and
thus the effective spreading can be suppressed. By preparing a BEC at the Brillouin zone edge,
we observed bright atomic gap solitons – non-spreading wave packets. They form, if the atom
number and the lattice potential depth is tuned such that the effect of the repulsive atomic
interaction and the anomalous dispersion cancel.

For deep lattice potentials our system is described by a discrete nonlinear Schrödinger equa-
tion, whose dynamics is determined by the tunneling between adjacent lattice sites and the
nonlinear phase evolution. In the main part of this thesis I report on the first experimental
observation of nonlinear self-trapping for matter waves. The transition from the diffusive regime,
characterized by an continuous expansion of the condensate, to the self-trapping regime is ac-
complished by increasing the atomic density. Due to the corresponding increase of the repulsive
atomic interaction the initial expansion stops and the width of the wave packet remains finite.
The comparison with a numerical analysis reveals that the effect is due to an inhibition of the
site-to-site tunneling induced by the nonlinear phase evolution.
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1 Introduction

In the last year of high school our teacher told us that the picture of the world, which con-
sists of countless particles that behave like billiard balls and move according to Newton’s
law is not complete. Even so Newton mechanics describes the “daily” or macroscopic
world correctly, it fails, when looking at the fine details, the microscopic world. The
dynamics of microscopic objects, such as electrons and atoms is of wave nature and is
correctly described by quantum mechanics. This means that you can diffract atoms at a
grating (Keith et al., 1988) or perform Young’s double-slit experiment with atoms (Car-
nal/Mlynek, 1991) just as you would do with light. At that time I was so fascinated by
the technical and philosophical implications of this quantum mechanical world picture
that I decided to study physics, instead of biology or medicine. During the time as a
PhD student I had the chance to explore the field of atom optics, and thus could come
very close to the heart of quantum mechanics.

Matter wave optics

The experiments described in this thesis are situated in the field of nonlinear atom
optics. Here the role of matter and light is reversed in comparison to the field of light
optics (Meystre, 2001). The wave fields are realized by atomic de Broglie waves and the
components for the wave manipulation, such as lenses, mirrors, etc. are implemented
with the help of electromagnetic fields. In the early experiments matter wave sources
were realized by incoherent collimated atom beams, e.g. in neutral-atom lithography
experiments (Timp et al., 1992). The development of laser cooling and trapping (see
e.g. Cohen-Tannoudji, 1998) allowed to realize bright sources of ultra cold, yet incoherent
atoms.

Bose-Einstein condensates

With the realization of Bose-Einstein condensates (BEC) in dilute atomic gases (Ander-
son et al., 1995; Davis et al., 1995) nowadays a source of giant coherent matter waves
is available. The realization of Bose-Einstein condensates is a step in technology, which
is in close analogy to the advancement from the tungsten or arc-lamp to the light laser.
BEC allows to realize the atom laser – a matter wave source with a coherence length
(Andrews et al., 1997) and a wavelength on the order of 1 – 100µm. By introducing a
loss in the atom trap, which corresponds to the cavity of a light laser, a pulsed (Mewes
et al., 1997) and a continuous (Bloch et al., 1999) beam of coherent atoms could be
realized.

Research field of coherent atom optics

In analogy to the invention of the light laser, the realization of BEC opened the wide and
rich research field of coherent atom optics. Here only a glimpse of the research activity
in connection with BEC is given.
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Chapter 1 Introduction

Bose-Einstein condensates constitute a superfluid many-particle system. The inves-
tigation of the phenomenon of superfluidity in a BEC offers many advantages over the
system of superfluid liquid Helium, since the atomic interaction is much weaker. E.g.,
the superfluid character of a BEC could be demonstrated easily by observing directly
the formation of vortices (Madison et al., 2000).

Due to the atomic interaction, Bose-Einstein condensates also allow for the investi-
gation of nonlinear atom optics. In analogy to the field of nonlinear light optics, e.g.
four-wave mixing with matter waves could be demonstrated (Deng et al., 1999).

The low temperatures in a BEC allow for a detailed investigation of binary atomic
collisions in the gas. This leads e.g. to the observation of Feshbach resonances in a
Bose-Einstein condensate (Inouye et al., 1998).

Whenever a new physical phenomenon is demonstrated, one of the first subsequent
research activities is the realization of detectors, which utilize the new phenomenon. In
the case of BEC this is e.g. the realization of interferometers (Shin et al., 2004). The
advantages of atom interferometers compared to optical ones are greater precision due to
the large atomic mass, sensitivity to vibrations, inertial, and gravitational forces, access
to quantum decoherence and to atomic scattering properties, etc. (Godun et al., 2001).

The system of Bose-Einstein condensates in connection with optical lattice potentials
allows for the investigation of the often mentioned field of quantum computing. One
example is the implementation of quantum gates via cold controlled collisions between
two atoms (Jaksch et al., 1999).

BEC in optical lattices – a versatile model system

Our understanding of the physical world is based on abstract mathematical models we
use to describe the reality. With these models it is also possible to discover unknown
phenomena in the physical world by investigating the model itself with analytical or
numerical mathematical tools. In order to fill these theoretical discoveries with life, real
experimental systems are designed which demonstrate the discovered phenomena. In
this context, ultra cold atoms in optical lattice potentials proved to be a very versatile
model system to build real artificial crystals, i.e. systems of interacting waves in peri-
odic potentials. The properties of these crystals allowed to directly demonstrate many
phenomena, which were predicted theoretically in the field of solid state physics, e.g.
the Quantum phase transition from a superfluid to a Mott insulator (Jaksch et al., 1998;
Greiner et al., 2002).

From a different point of view, the system of BEC in optical lattices can also be seen
as a quantum simulator for different differential equations, such as the different discrete
Schrödinger equations or the Bose-Hubbard model !

Dispersion management and Solitons

In the domain of small nonlinear interaction the lattice potential and thus the lattice
dispersion relation dominates the dynamics. Solid state physics text books tell us that
the dispersion relation in a lattice potential is a periodic function with a band structure.
The resulting dynamics is described by the group velocity, the dispersion, the inter band
tunneling, etc. In a series of remarkable experiments, all these theoretical concepts could
be visualized and thus provided a deeper understanding: Bloch oscillations (Dahan et al.,
1996), the momentum composition of Bloch states (Hecker et al., 2002), the momentum
distribution in different Bloch bands (Greiner et al., 2001; Greiner, PhD thesis 2003) –
just to mention a few.
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In the first experiments described in this thesis, we explore the technical possibilities
to control the dynamics of a 87Rb BEC in a shallow 1D lattice potential prepared in
the lowest Bloch band. Our key parameter is the precise position in quasi momentum
space and thus the dispersion of the wave packet. In contrast to similar experiments, our
setup allows a very long observation time, since the dynamics takes place in a horizontally
oriented 1D waveguide.

We could demonstrate the technique of dispersion management for the first time for
matter waves (Eiermann et al., 2003; Anker et al., 2003). After an initial expansion
in the normal dispersion regime, the atomic wave packet is prepared in the regime of
anomalous dispersion, where it compresses again. This technique, originally developed
in the field of nonlinear fiber optics (Agrawal, 2001), allows to prevent the spreading of
a wave packet.

For nonlinear wave systems, such as water waves in a channel (Russel, 1844) or laser
light pulses in optical fibers (Agrawal, 1995), non-spreading localized wave packets – so
called solitons – are known. Solitons form if the nonlinear dynamics compensates the
spreading due to linear dispersion. By preparing a wave packet at the Brillouin zone
boundary, we observed the formation of a bright atomic gap soliton (Eiermann et al.,
2004). The technical challenge for this realization was the preparation of atomic wave
packets with only ∼ 1000 atoms in a shallow lattice potential at the band edge of the
lowest Bloch band.

Tunneling dynamics and nonlinear Self-trapping

For Bose-Einstein condensates trapped in a lattice potential, the dynamics depends
strongly on the ratio between the kinetic energy and the interaction energy. In the case
of deep lattice potentials, the kinetic energy is given by the nearest neighbor tunneling.
The dynamical description changes therefore from a global dispersion picture to a local
picture, where the main physical processes are the tunneling between adjacent lattice
sites and the nonlinear phase evolution inside a single lattice site.

If the tunneling is large enough to allow a stable relative phase between two adjacent
sites, the resulting dynamics is very similar to that of a Josephson current through a
potential barrier between two superfluids (Cataliotti et al., 2001).

In this thesis the dynamics of a Bose-Einstein condensate in a 1D waveguide with a
superimposed deep 1D lattice potential is investigated. This setup is an experimental
implementation of the well known dynamical system described by the discrete nonlinear
Schrödinger equation (DNLS). Especially the transport properties of this system are of
interest, e.g. the predicted existence of localized excitations such as discrete solitons
(Ahufinger et al., 2004; Trombettoni, 2001) and stable edges (Darmanyan et al., 1999).

In this thesis the effect of nonlinear self-trapping, first predicted in (Trombettoni,
2001) could be demonstrated (Anker et al., 2005). Increasing the nonlinearity the system
is moved from the diffusive regime, characterized by an expansion of the condensate, to
the nonlinearity dominated self-trapping regime, where the initial expansion stops and
the width remains finite. The transition between both regimes is governed by a critical
parameter, which can be identified by the ratio between the mean local interaction energy
and the width of the lowest Bloch band.

In addition a detailed numerical investigation of the effect of nonlinear self-trapping
is done, using discrete nonlinear Schrödinger equations with different nonlinearities. The
analysis shows that nonlinear self-trapping is a local effect, which occurs due to nonlin-
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Chapter 1 Introduction

earity induced inhibition of site to site tunneling. This behavior is closely connected to
the phenomenon of macroscopic self-trapping for matter waves in double-well systems
(Smerzi et al., 1997; Albiez et al., 2005). Finally the decay of self-trapping is investigated
experimentally and compared with numerical calculations.
Overview

• The second chapter is an overview about the theory of a weakly interacting Bose
gas, the experimental apparatus and experimental methods.

• The third chapter reports on experiments with matter waves in shallow 1D optical
lattice potentials. The theory of the band structure of a lattice and the dispersive
dynamics of matter waves is given. The experimental part describes the generation
of optical lattice potentials, where the implemented calibration process of the lat-
tice is of special interest. Since the demonstration of dispersion management and
the realization of atomic gap solitons are described in detail in (Eiermann, PhD
thesis 2004), in this thesis only a short introduction and a summary are given. The
experiments on continuous dispersion management and their numerical analysis are
presented in detail.

• In the fourth chapter, the effect of nonlinear self-trapping is presented. The Boson-
Josephson junction and the discrete nonlinear Schrödinger equation is explained.
A detailed numerical analysis of the effect of self-trapping is given. In the experi-
mental part the realization of the transition from the diffusive to the self-trapping
regime, the investigation of the scaling properties and the decay of self-trapping is
presented and compared with the results of the numerical investigation.

Publications of the PhD Work

• Dispersion Management for Atomic MatterWaves.
B. Eiermann, P. Treutlein, Th. Anker, M. Albiez, M. Taglieber, K.-P. Marzlin,
and M. K. Oberthaler
Physical Review Letters 91, 060402 (2003)

• Linear and nonlinear dynamics of matter wave packets in periodic potentials
Th. Anker, M. Albiez, B. Eiermann, M. Taglieber and M. K. Oberthaler
Optics Express 12, 11 (2003)

• Bright Bose-Einstein Gap Solitons of Atoms with Repulsive Interaction
B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin and
M. K. Oberthaler
Physical Review Letters 92, 230401 (2004)

• Nonlinear self-trapping of matter waves in periodic potentials
Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni and
M. K. Oberthaler
Physical Review Letters 94, 020403 (2005)
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2 Bose-Einstein condensation in a weakly interacting
gas of atoms

Under certain experimental conditions massive matter like electrons, atoms or even
very large molecules such as the C60 Buckminsterfullerene (Arndt et al., 1999) exhibits
a dynamics which is very similar to that of water waves or electro-magnetic waves.
One thus has to attribute a wave character to matter – a fascinating idea both from
a technical and philosophical point of view. In modern quantum mechanics textbooks
this physical reality is described with the help of wave functions, which are governed by
wave equations. These wave functions are very mathematical and abstract objects since
the typical corresponding wavelength is so small that the resulting wave dynamics can
often only be detected indirectly with a very sophisticated experimental apparatus and
is thus not an every day experience.

With the realization of Bose-Einstein condensates in dilute atomic gases (Anderson
et al., 1995; Davis et al., 1995) nowadays a bright source of giant coherent matter waves
is available. The atomic matter waves generated from such condensates can be described
by a single macroscopic wave function with typical length scales of several micrometers
and thus allow to directly visualize and investigate quantum mechanical matter wave
dynamics. The experimental realization (see e.g. Ketterle et al., 1998) and the theoreti-
cal description (see e.g. Dalfovo et al., 1999) of BEC in dilute atomic gases are now very
well understood. They are used in many laboratories as a standard source for coherent
matter wave optics experiments. With the help of laser light fields and magnetic fields it
is now possible to realize atom optical components such as waveguides, mirrors, lenses,
cavities etc. In addition, the weak interaction between the atoms leads to a nonlinear
wave dynamics and thus opens up the rich field of nonlinear matter wave optics.

In the experiments described in this thesis 87Rb Bose-Einstein condensates are used
as a source of coherent matter wave packets to investigate nonlinear matter wave dy-
namics in a periodically modulated waveguide. The theoretical description as detailed
as is necessary to understand the experiments is given in the first part of this chapter.
As the main result the relevant nonlinear dynamical equation for the experimental sys-
tem, the Gross-Pitaevskii equation (GPE), is explained. Also the reduced equations for
the description of the (quasi) 1D dynamics in a waveguide and the method for their
numerical propagation is given.

In the second part, the used experimental setup for the creation of the condensates is
described. The experimental setup allows to capture and pre-cool atoms with a magneto-
optical Funnel-MOT system and to further cool them in a magnetic trap. The final
condensation is achieved in a purely optical trap consisting of two crossed laser beams.
The setup provides atomic wave packets with very well controlled atom number and
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

shape. The further manipulation of the wave packets by optical means proved to be
very versatile allowing for the implementation of many different potentials.

2.1 Theory of Bose-Einstein condensates

The phenomenon of Bose-Einstein condensation was first predicted in (Bose, 1924; Ein-
stein, 1925) for an ideal gas of bosonic particles and occurs when the gas is cooled below a
critical temperature. In a Bose condensed gas the ground state of the system is occupied
by a macroscopic number of atoms. BEC is a paradigm of quantum statistical mechanics
and is due to the indistinguishability and wave nature of particles. The description of
BEC for noninteracting particles is given in the first part of this section.

In real physical systems the atomic interaction changes the description of BEC dras-
tically. In contrast to the complex situation of strongly interacting superfluid 4He (Lon-
don, 1938), BEC in dilute gases can be described very accurately in the framework of
the Gross-Pitaevskii equation (see e.g. Dalfovo et al., 1999), which is based on a mean
field theory. The GPE for a 3D system and for the 1D waveguide system, as well as the
numerical implementation is shown in the second and third part of this section.

2.1.1 Noninteracting gas of bosons

A many-particle system of identical bosons follows two important quantum statistical
rules. First of all bosons do not underly the Pauli exclusion principle and are thus
allowed to accumulate in a single state ϕj of the system. In addition the many-body
wave function of the system does not change, when the position of two particles is
exchanged

|ϕjϕiϕjϕj ...〉 = |ϕiϕjϕjϕj ...〉. (2.1)

The consequences of these two rules become important, when the lowest quantum states
ϕj are populated with more than one particle. This happens, when the system is cooled
below the critical temperature. For a system of N bosons in a harmonic trap the critical
temperature is given by (see e.g. Dalfovo et al., 1999)

Tc =
�

kB
ωho

(
N

ζ(3)

)1/3

, (2.2)

where ωho = (ωxωyωz)1/3 is the geometric average of the oscillator frequencies and ζ(3) =
1.2 is the Riemann zeta function. At the critical temperature the thermal de Broglie
wavelength of the particles becomes comparable to the mean inter-particle distance and
thus the bosons start to overlap, i.e. the lowest quantum states ϕj are populated with
more than one particle. At this point the quantum statistics, governed by the rules given
above, leads to the phenomenon of Bose-Einstein condensation: in thermal equilibrium
(maximum Entropy) the ground state ϕ0 of the system is macroscopically populated
and the energy is distributed between the remaining atoms, which populate many high
energy states. At T = 0 all the particles are in the ground state and the many-body
wave function is a product of N identical single-particle ground state wave functions.
Such a condensate can be described by a macroscopic wave function (order parameter)

ψ(�r) =
√
Nϕ0(�r), (2.3)
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2.1 Theory of Bose-Einstein condensates

which is governed by the linear Schrödinger equation

i�
∂

∂t
ψ(�r , t) = Ĥψ(�r , t) =

[
− �

2

2m
∇2 + Vext(�r )

]
ψ(�r , t). (2.4)

For a typical harmonic trapping potential ϕ0(�r) is a Gaussian function with a length
scale of several micrometer.

2.1.2 Dilute gas of interacting bosons

The many-body Hamiltonian for a system ofN interacting bosons in an external trapping
potential Vext is given, in second quantization, by

Ĥ =
∫
d�r Ψ̂†(�r )

[
− �

2

2m
∇2 + Vext(�r )

]
Ψ̂(�r ) +

1
2

∫
d�r d�r ′Ψ̂†(�r )Ψ̂†(�r ′)V (�r ′ − �r )Ψ̂(�r )Ψ̂(�r ′), (2.5)

where Ψ̂†(�r ) and Ψ̂(�r ) are the boson field operators, that create and annihilate a particle
at the position �r , respectively, and V (�r ′ − �r ) is the two-body interatomic scattering
potential. For a dilute gas at very low temperatures the atomic interaction is given
by binary collisions at low energy. This allows to replace the complicated interaction
potential V (�r − �r ′) by an effective interaction

V (�r ′ − �r ) = g0δ(�r ′ − �r ), (2.6)

characterized by the coupling constant g0 = 4π�
2as/m with the s-wave scattering length

as. This approximation is valid in the case that the scattering length is much smaller
than the inter-particle distance, i.e. na3

s � 1 and n is the mean particle density.
For a Bose condensed gas, a mean field approach, which consists in separating out

the condensate contribution to the bosonic field operators (Bogoliubov, 1947) can be
applied. In general the field operators can be written as Ψ̂(�r ) =

∑
α Ψα(�r )aα, where

Ψα(�r ) are the single particle wave functions and aα are the corresponding annihilation
operators. In a Bose-Einstein condensate the number of atoms in the ground state
becomes very large N0 � 1 and, consequently, the operators a0 and a†0 can be treated
like c-numbers: a0|N0〉 =

√
N0|N0 − 1〉 � a†0|N0〉 =

√
N0 + 1|N0 + 1〉 � √

N0|N0〉. The
bosonic field operator can then be written as Ψ̂(�r ) = Ψ0(�r )

√
N0. In the general case of

a time-dependent system, assuming the occurrence of a broken gauge symmetry in the
many-body system, the bosonic field operator can be replaced by its expectation value
Ψ̂(�r , t) = Ψ(�r , t) ≡ 〈Ψ̂(�r , t)〉. This approximation together with 2.6 and 2.5 leads to the
well known Gross-Pitaevskii equation (GPE)

i�
∂

∂t
Ψ(�r , t) =

[
− �

2

2m
∇2 + Vext(�r ) + g0N |Ψ(�r , t)|2

]
Ψ(�r , t). (2.7)

It has the form of a nonlinear Schrödinger equation, where the nonlinearity is coming
from the mean-field term, which is proportional to the particle density n(�r ) = |Ψ(�r , t)|2.
Eq. 2.7 allows to describe, both qualitatively and quantitatively, the macroscopic be-
havior of a Bose-Einstein condensate on a length scale larger than the mean interatomic
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

distance. From a many body point of view, the mean field description with eq. 2.7 is
the simplest of all possible cases, containing no interaction-induced correlations between
different atoms. The importance of direct interaction can be estimated from the ratio

γ =
εint

εkin
=

g0n

�n2/3/m
≈ n1/3as (2.8)

between the interaction and the kinetic energy per particle (Zwerger, 2003). For the
typical atomic densities n in the experiments described in this work, the average inter
particle distance n1/3 is much larger than the scattering length as and thus γ � 1. In this
weak coupling limit the dynamics of the many body wave function is well described by
a single macroscopic wave function and the Gross-Pitaevskii equation 2.7, which is used
as the fundamental dynamical equation in the description of the experiments presented
in this thesis.

2.1.3 A BEC in a harmonic 1D waveguide potential

In the experiment described in this work the dynamics of a coherent matter wave packet
in a horizontal 1D waveguide potential is investigated. The waveguide can be described
by a harmonic potential

Vwg =
m

2
ω2
⊥(y2 + z2) +

m

2
ω2
‖x

2, (2.9)

with the transversal and longitudinal trapping frequencies ω⊥ and ω‖, respectively. In
the experiments ω‖ � 2π/Texp, where Texp is the time scale of the wave packet dynamics.
Thus a free evolution in the longitudinal direction is realized.

In the experiments atomic wave packets are used with small atom numbers, such that
corresponding interaction energy g0N |Ψ(�r , t)|2 ≤ �ω⊥ is smaller than the transverse
vibrational level spacing. The resulting dynamics will thus be reduced to one dimension
in longitudinal direction, whereas the transverse motion is almost frozen out. This
situation is described by the 1D Gross-Pitaevskii equation, which is derived in the first
part of this section.

For intermediate atomic densities with g1D|Ψ(x, t)|2 ≥ �ω⊥, an effective 1D equation
is described in the second part. It models the longitudinal wave packet dynamics with
a nonlinear coupling constant g1D(x, t), which is implicitly time- and space-dependent
through the local atomic density |Ψ(x, t)|2.

In the last part of this section the numerical implementation of both equations of
motion is described.

1D Gross-Pitaevskii equation

We consider matter wave experiments with small atomic densities, such that the cor-
responding energies due to the atomic interaction are smaller or on the order of the
transverse vibrational level spacing g0|Ψ(�r , t)|2 ≤ �ω⊥. In this case, the condensate wave
function can be approximated by a product wave function Ψ(�r , t) = Ψ(x, t)Ψ⊥(y)Ψ⊥(z),
where Ψ⊥ is the ground state wave function of the harmonic oscillator. In this approx-
imation the nonlinear coupling of the longitudinal and transversal degree of freedom is
neglected and the wave function is assumed to remain always in the transversal ground
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2.1 Theory of Bose-Einstein condensates

state. This ansatz is plugged into eq. (2.7) and by integrating out the transverse degree
of freedom, the 1D Gross-Pitaevskii equation

i�
∂

∂t
Ψ(x, t) =

[
− �

2

2m
∂2

∂x2
+ Vwg(x) + g1DN |Ψ(x, t)|2

]
Ψ(x, t). (2.10)

is obtained. Here g1D = g0/A⊥ and

A⊥ =
[∫

dydz|Ψ⊥(y)|4|Ψ⊥(z)|4
]−1

= 2πa2
⊥ (2.11)

is a measure for the transversal width of the wave function, where a⊥ =
√

�/mω⊥
is the width of the transverse ground state. The above stated criterium for the used
approximation can now be written as

g1DN |Ψ(x, t)|2 ≤ �ω⊥ ⇔ N max{|Ψ⊥(x, t)|2} ≤ 1
2as

, (2.12)

In order for the wave function to remain always in the transversal ground state, the
longitudinal atomic density must not exceed 1/2as (= 93 atoms/µm for 87Rb). Please
note that this limit in the linear density does not dependent on the transversal trapping
frequency ω⊥.

Effective 1D Schrödinger equation

For intermediate atomic densities g1D|Ψ(x, t)|2 ≥ �ω⊥ the transversal ground state
can no longer be described by the ground state of the harmonic oscillator. The mean
field pressure due to the repulsive atomic interaction leads to a broadening of the wave
function. In steady state, the ground state can still be approximated by a Gaussian
density distribution Ψ⊥(y) ∝ exp(−y2/σ2

⊥). The width σ⊥ depends on the density of
the wave packet and is obtained by a variational principle (Baym/Pethick, 1996).

A dynamic equation of motion can be derived, in the case that the density of the wave
packet changes only slowly with respect to the transverse trapping frequency dn(x)/dt <
ω⊥. The wave function will then remain in the transverse ground state with a time-
dependent width σ⊥(t). In (Salasnich et al., 2002) the effective 1D nonlinear Schrödinger
equation

i�
∂

∂t
Ψ(x, t) =

[
− �

2

2m
∂2

∂x2
+ Vext(x) + g1DN

|Ψ(x, t)|2√
1 + 2asN |Ψ(x, t)|2

]
Ψ(x, t)

+

[
�ω⊥
2

(
1√

1 + 2asN |Ψ(x, t)|2 +
√

1 + 2asN |Ψ(x, t)|2
)]

Ψ(x, t) (2.13)

is derived, based on the above assumptions. This equation is called non-polynomial
nonlinear Schrödinger equation (NPSE). It allows to describe the dynamics of atomic
wave packets in a 1D waveguide potential, where the dynamics takes place mainly in
the axial direction. In the radial direction the wave function is assumed to remain in
the ground state with a Gaussian density distribution, where the width σ⊥(x, t)2 =
a2
⊥
√

1 + 2asN |Ψ(x, t)|2 adjusts instantaneous according to the local density.

9



Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

2.1.4 Numerical wave packet propagation in 1D

In this thesis physical insight into the dynamics of wave packets is gained by comparison
with corresponding numerical calculations. The numerical propagation of wave packet
dynamics in 3 dimensions requires very large computational resources. Regarding the
experiments with wave packets in a 1D waveguide, already the propagation of the (effec-
tive) 1D Schrödinger equation, which requires only small computational resources, allows
to reproduce the main aspects of the dynamics. In this section the implementation of
the numerical propagation of the nonlinear 1D Schrödinger equations is described.

The evolution of a quantum mechanical state is determined by the time evolution
operator Û(t0, t) (see e.g. Nolting, 1997):

Ψ(x, t) = Û(t0, t)Ψ(x, t0). (2.14)

For conservative systems Û(t0, t) = exp(− i
�
Ĥ∆t), where ∆t = t − t0. Eq. 2.14 can be

solved numerically with a split-step Fourier method (“spectral method”) (Sterke/Sipe,
1986). In this method the Hamiltonian operator is split into the kinetic and the spatial
part Ĥ = Hp(p̂) +Hx(x̂, t) and the time evolution operator is approximated by

Û(t0, t) = exp(− i

�
Ĥ∆t) � exp(− i

�
Hp∆t/2) · exp(− i

�
Hx∆t) · exp(− i

�
Hp∆t/2). (2.15)

Here an error is introduced due to the fact that [x̂, p̂] �= 0. The symmetric splitting of
the operators reduces the error to order ∆t3. In the numerical propagation the time
interval is split into small steps ∆t = Nst · dt, such that the error becomes negligible.

Both the kinetic and the spatial part of the time evolution operator can be evaluated
by a simple multiplication in momentum and in real space, respectively. The switching
between momentum and real space can be implemented very efficiently by a fast-fourier
transformation (FFT). Thus a single propagation step is reduced to 2 FFT’s and two
multiplications. The complete propagation is given by

Ψ(x, t) = P̂1/2X̂[P̂ X̂]Nst−1P̂1/2Ψ(x, t0), (2.16)

where

P̂1/2 = (FFT )−1e−
i
�

E(p)dt/2 FFT

P̂ = (FFT )−1e−
i
�

E(p)dt FFT

X̂ = e−
i
�

E(x,t)dt.

(2.17)

E(p) is the dispersion relation and E(x, t) is determined by the external potentials (har-
monic trap and/or periodic potential) and the density dependent mean field energy due
to the atomic interaction. Thus E(x, t) needs to be evaluated for each step1. An exam-
ple program for the propagation of the NPSE in the programming language Matlab c©
is given in appendix A.1.

1In this way also time-dependent external potentials can be implemented easily.
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2.2 Experimental setup to create a 87Rb Bose-Einstein condensate

2.2 Experimental setup to create a 87Rb Bose-Einstein conden-
sate

Bose-Einstein condensates of a an interacting gas of bosons are produced, as explained
in the previous section, by increasing the phase-space density of the gas above a critical
value. In a typical experiment this is achieved by trapping the gas in tight conservative
atom trap with small heating. The phase transition to obtain a condensate is then
realized by cooling the gas below the critical temperature, mostly with a series of different
cooling techniques. An overview of the different implementations can be found in (see
e.g. Ketterle et al., 1998).

For the reader already familiar with this field a short summary of the setup used in
this thesis is given in the first section. For the reader interested in the details of the im-
plemented scheme, the trapping, cooling, detection and experiment control is described
in the remaining sections. Additional technical details can be found in (Eiermann, PhD
thesis 2004).

2.2.1 Setup summary

A gas of bosonic 87Rb atoms is used in the experiment. This atomic species is the “work-
horse” in the field of atom optics, since it can be held conveniently in a magnetic and in
an optical trap and very efficient cooling techniques, like laser-cooling and evaporation
cooling can be employed. The experimental setup consist of a double chamber vacuum
system. A slow beam of atoms is produced by a magneto-optical funnel in the high
vacuum chamber, and is injected into the ultra high vacuum chamber, where the atoms
are trapped and precooled in a magneto-optical trap. Subsequently the atoms are trans-
ferred into a superimposed magnetic trap, where the temperature is further reduced by
evaporative cooling. The gas of ultra cold atoms is then transferred into an optical trap,
where the gas is cooled below the critical temperature again by evaporative cooling.
The optical trap consists of two crossed laser beams, where one of the beams acts as a
waveguide. The nonlinear matter wave dynamics of the condensate in the waveguide is
observed by absorption imaging. In Fig 2.1 the schematic setup together with the laser
system are shown.

2.2.2 Magneto-optical cooling and trapping

In the experiments on matter wave optics described in this thesis, light, i.e. the interac-
tion of atoms with an electro-magnetic field, is used in order to create, manipulate and
detect the matter waves. The basic processes of the interaction of atoms with light, i.e.
absorption and emission of photons, allow to distinguish two categories of effects (see
e.g. Cohen-Tannoudji, 1998): dissipative (or absorptive) and reactive (or dispersive)
effects.

The interaction of atoms with laser modes with a frequency ωl, which is far detuned
from the atomic resonance frequency ω0, is mainly governed by the redistribution of pho-
tons between the laser modes in stimulated absorption-emission cycles. These processes
lead to the so called reactive (or dipole) force, which is used in the experiments to realize
a conservative optical trap and a periodically modulated waveguide for the atoms (see
section on the optical trap and chapter 3).
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Figure 2.1: Schematic Setup of the experiment and laser system. The matter wave experiments
with a Bose-Einstein condensate are realized in a vacuum system consisting of two chambers.
The HV chamber (on the left, 10−9 mbar) and the UHV chamber (on the right, < 2 ·10−11 mbar)
are connected by a differential pumping stage (500:1). In the HV chamber a 87Rb background
gas is produced with Rb dispensers. In a 2D magneto-optical trap (funnel) the atoms are cooled
and compressed onto the symmetry axis of the funnel and pushed in the direction of the axis
through a hole in one of the funnel mirrors into the UHV chamber. The resulting beam of
slow atoms is captured and precooled in a 3D magneto-optical trap in the UHV chamber. A
Ti:Saphire laser and a ECD laser provide the main- and the repumper-light for the MOT and the
funnel. The atoms are transferred from the MOT into a superimposed magnetic time-orbiting
trap, where they are further cooled by evaporative cooling. A sample of ultra-cold atoms is finally
transferred into an optical dipole trap, realized with two crossed beams from a Nd:YAG laser.
By further evaporative cooling a Bose-Einstein condensate is produced and its dynamics along
the waveguide is detected by absorption imaging with a CCD-camera. An additional standing
light wave, collinear with the waveguide, is used to realize and investigate matter wave dynamics
in a periodic potential.

When atoms interact with almost resonant laser modes, the coupling of the atoms
to the empty vacuum modes of the light field becomes important. An atom, which
absorbs a photon from a single resonant laser mode with wave vector �kl experiences
a momentum transfer of ��kl. The subsequent emission of the photon into one of the
resonant vacuum modes is isotropic and thus, for many absorption-emission cycles, a
net force (Cohen-Tannoudji et al., 1992)

�Fsc = σexΓ · ��kl (2.18)

is exerted onto the atom. It is called scattering (or dissipative) force and is proportional
to the natural line width Γ and the occupation probability σex(δl, I) of the excited state.
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2.2 Experimental setup to create a 87Rb Bose-Einstein condensate

The force 2.18 depends on the detuning δl = (ωl − ω0) and the laser light intensity I.
Together with the Zeeman-splitting in magnetic fields and the Doppler-shift for moving
atoms, very efficient optical cooling and magneto-optical atoms traps (MOT) can be
realized.

Optical cooling can be implemented by a configuration of counterpropagating waves,
which are slightly red detuned from the atomic resonance frequency. For moving atoms,
the apparent laser frequency is Doppler shifted and thus the wave with the opposite
direction to the atomic velocity is closer to resonance. The net force is opposite to
the atom velocity and can be written for small velocities as a friction force, which
is proportional to the velocity of the atom. A system of three mutually orthogonal
pairs of counterpropagating waves is called “optical molasses”(Chu et al., 1985) and
allows to cool the atoms down to the Doppler temperature limit TD = �Γ

2kB
. In such a

system of counterpropagating waves an additional cooling mechanism results from the
spatially dependent polarization of the optical field. This “polarization gradient cooling”
(Dalibard et al., 1989) allows to cool far below the Doppler limit.

By adding a suitable magnetic field to the “optical molasses” configuration, a spatial
dependence of the scattering force is introduced, which allows to realize a 3D magneto-
optical trap (MOT) combined with optical cooling. The principle configuration of a such
a MOT is shown in Figure 2.2.

x [a.u.]

|B|

|E|

J=1,mf = −1

J=1,mf = 1

J=1,mf = 0

J=0,mf = 0

0

0

0

B

hω0

hωl
σ-−light  σ-−light

B

Figure 2.2: Light and magnetic field configuration of a 1D magneto-optical trap. The mag-
netic field leads to a spatially varying Zeeman shift of the excited state. Two right hand circular
polarized counterpropagating light waves, which are slightly red detuned from the atomic reso-
nance, exert opposing scattering forces on the atoms. In the center of the trap, both forces are
balanced, whereas for atoms, which are not situated in the center of the trap, the σ−-transition,
and thus the force directed towards the center of the trap is dominant.

Level scheme of 87Rb

The 87Rb isotope, which is used in the experiment, is an alkali atom with a nuclear
spin I = 3/2. The fine structure splitting due to spin-orbit coupling leads to the D-line
doublet 52S1/2 – 52P1/2 and 52S1/2 – 52P3/2, with transition wavelengths of 795 nm and
780 nm respectively. Coupling to the nuclear spin then leads to a hyperfine splitting of
the ground state of about 6.8 GHz and a splitting of the excited states on the order of
hundred MHz. In figure 2.3 the relevant part of the level scheme for 87Rb is shown. For
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

the optical cooling and trapping the |F = 2〉 to |F ′ = 3〉 transition (D2-line at 780 nm) is
used. Additional repumper light for the |F = 1〉 to |F ′ = 2〉 is necessary, in order pump
atoms, which decayed from the near resonant |F = 2〉 state into the |F = 1〉 state, back
into the cooling cycle. The optical waveguide and the periodic potential are realized
with off-resonant laser light at 1064 nm and 782 nm, respectively. The Bose-Einstein
condensate is created in the |F = 2,mF = 2〉 state (in the optical dipole trap a small
magnetic guiding field conserves the spin polarization).

D1-Line
795 nm

D2-Line
780 nm

266.7 MHz

156.9 MHz

72.2 MHz
Ti:Saphir
MOT and 
funnel periodic potential

782 nm

repumper

Fine structure  Hyperfine structure Zeeman-splitting

Nd:YAG
1064 nm

BEC state

3
F

F
mF

2

2

1

1

2
1
0

-1
-2

0

6.8 GHz

Figure 2.3: Level scheme of 87Rb.

Magneto-optical funnel

In the experiment a 2D magneto-optical funnel is used in the HV chamber in order to
realize a slow beam of 87Rb atoms, which is directed through the hole of the differential
pumping stage connecting the HV and the UHV chamber (see figure 2.1). It consists
of three mutually orthogonal pairs of counterpropagating laser beams and a magnetic
axial quadrupole field (see figure 2.4). In the transverse directions, the polarization and
intensity of the laser beams is chosen such that a MOT configuration is realized. Thus,
atoms are captured and compressed to the symmetry axis of the magnetic field. In the
axial direction, due to the vanishing magnetic field gradient, the atoms are only optically
cooled. In addition, as the laser beams in the axial direction are slightly unbalanced, the
atoms are pushed along the axis in one direction. Such a magneto-optical funnel was
first demonstrated in (Riis et al., 1990) and later used in a Bose-Einstein experiment
setup (Dieckmann et al., 1998). The laser light for the funnel drives the |F = 2〉 to
|F ′ = 3〉 transition (D2-line) and is detuned by δl = −2Γ. The slow beam of atoms is
captured in the UHV chamber by a 3D MOT with a typical loading rate of 107 atoms/s.

Magneto-optical trap

The atomic beam from the funnel is captured in the UHV chamber by a standard 3D
MOT (Raab et al., 1987). The schematic setup is shown in figure 2.5. The figure of
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2.2 Experimental setup to create a 87Rb Bose-Einstein condensate
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Figure 2.4: Schematic setup of the magneto-optical funnel. Two pairs of elongated rectan-
gular coils in anti-Helmholtz configuration generate an axial quadrupole field. In the transverse
direction (y-,z-direction) two orthogonal pairs of counter propagating laser beams realize a 2D
MOT configuration, which allows to trap the atoms from the background and compress them
onto the symmetry axis of the funnel. In the longitudinal direction a push and a cooling beam
are reflected off a mirror inside the HV chamber. A hole in the mirror (which constitutes the
differential pumping stage between the HV and the UHV chamber) leads to an unbalanced light
force configuration on the axis and generates a beam of slow atoms.

merit for the MOT in this Bose-Einstein experiment is to collect and precool as many
atoms as possible. This is achieved by trapping the atoms in a large volume, in order to
avoid trap losses due to inelastic, light-induced collisions. In the setup, beam diameters
of 18 mm are used to realize a large capture volume of the trap. In addition, the coils
for the rotating bias field (see next section on the top trap) are run, in order to reduce
the gradient of the magnetic field in the center of the MOT. The laser light for the
MOT drives the |F = 2〉 to |F ′ = 3〉 transition (D2-line) and is detuned by δl = −1.4Γ.
A number of 109 atoms in the MOT were sufficient to reliably create Bose-Einstein
condensates.

2.2.3 Magnetic TOP-trap and evaporative cooling

Dissipative optical cooling methods are not sufficient to reach high enough phase-space
densities necessary for Bose-Einstein condensation. The final step, in order to realize
the Bose-Einstein condensation is realized by a transfer of the atomic sample into a
conservative atom trap and subsequent cooling by evaporation (Masuhara et al., 1988).

Evaporative cooling

Evaporative cooling can be implemented for atoms in a conservative atom trap with a
variable trap depth. By lowering the trap depth, the high energy tail of the thermal
distribution is continuously removed. As each evaporated atom carries away more than

15



Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms
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Figure 2.5: Schematic setup of the magneto-optical trap. The magnetic quadrupole field
is realized by a pair of coils in anti-Helmholtz configuration. The gradient of the magnetic
quadrupole field in the center, and thus the atomic density in the MOT is reduced by two
pairs of coils in Helmholtz configuration, which provide a rotating bias field. Three pairs of
counterpropagating laser beams are overlapped in the center. The horizontal pair encloses only
an angle of 50◦ for geometrical reasons.

the average kinetic energy, this leads to a very efficient cooling of the atomic gas. This
cooling method works best at high atomic densities, as the high energy tail is continu-
ously repopulated by inter-atomic collisions. Bose-Einstein condensation is achieved by
the so called runaway evaporation, where the decrease in density by the evaporation of
atoms is overcompensated by the increase in density, when the atoms with low kinetic
energy accumulate in the center of the trap.

TOP trap

In our experiment the precooled atoms are transferred from the MOT into a conservative
magnetic trap. Magnetic trapping of atoms relies on the interaction of the atomic mag-
netic moment with an inhomogeneous magnetic field. An atom in the hyperfine state F
with magnetic quantum number mF is subjected to a potential

V (�r ) = gFµBmFB(�r ) (2.19)

due to the Zeeman energy shift. Here gF is the Landé g-Factor, µB is the Bohr magneton
and B(�r ) is the magnetic field. Atoms with gFµBmF > 0 (weak field seeker) can thus
be trapped in a local minimum of a magnetic field. In regions of very small or vanishing
magnetic fields the magnetic moment of moving atoms cannot follow adiabatically the
direction of the magnetic field and thus trap loss due to spin flips into untrapped states
is possible. These spin flips are referred to as Majorana flops (Majorana, 1932).

In our experiment we trap the atoms in the state |F = 2,mF = 2〉 (gF = 1/2) in a
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2.2 Experimental setup to create a 87Rb Bose-Einstein condensate

time-averaged orbiting potential (TOP) trap (Petrich et al., 1995). It is realized by the
sum of a spherical quadrupole field and an additional rotating bias field. These magnetic
fields are generated by the coils used for the MOT (see figure 2.5). The top- and bottom-
coils, driven in anti-Helmholtz configuration, produce a spherical quadrupole field. The
two pairs of bias field coils, which generate the rotating homogeneous bias field, are
driven with a sinusoidal current I(t) = I0 sin (ωrott+ ϕ) in Helmholtz configuration,
with a mutual phase difference of ϕ = 90◦. The rotation frequency ωrot is much larger
than the oscillation frequency of the atoms and thus, together with the quadrupole field,
a time-averaged harmonic potential

UTOP(�r ) = µBB0 +
µBB

2
r

4B0

(
r2 + 8z2

)
, (2.20)

is generated, where B0 is the amplitude of the bias field and Br is the gradient of the
quadrupole field in radial direction. The rotating field moves the zero of the magnetic
field around in a circle (“‘the circle of death”) of radius rD = B0/Br (see figure 2.6).
Due to Majorana flops, this defines the depth of the potential to UTOP(rD) = µBB0/4
and is used in the experiment to implement evaporative cooling.

Bquadrupole

Bbias Bbias

Bquadrupole

time-average

“circle of death”

t=0 t=Trot /2y
x

UTOP

y
x

y
x

Figure 2.6: Schematic of the TOP trap. By adding a rotating homogeneous bias field to
a spherical quadrupole field, a time-averaged harmonic potential with a non-vanishing local
minimum is generated. The adjustable circle of death (rotating zero of the magnetic field) allows
to vary the depth of the trap and thus evaporative cooling is intrinsically implemented into this
trap.

2.2.4 Optical dipole trap

The aim of this work is the investigation of the dynamics of atomic wave packets in one
dimension. Therefore an atomic waveguide is used in the experiment, which confines
the atoms in the transversal direction and allows the free propagation in the axial or
longitudinal direction. The waveguide potential is realized with a focused laser beam,
utilizing the reactive light force.

The preparation of the atomic wave packets inside the waveguide is done in the
following way. An ultra-cold sample of atoms is transferred from the TOP trap into a
3D optical trap, which consists of the waveguide and an additional crossed laser beam.
In this optical trap, the atomic sample is Bose-condensed by evaporative cooling. In
this way the generation of the initial wave packets inside the waveguide proved to be
very precise and reproducible. The setup allows the preparation of wave packets with
a longitudinal width of 5 − 20µm rms and an atom number range from 1500 to 40000.
The subsequent propagation along the waveguide is initiated simply by switching off the
crossed laser beam.
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

In the following the optical waveguide potential and the evaporative cooling in the
3D optical trap are described.

Optical dipole potentials

The interaction of atoms with laser modes with a large detuning δl = ωl − ω0 leads,
as already pointed out in section 2.2.2, to a dipole (or reactive) force. The underlying
process of redistribution of photons between different laser modes is coherent and thus
the dipole force allows to implement conservative optical atom traps (Stamper-Kurn et
al., 1998). The interaction between the atoms and the light field is due to the coupling
of the atomic dipole moment �d and the electric field �E(�r ) and is described by the Rabi
frequency ΩR(�r ) = �d · �E(�r )/�. For a two-level atom,

|ΩR(�r )|2 =
Γ2I(�r )

2Is
. (2.21)

where Γ is the width of the excited state, I(�r ) is the local intensity of the light field and
Is = �Γω3

0/(12πc2) is the saturation intensity. The dipole force acts in light fields with
spatially varying intensity I(�r ) and generates a dipole potential

Vdip(�r ) =
�Γ2I(�r )

8Is
1
δl
, (2.22)

where a large detuning |δl| � ΩR,Γ is assumed. Depending on the detuning of the laser
light, the potential changes its character. For red detuning the potential minima lie in
the regions of maximum field intensity. For blue detuning the atoms are expelled from
the regions of high intensity.

Multi-level atoms

In our experiment 87Rb atoms are trapped in the |F = 2,mF = 2〉 state in an optical
dipole trap of laser light wavelength 1064 nm (Nd:Yag), with a superimposed optical
lattice potential of wavelength 783 nm (Ti:Saphire). In both cases transitions to the
states |F = 2,mF = 2〉 (D1-line), |F = 2,mF = 2〉 and |F = 3,mF = 2〉 (D2-line)
are involved. The resulting optical dipole potential is the sum of the three transitions
(Metcalf/Straten, 1999)

Vdip(�r ) =
�Γ2I(�r )

8Is
·
(

2
3δ2

+
1

3δ1

)
, (2.23)

with the relative detuning δ1 and δ2 from the D1-line and the D2-line, respectively. The
factors 2/3 and 1/3 stem from the fact that the strength of the involved transitions is
1/3 of the strongest transition, for which the saturation intensity Is = 1.6 mW/cm2 is
given.

Focused laser beam waveguide and 3D trap

18



2.2 Experimental setup to create a 87Rb Bose-Einstein condensate

The waveguide for the matter waves is created by a focused linear polarized Gaussian
laser light beam with the intensity profile

I(�r ) =
Imax

1 + (x/xr)2
exp

(
−2

y2 + z2

w(x)2

)
. (2.24)

Here w(x) = wl

√
1 + (x/xR)2 is the beam waist with wl ≈ 40µm and xR = kl

2 w
2
l is the

Rayleigh length with the norm of the wave vector kl = 2π/λ. Such a Gaussian beam
creates a cylindrically symmetric dipole potential with a weak axial confinement and a
strong radial confinement. In the center, the trapping potential can be approximated by

VD(�r ) = Vmin +
1
2
mω2

‖x
2 +

1
2
mω2

⊥(y2 + z2), (2.25)

with the frequencies ω⊥ =
√

4|Vmin|
mw2

l
and ω‖ =

√
2

klwl
ω⊥, where Vmin = �Γ2Imax

8Is
·
(

2
3δ2

+ 1
3δ1

)
(see eq. 2.23). Typical values of Vmin used in the experiment lead to transversal frequen-
cies of ω⊥ ≈ 2π · 200 Hz and corresponding longitudinal frequencies of ω‖ ≈ 2π · 1 Hz.
For the time scale of the experiment (100 ms max.) the trapping potential in the longi-
tudinal direction is negligible and thus a quasi free propagation in longitudinal direction
can be observed. The maximal spontaneous emission rate of photons

Γsp =
�Γ3Imax

8Is
·
(

2
3δ22

+
1

3δ21

)
� 0.5 Hz (2.26)

is also negligible for the time scale of the experiments. In figure 2.7a the gaussian
laser beam focus for this situation together with the cross section of the corresponding
waveguide potential is depicted.
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Figure 2.7: (a) A waveguide with tight radial and very shallow axial trapping potential is
implemented with a red detuned laser beam focus. (b) A tight 3D trap is realized with two
crossed laser beam foci. By varying the light intensity and thus the trap depth, Bose-Einstein
condensates are generated by evaporative cooling.

Using two crossed laser beam foci (see figure 2.7b) a tight 3D optical dipole trap can
be realized. In the experiment the waveguide, described above, and a crossed focused
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

light beam of the same wavelength and a similar beam waist is used. Such a trap
possesses a finite trap depth Umax ∝ Imax due to the finite width of the laser beams and
the gravitational force. For small light intensities the gravitational force lowers the trap
center (“gravitational sag” ∆z = g/ω2

z) and the trap depth considerably (see figure 2.8).
The dependence of the trap depth on the light intensity is used in the experiment to
implement evaporative cooling and thus to generate Bose-Einstein condensates. In our
setup, the power in each laser beam is controlled by acousto optical modulators (AOM).
In addition the beam power is stabilized with an electronic feedback loop. This proved
to be essential for a stable evaporation process. The polarization of the beams is chosen
to be perpendicular, in order to avoid interference structures. As it is very difficult
to realize a perfect polarization, the AOM’s are run with different driving frequencies,
so that the residual interference structures cycle on a time scale much faster than the
trapping frequencies and are thus averaged to zero.
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Figure 2.8: Potential energy resulting from the dipole force of a red detuned laser beam with
Gaussian intensity profile and the gravitational force. Going from high light intensities (blue
line) to low intensities (green line), the center of the corresponding potential is shifted by ∆z
(gravitational sag) and the depth of the potential is reduced.

2.2.5 Absorption imaging

The dynamics of the atomic wave packets is detected by absorption imaging, where the
atomic cloud is illuminated by a resonant laser beam. The atoms absorb photons and cast
a shadow on the light beam. Information on the size of the cloud is obtained by imaging
the illuminated atomic sample with a single lens onto a CCD camera (see figure 2.9 a). In
our experiment the imaging is realized using a single lens with high numerical aperture2

and focal length 8 cm. The object is magnified by a factor of ∼10 and is recorded
on a CCD chip3 with a single pixel size of 6.4 × 6.4µm2 and a total resolution of the
setup of 2.8µm. In a single experiment run the image I(x, z) of the atomic wave packet
is recorded. Thereby the BEC is destroyed due to heating by spontaneous emission.
Subsequently the reference intensity Iref (x, z) is taken, with no atoms present. The
resulting transmission T (x, z) = I(x, z)/Iref (x, z) and the optical density OD = − ln(T )
serve as the source of information for all subsequent analysis of the wave packet, like
the determination of the number of atoms, the size and density, etc. (see an example in
figure 2.9b).

2Zeiss Plan-Apochromat
3Theta System SIS s285
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2.2 Experimental setup to create a 87Rb Bose-Einstein condensate
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waveguide beam
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Figure 2.9: a) Absorption imaging setup. The atomic cloud is illuminated with a collimated
laser beam. With a single lens a magnified image of the cloud is created and recorded with a CCD-
camera. b) Image of the optical density of an elongated wave packet inside the waveguide. In
the transversal direction the wave packet width is below the resolution limit and thus diffraction
fringes are visible.

A single atom scatters photons from the σ+-polarized imaging beam, resonant with
the |F = 2,mF = 2〉-|F ′ = 3,mF = 3〉 transition, with a rate (Metcalf/Straten, 1999)

Γsp =
s(y)Γ/2

1 + s(y) + (2δ/Γ)2
, (2.27)

where s(y) = I(y)/Is is the saturation parameter. The light beam is attenuated due to
the scattering of photons by

dI = −hν Γsp ρ(x, y, z) dy, (2.28)

where ρ is the density of the atomic cloud and ν is the frequency of the used optical
transition. In order to investigate wave packets with a spatial modulation on a µm
scale, a resonant light beam (δ = 0) is used. For a detuning δ �= 0 the cloud gets a large
refractive index, which leads to a disturbing lens like effect (see figure 2.10) and thus
reduces the resolution. For a good signal-to-noise ratio, an optical density on the order
of OD∼1 is set in the experiment, with a saturation parameter s0 ≡ s(y = 0) � 1. In
this case the scattering rate will remain almost constant and can be approximated by
Γsp = s0

Γ
2(1+s0) . Eq. 2.28 can then be integrated directly to obtain the column density

n(x, y) =
∫
ρdy = (T − 1)

(1 + s0)Is
hν Γ/2n(x, y)

, (2.29)

from which, e.g. the number of atoms Natoms =
∫
n(x, z) dxdz can be calculated.

In the case of very small atom numbers (< 1000) an optical density of OD ∼ 1 can
only be obtained, when the saturation of the imaging beam is set to s0 ∼ 1, in which case
the scattering rate is approximated as Γsp = s(y)Γ

2(1+s0) . Thus the intensity is attenuated
exponentially and the resulting column density

n(x, y) = OD(x, z)
(1 + s0)Is

hν Γ/2n(x, y)
, (2.30)

depends on the optical density OD(x, z).
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

Possible sources of errors in the optical analysis of the atomic wave packet are an
insufficient optical resolution, a defocused system and a detuning δ �= 0. The effects of
these sources of errors on the imaging are investigated numerically by means of Fourier
optics. The Matlab c© code of the numerical wave propagation is given in the appendix
A.2. The results are shown and discussed in figure 2.10.

In the setup of the imaging beam, extreme care had been taken, to avoid all sources
that generate fringes in the image I(x, z), like dirt on the optical components or self-
interference of the beam with reflections from surfaces. These fringes can easily move
due to vibrations of the system between the recording of I(x, z) and Iref (x, z) and thus
distort the transmission T (x, z). As fringes can never be completely avoided, the optical
system is set up with a good passive mechanical stability.
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Figure 2.10: Numerical investigation of the distortions in the used imaging setup. a) the
original gaussian wave packet profile (grey dotted line) has a width slightly smaller than the
resolution limit of the system and thus the image profile (black line) features fringes at the sides
which result from the diffraction at the finite size lens. b) in a defocused system the image is
blurred and the width of the image profile increases. c) for a detuning δ �= 0 the large refractive
index of the atomic cloud leads to lens like effects, which distort the image profile seriously.

2.2.6 Experiment control

The experimental apparatus is controlled via a computer featuring one digital IO-card
“NI PCI-6534” from National Instruments, two 12 bit analog output-cards “NI PCI-
6713” from National Instruments, a low-cost analog input card and a GPIB card. With a
LabView program experiment sequences are written, where all the digital/analog output
channel are programmed with a maximum time resolution of 1ms with a total length
of several minutes. Additional “intelligent” devices, as e.g. an arbitrary waveform
generator are programmed through the GPIB interface and triggered through a digital
channel. The experiment sequences are saved onto the internal memory of the digital and
analog output cards, which are time synchronized via an internal clock pulse connection.
Therefore our system allows a real-time generation of the experiment sequences. In the
appendix A.3 a flow diagram of the control software is given for the next generation.

2.2.7 Experimental sequence

The following steps are used to realize a 87Rb Bose-Einstein condensate in the optical
waveguide potential:

• Loading of the MOT via the funnel: both the funnel light and the MOT light are
turned on. Within about 15 s the MOT is loaded with up to 2 · 108 87Rb atoms.
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2.2 Experimental setup to create a 87Rb Bose-Einstein condensate

The MOT is optimized for high atom numbers with a low density to reduce light
induced losses. It is run with a detuning of δ = −1.4 Γ and a magnetic gradient
of 4 G/cm in radial direction. In addition the bias field coils of the TOP trap are
run (B0 = 3 G) to further decrease the magnetic field gradient in the center of the
MOT. At the end of the loading phase the funnel light is turned off.

• Compression of the MOT: In contrast to the optical cooling, which works best
at low densities, evaporative cooling in the magnetic trap requires high densities.
Therefore, at the end of the MOT phase, the sample of cold atoms is compressed
by turning off the rotating bias field and by linearly increasing the magnetic field
gradient up to 10 G/cm in 50 ms. In addition the detuning is increased to δ = −5 Γ,
which leads to a further compression and cooling of the MOT (Petrich et al., 1994).

• Molasses cooling: The last optical cooling step is polarization gradient (or mo-
lasses) cooling (Dalibard et al., 1989). The magnetic quadrupole field is turned off
and the laser light detuning is increased to δ = −8 Γ. The molasses phase takes
7 ms, during which the light intensity is ramped from 65% (larger cooling power)
to 20 % (smaller final temperature) of the intensity used in the MOT phase. A
residual magnetic field during the molasses phase leads to an acceleration of the
atoms, as they are cooled into a ”moving rest frame”. Thus the earth’s magnetic
field and any stray magnetic fields are compensated by three pairs of compensation
coils in Helmholtz configuration. The compensation is accomplished by minimiz-
ing the center of mass motion of the atomic cloud during the molasses phase.
The efficiency of the subsequent transfer of the atoms into the magnetic trap de-
pends very critically on the final center of mass velocity and temperature of the
cloud. Therefore the final adjustment of the magnet field compensation and also
the beam balance is done, optimizing the transfer of the atoms into the magnetic
trap. Molasses cooling reduces the temperature of the atoms to 40 − 50µK.

• Optical pumping: Before the magnetic trap is turned on, the atoms are optically
pumped to the |F =2,mF =2〉 state. For this purpose a small rotating bias field
B0 = 3 G is turned on, which defines the magnetic quantization axis. 4 pulses of
the imaging light beam, synchronized with the rotating bias field, drive the σ+-
transition and thus leads to an accumulation of the atoms in the |F =2,mF =2〉
state. The length of the pumping pulses is electronically controlled such that the
total energy of the light pulse is constant. In this way fluctuations in the beam
intensity are compensated, which increases the stability of the pumping process and
leads to a more reproducible final atom number in the Bose-Einstein condensate.

• Transfer into the magnetic trap: After the optical pumping ∼ 108 atoms are
captured in the magnetic trap by simply ramping up the currents in the quadrupole
and bias field coils of the TOP trap very quickly (t � 1 ms). In order not to loose
phase space density, the magnetic trap must be “mode matched”, or in other words,
must be adjusted such that the atomic distribution after the molasses cooling is in
thermal equilibrium in the magnetic trap. For a TOP trap with different trapping
frequencies in the axial and radial direction, the “mode match” condition can
only be met in one direction for the isotropic atomic density distribution after the
molasses cooling. In the experiment a maximum phase space density is obtained
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Chapter 2 Bose-Einstein condensation in a weakly interacting gas of atoms

with a magnetic field gradient of Br = 80 G/cm and a bias field of B0 = 23 G and
a corresponding circle of death radius rD = 2.9 mm.

• Adiabatic compression: In order to increase the efficiency of the evaporative cool-
ing, the atomic sample is adiabatically compressed, by ramping up the trap fre-
quencies to ωr = 2π · 30 Hz and ωz = 2π · 80 Hz. This is accomplished by linearly
increasing the magnetic field gradient to Br = 220 G/cm and the bias field to
B0 = 45 G within 3 s.

• Circle-of-death evaporation cooling: The first precooling by evaporation is done
in the TOP trap by circle-of-death cooling. Within 30 s the bias field is decreased
linearly from B0 = 45 G to B0 ∼ 4 G, while the magnetic field gradient is kept
constant. During this time the circle-of-death radius is decreased to rD = 200µm.
At the end of the cooling ∼ 106 atoms are left with a temperature of ∼ 5µK.

• Transfer into the optical dipole trap: With the TOP trap still on, both the
waveguide beam intensity and the crossed focused laser beam intensity are ramped
up within ≈ 900 ms. The precise overlap of the center of the optical crossed dipole
trap with the center of the atomic distribution in the TOP trap is very critical.
The intensities of the laser beams are chosen such that all the atoms from the TOP
trap can be held in the dipole trap. In our case these are ≈ 600 mW and ≈ 200 mW
for the waveguide beam and the crossed laser beam, respectively. The intensities
are held at these values for 300 ms, while the magnetic fields of the TOP trap are
ramped down to zero. At the end of this phase a small homogeneous magnetic
field (1 G) in the vertical direction is turned on, such that the spin polarization of
the atoms is still preserved, even in the absence of the TOP trap.

• Condensation in the dipole trap: The final evaporative cooling to obtain a con-
densate is done in the dipole trap. In this way pure condensates can be realized
directly in the waveguide. The intensities of the beams is reduces linearly in about
5 s. In this way the trap depth is reduced and the forced evaporation of the atoms
leads to the condensation of the remaining atoms. The success of the condensa-
tion process is probed by looking at the absorption image after a time-of-flight
(TOF) of 7 ms. The final values of the laser beam intensities are adjusted such
(100 − 200 mW below the initial value) that the TOF image shows the expected
asymmetric expansion of the bose-condensed cloud, without the halo of the fast
expanding thermal atoms.

• Preparation of the initial experiment wave packet: By varying the final beam
intensity, the number of atoms of the condensates can be set. In our experiment
pure condensate with 103 to 105 atoms can be realized. After the condensate with
the desired atom number is generated, the intensities of the waveguide and the
crossed laser beam are adiabatically changed to the final values within 1 s. The
waveguide intensity defines the transversal frequency of the waveguide and the
crossed laser beam intensity allows to determine the initial longitudinal width of
the wave packet. The experimental investigation of the wave packet dynamics is
started by abruptly switching off the crossed laser beam.
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3 Nonlinear matter wave dynamics in shallow 1D lat-
tice potentials

When mentioning lattice potentials, most physicists think of the periodically arranged
atoms that form crystals, i.e. condensed matter physics. The corresponding dynamics
of the crystal electrons is very complex, since the crystal dispersion relation can differ
greatly from that of free electrons, featuring a band structure, band gaps, normal and
anomalous dispersion, etc. With the additional strong electron-electron interaction the
dynamics is rendered even more complex.

With the availability of coherent matter wave sources and the possibility to realize
periodic potentials with the help of laser light interference structures, it is now possible
to build tailored model systems to investigate nonlinear particle dynamics in periodic
potentials. These atom optics model systems offer crucial advantages over atomic crystal
systems, that led to the observation of theoretically predicted quantum effects, e.g. Bloch
oscillations (Dahan et al., 1996), the Quantum phase transition from a superfluid to a
Mott insulator (Greiner et al., 2002), etc. In the first place these atom optics systems
offer the ability to tune the period and the depth of the periodic potential, even during
evolution. In addition, the particle interaction can be tuned. An experimental advantage
is the fact that the matter wave dynamics can be observed directly, without interference
with the periodic potential – in contrast to the situation of electrons in atomic crystals.

In the experiments described in this chapter we investigated the dynamics of coherent
atomic wave packets in a 1D waveguide with a superimposed 1D lattice potential. The
lattice depth and period is chosen such that the resulting space and time scale of the wave
dynamics is on the order of µm and ms, respectively. In this way we directly observed
the effects of anomalous dispersion, negative effective mass and diverging effective mass.
In addition we explored the possibility to tune the dispersion during the wave evolution.
We demonstrated the technique of dispersion management for matter waves (Eiermann
et al., 2003; Anker et al., 2003), a technique, originally developed in the field of nonlinear
fiber optics, which allows to prevent the spreading of a wave packet. The corresponding
experiments are described in section 3.3 and 3.4.

The intrinsic nonlinearity of our system, the atom-atom interaction, allows to pre-
pare a very special wave packet dynamics: nonspreading localized wave packets, so called
“bright solitons”. They form if the nonlinear dynamics compensates the wave packet
spreading due to linear dispersion. In our system the nonlinearity is governed by the
atomic density and the linear dispersion can be adjusted by the wave packet width and
the dispersion relation due to the periodic potential. In section 3.5 the experimental real-
ization of bright atomic solitons is described. Our system is very similar to the nonlinear
system of bright optical solitons, i.e. nonspreading laser light pulses in optical fibers.
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

Inspired by the optical system, a nonlinear equation for the wave packet envelope can
be derived (Steel/Zhang, 1998). This equation does not contain the periodic potential
explicitly. The effect of the lattice is included by using an effective mass in the kinetic
term. This reduced equation allows a deeper understanding of the underlying soliton
physics.

In the first part of this chapter the theoretical description of the linear lattice dy-
namics in terms of the Bloch function formalism is given. In addition the derivation of
the dynamical envelope equation for the system is explained.

In the second part the relevant experimental setup, namely the realization of the
optical lattice potential and the wave packet preparation are described.

In the last part of this chapter the corresponding experiments are presented. Since the
demonstration of dispersion management and the realization of atomic gap solitons are
described in detail in (Eiermann, PhD thesis 2004), only a summary and the publications
are given. The experiments on continuous dispersion management and their numerical
analysis are presented in more detail.

3.1 Theoretical description of the dynamics in 1D lattice poten-
tials

In this section the theoretical basis for the understanding of the experiments is described.
The linear wave dynamics in a 1D lattice potential is investigated in terms of the Bloch
function description. In this context, the group velocity and the concept of the effective
mass is defined and their influence on the dynamics is explained. In the second part
the nonlinear dynamics is investigated by looking at the corresponding equation, which
governs the dynamics of the wave packet envelope.

3.1.1 Bloch function description

The dynamics of particles in a shallow periodic potential V (x) is most conveniently de-
scribed with the Bloch function formalism, which is commonly used in solid state physics.
In this section the energy spectrum, i.e. the dispersion relation for a single particle in
a periodic potential is calculated. The dynamics of the particle is then discussed by
looking at the properties of the dispersion relation, namely the group velocity and the
effective mass.

The Bloch-Theorem (see e.g. Ashcroft/Mermin, 1976) states that the eigenfunctions
Φ(x) of a single particle system with a periodic potential U(x), described by the Schrö-
dinger equation

ĤΦ(x) ≡
[
− �

2

2m
∂2

∂x2
+ U(x)

]
Φ(x) = EΦ(x), (3.1)

can be written as a product
Φ(n)

q (x) = eiqxu(n)
q (x) (3.2)

of a plane wave and a function u
(n)
q (x) = u

(n)
q (x + R) of the same periodicity R as

the periodic potential U(x). In our case a sinusoidal potential U(x) = −V0 cos2(klx) is
employed and therefore eq.(3.1) reduces to the Mathieu-equation.
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3.1 Theoretical description of the dynamics in 1D lattice potentials

The energy spectrum En(q) shows a band structure with band index (n) and depends
on the quasi-momentum q. It can be obtained numerically writing eq.(3.1) in matrix
form. Since both U(x) and u(n)

q are periodic functions, they can be expanded in a discrete
Fourier series:

U(x) =
∑
m

Ume
imQx = −V0

4
eiQx − V0

4
e−iQx + const and u(n)

q =
∑
m

c
(n)
l eimQx, (3.3)

where Q = 2kl is the reciprocal lattice vector and m = 0,±1,±2, ... is an integer. This
expansion is inserted into eq.(3.1). Multiplication with e−iqxe−imQx from the left and
subsequent integration allows to write the Schrödinger equation in matrix form

∑
m′

Hm,m′ · c(n)
m′,q = En(q)c(n)

m,q with Hm,m′ =

⎧⎨⎩
�
2

2m(q −mQ)2 if m = m′

−1/4 · V0 if |m−m′| = 1
0 else

(3.4)

The dispersion relation En(q) and the eigen-states or Bloch-functions Φ(n)
q (x) can now

be obtained by numerically calculating the eigen-values En(q) and the coefficients c(n)
l of

the eigen-vectors of the truncated Hamiltonian matrix Hm,m′ (for V0 � 30Er, |m| = 15
is sufficient). In appendix A.4 an example Matlab c© code for the numerical calculation
of En(q) and Φ(n)

q (x) is given.
The dispersion relation En(q) is shown in figure 3.1 for various potential depth V0.

For vanishing potential depth, En(q) shows the free particle vacuum dispersion relation.
By increasing the potential depth, En(q) splits into separated bands.
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Figure 3.1: Band structure of a lattice potential: The energy of the Bloch state versus the
quasi momentum q is shown for a potential depth of 0, 1 and 5 Er. With increasing potential
depth V0 the inter-band gaps increase, while the band width decreases exponentially. In the
experiments described in this thesis the dynamics of atomic wave packets, which only populate
the first band n=1, is investigated.

In the following we will look more closely at the properties of the first Bloch band.
Their understanding provides an intuitive picture of the dynamics of wave packets in
a shallow lattice potential. The first thing to notice is that for a shallow potential
(V0 ∼ Er) in the center of the first Brillouin zone (|q| � kl) the dispersion relation does
not differ much from that of a free particle (see figure 3.2a). Close to the Brillouin zone
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

boundary (band edge) in contrast, due to the emergence of a band gap, the dynamics is
expected to be very different from the free particle case. For more insight, the dispersion
relation is written in a Taylor expansion

E(q) = E(q0) + (q − q0)
∂E(q)
∂q q0

+
1
2
(q − q0)2

∂2E(q)
∂q2 q0

+ . . . (3.5)

around q = q0. The first and the second order term are connected with the group velocity
and the effective mass

vg(q0) =
1
�

∂E(q)
∂q q0

and meff (q0) = �
2

(
∂2E(q)
∂q2 q0

)−1

, (3.6)

respectively. For the first Bloch band vg(q) and meff (q) are plotted in figure 3.2b,c).
Their influence on the dynamics can be seen by looking at a wave packet with a small
width in quasi momentum space (∆q � 2kl as depicted in figure 3.2a) centered at q = q0.
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Figure 3.2: Properties of the first Bloch band. a) The energy of the Bloch state versus the
quasi momentum q is shown for a potential depth of 1 Er. In a large region around the center
and in a small region around the edge of the Brillouin zone, E1(q) can be approximated by a
parabolic dispersion relation (dashed curve). b) Group velocity vg(q) in units of the photon recoil
velocity vr = �kl/m. c) Effective mass meff (q). The two regions with meff > 0 and meff < 0
correspond to the region with normal and anomalous dispersion, respectively. At the critical
points q = ±q∞ meff diverges and vg is extremal.

The group velocity vg(q) gives the relative velocity of the wave packet with respect
to the lattice potential. Thus, if a constant force is exerted onto the wave packet, which
is initially prepared at q = 0, its central quasi momentum q0 will be shifted and the
relative velocity will increase, until it reaches a maximum at q = q∞. Subsequently the
velocity will decrease again and will even change its direction and so on. This oscillatory
behavior is called Bloch oscillation (Anderson et al., 1998).
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3.1 Theoretical description of the dynamics in 1D lattice potentials

The role of the effective mass meff (q) is twofold. It acts both on the center of mass
movement as well as on the dispersion, i.e. the expansion (and also compression) of
the wave packet. As can be seen in figure 3.2c), the Brillouin zone is split into two
parts. In the center meff ∼ m > 0, which corresponds to normal dispersion. Around
the band edge, in contrast, meff < 0, which corresponds to anomalous dispersion. It
is important to note that around the center and around the edge of the Brillouin zone,
the dispersion relation E(q) shows an approximately parabolic shape (see figure 3.2).
Thus the dispersion is described by a constant effective mass in these region, as is the
case for the free particle dispersion. In a lattice potential, in addition, the strength of
the dispersion, i.e. the modulus of the effective mass |meff (q0, V0)| can be tuned via the
depth of the lattice potential V0 !

The effective mass can also be understood in term of the reaction of the wave packet
upon an external force: in the region of meff < 0 the wave packet accelerates in the
opposite direction of the driving force, or ”the wave packet runs up the hill” !

At the critical points q = ±q∞, the effective mass |meff | → ∞ diverges, and therefore
the dispersion close to these points is strongly suppressed. This effect has a strong
influence on the dynamics of a wave packet (see section 3.3).

In figure 3.3 the real part and the probability distribution in real space is shown for
the Bloch function in the center and at the edge of the Brillouin zone. In the center
the Bloch function has very small contribution from lattice momenta eimQx in a shallow
potential and is thus a constant function with a small modulation. At the band edge
there are mainly two contributing momenta, namely m = 0 and m = 1, and therefore
Φ(1)

q=kl
(x) ≈ e−iklx + eiklx is the sum of two counterpropagating plane waves.

0

0

1

2

bq=kL

q=kL

q=0

q=0

−1 0 1
x [ λ/2 ]

−1

−1

0 1

1

x [ λ/2 ]

R
e{

 Φ
(1

) (
x
) 

} 
[a

.u
.]

| Φ
(1

) (
x
)|

2
 [

a
.u

.]

a

Figure 3.3: Probability density a) and real part b) of the Bloch function Φ(1)
q (x) of the first

band for q = 0 (gray line) and q = kl (black line) for a potential depth of 0.5Er. In a shallow
periodic potential Φ(1)

q=0(x) can be described by the free particle wave function which is slightly

modulated in density and phase. At the band edge, in contrast, |Φ(1)
q=kl

(x)|2 is strongly modulated
in density and vanishes at the potential maxima. The phase jumps by ∆ϕ = π from site to site
(staggered mode).

3.1.2 Dispersive dynamics of matter wave packets

The dynamics of a wave packet is given by the temporal behavior of the center of mass
and by the temporal behavior of the shape. In the experiments described in this chapter
mainly the dynamics of the shape is investigated. When looking at the free expansion
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

of an atomic wave packet in a shallow lattice potential, the shape dynamics is mainly
governed by the free particle dispersion, the modification of the free particle dispersion
relation by the lattice potential and by the nonlinear atom-atom interaction. In the first
part of this section we will review the free particle dispersion, which is governed by the
initial size of the wave packet, or in other words, by the Heisenberg Uncertainty relation.
In the second part of this section a dynamical nonlinear equation, based on the Gross-
Pitaevskii equation, is described, where the effect of the lattice potential is included in
the kinetic energy term by means of a momentum dependent effective mass. In this way
the influence of the lattice potential onto the dispersion is conveniently described by an
effective mass concept in the context of the Bloch function description.

Free particle dispersion of matter wave packets

Dispersion is a wave phenomenon and leads to the expansion of, e.g. light wave packets
(pulses) in a medium, where, in contrast to the vacuum, the group velocity vG(k) =
∂E(k)/�∂k depends on the k-vector. In Quantum mechanics, particles obey the Schrö-
dinger wave equation, where even in the vacuum the group velocity vG(k) = �k/m, with
the dispersion relation E(k) = �

2k2/2m, has a linear dependence on the k-vector. A
wave packet is generally generated by interference of many plane waves with different k-
vectors. In a very simple picture one could think of the different plane waves as of atoms,
that travel with different velocities - a process that then leads to an expansion of the wave
packet. Being more quantitative and consistent, it is necessary to consider the phase
evolution of the plane waves. The time evolution of a Gaussian wave packet Ψ(x) =
exp(−x2/σ2

0), a standard example, which can be found in every quantum mechanics
textbook, is given by

|Ψ(x, t)|2 ∝ exp
(

2x2

σ(t)2

)
, (3.7)

where σ(t) = σ0

√
1 + 4t2/T 2

d . The dispersion time Td = mσ2
0/� depends on the initial

size of the wave packet and reflects directly the Heisenberg uncertainty relation. The
above result is obtained by considering that in k-space the time evolution of a free
particle wave packet is given by Ψ̃(k, t) = Ψ̃(k, 0) exp(−iE(k)t/�), which is a quadratic
phase evolution, determined by the free particle dispersion relation E(k) = �

2k2/2m.

Nonlinear dynamical envelope equation

The influence of the lattice potential on the wave packet dynamics in general is very
complex. In the limit, where only wave packets in the ground state, i.e. the first band
of the lattice are considered, the influence can be described by a modified dispersion
relation E(q) (see section 3.1.1). The free evolution of a wave packet in the first Bloch
band is given by

Ψ(x, t) =
∫ kl

−kl

f(q, t)Φq(x) e−
i
�

E(q)t dq, (3.8)

where Ψ(x, 0) is expanded in terms of Bloch functions Φq(x) with the expansion coeffi-
cients f(q, t). The description of the dynamics can be further simplified for wave packets
with a small width ∆q � |kl| in q-space, i.e. f(q) �= 0 for a small region ∆q around a
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3.2 Experimental realization and calibration of the lattice potential

central quasi-momentum q0. Considering the uncertainty relation, this is true for wave
packets that are extended over many lattice periods in real space. In this limit the wave
packet can be approximated by

Ψ(x, t) = A(x, t)Φq0(x) e
− i

�
E(q0)t. (3.9)

Here the Bloch functions Φq(x), which vary little on a scale of ∆q, are replaced by the
central Bloch function Φq0(x). The wave packet shape is given by the envelope function
A(x, t), which varies only slowly on the scale of the lattice potential. With the ansatz
3.9 in the GPE (2.7) the dynamical nonlinear equation

i�
∂

∂t
A(x, t) =

[
− �

2

2meff (q0)
∂2

∂x2
+ αnl(q0, V0)NG(|A(x, t)|2)

]
A(x, t) (3.10)

can be obtained. The derivation relies on the effective mass formalism and can be found
in (Steel/Zhang, 1998) and (Pu et al., 2003). The equation is given in the center of mass
frame of the wave packet, which moves with the group velocity vg(q0) of the central
quasi momentum with respect to the lattice potential. The dynamical equation does
not contain the lattice potential explicitly. The effect of the lattice potential is included
in the linear dispersion relation Ẽ(q, q0), which is the Taylor expansion of the complete
dispersion relation E(q) up to second order (constant effective mass).

The above equation is only valid for small nonlinear energies, such that the atom-
atom interaction does not couple states from the first band to the second. This means
that the maximum mean-field energy αnl(q0, V0)NG(|A(x, t)|2) must not exceed the en-
ergy width of the band gap at the edge of the Brillouin zone (see section 3.1.1). The
nonlinearity factor

αnl(q0, V0) = L

∫ L/2

−L/2
|u(1)

q0
(x)|4 dx (3.11)

accounts for the change of the nonlinear energy due to the lattice potential. In a lattice
potential the atomic density is increased in the center of the potential wells and thus
leads to an increased nonlinear energy. For shallow lattice potentials with a potential
depth on the order of V0 ∼ Er, the nonlinearity factor increases, when going from the
center to the Brillouin zone boundary with values on the order of α ∼ 2. In a pure
1D case, the nonlinearity function is given by G(|A(x, t)|2) = g1DN |Ψ(x, t)|2 (see eq.
(2.10)). In an effective one dimensional situation the nonlinearity takes the form given
in eq. (2.13).

Equation (3.10) describes a very rich physical system, where the phase evolution due
to both the dispersion and the nonlinear interaction are under control. In the following
sections experiments are described, which implement this system. The experimental
results together with the results of the numerical analysis of eq. (3.10) show a synergy
effect and lead to a deep intuitive understanding of the system.

3.2 Experimental realization and calibration of the lattice po-
tential

In the experiments described in this chapter, the dynamics of wave packets inside a
1D waveguide with a superimposed shallow 1D lattice potential is investigated. In
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

the first part of this section the experimental realization of the lattice potential and
the preparation of the wave packets in quasi momentum space is described. In the
second part, the calibration of the lattice potential depth is described. A novel “kick
calibration” is implemented in this work, where a sinusoidal phase is imprinted onto the
wave packet. The depth of the potential is then obtained by analyzing the resulting
momentum distribution. In the last part of this section a numerical investigation of the
effect of the nonlinear atomic interaction on the calibration process is presented.

3.2.1 Optical 1D lattice potentials

A very convenient way to realize periodic potentials is to use the optical potential re-
sulting from the interference pattern of counterpropagating laser beams. They provide
an exact sinusoidal periodicity, which can be adjusted by changing the laser wavelength
or by changing the geometry of the system. The depth of the potential can be easily
controlled by tuning the intensity of the laser beams and they can be superimposed on
other potentials, like the waveguide potential in our experiment. In addition the velocity
of the periodic potential can be controlled by introducing a small detuning between the
two counter propagating beams.

In our experiment the simplest possible realization, a 1D optical lattice made of two
counter propagating laser beams is used. The beams have a Rayleigh length xR �
100µm and a waist wD � 1µm and therefore the variation of the intensity at the
location of the atoms can be neglected. The interference of the two beams leads to the
time-dependent intensity

I(x, t) = 4
√
IaIb cos2

(
klx− ∆ω

2
t

)
, (3.12)

with the wave vector kl = 2π/λ and the difference in frequency between the two beams
∆ω = ωb − ωa. With eq. (2.23) the corresponding dipole potential becomes

VD(x, t) = V0 cos2
(
klx− ∆ω

2
t

)
, with V0 =

�Γ2
√
IaIb

2Is
·
(

2
3δ2

+
1

3δ1

)
. (3.13)

The depth of the potential is conveniently given in units of the recoil energy V0 = s ·Er,
where Er = �

2k2
l /2m is the change in kinetic energy due to the momentum transfer,

when a photon of wave vector kl is absorbed or emitted by an atom of mass m.
The velocity of the periodic potential in the laboratory frame is controlled through

the frequency difference ∆ω. For ∆ω �= 0 the lattice moves with a velocity v = ∆ω/2kl.

3.2.2 Wave packet preparation in the lattice potential

The atomic wave packets are produced from Bose-Einstein condensates, which are re-
alized inside a 3D optical dipole trap, as described in section 2.2. Subsequently the
periodic lattice potential is ramped up adiabatically to prepare the wave packet in quasi
momentum space (see figure 3.4b). The general adiabaticity criterium can be found in
(Messiah, 1990). For shallow lattice potentials, neglecting the nonlinearity, the adia-
baticity criterium demands a ramp up time tru � 1µs for our system (Dahan et al.,
1996).
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3.2 Experimental realization and calibration of the lattice potential

b ca

Figure 3.4: Schematic of the preparation of wave packets in a 1D waveguide with a super-
imposed periodic potential. a) a wave packet in a 3D optical trap of two crossed laser beams
is created by Bose-Einstein condensation trough evaporative cooling. b) a periodic potential
realized by the dipole force of a standing light wave along the waveguide is adiabatically ramped
up. c) the crossed laser beam of the 3D dipole trap is turned off and the experiment sequence
starts.

The periodic potential is generated from two counter propagating laser beams, which
are collinear with the waveguide in the experiments on the dispersion management and
the soliton formation (see section 3.3 and 3.5). In the experiment on continuous disper-
sion management (see section 3.4) the lattice beams enclose an angle of 21◦ with the
waveguide. The laser beams are chosen to be slightly red detuned from the D1-line. The
light is obtained from a Ti:Sa laser and the intensity of the individual laser beams is
controlled through acousto-optical modulators (AOM). The detuning between the two
laser beams and thus the velocity of the periodic potential is controlled by adjusting the
driving frequencies of the individual AOMs. The driving frequencies are generated by
a two-channel arbitrary wave form generator (Tektronix AWG 420). In a single experi-
ment run, where the main sampling frequency of the AWG is held fixed, the frequency
difference can be changed in steps of ∆f ∼ 100 Hz, which in turn allows to adjust the
velocity with a resolution of ∆v ∼ vr/100, where vr = �kl/m = 5.9mm/s is the recoil
velocity. More technical details on the use of the AWG can be found in (Treutlein,
Diploma Thesis, 2002).

Finally the crossed laser beam of the 3D dipole trap is turned off and the experiment
sequence starts. Typical experiment sequences can be divided into preparation sequences
and free propagation sequences.

During the preparation sequences the lattice potential is accelerated to a defined
velocity, such that the wave packet is prepared to a defined central quasi momentum
�qc. The change of the quasi momentum by a force F (t) = �∂q/∂t is realized in this case
by using the moment of inertia �∂q/∂t = ma(t). Experimentally the lattice potential
is accelerated by changing the frequency difference between the two beams δν in a
linear ramp to prepare the wave packet at the quasi momentum �qc = mδνλsw/2. This
process needs to be adiabatic, in order not to populate higher bands. The adiabaticity
criterium is most restrictive when preparing wave packets to the band edge, where the
distance from the first to the second band is minimal (band gap). For very shallow
lattice potentials on the order of V0 = 0.2 · Er, which are employed to generate solitons
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

(see section 3.5), the minimum acceleration time can be on the order of ta � 1ms (Dahan
et al., 1996).

During the free propagation sequences the lattice potential moves with a constant
velocity and the wave packet is allowed to propagate freely in the longitudinal direction
of the waveguide (the longitudinal trapping potential of the waveguide can be neglected
on the time scale of the experiments texp � 1/ν‖).

3.2.3 Lattice potential calibration

The calibration of the optical periodic potential can be accomplished in many ways. In
the first experiments in this work the depth of the periodic potential was calibrated by
measuring the width of the band gap at the edge of the Brillouin zone (see section 3.1.1)
by Landau-Zener tunneling (Jona-Lasinio et al., 2003) and Bragg-oscillations (Kozuma
et al., 1999). Details of the implementation of these methods can be found in (Eiermann,
PhD thesis 2004).

The calibration of the periodic potential by imprinting a sinusoidal phase or, in other
words, by diffraction of the wave packet at a thin phase grating proved to be accurate,
stable and very easy to implement. After a condensate is created in the 3D optical
trap, the crossed laser beam is turned off. About 1 ms later the periodic potential is
abruptly turned on for Tp = 5µs. Since the pulse length Tp is very short, the evolution
of the atomic wave packet during the interaction is negligible and we are in the Raman-
Nath regime of a thin grating (during the interaction the atoms move only a distance
sm � λ/2). The sinusoidal phase imprint

exp
(
i
V0

2
sin(Qx)

)
=

∑
n=0,±1,±2,...

(−i)nJn(φD) exp(inQx) (3.14)

leads to a diffraction with momenta �kn = �k0 +n�Q, where k0 is the initial momentum
and �Q is the lattice momentum. The amplitude of the nth diffraction order is given
by (−i)nJn(φD), where Jn is the Bessel function of the first kind and φD = V0Tp

2�
is the

depth of the phase modulation.
After the phase imprint, the condensate is released from the waveguide and after a

time-of-flight of ∼ 7 ms, when the diffraction orders are separated in space, the density
profile is recorded on the camera (see figure 3.5) by absorption imaging. Summing up
along the vertical axis, a density profile along the lattice direction is obtained and used
as fit-data. The fit function was chosen to be a sum of 7 Gaussian distributions, where
the main fitting variable was the depth of the phase modulation φD, which determines
the height of the individual diffraction momenta (see eq. (3.14)). From the fit, the
potential depth V0 is obtained with an error of ∼ 10 %.

Nonlinear effects on the calibration

The phase imprint adds additional momentum orders to the initial momentum dis-
tribution of the wave packet, which is determined only by the initial shape of the packet.
After the release of the wave packet from the waveguide, the nonlinear interaction en-
ergy is converted into kinetic energy, which leads to a broadening in momentum space.
For single Bose-condensed wave packets in the Thomas-Fermi regime, this leads, during
time-of-flight, to a self-similar broadening in real space (Castin/Dum, 1996). In the
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Figure 3.5: Calibration of the lattice potential. After a short sinusoidal phase imprint of 5
µs and a subsequent time-of-flight of ≈ 7ms the initial condensate wave packet separates into
single wave packets, which correspond to the different momentum orders (top). The relative
atom number in the individual wave packets, which corresponds to the strength of the different
momentum orders, is obtained by integrating the absorption image transversally and fitting a
sum of Gaussian distributions to the longitudinal density profile (bottom). The strength of the
lattice potential is calculated from eq. (3.14).

calibration process in contrast, during the time, when the different momentum orders
separate but are still partially overlapped in space, the nonlinear dynamics leads to a
distortion of the wave packet shape (see figure 3.6).

To obtain an estimate of this nonlinear effect on the calibration process, the phase
imprint and the subsequent time-of-flight was simulated numerically in 1D with the
help of the non-polynomial nonlinear Schrödinger equation NPSE (see section 2.1.4). In
figure 3.6 a calibration experiment and the corresponding simulation are compared. For
both the experiment and the simulation a wave packet of ∼ 5000 atoms with an initial
longitudinal width of 10 µm in a waveguide of 230 Hz transversal frequency is used. The
phase imprint duration is 5µs with a lattice potential depth s = 29.

After the phase imprint, the condensate is released from the waveguide and is allowed
to expand freely. The asymmetric initial shape of the condensate with a longitudinal
width of 10µm and a transversal width of ∼ 1µm leads to an asymmetric expansion,
where the interaction energy is mainly converted into transversal kinetic energy on a
timescale of 1/(230 Hz)≈ 4ms. To model this 3 dimensional dynamics with the 1D
NPSE, the following method is used. After the phase imprint, the NPSE is propagated
for 0.5 ms, which corresponds to the time between the experimental phase imprint and
the subsequent turn-off of the waveguide. In the following the reduction of the atomic
density due to the transverse expansion is modeled by exponentially reducing the atom
number in the simulation on a timescale of 2 ms.
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Figure 3.6: Numerical simulation of the calibration experiment. A numerical propagation
of the NPSE allows to reproduce the distortion of the density profile (strong side peaks of the
individual wave packets) due to the nonlinear interaction. Applying the same fit procedure to
the simulated data shows that the error of the calibration procedure due to nonlinear interaction
is on the order of 3% and can thus be neglected.

Figure 3.6 shows that the numerical simulation qualitatively reproduces the distortion
of the density profile due to the nonlinear interaction. The experimentally observed
strong side peaks of the individual wave packets can be explained by the change of
the longitudinal momentum distribution due to the nonlinear interaction. Applying the
same fit procedure to the simulation data yields a lattice strength, which differs only by
≈ 3% from the value used in the simulation. Therefore this simulation shows that the
influence of the nonlinear interaction onto the calibration process can be neglected.

3.3 Dispersion management

In the first series of experiments done in this thesis, the active modification of the
dynamics of interacting matter waves in a 1D waveguide by applying a shallow lattice
potential is investigated in terms of the concept of the effective mass. The experiments
explore the new technical possibilities due to the following theoretical and experimental
facts.

The dispersion relation E(q) of a lattice potential shows regions with a positive, a
negative and a diverging effective mass in the first Bloch band (see section 3.1.1). These
regions correspond to a normal, an anomalous and a suppressed dispersion. In addition,
both in the center and at the edge of the Brillouin zone, the dispersion relation can be
approximated by a parabola, i.e. in a small region around these two points the effective
mass is approximately constant.

Experimentally, our setup allows to prepare atomic wave packets in the first Bloch
band with a very small width in quasi momentum space. The experimental control
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3.3 Dispersion management

of the longitudinal velocity of the lattice potential allows to prepare the wave packets
at arbitrary quasi momenta. The free evolution of the matter wave packet along the
waveguide can be observed in real space for very long observation times.

3.3.1 Publication: Dispersion Management for Atomic Matter Waves

The above given prerequisites make it possible to realize “dispersion management” for
matter waves, to study the “effective mass approximation” and to directly measure the
maximum group velocity of the first Bloch band. These experiments are published in
(Eiermann et al., 2003) and are summarized in the following.

Dispersion management The first experiments investigate the active change of the
dispersion from normal to anomalous dispersion during the evolution of the wave packet -
a technique known as “dispersion management” in the field of nonlinear optics (Agrawal,
2001), where the broadening of light pulses in optical fibers is suppressed by spatially
modulating the index of refraction. The experiments presented here show that this
technique can also be implemented in the field of matter wave optics. In the presented
experiments, the technique of dispersion management allows to reverse an initial expan-
sion of a wave packet in the normal dispersion regime by subsequently placing it in the
regime of anomalous dispersion, where it compresses until it regains its initial size.

Constant effective mass approximation The dispersion relation E(q) in a lattice
potential shows an approximately parabolic shape around the center and around the
edge of the Brillouin zone. In these regions a wave packets experiences a quasi free
particle dispersion, i.e. a quadratic phase evolution in q-space. In contrast to the free
particle dispersion, here the nature and the strength of the dispersion can be tuned
experimentally. In the experiment,e.g. a wave packet is prepared at the edge of the
Brillouin zone, where it experiences an anomalous dispersion (meff < 0). Using a shallow
potential, the dispersion is enhanced (|meff | < 1) compared to the free particle case - an
important prerequisite for the generation of solitons (see section 3.5). In this experiment,
the limits and the applicability of the constant effective mass approximation are explored.

Direct measurement of the maximum group velocity The experimental setup
allows to observe the influence of the modified dispersion in real space. In the experi-
ments presented below wave packets are prepared in the Brillouin zone such that they
populate the particular regions around q = q±∞, where the effective mass diverges. As a
result the dispersion around these regions is strongly suppressed and the atoms remain
localized for a long time. This in turn allows to directly measure their relative velocity
vg(q±∞), which is the maximum group velocity in the first Bloch band.
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3.3 Dispersion management
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials
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3.3 Dispersion management
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3.4 Continuous Dispersion management

3.4 Continuous Dispersion management

As a natural continuation of the experiments on dispersion management and the linear
dynamics in lattice potentials, a series of experiments is presented in this section, where
the technique of continuous dispersion management is investigated. With this technique
the broadening of a wave packet in real space is suppressed by continuously altering
the dispersion from normal to anomalous dispersion and vice versa. The experimental
results together with a numerical investigation reveal the nature of the influence of the
nonlinear atom-atom interaction in the different dispersion regimes.

In a modified setup, where the waveguide encloses an angle of 21◦ with the counter
propagating beams of the lattice potential, a coupling between the longitudinal and the
transverse motion of the wave packet by the lattice potential is realized. In this setup
a transverse oscillation in real space leads to an oscillation in quasi momentum space of
the lattice potential and thus allows to implement a continuous dispersion management
scheme.

In addition the complex 3D wave packet dynamics is investigated numerically. For
this purpose first the semiclassical equations of motion of a single particle are solved.
From the results the complicated trajectory in longitudinal momentum space is extracted
and reinserted as a pseudo force in a numerical propagation of the 1D NPSE. This
approximation allows to circumvent tedious 3D calculations and is able to reproduce
all the observed features of the complex wave dynamics. A detailed derivation of the
equations of motion used in the numerical analysis of the experiments is given in section
3.4.2.

The numerical results allow an insight into the dynamics in momentum space. It
is therefore possible to understand the complex nonlinear wave dynamics identifying
processes known from nonlinear optics, such as self phase modulation (Agrawal, 1995)
and the transient formation of higher order solitons (Agrawal, 2001).

3.4.1 Publication: Linear and nonlinear dynamics of matter wave packets in
periodic potentials

The experiments on the continuous dispersion management are published in (Anker et
al., 2003) and are summarized in the following.
Continuous dispersion management In the first experiment the atomic wave packet
is accelerated with a tight binding lattice potential across the edge of the Brillouin zone.
The hereby exited transverse oscillation results in a forced oscillation in quasi momentum
space around the Brillouin zone boundary, such that the dispersion is altered from normal
to anomalous dispersion. Initially a radiation of atoms is observed, a process induced
by the strong initial nonlinear atom-atom interaction. A remaining wave packet with
reduced atomic density is then observed, which shows suppressed dispersion - continuous
dispersion management.
Nonlinear dynamics The initial nonlinear dynamics is investigated more closely in
a second experiment, where the wave packet is prepared initially at the Brillouin zone
boundary. By comparison with the numerical results, the typical process of compression
in real space combined with a broadening in momentum space and vice versa can be
attributed to a transient formation of higher order solitons.
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Abstract: We investigate experimentally and theoretically the nonlinear
propagation of 87Rb Bose Einstein condensates in a trap with cylindrical
symmetry. An additional weak periodic potential which encloses an
angle with the symmetry axis of the waveguide is applied. The observed
complex wave packet dynamics results from the coupling of transverse and
longitudinal motion. We show that the experimental observations can be
understood applying the concept of effective mass, which also allows to
model numerically the three dimensional problem with a one dimensional
equation. Within this framework the observed slowly spreading wave pack-
ets are a consequence of the continuous change of dispersion. The observed
splitting of wave packets is very well described by the developed model and
results from the nonlinear effect of transient solitonic propagation.

OCIS codes: (270.5530) Pulse propagation and solitons; (020.0020) Atomic and molecular
physics; (350.4990) Particles
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1. Introduction

The experimental investigation of nonlinear matter wave dynamics is feasible since the real-
ization of Bose-Einstein-condensation of dilute gases [1]. The combination of this new matter
wave source with periodic potentials allows for the realization of many nonlinear propagation
phenomena. The dynamics depends critically on the modulation depth of the potential. For deep
periodic potentials the physics is described locally taking into account mean field effects and
tunneling between adjacent potential wells. In this context wave packet dynamics in Josephson
junction arrays have been demonstrated experimentally [2] and nonlinear self trapping has been
predicted theoretically [3]. In the limit of weak periodic potentials and moderate nonlinearity
rich wave packet dynamics result due to the modification of dispersion which can be described
applying band structure theory [4]. Especially matter wave packets subjected to anomalous dis-
persion (negative effective mass) or vanishing dispersion (diverging mass) are of great interest.
In the negative mass regime gap solitons have been predicted theoretically [5] and have been
observed recently [6]. Also modulation instabilities can occur [7].

The experiments described in this work reveal wave dynamics in the linear and nonlinear
regime for weak periodic potentials. The observed behavior is a consequence of the special
preparation of the wave packet leading to a continuous change of the effective mass and thus the
dispersion during the propagation. The initial propagation is dominated by the atom-atom inter-
action leading to complex wave dynamics. After a certain time of propagation slowly spreading
atomic wave packets are formed which are well described by linear theory. In this work we
focus on the mechanisms governing the initial stage of propagation.

The paper is organized as follows: in section 2 we describe the effective mass and dispersion
concept. In section 3 we present our experimental setup and in section 4 the employed wave
packet preparation schemes are discussed in detail. In section 5 the experimental results are
compared with numerical simulations. We show that some features of the complex dynamics
can be identified with well known nonlinear mechanisms. We conclude in section 6.

2. Effective mass and dispersion concept

In our experiments we employ a weak periodic potential which leads to a dispersion relation
En(q) shown in Fig. 1(a). This relation is well known in the context of electrons in crystals
[8] and exhibits a band structure. It shows the eigenenergies of the Bloch states as a function
of the quasi-momentum q. The modified dispersion relation leads to a change of wavepacket
dynamics due to the change in group velocity vg(q) = 1/ h̄ ∂E/ ∂q (see Fig. 1(b)), and the
group velocity dispersion described by the effective mass meff = h̄2(∂ 2E/ ∂q2)− 1 (see Fig.
1(c)), which is equivalent to the effective diffraction introduced in the context of light beam
propagation in optically-induced photonic lattices [9]. In our experiment only the lowest band is
populated, which is characterized by two dispersion regimes, normal and anomalous dispersion,
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

corresponding to positive and negative effective mass. A pathological situation arises at the
quasimomentum q±

∞ , where the group velocity vg(q) is extremal, |meff | diverges and thus the
dispersion vanishes.

Fig. 1. (a) Band structure for atoms in an optical lattice with V0 = 1.2Erec (solid), parabolic

approximation to the lowest energy band at q = π/d = G/2 (dashed), corresponding group

velocity (b) and effective mass (c) in the lowest energy band. The vertical dashed lines at

q = q±
∞ indicate where |meff| = ∞. The shaded region shows the range of quasimomenta

where the effective mass is negative.

In the following we will show that the two preparation schemes employed in the experi-
ment lead to a continuous change of the quasimomentum distribution, and thus to a continuous
change of dispersion. One of the preparation schemes allows to switch periodically from pos-
itive to negative mass values and thus a slowly spreading wave packet is formed. This is an
extension of the experiment reporting on dispersion management [10]. The second preparation
gives further insight into the ongoing nonlinear dynamics for the initial propagation.

3. Experimental setup

The wave packets in our experiments have been realized with a 87Rb Bose-Einstein condensate
(BEC). The atoms are collected in a magneto-optical trap and subsequently loaded into a mag-
netic time-orbiting potential trap. By evaporative cooling we produce a cold atomic cloud which
is then transferred into an optical dipole trap realized by two focused Nd:YAG laser beams with
60 µm waist crossing at the center of the magnetic trap (see Fig.2(a)). Further evaporative cool-
ing is achieved by lowering the optical potential leading to pure Bose-Einstein condensates
with 1 · 104 atoms in the |F = 2, mF = + 2 state. By switching off one dipole trap beam the
atomic matter wave is released into a trap acting as a one-dimensional waveguide with radial
trapping frequency ωr = 2π · 100Hz and longitudinal trapping frequency ω = 2π · 1.5Hz. It is
important to note that the dipole trap allows to release the BEC in a very controlled way leading
to an initial mean velocity uncertainty smaller than 1/10 of the photon recoil velocity.

The periodic potential is realized by a far off-resonant standing light wave with a single
beam peak intensity of up to 1W/ cm2. The chosen detuning of 2 nm to the blue off the D2 line
leads to a spontaneous emission rate below 1Hz. The standing light wave and the waveguide
enclose an angle of θ = 21◦ (see Fig. 2(b)). The frequency and phase of the individual laser
beams are controlled by acousto-optic modulators driven by a two channel arbitrary waveform
generator allowing for full control of the velocity and amplitude of the periodic potential. The
light intensity and thus the absolute value of the potential depth was calibrated independently
by analyzing results on Bragg scattering [11] and Landau Zener tunneling [12, 13, 14].

The wave packet evolution inside the combined potential of the waveguide and the lattice is
studied by taking absorption images of the atomic density distribution after a variable time de-
lay. The density profiles along the waveguide, n(x, t), are obtained by integrating the absorption
images over the transverse dimension.
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3.4 Continuous Dispersion management

Fig. 2. Scheme for wave packet preparation (a-d). (a) initial wave packet is obtained by

condensation in a crossed dipole trap. (b) A stationary periodic potential is ramped up adi-

abatically preparing the atoms at quasimomentum qc = 0 in the lowest band. (c),(d) The

periodic potential is accelerated to a constant velocity. (e) shows the numerically deduced

quasimomentum shift for the preparation method I described in the text. (f) The motion

of the center quasimomentum for the preparation method II described in the text. The ad-

ditional shift to higher quasimomenta for long times results from the residual trap in the

direction of the waveguide. The shaded area represents the quasimomenta corresponding

to negative effective mass.

4. Dynamics in reciprocal space

In our experimental situation an acceleration of the periodic potential to a constant velocity
leads to a collective transverse excitation as indicated in Fig. 2(d). Since the transverse motion
in the waveguide has a non vanishing component in the direction of the periodic potential due to
the angle θ , a change of the transverse velocity leads to a shift of the central quasimomentum of
the wave packet. The coupling between the transverse motion in the waveguide and the motion
along the standing light wave gives rise to a nontrivial motion in reciprocal (see Fig. 2(e,f)) and
real space.

The appropriate theoretical description of the presented experimental situation requires the
solution of the three dimensional nonlinear Schrödinger equation (NLSE) and thus requires
long computation times. In order to understand the basic physics we follow a simple approach
which solves the problem approximately and explains all the features observed in the experi-
ment. For that purpose we first solve the semiclassical equations of motion of a particle which
obeys the equation F = M*ẍ where M* is a mass tensor describing the directionality of the effec-
tive mass. We deduce the time dependent quasimomentum qc(t) in the direction of the periodic
potential by identifying h̄q̇c = Fx̂ and ˙̂x = vg(qc) (definition of x̂ see Fig. 2(b)). Subsequently
we can solve the one dimensional NPSE (non-polynomial nonlinear Schrödinger equation)[15]
where the momentum distribution is shifted in each integration step according to the calculated
qc(t). Thus the transverse motion is taken into account properly for narrow momentum dis-
tributions. We use a split step Fourier method to integrate the NPSE where the kinetic energy
contribution is described by the numerically obtained energy dispersion relation of the lowest
band E0(q). It is important to note, that this description includes all higher derivatives of E0(q),
and thus goes beyond the effective mass approximation.

In the following we discuss in detail the employed preparation schemes:
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

Acceleration scheme I: After the periodic potential is adiabatically ramped up to V0 = 6Erec
it is accelerated within 3ms to a velocity vpot = cos2(θ )1.5vrec. Then the potential depth is
lowered to V0 = 0.52Erec within 1.5ms and the periodic potential is decelerated within 3ms to
vpot = cos2(θ )vrec subsequently. V0 and vpot are kept constant during the following propagation.
The calculated motion in reciprocal space qc(t) is shown in Fig. 2(e).

Acceleration scheme II: The periodic potential is ramped up adiabatically to V0 = 0.37Erec
and is subsequently accelerated within 3ms to a final velocity vpot = cos2(θ ) × 1.05vrec. The
potential depth is kept constant throughout the whole experiment. Fig. 2(f) reveals that in con-
trast to the former acceleration scheme the quasimomentum for the initial propagation is mainly
in the negative effective mass regime.

5. Experimental and numerical results

In this section we compare the experimental results with the predictions of our simple theoret-
ical model discussed above. The numerical simulation reveal all the experimentally observed
features of the dynamics such as linear slowly spreading oscillating wave packets, nonlinear
wave packet compression and splitting of wave packets. The observed nonlinear phenomena
can be understood by realizing that in the negative effective mass regime the repulsive atom-
atom interaction leads to compression of the wave packet in real space and to a broadening
of the momentum distribution. An equivalent picture borrowed from nonlinear photon optics
[16, 17] is the transient formation of higher order solitons, which show periodic compression
in real space with an increase in momentum width and vice versa.

5.1. Preparation I
The experimental results for the first acceleration scheme discussed in section 4 are shown in
Fig. 3. Clearly we observe that a wave packet with reduced density is formed which spreads out
slowly and reveals oscillations in real space. This wave packet results from the initial dynamics
characterized by two stages of compression which lead to radiation of atoms [18]. The observed
behavior is well described by our numerical simulation which allows further insight into the
ongoing physics.

In Fig. 3(c,d) we show the calculated momentum and real space distribution for the first 14ms
of propagation. As can be seen the acceleration of the standing light wave leads to a oscillatory
behavior in momentum space. For the chosen parameters the wave packet is initially dragged
with a tight binding potential (V0 = 6Erec) over the critical negative mass regime. While the real
space distribution does not change during this process, the momentum distribution broadens
due to self phase modulation [16, 17]. The subsequent propagation in the positive mass regime
leads to a further broadening in momentum space and real space (t=4-9ms).

The dynamics changes drastically as soon as a significant part of the momentum distribution
populates quasimomenta in the negative mass regime (t=10ms). There the real space distribu-
tion reveals nonlinear compression as known from the initial dynamics of higher order solitons.
This compression leads to a significant further broadening in momentum space and thus to
population of quasimomenta corresponding to positive mass. This results in a spreading in real
space due to the different group velocities involved and leads to the observed background. The
change of the quasimomentum due to the transverse motion prohibits a further significant in-
crease in momentum width, since the whole momentum distribution is shifted out of the critical
negative mass regime at t=14ms.

The long time dynamics of the slowly spreading wave packet is mainly given by the momen-
tum distribution marked with the shaded area for t=14ms in Fig. 3(c). The subsequent motion
is dominated by the change of the quasimomentum due to the transverse motion. This leads to
a periodic change from normal to anomalous dispersion and thus the linear spreading is sup-
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3.4 Continuous Dispersion management

Fig. 3. Wave packet dynamics for preparation I. (a) Experimental observation of wave

packet propagation. (b) Result of the numerical simulation as discussed in the text. The

data is convoluted with the optical resolution of the experiment. The obtained results are in

good agreement with the experimental observations. The theoretically obtained (c) quasi-

momentum distribution and (d) real space distribution are given for the initial 14ms of

propagation. The inset reveals the phase of the observed slowly spreading wave packet.

pressed. This is an extension of our previous work on dispersion management for matter waves
- continuous dispersion management.

5.2. Preparation II
This preparation scheme reveals in more detail the transient solitonic propagation leading to the
significant spreading in momentum space. This results in a splitting of the wave packet which
cannot be understood within a linear theory. The results are shown in Fig. 4 and the observed
splitting is confirmed by our numerical simulations.

In contrast to the former preparation scheme the momentum distribution is prepared as a
whole in the critical negative mass regime. Our numerical simulations reveal that the wave
packet compresses quickly in real space after t=4ms which is accompanied by an expansion
in momentum space. The momentum distribution which stays localized in the negative mass
regime reveals further solitonic propagation characterized by an expansion in real space and
narrowing of the momentum distribution (t=5-10ms). The transverse motion shifts this mo-
mentum distribution into the normal dispersion regime after 11ms of propagation resulting in a
wave packet moving with positive group velocity (i.e. moving to the right in fig. 4(b)). The ini-
tial compression at t=4ms even produces a significant population of atoms in the normal mass
regime which subsequently move with negative group velocity showing up as a wave packet
moving to the left in Fig. 4(b). Thus the splitting in real space is a consequence of the significant
nonlinear broadening in momentum space.
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

Fig. 4. Wave packet dynamics for preparation II. (a) Experimental results on wave packet

propagation. (b) Result of the numerical simulation as discussed in the text. The simulation

reproduces the observed wave packet splitting. The theoretically obtained (c) quasimomen-

tum distribution and (d) real space distribution are given for the initial 14ms of propagation.

The inset reveals that the transient formed wave packet has a flat phase indicating solitonic

propagation.

6. Conclusion

In this paper we report on experimental observations of nonlinear wave packet dynamics in
the regime of positive and negative effective mass. Our experimental setup realizing a BEC
in a quasi-one dimensional situation allows the observation of wave dynamics for short times,
where the nonlinearity due to the atom-atom interaction dominates and also for long times,
where linear wave propagation is revealed.

We have shown that a slowly spreading wave packet can be realized by changing the quasi-
momentum periodically from the normal to anomalous dispersion regime. This can be viewed
as an implementation of continuous dispersion management. We further investigate in detail
the formation process of these packets, which are a result of the initial spreading in momen-
tum space due to nonlinear compression. A second experiment investigates in more detail the
nonlinear dynamics in the negative mass regime where the solitonic propagation leads to a sig-
nificant broadening in momentum space. This shows up in the experiment as splitting of the
condensate into two wave packets which propagate in opposite directions.

The developed theoretical description utilizing the effective mass tensor models the experi-
mental system in one dimension and can explain all main features observed in the experiment.
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3.4 Continuous Dispersion management

3.4.2 Derivation of the effective 1D dynamics

The experiments on the continuous dispersion management are realized in a special
setup, where the waveguide encloses an angle Θ with the counter propagating beams of
the lattice potential. Thus an acceleration of the lattice potential also excites a dynamics
which is transverse to the waveguide, due to the non-vanishing transverse component of
the group velocity. The restoring forces of the waveguide potential, on the other hand,
also induce an acceleration in the direction of the lattice potential and consequently cause
a change of the quasi momentum. In the experiment continuous dispersion management
is implemented by exciting a transverse oscillation, which results in an oscillation in
quasi momentum space with a corresponding change of the dispersion from normal to
anomalous dispersion and vice versa.

To investigate the resulting complex 3D dynamics numerically, the system is ap-
proximated by an effective 1D system. First the equation of motion of a quasi classical
particle, �F = m∗ �̈r is studied, where the effect of the lattice potential is included by
means of the effective mass tensor m∗. The force(

Fx̂

Fŷ

)
=
(−mω2

⊥y sin(Θ) −malatt

−mω2
⊥y cos(Θ)

)
(3.15)

depends on the transverse trapping frequency ω⊥ = 2π · 100 Hz and the acceleration
of the lattice potential alatt, which is determined by the experiment sequence. The
coordinate system (x, y) is given by the longitudinal and the transverse direction of the
waveguide potential (see publication in the previous section) and transforms into the
coordinate system (x̂, ŷ) of the lattice potential according to

ẋ = ( ˙̂x+ vlatt) cos(Θ) − ˙̂y sin(Θ)
ẏ = ( ˙̂x+ vlatt) sin(Θ) + ˙̂y cos(Θ)

(3.16)

where vlatt is the velocity of the lattice potential in the laboratory frame. Keeping in
mind that along the lattice potential Fx̂ = �q̇ and ˙̂x = vg(q), where q is the quasi
momentum and vg(q) the group velocity, we can write down the first order differential
equations for the quantities q, y, vŷ and vlatt:

q̇ = −mω2
⊥y sin Θ −malatt

ẏ = (vg(q) + vlatt) sin Θ + vŷ cos Θ
v̇ŷ = mω2

⊥y cos Θ
v̇latt = alatt.

(3.17)

The trajectory of the quasi momentum q(t) can now be easily obtained solving the above
equations numerically with a Runge-Kutta-Method.

The dynamics of the complete wave packet inside the waveguide is obtained by solving
numerically the 1D NPSE. The influence of the transverse motion is taken into account
by introducing a pseudo force: in each integration step the wave packet is shifted in
quasi momentum space according to the above calculated quasi momentum q(t).
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3.5 Bright atomic gap solitons

In nature, many dynamical systems can be found, that can be described by nonlinear
wave equations. In these systems basic excitations (waves), which are periodic in space
and/or time can be found, which, by superposition, exhibit interference effects (wave
nature). A dependence of the propagation velocity of the waves on the periodicity leads
to the effect of dispersion, which makes these systems already quite complex (see section
3.3 on the dispersion management). In addition, wave dynamical systems in nature
typically show a nonlinear coupling, i.e. the dynamics depends on the amplitude of the
excitation. This makes the dynamics of these systems very complex (see section 3.4 on
the continuous dispersion management).

Nevertheless most of the governing nonlinear wave equations were found to support
a special class of stable solutions, so called solitary waves or solitons. These are single lo-
calized waves (or more precisely wave packets) with a time-independent or time-periodic
shape, where the latter are called “higher order solitons”. They result from the fact that
for their special wave form the effect of dispersion is exactly canceled by the nonlinear
interaction. They were first discovered in nature as a single traveling wave in a channel of
shallow water (Russel, 1844). Technically very important systems are solitons in optical
fibers. These are short intense light pulses from lasers injected into optical fibers that
maintain their shape and intensity while traveling through the fiber and thus allow a
enormous increase in data bandwidth in optical communication (Mollenauer et al., 1980;
Agrawal, 1995). In these systems the broadening of the light pulses due to dispersion in
the fiber is canceled by the nonlinear Kerr effect, i.e. the intensity dependent index of
refraction. The dynamics of the envelope function A(x, t) of light pulses in optical fibers
is governed by the nonlinear wave equation

i
∂A(x, t)
∂x

=
[
β2

2
∂2

∂t2
+ γ|A(x, t)|2

]
A(x, t), (3.18)

well known in the field of nonlinear fiber optics (Agrawal, 1995). The equation is deter-
mined by the group velocity dispersion β2 and the nonlinearity γ, where both depend
on the fiber material and the central frequency of the laser pulse.

The knowledge from the well understood optical system can be transferred directly
to the corresponding atom optical system – Bose-Einstein condensates in 1D waveguides
described by the 1D Gross-Pitaevskii equation (see section 2.10)

i�
∂

∂t
Ψ(x, t) =

[
− �

2

2m
∂2

∂x2
+ g1DN |Ψ(x, t)|2

]
Ψ(x, t). (3.19)

The correspondence between the optical and the atom optical system becomes clear
when space x and time t are exchanged in the 1D GPE, which then becomes formally
identical with eq. (3.18).

The above nonlinear equations support “bright solitons” - single wave packets with a
constant or time-periodic shape - as solutions, if both the dispersion and the nonlinearity
term have the same sign. In the field of atom optics bright solitons have been realized
for Bose-Einstein condensates with attractive interaction, i.e. g1D < 0 (Strecker et al.,
2002; Khaykovich et al., 2002).

In the case of opposite signs, the above equations support “dark solitons” as solutions.
These are intensity/density minima in a homogeneous background. They could also be
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realized experimentally for Bose-Einstein condensates with repulsive interaction (Burger
et al., 1999).

Gap solitons In the experiments presented in this work a new class of solitons is realized,
which exists only in a periodic potential - so called ”gap solitons”. The dynamics of the
envelope A(x, t) of an atomic wave packet prepared in a shallow periodic potential is
described by the nonlinear wave equation

i�
∂

∂t
A(x, t) =

[
− �

2

2meff (q0)
∂2

∂x2
+ αnl(q0, V0)NG(|A(x, t)|2)

]
A(x, t) (3.20)

(see section 3.1.2). By preparing the atomic wave packets at the Brillouin zone edge,
i.e. in the regime of a negative effective mass, the realization of bright atomic solitons
is possible for atoms with repulsive atom-atom interaction. The nonlinear energy of
such wave packets moves the atoms energetically into the gap between the first and the
second Bloch band – hence the name ”gap solitons”.

The experimental realization of bright atomic gap solitons in this work distinguishes
itself from other works on atomic solitons by the fact that in our setup both the disper-
sion and the nonlinear interaction of the system are under full experimental control. In
addition our setup allows the reproducible generation of single solitons. Therefore a de-
tailed investigation of the formation process, the longtime behavior and the dependence
on the system parameters is possible.

3.5.1 Publication: Bright Bose-Einstein Gap Solitons of Atoms with Repul-
sive Interaction

The experiments on bright atomic gap solitons are published in (Eiermann et al., 2004)
and are summarized in the following.
Realization The successful realization of bright atomic gap solitons is critically con-
nected with the successful realization of coherent wave packets with a very small atom
number. In order for the dispersion to be canceled by the nonlinear interaction, the
kinetic energy of the wave packet must be comparable with the nonlinear energy. Given
the strong interaction in 87Rb the atom number for the soliton is around 200 atoms.
The initial condensate atom number of around 3000 atoms, realized by evaporation, is
further reduced by a Bragg pulse to around 900 - small enough to form a soliton. In a
time series of absorption images the impressive formation process of the soliton is shown.
Within around 45 ms excessive atoms are radiated with a single peak of constant atom
number and width remaining.
Dynamical Properties The basic dynamical properties of bright first order solitons - a
constant width and atom number - are confirmed experimentally. Gap solitons prepared
directly at the Brillouin zone edge do not move with respect to the lattice potential.
Here the experimental confirmation reveals the critical role of extern potentials - small
misalignments of the optical table with respect to the gravitational acceleration result
in an acceleration of the solitons in the direction opposite to the gravitational force
revealing their negative mass characteristics.
Systematic Properties The very basic nature of a soliton, the balanced interplay
between nonlinear interaction and dispersion determines a relation between the soliton
width x0 and the atom number N0, and the system parameters, the transverse trap-
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ping frequency ω⊥ and the depth V0 of the lattice potential. By varying the system
parameters, this relation is verified experimentally.
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Bright gap solitons of atoms with repulsive interaction

B. Eiermann1, Th. Anker1, M. Albiez1, M. Taglieber2, P. Treutlein2, K.-P. Marzlin3, and M.K. Oberthaler1
1Kirchhoff Institut für Physik, Universität Heidelberg,
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(Dated: March 3, 2004)

We report on the first experimental observation of bright matter-wave solitons for 87Rb atoms
with repulsive atom-atom interaction. This counter intuitive situation arises inside a weak periodic
potential, where anomalous dispersion can be realized at the Brillouin zone boundary. If the coherent
atomic wave packet is prepared at the corresponding band edge a bright soliton is formed inside the
gap. The strength of our system is the precise control of preparation and real time manipulation,
allowing the systematic investigation of gap solitons.
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Non-spreading localized wave packets [1] - bright soli-
tons - are a paradigm of nonlinear wave dynamics and
are encountered in many different fields, such as physics,
biology, oceanography, and telecommunication. Solitons
form if the nonlinear dynamics compensates the spread-
ing due to linear dispersion. For atomic matter waves,
bright solitons have been demonstrated for which the
linear spreading due to vacuum dispersion is compen-
sated by the attractive interaction between atoms [2].
For repulsive atom-atom interaction dark solitons have
also been observed experimentally [3].

In this letter we report on the experimental observa-
tion of a different type of solitons, which only exist in
periodic potentials - bright gap solitons. For weak pe-
riodic potentials the formation of gap solitons has been
predicted [4] while discrete solitons [5] should be observ-
able in the case of deep periodic potentials. These phe-
nomena are well known in the field of nonlinear photon
optics where the nonlinear propagation properties in pe-
riodic refractive index structures have been studied [6].
In our experiments with interacting atoms a new level
of experimental control can be achieved allowing for the
realization of gap solitons for repulsive atom-atom inter-
action corresponding to a self-defocussing medium. It
also opens up the way to study solitons in two- and three
dimensional atomic systems [7].

In our experiment we investigate the evolution of
a Bose-Einstein condensate in a quasi one-dimensional
waveguide with a weak periodic potential superimposed
in the direction of the waveguide. In the limit of weak
atom-atom interaction the presence of the periodic poten-
tial leads to a modification of the linear propagation i.e.
dispersion [8]. It has been demonstrated that with this
system anomalous dispersion can be realized [9], which
is the prerequisite for the realization of gap solitons for
repulsive atom-atom interaction.

Our experimental observations are shown in figure 1

and clearly reveal that after a propagation time of 25ms
a non-spreading wave packet is formed. The observed
behavior exhibits the qualitative features of gap soliton
formation such as: (a) during soliton formation excessive
atoms are radiated and spread out over time, (b) soli-
tons do not change their shape and atom number during
propagation, (c) gap solitons do not move.

The coherent matter-wave packets are generated with
87Rb Bose-Einstein condensates (figure 2a). The atoms

FIG. 1: Observation of bright gap solitons. The atomic den-
sity in the negative mass regime deduced from absorption im-
ages (430 µm× 125 µm) averaged over 4 realizations is shown
for different propagation times. After approximately 25 ms
a small peak is formed which does neither change in shape
nor in amplitude. Excessive atoms are radiated and disperse
over time. After 45ms only the soliton with ∼250 atoms has
sufficient density to be clearly observable. The second peak
at 15ms shows the atoms which have been removed by Bragg
scattering to generate an initial coherent wave packet consist-
ing of ∼900 atoms. For longer observation times those atoms
move out of the imaged region.
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

are initially precooled in a magnetic TOP trap using
the standard technique of forced evaporation leading to
a phase space density of ∼ 0.03. The atomic ensemble
is subsequently adiabatically transferred into a crossed
light beam dipole trap (λ=1064nm, 1/e2 waist 60µm,
500mW per beam) where further forced evaporation is
achieved by lowering the light intensity in the trapping
light beams. With this approach we can generate pure
condensates with typically 3 × 104 atoms. By further
lowering the light intensity we can reliably produce co-
herent wave packets of 3000 atoms. For this atom num-
ber no gap solitons have been observed. Therefore we
remove atoms by Bragg scattering [10]. This method
splits the condensate coherently leaving an inital wave
packet with 900(300)atoms at rest. The periodic po-
tential V = V0 sin2(2π

λ x) of periodicity d = λ/2 is real-
ized by a far off-resonant standing light wave of wave-
length λ = 783nm. The absolute value of the potential
depth was calibrated independently by analyzing results
on Bragg scattering and Landau Zener tunneling [11].

After the creation of the coherent wave packet, we
ramp up the periodic potential adiabatically, which pre-
pares the atomic ensemble in the normal dispersion
regime at quasimomentum q = 0 as indicated in fig-
ure 2. The dispersion relation for an atom moving in
a weak periodic potential exhibits a band structure as
a function of quasimomentum q known from the disper-
sion relation of electrons in crystals [12] (see figure 2e).
Anomalous dispersion, characterized by a negative effec-
tive mass meff < 0, can be achieved if the mean quasi-
momentum of the atomic ensemble is shifted to the Bril-
louin zone boundary corresponding to q = π/d. This is
accomplished by switching off one dipole trap beam, re-
leasing the atomic cloud into the one-dimensional hor-
izontal waveguide (Fig. 2c) with transverse and lon-
gitudinal trapping frequencies ω⊥ = 2π × 85 Hz and
w|| = 2π × 0.5 Hz. Subsequently the atomic ensemble is
prepared at quasimomentum q = π/d by accelerating the
periodic potential to the recoil velocity vr = h/mλ. This
is done by introducing an increasing frequency difference
between the two laser beams, creating the optical lattice.
The acceleration within 1.3ms is adiabatic, hence excita-
tions to the upper bands by Landau-Zener transitions are
negligible [11]. It is important to note that the strength
of the dispersion is under full experimental control. The
absolute value of meff(q = π/d) = V0

V0−8Er
m (weak po-

tential approximation [12]) scales with the modulation
depth of the periodic potential, where Er = h̄2

2m
π2

d2 is the
recoil energy.

For weak periodic potentials the full wavefunction
of the condensate is well described by Ψ(x, t) =
A(x, t)uqc

0 (x) exp(iqcx), where uqc

0 (x) exp(iqcx) repre-
sents the Bloch state in the lowest band n = 0 at the
corresponding central quasimomentum qc. Within the
approximation of constant effective mass, the dynamics
of the envelope A(x, t) is governed, by a one-dimensional

FIG. 2: Realization of coherent atomic wave packets with neg-
ative effective mass utilizing periodic potentials. (a) top view
of the crossed dipole trap geometry used for Bose-Einstein
condensation. (b) a periodic potential is ramped up while the
atoms are still trapped in the crossed dipole trap realizing the
atomic ensemble at qc = 0. (c,d) the atoms are released into
the one-dimensional waveguide and subsequently the periodic
potential is accelerated to the recoil velocity vr = h/λm. This
prepares the atomic wave packet at the band edge of the low-
est band. (e) normal and anomalous (shaded area) dispersion
regime in a periodic potential. The single preparation steps
are indicated. The shown band structure is calculated for a
modulation depth of V0 = 1Er.

nonlinear Schrödinger equation [13]

ih̄
∂

∂t
A(x, t) =

(
− h̄2

2meff

∂2

∂x2
+ g1d|A(x, t)|2

)
A(x, t)

with g1d = 2h̄aω⊥αnl where αnl is a renormalization fac-
tor due to the presence of the periodic potential (αnl =1.5
for q = π/d in the limit of weak periodic potentials [13]),
and a is the scattering length. The stationary solution
for qc = π/d is given by

A(x, t) =
√
N/2x0 sech(x/x0) eih̄t/2meffx

2
0 ,

where x0 is the soliton width and meff is the effective
mass at the band edge. The total number of atoms con-
stituting the soliton is given by

N =
h̄

αnlω⊥meffx0a
. (1)

This quantitative feature of bright solitons can also be
deduced by equating the characteristic energies for dis-
persion ED = h̄2/meffx

2
0 and atom-atom interaction

Enl = g1d|A(x = 0, t)|2.
A characteristic time scale of solitonic propagation due

to the phase evolution can also be identified. In anal-
ogy to light optics the soliton period is given by TS =
πmeffx

2
0/2h̄. Solitonic propagation can be confirmed ex-

perimentally if the wave packet does not broaden over
time periods much longer than TS.

Our experimental results in figure 1 show the evolution
of a gap soliton in the negative mass regime for different
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3.5 Bright atomic gap solitons

propagation times. The reproducible formation of a sin-
gle soliton is observed if the initial wave packet is close
to the soliton condition, i.e. a well defined atom number
for a given spatial width. The preparation scheme uti-
lizing the Bragg pulse leads to a wave packet containing
900 atoms with a spatial size of ∼ 2.5µm (rms). The
periodic potential depth was adjusted to V0 = 0.70(5)Er

leading to meff/m � −0.1 at the band edge. The soliton
can clearly be distinguished from the background after
25ms, corresponding to 3 soliton periods. This is consis-
tent with the typical formation time scale of few soliton
periods given in nonlinear optics text books [14]. After
45ms of propagation, the density of the radiated atoms
drops below the level of detection and thus a pure soli-
ton remains, which has been observed for up to 65ms.
It has been shown that for gap solitons a finite lifetime
is expected due to resonant coupling to transversally ex-
cited states [15]. In order to understand the background
we numerically integrated the nonpolynomial nonlinear
Schrödinger equation [16]. The calculation reveals that
the non-quadratic dispersion relation in a periodic poten-
tial leads to an initial radiation of atoms. However the
absolute number of atoms in the observed background
(∼ 600 atoms) is higher than the prediction of the em-
ployed effective one-dimensional model (∼ 250 atoms).
Therefore we conclude that transverse excitations have
to be taken into account to get quantitative agreement.
This fact still has to be investigated in more detail.

In the following we will discuss the experimental facts
confirming the successful realization of gap solitons. In
figure 3a we compare the spreading of wave packets in
the normal and anomalous dispersion regime which re-
veals the expected dramatic difference in wave packet
dynamics. The solid circles represent the width of the
gap soliton for meff/m = −0.1, which does not change
significantly over time. We deduce a soliton width of
x0 = 6.0(9)µm (xrms = 4.5µm) from the absorption
images where the measured rms width shown in figure
3a is deconvolved with the optical resolution of 3.8µm
(rms). In this regime, the wave packet does not spread
for more than 8 soliton periods (TS = 7.7(23)ms). Since
our experimental setup allows to switch from solitonic
to dispersive behavior by turning the periodic potential
on and off, we can directly compare the solitonic evolu-
tion to the expected spreading in the normal dispersion
regime. The open circles represent the expansion of a
coherent matter wave packet with 300(100)atoms in the
normal mass regime meff/m = 1.

The preparation at the band edge implies that the
group velocity of the soliton vanishes. This is confirmed
in figure 3b, where the relative position of the soliton
with respect to the standing light wave is shown. The
maximum group velocity of the lowest band is indicated
by the dotted lines. In the experiment care has to be
taken to align the optical dipole trap perpendicular to
the gravitational acceleration within 200µrads. Other-
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FIG. 3: Characteristic features of the observed gap soliton.
(a) Comparison of expansion in the positive and negative ef-
fective mass regime for 300 atoms. While the soliton does not
disperse at all over a time of 65ms, corresponding to more
than 8 soliton periods (solid circles), a wave packet in the
normal mass regime expands significantly (open circles). Each
point represents the result of a single realization. The solid
line marks the average measured r.m.s. width of gaussian fits
to the solitons. (b) shows the position of the soliton in the
frame of the periodic potential and reveals that a standing
gap soliton has been realized. The dotted lines indicate the
positions that correspond to maximum and minimum group
velocity in the lowest band. (c) number of atoms in the cen-
tral peak. The initial atom numbers exhibit large shot to
shot fluctuations, which are reduced during the soliton for-
mation. The predicted relation between the number of atoms
and the soliton width (eq. 1) is indicated by the horizontal
bar in graph c using the width deduced as shown in graph
(a). Note that this comparison has been done without free
parameter since all contributing parameters are measured in-
dependently.

wise the solitons are accelerated in the direction opposite
to the gravitational force revealing their negative mass
characteristic.

The calculated number of atoms (eq.1) is indicated by
the horizontal bar in figure 3c. The width of the bar
represents the expectation within our measurement un-
certainties. The observed relation between atom number
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Chapter 3 Nonlinear matter wave dynamics in shallow 1D lattice potentials

and width, characteristic for a bright soliton, is in ex-
cellent agreement with the simple theoretical prediction
without any free parameter.

As an additional check for soliton formation, we deter-
mine the product of atom number and soliton width as
a function of the effective mass which is varied by ad-
justing the modulation depth of the periodic potential.
Figure 4 shows the range of effective masses, for which
solitons have been observed. For smaller values of |meff |,
corresponding to smaller potential depths, Landau-Zener
Tunneling does not allow a clean preparation in the neg-
ative mass regime, while for larger values the initial num-
ber of atoms differs too much from the soliton condition.
The observed product of atom number and wave packet
width after 40ms of propagation are shown in figure 4 and
confirm the behaviour expected from eq.1. Additionally,
our experimental findings reveal that the change of the
scaling parameter Nx0 in figure 4 is dominated by the
change in the atom number, while the soliton width only
exhibits a weak dependence on the effective mass.

The demonstration of gap solitons confirms that Bose
condensed atoms combined with a periodic potential al-
low the precise control of dispersion and nonlinearity.
Thus our setup serves as a versatile new model system
for nonlinear wave dynamics. Our experiments show that
gap solitons can be created in a reproducible manner.
This is an essential prerequisite for the study of soliton
collisions. The experiment can be realized by preparing
two spatially separated wave packets at the band edge
and applying an expulsive potential. Ultimately, atom
number squeezed states can be engineered with atomic
solitons by implementing schemes analog to those devel-
oped for photon number squeezing in light optics [17].

-m/meff

N
x
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2

1

x10
-3
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FIG. 4: Scaling properties of an gap soliton. The effective
mass was varied experimentally by changing the periodic po-
tential depth. The scaling predicted by (eq.1) is represented
by the solid line and is in good agreement with our experi-
mental observations. The errorbars represent the variation of
the scaling parameter for different realizations.

This is interesting from a fundamental point of view and
may also have impact on precision atom interferometry
experiments.
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4 Tunneling dynamics of matter waves in deep 1D
lattice potentials

The tunneling dynamics of superfluids through a potential barrier is a fascinating field
of research in quantum mechanics. Bose-Einstein condensates in a deep one-dimensional
optical lattice potential constitute a model system for a superfluid in an array of Joseph-
son junctions (Burger et al., 2001; Cataliotti et al., 2001). This system is described
theoretically by a discrete nonlinear Schrödinger equation (Trombettoni, 2001). For the
quantum transport in such systems intrinsically localized excitations, such as discrete
solitons, breathers, nonlinear self-trapping (Trombettoni, 2001; Ahufinger et al., 2004)
and discrete fronts (Darmanyan et al., 1999) are important.

In this chapter I report on the first experimental observation of nonlinear self-
trapping for matter waves (Anker et al., 2005). This effect is closely related to the
effect of macroscopic self-trapping for BEC in a double well potential (Smerzi et al.,
1997; Albiez et al., 2005). In the first part the necessary theoretical concepts, namely
the tunneling modes for a BEC in a double-well potential and the discrete nonlinear
Schrödinger equation are described. In the second part a detailed numerical investiga-
tion of the effect of nonlinear self-trapping is presented. In the last part the experimental
results are shown and discussed together with the results of the numerical investigation.

4.1 Theory of nonlinear wave dynamics in a double well potential

Tunneling is a fundamental process in quantum dynamics. It describes the decay of
the probability amplitude of localized states in a potential well of finite height. A
conceptually simple and very instructive example is the tunneling dynamics in a double
well potential (see figure 4.1). In such a system wave packets prepared in the left well
tunnel to the right well and return, such that the maximum of the probability amplitude
oscillates between both wells. The tunneling rate, in this context called Josephson-
Junction, is determined by the width and the height of the barrier.

The dynamics of interacting bosons in a double well system features additional com-
plex tunneling modes. In (Smerzi et al., 1997) the tunneling dynamics of trapped Bose-
Einstein condensates through a single barrier, called Boson-Josephson-Junction (BJJ),
is investigated. From the Gross-Pitaevskii equation the nonlinear tunneling modes are
derived in the two-mode approximation. The most intriguing are the macroscopic self-
trapping modes1, where tunneling is strongly suppressed due to the particle interaction.
Following the lines of this work, in this section the basic tunneling modes of interacting

1Recently the effect of macroscopic self-trapping for BEC is observed experimentally in our group
(Albiez et al., 2005).
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

bosons are explained. The understanding of the BJJ tunneling modes is necessary for
the theoretical analysis of the experiments on nonlinear self-trapping of matter waves in
deep periodic potentials.
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Figure 4.1: Wave dynamics in a double well potential. In a symmetric double well potential the
ground state Φ0 (green) is a symmetric and the first excited state Φ1 (blue) is an antisymmetric
state with the energy difference E1 − E0 = ∆E. Placing initially the particle in the left well
(Ψ(t = 0) = Φ0 + Φ1, gray line) results in a sinusoidal oscillation Ψ(t) = Φ0 + e−iωT tΦ1 of the
probability amplitude from the left to the right well with the tunneling frequency ωT = ∆E/�.
This dynamics is called tunneling since it seems that a particle in the “quasi stationary” state
Ψ(t = 0) tunnels through the barrier into the neighboring well.

4.1.1 Boson-Josephson junction

The dynamics of a Bose-Einstein condensate of interacting atoms in a double well po-
tential is described by the Gross-Pitaevskii equation

i�
∂

∂t
Ψ(�r , t) =

[
− �

2

2m
∇2 + Vext(�r ) + g0|Ψ(�r , t)|2

]
Ψ(�r , t), (4.1)

where the external potential

Vext(�r ) =
m

2
ω2
⊥(y2 + z2) + VDW (x) (4.2)

is realized by the sum of a 1D waveguide potential and a double well potential in longitu-
dinal direction, as depicted in figure 4.1. In the two-mode or tight-binding approximation
the ansatz for the wave function is a sum of two single condensates localized in the two
wells (Milburn et al., 1997; Smerzi et al., 1997)

Ψ(�r , t) = ψ1(t)Φ1(�r ) + ψ2(t)Φ2(�r ). (4.3)

The condensates are described by the time-dependent complex amplitudes ψ1,2(t) =√
N1,2(t)eiθ1,2(t), with the total number of atoms NT = N1 + N2 and the fixed spatial

wave forms Φ1,2(�r). By integrating eq. (4.1) with ansatz (4.3) along the spatial degrees
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4.1 Theory of nonlinear wave dynamics in a double well potential

of freedom the nonlinear two-mode equations for the amplitudes ψ1,2(t)

i�
∂ψ1

∂t
= U1N1ψ1 −Kψ2 (4.4)

i�
∂ψ2

∂t
= U2N2ψ2 −Kψ1, (4.5)

are obtained. These equations are governed by the nonlinear self-interaction energy
U1,2 = g0

∫
d�r |Φ1,2|4 and the tunneling energy

K = −
∫
d�r

[
�

2

2m
�∇Φ1 · �∇Φ2 + Φ1VextΦ2

]
. (4.6)

The spatial wave functions Φ1,2(�r ) = (Φ+ ± Φ−)/2 can be expressed by the symmetric
and antisymmetric eigenstates Φ+ and Φ− of the GPE (4.1) with

∫
d�rΦ1Φ2 = 0 and∫

d�r |Φ1,2|2 = 1. For a detailed description and a discussion of the approximation of
time-indipendent spatial wave functions see (Raghavan et al., 1998).

The system can be completely described by the fractional population difference z(t) =
[N1(t) − N2(t)]/NT and the relative phase φ(t) = θ2(t) − θ1(t). In a symmetric double
well system they obey the differential equations

ż(τ) = −
√

1 − z2(τ) sin
(
φ(τ)

)
φ̇(τ) = Λz(τ) +

z(τ)√
1 − z2(τ)

cos
(
φ(τ)

)
, (4.7)

with the dimensionless time τ = t · 2K/� and the nonlinear parameter

Λ = UNT/(2K), (4.8)

which describes the ratio between the nonlinear particle interaction and the tunneling
energy (for a symmetric double well U1 = U2 ≡ U).

The total energy of the above system is given by

H0 = Λz2
0/2 −

√
1 − z2

0 cos(φ0), (4.9)

where H0 ≡ H(z0, φ0), z0 ≡ z(0) and φ0 ≡ φ(0). The first stationary state Ψ+ is
symmetric with z+ = 0, φ+ = 2nπ and the energy E+ = −1. The second stationary
state Ψ− is antisymmetric with z− = 0, φ− = (2n+ 1)π and E− = 1.

In the case of significant particle interaction |Λ| > 1 the above system also supports
stationary z-symmetry breaking states Ψsb with

zsb = ±
√

1 − 1
Λ2

, φsb = (2n+ 1)π (4.10)

and the corresponding energy Esb = (Λ + 1/Λ)/2.

4.1.2 Macroscopic quantum self-trapping (MQST)

In this section the tunneling modes, which are supported by the set of equations (4.7)
are discussed. The character of the tunneling modes is determined by the nonlinear
parameter Λ and the initial conditions z0 and φ0.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

Zero-phase modes

These modes are characterized by a zero time average of the relative phase 〈φ(τ)〉 = 0 and
a zero time average of the fractional population difference 〈z(τ)〉 = 0. Two examples are
shown in figure 4.2 (a) and (b). For the noninteracting case Λ = 0 the particles exhibit
a sinusoidal Rabi-oscillation with frequency ωR = 2K/�. Increasing the nonlinearity Λ,
initially the oscillation frequency also increases. When the nonlinearity comes close to the
critical value Λc, the oscillations become more and more anharmonic with a decreasing
oscillation frequency, until for Λ = Λc the oscillation stops (see figure 4.2 (c)).

The critical value for the nonlinearity is given by the condition

H0 =
Λ
2
z2
0 −

√
1 − z2

0 cos(φ0) = 1, (4.11)

i.e. the total energy must equal the energy of the second stationary state Ψ−. For a
fixed initial condition z0 and φ0 this translates into

Λc =
2
z2
0

(
1 +

√
1 − z2

0 cos(φ0)
)
. (4.12)
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Figure 4.2: The temporal behavior of the fractional population difference z(τ) for the different
tunneling modes. For initial condition z0 = 0.6 and φ0 = 0: (a, b) Λ = 0; 0.91×Λc “zero-phase
modes” (c) Λ = Λc “critical behavior” (d) Λ = 1.5×Λc “running-phase MQST mode”.
For initial condition z0 = 0.6 and φ0 = π: (e, f) Λ = 0; 0.99×Λc “π-phase modes” (g, h)
Λ = 0.95×Λs; 1.1×Λs first and second type of “π-phase MQST mode” (i) Λ = 2.1×Λs “running-
phase MQST mode”. For a better understanding of the tunneling modes, the corresponding
trajectories in the phase-plane portrait are shown in figure 4.3.

Running-phase modes: macroscopic quantum self-trapping

Increasing the nonlinearity above the critical value Λc results in a new class of tunneling
modes, where the phase φ(τ) is running freely without bound and the time average of
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4.1 Theory of nonlinear wave dynamics in a double well potential

the population imbalance 〈z(τ)〉 �= 0 does not vanish (see figure 4.2 (d) and (i)). The
population imbalance exhibits an oscillation around a fixed value zst �= z0 and |zst| < z0,
where the oscillation frequency increases and the amplitude decreases with increasing
nonlinearity. Note that this imbalance is self-sustained, without any external potential
and only due to the nonlinear particle interaction.

π-phase modes

These tunneling modes are characterized by a time average of the relative phase 〈φ(τ)〉 =
π. In figure 4.2 (e) and (f) these modes are shown for the initial condition z0 = 0.6, φ0 =
π, with Λ = 0 and Λ = 0.99 × Λc. As in the case for zero-phase modes, a harmonic
oscillation can be observed for the noninteracting case. The oscillations become strongly
anharmonic and the frequency goes to zero when Λ gets close to Λc. For Λ < Λc the
time average of the population imbalance 〈z(τ)〉 = 0 vanishes.
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Figure 4.3: Phase-plane portrait of the dynamical variables z(τ) and φ(τ). Initial condition
z0 = 0.6 and φ0 = 0 (a, b) Λ = 0; 0.91×Λc “zero-phase modes” (c) Λ = Λc “critical behavior”
(d) Λ = 1.5×Λc “running-phase MQST mode”.
Initial condition z0 = 0.6 and φ0 = π (e, f) Λ = 0; 0.99×Λc “π-phase modes” (g, h) Λ =
0.95×Λs; 1.1×Λs first and second type of “π-phase MQST mode” (i) Λ = 2.1×Λs “running-phase
MQST mode”. For details see text.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

π-phase modes: macroscopic quantum self-trapping

Increasing the nonlinearity above the critical value Λc results in a tunneling mode,
which is characterized by an oscillation of z(τ) around a fixed value zst �= 0, with
|zst| < z0. When the nonlinearity is further increased, the self-trapping dynamics changes
its character at the value Λs = 1/

√
1 − z2

0 , i.e. the value of Λ for which the initial
condition resembles a z-symmetry breaking stationary state Ψsb (see equation (4.10)).
Figure 4.2 (g) and (h) show the temporal behavior of z(τ) for both the first and the
second type of π-phase modes with self-trapping.

A further increase of the nonlinearity results in a change of the self-trapping dynamics
at Λ = 2 · Λs from the π-phase MQST mode back to the running-phase MQST mode,
where the phase φ(τ) is running freely without bound and the time average population
imbalance 〈z(τ)〉 �= 0 vanishes. In figure 4.2 (i) this dynamics is shown for z0 = 0.6, φ0 =
π and Λ = 2.1 · Λs.

4.2 Theory of nonlinear wave dynamics in deep lattice potentials

For Bose-Einstein condensates trapped in a deep lattice potential, the dynamics depends
strongly on the ratio γ = εint/εkin between the interaction energy between two atoms
εint and the kinetic energy εkin, which is determined by the nearest neighbor tunneling.

For a lattice potential depth V0 � Er the tunneling is strongly suppressed and the
effective value of γ can become very large. In this strong coupling regime, the system
is described by the Bose-Hubbard model, where single bosons, hopping from site to site
with hopping amplitude J , interact with an on-site repulsion U (Fisher et al., 1989).
In this regime fascinating nontrivial many body effects, such as the superfluid to Mott-
insulator transition (Jaksch et al., 1998; Greiner et al., 2002) have been observed.

The experiments on nonlinear self-trapping are situated in the weak interaction limit
γ � 1, where the tunneling energy is large compared to the interaction energy between
two atoms. The dynamics can therefore be described by a macroscopic wave function
and the Gross-Pitaevskii equation (Zwerger, 2003). If in addition the chemical potential
is small compared to the trap depth of a single well, a tight binding picture can be
used to describe the system. In this regime the condensate effectively consists of tiny
BEC’s in each well, which are described by a localized macroscopic wave function and
are coupled due to tunneling between the lattice wells.

If the chemical potential in a lattice site is much smaller than the vibrational level
spacing, the localized wave function can be well approximated by the noninteracting
ground state wave function. For matter waves trapped in a 1D waveguide with a super-
imposed lattice potential, the localized wave function is given by a Gaussian ground state
in transverse direction and a localized Wannier function in longitudinal direction. With
this ansatz, the 3D Gross-Pitaevskii equation can be reduced to a 1D discrete nonlinear
Schrödinger equation (DNLS) (Trombettoni, 2001). The system is then described by a
local wave function at each lattice site, where only the local number of atoms and the
local macroscopic phase vary in time. The properties of the Wannier functions and the
derivation of the DNLS are described in section 4.2.1 and 4.2.2, respectively.

If the chemical potential is slightly larger than the transverse vibrational level spac-
ing, the broadening of the ground state wave function due to the repulsive interaction
has to be taken into account. Therefore the local wave functions become implicitly
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4.2 Theory of nonlinear wave dynamics in deep lattice potentials

time-dependent through the local number of atoms. In this case the dynamics can be
described approximately by an effective 1D discrete nonlinear equation (DNL) (Smerzi,
2003). The derivation of the DNL is described in section 4.2.3.

The numerical implementation of the DNLS and the DNL are shown in section 4.2.4.

4.2.1 Localized Wannier function

Bloch states are completely delocalized energy eigenstates of a periodic potential (see
section 3.1.1). In contrast to this, Wannier functions constitute an orthogonal and
normalized set of wave functions that are maximally localized to individual lattice sites.
The Wannier function in the nth Bloch band of the lattice potential is given by (see e.g.
Ashcroft/Mermin, 1976)

wn(x− xi) = N1/2
∑

q∈BZ

e(−iqxi) · φ(n)
q (x), (4.13)

where xi is the position of the ith lattice site, φ(n)
q (x) are the Bloch states and N is a

normalization constant. The sum is carried out over one Brillouin zone.
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Figure 4.4: Wannier function and probability density for a lattice potential depth of a) 3Er

and b) 10Er. With increasing lattice potential depth the side lobes of the Wannier function
vanish. This corresponds to a decreasing tunneling probability.

Unfortunately, Wannier functions have a serious drawback if computed by means of
definition (4.13). Their behavior is quite erratic, and they are not well-localized. This
stems from the fact that every Bloch function φ

(n)
q (x) has its own indeterminate phase

factor. As long as the nth band is energetically separate from all other bands, this
problem can be circumvented by choosing the phases of φ(n)

q (x) such that for a given
point x (Klöckner, 2004)

arg
(
φ(n)

q (x)
)

= arg
(
φ

(n)
q′ (x)

)
for q, q′ ∈ BZ. (4.14)

In figure 4.4 the Wannier functions for a potential depth of 3Er and 10Er are shown. The
Matlab c© code for the numerical calculation of Wannier states is given in the appendix
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

A.5. Wannier functions describe atoms that are localized in a single lattice well. The side
lobes of the Wannier functions, which are clearly visible for shallow lattice potentials,
describe the probability of finding the atom in the neighboring sites through tunneling.
The corresponding tunneling matrix element K can be obtained by the overlap integral

K = −
∫
dx

[
�

2

2m
�∇wn(x− xi)�∇wn(x− xi+1) + wn(x− xi)Vlattwn(x− xi+1)

]
, (4.15)

where Vlatt is the lattice potential.

4.2.2 1D discrete nonlinear Schrödinger equation

The full 3D dynamics for a Bose-Einstein condensate in a horizontal waveguide with a
superimposed 1D lattice potential is given by the Gross-Pitaevskii equation

i�
∂

∂t
Ψ(�r , t) =

[
− �

2

2m
∇2 + Vext(�r ) + g0|Ψ(�r , t)|2

]
Ψ(�r , t), (4.16)

where the external potential

Vext(�r ) =
m

2
(ω2

⊥�r
2
⊥ + ω2

‖x
2) + s · Er cos2(klx). (4.17)

is the sum of the waveguide and the lattice potential. The amplitude of the lattice
potential is given in recoil energies. In the tight binding limit the macroscopic wave
function is well described by a sum of single condensate functions

Ψ(�r , t) =
√
NT

∑
n

ψn(t)Φ(�r − �r n), (4.18)

where NT is the total number of atoms and Φ(�r −�r n), with
∫
d�rΦ2

n = 1 is the localized
spatial wave function at lattice site n. ψn(t) =

√
Nn(t)/NTe

iθn(t) is the nth amplitude,
where Nn and θn are the number of atoms and the phase at site n, respectively.

In this approximation the chemical potential in a lattice site is assumed to be much
smaller than the vibrational level spacing. Therefore the spatial wave function Φ(�r −�r n)
can be well approximated by the transverse oscillator ground state wave function and
the Wannier function in longitudinal direction Φ(�r − �r n) ∝ exp(−�r 2

⊥/σ
2
⊥) · w(x − xn).

Note that the spatial shape does not depend on the number of atoms. The trapping
frequency in a single lattice well in longitudinal direction is given by ωlatt = 2

√
s · ωr

in harmonic approximation. For a typical lattice potential depth of s ∼ 10 the ground
state width aHO =

√
�/mωr is much smaller than the lattice spacing λ/2. Thus, to a

good approximation, neighboring wave functions do not overlap, i.e.
∫
d�rΦnΦn+1 � 0.

With ansatz 4.18 the GPE 4.16 is integrated along the spatial degrees of freedom, to
obtain the discrete nonlinear Schrödinger equation (DNLS) (Trombettoni, 2001)

i
∂ψn

∂τ
= −1

2
(ψn−1 + ψn+1) + (εn + Λ|ψn|2)ψn. (4.19)

This equation is governed by the dimensionless on-site energies

εn =
1

2K

∫
d�r

[
�

2

2m
(�∇Φn)2 + VextΦ2

n

]
, (4.20)
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4.2 Theory of nonlinear wave dynamics in deep lattice potentials

the tunneling energy

K = −
∫
d�r

[
�

2

2m
�∇Φn · �∇Φn+1 + ΦnVextΦn+1

]
, (4.21)

the nonlinearity parameter

Λ =
g0NT

2K

∫
d�rΦ4

n (4.22)

and the dimensionless time τ = t · 2K/�.
The tunneling energy integral can be calculated assuming a 1D situation and using

Wannier states as in eq. (4.15). The integration in transverse direction can be neglected,
since

∫
d�rΦnΦn+1 � 0. Alternatively K can be calculated by means of the width of the

lowest Bloch band (for the numerical calculation see section 3.1.1)

K =
[
max(E(0)

q ) − min(E(0)
q )
]
/4. (4.23)

For deep lattice potentials (s � 1) the tunneling energy is given approximately by the
analytic expression (Zwerger, 2003)

K =
4√
π
Er(s)3/4 exp(−2s1/2). (4.24)

From K the tunneling time τ = �/(2K) can be obtained, which gives the time scale of
the tunneling dynamics of the system and increases approximately exponentially with
increasing potential depth (see figure 4.5).
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Figure 4.5: Tunneling time τ = �/(2K) given by the numerically obtained width of the lowest
Bloch band (black line) and by the analytic approximation (4.24) (dashed line). The time scale
of the dynamics in a periodic potential is given by the tunneling time. Adiabatic changes of the
potential depth, e.g. must be carried out on a time scale T � τ .

Since the local spatial functions Φn have all the same shape, the lattice and the
transverse trapping potential only contribute with an overall energy offset to the on-site
energies εn. Only the weak longitudinal trapping potential of the waveguide shows a
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

dependence on the lattice position n. Therefore the relevant on-site energies are given
by

εn = 1/2mω2
‖(n · d)2. (4.25)

The nonlinearity parameter Λ is the ratio between the nonlinear energy with all the
atoms concentrated in one site and the tunneling energy. The physical meaning of this
ratio is discussed together with the effect of nonlinear self-trapping in section 4.4.2. In
contrast to the calculation of K, here the 3D integral must be carried out, since both
the lattice potential and the transverse trapping potential have an influence on the local
atomic density ρ = |Φn|2. For the calculation of Λ the local condensate function can
be approximated by a 3D Gaussian function Φn ∝ exp(−r2/2σ2

⊥) · exp(−x2/2σ2
latt) and

therefore
Λ =

g0NT

2K
· 1
(2π)3/2σ2

⊥σlatt
(4.26)

4.2.3 General discrete nonlinear equation

A crucial point in the tight-binding approximation used in the previous section is the
assumption of a local real wave function Φ(�r −�r n), which does not depend on the local
number of atoms Nn(t). For experiments with 87Rb, depending on the atomic density
and the trap geometry, the local chemical potential can easily exceed the vibrational
level spacing. In the experimental system considered in this thesis the large longitudinal
trapping frequency ωlatt > 2π ·103 Hz and the average local number of atoms Nloc ∼ 100
result in a longitudinal atomic density, which easily exceeds the maximum linear density
of ρx ∼ 93 atoms/µm (see section 2.1.3). The resulting nonlinear ground state will then
broaden considerably in comparison to the noninteracting ground state.

In certain limits a 1D discrete nonlinear equation can still be obtained for such
systems using the generalized tight binding ansatz (Smerzi, 2003)

Ψ(�r, t) =
∑

n

ψn(t)Φn

(
�r,Nn(t)

)
. (4.27)

The local complex amplitude is given by ψn(t) =
√
Nn(t)eiθn(t), where Nn(t) is the

atom number and θn(t) is the phase of the nth condensate. Φn is normalized to 1 (i.e.∫
d�rΦ2

n = 1). In contrast to the tight binding ansatz (4.18), the spatial wave function
Φn(�r,Nn(t)) depends implicitly on time through the local number of atoms Nn(t).

Note that any explicit time-dependence, i.e. excitation of internal modes, is ne-
glected. Only the adiabatic limit is considered, where Φn adapts adiabatically to the
instantaneous number of atoms at site n. This approximation is satisfied if the tunneling
time (∼ �/K) is much longer than the time associated with the change of the shape of
the wave function (∼ ω−1

⊥ , ω−1
latt) (Smerzi, 2003). By integrating the Gross-Pitaevskii

equation (4.16) along the spatial degrees of freedom with ansatz (4.27) the following
discrete nonlinear equation (DNL)

i�
∂ψn

∂t
= εnψn −K(ψn+1 + ψn−1) + µloc

n ψn (4.28)

is obtained. The tunneling energy

K = −
∫
d�r

[
�

2

2m
�∇Φ̃n · �∇Φ̃n+1 + Φ̃nVextΦ̃n+1

]
, (4.29)
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4.2 Theory of nonlinear wave dynamics in deep lattice potentials

which in principle also depends implicitly on time through Nn(t), can be calculated using
Φ̃n = Φn(�r,N0), where N0 is the average number of atoms per site. This approximation
is valid since the dependence of K on the absolute (Nn) and relative (Nn −Nn+1) atom
number is very weak.

For an experimental setup with a horizontally oriented waveguide only the weak
longitudinal trapping is of relevance for the on-site energies and thus

εn =
∫
d�rΦnVextΦn = 1/2mω2

‖(n · d)2. (4.30)

The chemical potential is given by

µloc
n = µkin

n + µpot
n + µint

n

=
∫
d�r

[
�

2

2m
(�∇Φn)2 + Vext(�r )Φ2

n + g0|ψn(t)|2Φ4
n

]
. (4.31)

The tunneling energy K must be calculated via the width of the lowest Bloch band or
using Wannier functions in the longitudinal direction (see previous section 4.2.2). As in
the case of the DNLS, the integration in transverse direction can be neglected.

For the calculation of the local chemical potential µloc
n the local wave function

Φn(�r,Nn(t)) must be chosen according to the experimental situation. In the experi-
ments described in this chapter the transverse trapping frequency ω⊥ = 2π · 230 Hz and
the longitudinal trapping frequency in a single well is given by ωlatt = 2

√
s ωr ∼ 2π · 25

kHz. With a local average number of atoms of Nav ∼ 100, a local interaction potential
µint/� ∼ 2π · 1 kHz is obtained from a variational calculation (Baym/Pethick, 1996).
Thus �ωlatt � µint > �ω⊥ and the system can be described as a horizontal pile of
pancakes. A single condensate can be approximated by the product state

Φn

(
�r,Nn(t)

)
� φG,n(x− xn) · φTF,n

(
�R,Nn(t)

)
, (4.32)

with a Gaussian shape in axial direction

φG,n(x− xn) = (σlatt

√
π)−1/2e−(x−xn)2/2σ2

latt , (4.33)

with σx =
√

�/mωlatt and a parabolic shape in radial direction

φTF,n

(
�R,Nn(t)

)
=
(µTF

n − m
2 ω

2
⊥ �R

2

g̃0Nn(t)

)1/2
, (4.34)

with g̃0 = g0/(
√

2πσlatt) (Thomas–Fermi approximation). In this approximation the
local chemical potential, i.e the additional energy due to the atomic interaction, which
is relevant for the dynamics, is given by

µloc
n = µTF

n =
∫
d�r
[m

2
ω2
⊥ �R

2φ2
TF,n + g0|ψn(t)|2|φ(n)

TF|4
]
. (4.35)

and yields

µloc
n =

(
mω2

⊥g0√
2ππσlatt

)1/2

N1/2
n . (4.36)
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

The constant contributions, which do not depend on the atom number are neglected.
The nonlinearity in the DNL can therefore be written as µloc

n = U1|ψn(t)| (Smerzi, 2003)
with

U1 =

√
mω2

⊥g0√
2ππσlatt

(4.37)

Effective dimensionality
Generally the nonlinearity in the DNL can be written as

µloc
n = Uα|ψn(t)|α, α =

4
2 +D

, (4.38)

where D = 0, 1, 2, 3 is the effective dimensionality of the system according to

D =

⎧⎪⎪⎨⎪⎪⎩
0 if �ωa, �ωb, �ωc � µint (spherical)
1 if �ωa, �ωb � µint � �ωc (cigar)
2 if �ωa � µint � �ωb, �ωc (pancake)
3 if µint � �ωa, �ωb, �ωc (spherical)

(4.39)

Note that for D = 0 the DNL reduces to the 1D discrete nonlinear Schrödinger equation
DNLS with µloc

n = U2|ψn(t)|2.
Therefore Bose-Einstein condensates in a 1D lattice potential constitute a model

system, which allows to investigate experimentally nonlinear wave propagation with
different nonlinearities. In this work the cases for D = 0 and D = 2 are investigated
numerically and compared with the experimental data.

4.2.4 Numerical implementation

Both the DNLS and the DNL can be implemented and solved numerically very easily.
In this work an explicit Runge-Kutta (4,5) solver scheme (from the Matlab c© package)
is used to integrate the dynamical equations. The dynamic equation is written in vector
form

˙|ψn〉 = M|ψn〉 + Λ|ψn〉〈ψn| · |ψn〉 (4.40)

and solved directly. Care must be taken to implement eq. (4.40) with sparse matrices
or using the complete product, since most of the matrix elements of M are zero. For a
typical longitudinal wave packet width between 10 and 100 µm only about 500 lattice
points are needed. Thus the calculation is extremely ”low cost” and results can be
obtained in a very short time. An example Matlab c© program is given in Appendix A.6.
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4.3 Theoretical Investigation of nonlinear self-trapping in lattice potentials

4.3 Theoretical Investigation of nonlinear self-trapping in lattice
potentials

In this section the dynamics of expanding wave packets in deep 1D lattice potentials is
investigated both analytically and numerically. For this purpose the results provided by
the non-polynomial nonlinear Schrödinger equation (NPSE) and the discrete nonlinear
Schrödinger equation (DNLS and DNL) are investigated. The effect of nonlinear self-
trapping for atomic wave packets with repulsive interaction is analyzed in detail.

In the first part the global dynamics is investigated in terms of a variational solution
of the DNLS (Trombettoni, 2001). The solution shows that the global dynamics of
wave packets can be divided into two regimes, the diffusive and the self-trapping regime.
The dynamics in the diffusive regime is characterized by a continuous expansion of the
wave packet. In the self-trapping regime, after an initial expansion, the wave packet
stops to expand and remains localized. The transition between both regimes is governed
by a critical parameter, which can be identified by the ratio between the mean local
interaction energy and the tunneling energy. In addition the situation in momentum
space is investigated in more detail by numerically integrating the NPSE. In the self-
trapping regime the initial wave packet expansion stops, once the Brillouin zone edges
in quasi momentum space are populated. The further self-trapping dynamics can be
interpreted as interaction-induced Bloch oscillations.

In the second part the local tunneling dynamics in the self-trapping regime is in-
vestigated by numerically integrating the DNL. The results show that the effect of self-
trapping is of local nature and is due to the inhibited site-to-site tunneling at the edges
of the wave packet. During the initial expansion the wave packets develop steep edges
and thus large density gradients at the wave packet edges. These correspond to large
differences of the interaction energy in adjacent lattice wells. Consequently the site-
to-site tunneling at the edges of the wave packet is strongly suppressed and shows a
dynamics, which is very similar to the “running-phase” and the “π-phase” macroscopic
self-trapping modes known from the corresponding double well BJJ.

In section 4.3.3 the decay of self-trapped wave packets is investigated numerically.
The results show that the self-trapping tunneling dynamics at the wave packet edges
decays in time. This can be understood, since a single lattice well is coupled to two
next neighbors, in contrast to the corresponding double well system. In this sense the
transition between the diffusive and the self-trapping regime must be understood as a
fast increase of the time, during which the wave packet remains localized. The critical
parameter and the dimensionality of the system are identified as important parameters,
that govern the decay.

The universal scaling behavior, which is obtained from the variational solution of the
DNLS is described in section 4.3.4. The ratio between the initial width and the final
width of the wave packet is shown to depend universally on the critical parameter.

4.3.1 Global picture of nonlinear self-trapping dynamics

Gaussian variational ansatz

To study the dynamical evolution of an atomic wave packet in a system, which is gov-
erned by the 1D discrete nonlinear Schrödinger equation, a variational ansatz is used in
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

(Trombettoni, 2001). The wave packet is described by a complex Gaussian profile

ψG,n =
√
k · exp

(
− (n− ξ)2

γ2
+ ip(n− ξ) + i

δ

2
(n− ξ)2

)
, (4.41)

where ξ(t) and γ(t) are the center and the width of the density ρn = |ψG,n|2 in lattice
units. p(t) and δ(t) are the associated momenta in units of inverse lattice units. k is
a normalization constant. δ(t) describes the slope of the quadratic phase in real space,
and thus determines the width of the wave function in momentum space. From the
DNLS (4.19), together with the above ansatz (4.41) a variational principle (Lagrangian
optimization) yields the coupled dynamic equations of the profile parameters

ṗ = 0
ξ̇ = sin(p)e−η

δ̇ = cos(p)(
4
γ4

− δ2)e−η +
2Λ√
πγ3

γ̇ = γδ cos(p)e−η, (4.42)

where η = (2γ2)−1 + γ2δ2/8. Here a horizontally oriented lattice and waveguide are
assumed. The weak axial trapping potential is neglected. Therefore the on-site energies
εn, which are constant throughout the lattice, do not alter the dynamics. From the
dynamical equations the effective Hamiltonian

H =
Λ

2
√
πγ

− cos(p)e−η (4.43)

can be derived, which determines the character of the wave packet dynamics.
If the system is initially in the region of positive effective mass2 cos(p0) > 0, then the

critical nonlinearity Λc = 2
√
πγ0 cos(p0)e−1/2γ2

0 is determined by H = 0 (Trombettoni,
2001). By increasing the nonlinearity Λ above the critical value Λc, the system moves
from the diffusive regime to the self-trapping regime. The dynamics in the diffusive
regime is characterized by a continuous expansion of the wave packet. In the self-trapping
regime, after an initial expansion, the wave packet stops to expand and remains localized.
The dynamics in the two regimes is depicted in figure 4.6.

In the region of negative effective mass cos(p0) < 0 the critical value, is determined
by H > | cos(p0)|, and thus Λc = 2

√
π γ0| cos(p0)| (1 − e−1/2γ2

0 ).
The solution of the DNLS with a variational ansatz allows to identify the relevant

physical quantities of nonlinear self-trapping. In the positive mass regime it predicts
self-trapping for Λ/Λc > 1 with

Λ
Λc

=
g0NT

2K

∫
d�rΦ4

n · 1
2
√
πγ0 cos(p0)

e1/2γ2
0 ∼ 〈µint

loc〉
Ebw

. (4.44)

By identifying Λ/Λc with the ratio between the mean local interaction energy 〈µint
loc〉 and

the width of the lowest Bloch band Ebw, it becomes clear that the self-trapping regime
can be reached by reducing the width of the lowest Bloch band of the lattice potential,
i.e. by increasing the lattice potential depth. Alternatively the mean local interaction

2In the tight binding approximation the lattice dispersion relation is given by E(p) = −E0
2

cos p.
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Figure 4.6: Dynamics of a wave packet in the diffusive and in the self-trapping regime ob-
tained from the numerical integration of the coupled dynamical equations (4.42). The temporal
evolution of the width γ(t) in real space (left graph) and the width δ(t) in momentum space
(right graph) are shown, with Λ/Λc = 0.1 (black line), Λ/Λc = 1 (dashed line) and Λ/Λc = 4
(red line). The time is given in units of τ = �/2K. Increasing the nonlinearity results in a faster
initial expansion in real space. Above the critical value the initial expansion quickly stops and
the wave packet remains localized without any external potential - hence the name self-trapping.
In momentum space, in contrast, the width constantly increases in the self-trapping regime.

energy 〈µint
loc〉 can be increased by either increasing the total number of atoms or by

decreasing the initial wave packet width.
In addition the set of dynamical equations (4.42) shows that the self-trapping dy-

namics in real space is inversely correlated with the dynamics in momentum space. In
the diffusive regime the wave packet width in real space increases constantly, while the
width in momentum space stops to increase once the atomic density and therefore the
nonlinear energy goes to zero. In the self-trapping regime, in contrast, the wave packet
remains localized and the width in momentum space increases constantly due to the
atomic interaction. This relation is depicted in figure 4.6.

Numerical integration of the NPSE

The relationship between the self-trapping dynamics in real space and the corresponding
expansion dynamics in momentum space is investigated more closely by numerically
integrating the effective 1D nonlinear Schrödinger equation

i�
∂

∂t
A(x, t) =

[
E(k) + αnl(q0, V0)g1DN

|A(x, t)|2√
1 + 2asN |A(x, t)|2

]
A(x, t)

+

[
�ω⊥
2

(
1√

1 + 2asN |A(x, t)|2 +
√

1 + 2asN |A(x, t)|2
)]

A(x, t) (4.45)

for the wave packet envelope A(x, t). This dynamical equation is a combination of the
1D non-polynomial nonlinear Schrödinger equation (2.13) and the envelope equation
(3.10). In contrast to eq. (3.10), here the effect of the lattice potential is included using
the complete dispersion relation E(k).

The numerical results for the expansion of a wave packet in the self-trapping regime
are shown in figure 4.7. The density distributions both in real and in momentum space
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Figure 4.7: Wave packet dynamics in the self-trapping regime obtained from a numerical
integration of eq.(4.45). The evolution of the density in real space (upper left graph) and in
momentum space (upper right graph) is shown for a wave packet with NT = 5000, initial width
σ0 = 7.6µm, Ulatt = 11 Er and ω⊥ = 2π · 230 Hz. The initial expansion in real space (lower left
graph) stops at t ∼ 20 ms. This coincides with a population of the Brillouin zone edge due to
the expansion in momentum space. The further evolution of |Ψ(x, t)|2 suggests that the atomic
population moving outwards is reflected at the steep edges of the wave packet, i.e. reverses its
velocity and moves inwards again. In this sense the effect of self-trapping is a consequence of the
steep wave packet edges, which act as hard reflecting walls.

initially expand quickly due to the repulsive atomic interaction. While |Ψ(k, t)|2 contin-
ues to expand (here the dynamics is reduced to a single Brillouin zone), |Ψ(x, t)|2 stops
to expand at t ∼ 20 ms. At that time the density distribution develops sharp peaks at
the edge of the wave packet, which coincides with a population of the Brillouin zone edge
in momentum space. The further evolution of |Ψ(x, t)|2 suggests that the steep wave
packet edges act as a hard wall, which reflects the atomic population moving outwards
back towards the center of the wave packet.

This behavior can be understood considering the dynamics in a periodic potential
by means of the Bloch function description (see section 3.1.1). The atomic population
at the edge of the wave packet is quickly accelerated across the Brillouin zone edge due
to the repulsive atomic interaction. The corresponding group velocity changes its sign
such that the atomic population moves back towards the center of the wave packet. This
dynamics is closely related to the gravity induced Bloch oscillations (Anderson et al.,
1998), with the difference that here the Bloch oscillations are induced by the nonlinear
atom-atom interaction.
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4.3 Theoretical Investigation of nonlinear self-trapping in lattice potentials

Discussion

The results from the variational solution of the DNLS and the numerical investigation of
the modified Gross-Pitaevskii equation provide the following global picture of nonlinear
self-trapping. The self-trapping regime is entered, if the initial nonlinear energy is suffi-
cient to populate the Brillouin zone edge during the initial expansion. This is described
by the critical parameter Λ

Λc
∼ 〈µint

loc〉
Ebw

> 1, which governs the transition from the diffusive
to the self-trapping regime.

Note that during the evolution the wave packet shape, both in real and in momen-
tum space is altered significantly with respect to the initial parabolic/Gaussian3 shape.
This complex dynamics cannot be described in a global picture and, as is shown in the
following, is governed by the local site-to-site tunneling dynamics.

4.3.2 Local tunneling picture of nonlinear self-trapping dynamics

In this section the effect of nonlinear self-trapping is investigated by numerically solving
the 1D discrete nonlinear Schrödinger equation. In this equation the dynamics is reduced
to the fundamental processes in the system, namely the tunneling between adjacent
lattice sites and the nonlinear phase evolution due to the interaction of the atoms.

Numerical integration of the DNL

In figure 4.8 the temporal shape evolution of an atomic wave packet in the self-trapping
regime is shown, which is obtained from a numerical integration of the DNL4 (4.28). The
characteristic shape dynamics in the self-trapping regime is described by a fast initial
expansion, during which the shape changes from the initial Gaussian/parabolic to a more
rectangular shape with steep edges. In the following strong side peaks appear which then
decay towards the center of the wave packet, while the edges do not move. The internal
dynamics shows a wave dynamics with multiple interferences, with the edges acting as
reflecting walls.

The numerical investigation of the nonlinear self-trapping dynamics with the help of
a discrete nonlinear Schrödinger equation allows to take a closer look at the local site-
to-site dynamics. In analogy to the double well problem (see section 4.1.2), we chose
to investigate the dynamics of the relative atom number difference ∆Nj = (Nj+1 −
Nj)/(Nj+1 +Nj) and the phase difference ∆φj = φj+1 − φj between two adjacent sites.

Considering the different tunneling modes in a double well BJJ, the first quantity to
investigate is the time average ∆Nj = 1/T

∫
dt∆Nj , which is plotted in figure 4.9(b) for

the system considered in figure 4.8 and a total propagation time T = 50 ms. Clearly
two different regions can be distinguished, the edge region (orange) with ∆Nj �= 0 and
the central region (yellow) with ∆Nj ∼ 0. In figure 4.9(c) a representative example of
the site-to-site dynamics in the central region is shown. Both the relative atom number
difference as well as the phase difference oscillate around zero with a mutual temporal
phase difference of π/2. This dynamics corresponds to the double well Boson-Josephson
junction ”zero-phase mode“ (see section 4.1.2, figure 4.3(b)). It is characteristic for
superfluid tunneling dynamics (Cataliotti et al., 2001).

3In the simulation a numerically obtained ground state is used.
4The findings of this section can equally be obtained by integrating the DNLS.
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Figure 4.8: Temporal shape evolution of a wave packet in the self-trapping regime with
NT = 5000, initial width σ0 = 7.6µm rms, Ulatt = 10 Er and ω⊥ = 2π · 230 Hz. The dynamics is
split into an initial expansion, during which the shape develops a rectangular shape with steep
edges (0∼ 20 ms), and a subsequent dynamics, which is characterized by fixed steep edges and a
complex internal wave dynamics with the edges acting as reflecting barriers. The shape evolution
suggests a qualitatively different local dynamics at the edges compared to the central wave packet
region.

A representative example of the dynamics in the outermost edge region is shown in
figure 4.9(d). Here the characteristic initial phase dynamics in the self-trapping regime
can be seen clearly. The atomic interaction accelerates the atomic population at the edge
of the wave packet to the Brillouin zone edge, which corresponds to a phase difference
of |∆φj | = π. The phase difference then locks to a value |∆φj | ∼ π, while the dynamics
of ∆Nj shows small amplitude oscillations. The corresponding tunneling modes in the
double well BJJ are the ”π-phase macroscopic quantum self-trapping modes“ (see figure
4.3(g) and (h)). The value of the double well BJJ nonlinearity Λ, for which these
modes occur, is given by Λc < Λ < 2 · Λs. In a typical wave packet max{∆Nj} <
0.8 and therefore max{Λs} = max{1/√1 − (∆Nj)2} ∼ 2. In the self-trapping regime
〈µint

loc〉/Ebw > 1 (see eq. (4.44)) and consequently

Λ ∼ 2 · 〈Nloc〉U/(2K) = 4 · 〈µint
loc〉/Ebw > 4, (4.46)

where 〈Nloc〉 is the average number of atoms in a single well. From this estimate we
obtain that these tunneling modes are only possible at the outermost edge, where the
number of atoms in a single site Nj < 〈Nloc〉.

The typical tunneling dynamics in the edge region is shown in figure 4.9(e). During
the initial expansion |∆φj | increases to a value close to π while at the same time ∆Nj

increases due to the formation of a steep edge. Once a critical value is reached, the
self-trapping tunneling dynamics sets in, which is characterized by |∆Nj | ∼ 1 and a
phase difference, that continuously winds up. The corresponding tunneling mode in the
double well BJJ is the ”running phase macroscopic quantum self-trapping“ mode (see
figure 4.3(i)).

Discussion

The the critical ratio 〈µint
loc〉/Ebw > 1 for nonlinear self-trapping, which is obtained from

an investigation of the global self-trapping dynamics, predicts also the underlying local
self-trapping tunneling dynamics at the edge of the wave packet, where the “running-
phase MQST” tunneling mode will dominate. Only at the outermost edge of the wave
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Figure 4.9: Numerical investigation of the local self-trapping dynamics of the system consid-
ered in figure 4.8. (a) Wave packet shape for t = 0 and t = 50 ms. (b) Time average ∆Nj of the
relative atom number difference. Clearly a central region with ∆Nj ∼ 0 (yellow) and an edge
region with ∆Nj �= 0 (orange) can be distinguished. (c) The dynamics in the central region
is described by a small amplitude oscillation of both ∆Nj and ∆φj with a mutual temporal
phase difference of π/2, characteristic for superfluid tunneling. This dynamics corresponds to
the ”zero-phase“ tunneling mode in a double well BJJ. (d) In the outermost edge region with
small absolute atom number self-trapping tunneling dynamics is possible, which corresponds to
the ”π-phase self-trapping” mode in the double well BJJ. It is described by long periods with
|∆φj | ∼ π and small amplitude oscillations of ∆Nj . (e) Typical self-trapping dynamics in the
edge region characterized by long periods with |∆Nj | ∼ 1, while the phase difference winds up
quickly (∆φj is plotted modulo π). In the double well BJJ the ”running-phase self-trapping
mode“ is the corresponding tunneling mode.

packet, where Nj < 〈Nloc〉 and therefore Λc < Λ < 2 · Λs, the “π-phase MQST modes”
will occur.

In the center of the wave packet the numerical investigation shows that the phase
difference does not exceed ∆φj = π/2. Consequently the critical value Λc is much larger
in comparison to the edge region. We will therefore find a tunneling dynamics in the
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

center of the wave packet, which allows the transport of atoms.

4.3.3 Temporal decay of self-trapped wave packets

The investigation in the previous section showed that self-trapping tunneling modes
dominate the local tunneling dynamics in the edge region. But since a single well is
coupled to two adjacent neighbors, the self-trapping tunneling modes between two sites
will eventually decay in the course of time. As a result the wave packets in the self-
trapping regime will continue to expand.

In this section the dependence of this decay on the different system parameters is
investigated. The most important parameter is the nonlinear parameter Λ. In figure
4.10 the numerically obtained temporal evolution of the wave packet width is shown for
different wave packets. The nonlinearity Λ is varied by increasing the atom number.
For small nonlinearities the effect of self-trapping reduces to a temporal “slowing down”
of the expansion, after which the effect of self-trapping decays and the wave packet
continues to expand. With increasing nonlinearity the time during which the wave
packet remains localized quickly increases. In this sense it is important to note that the
transition between the diffusive and the self-trapping regime must be understood as a
fast increase of the time, during which the wave packet remains localized.
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Figure 4.10: Temporal evolution of the wave packet width obtained by numerically integrating
the DNL for the system considered in figure 4.8. Here the initial wave packet shape is Gaussian
and the nonlinearity Λ is varied by choosing NT =1000, 3000, 4000, 7000 and 15000. In the self-
trapping regime the initial expansion is stopped temporarily and then the wave packet continues
to expand. With increasing Λ the decay time quickly increases.

The numerical investigation of the decay of self-trapping with respect to the initial
shape of the wave packet shows small differences for initially Gaussian and parabolic
wave packets. A strong dependence could not be found.

The dimensionality of the system, i.e. wether it is described by the purely 1D DNLS
or by the effective 1D DNL, on the other hand, does have a strong influence on the
nature of the decay of self-trapping. This difference becomes clear only in the deep
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Figure 4.11: Decay of self-trapping in a system governed by the DNL and the DNLS. In the
upper graph the temporal evolution of the wave packet width obtained from an integration of the
DNL and the DNLS is shown. In the DNLS system self-trapping decays at t ∼ 100 ms and the
wave packet starts to expand with increasing velocity. In the DNL system, in contrast, the decay
is described by a slow and steady expansion. The different nature of the breakdown is depicted
in the lower graphs. In the DNLS system the steep edges break up during the evolution, which
allows the whole packet to expand. In the DNL system, in contrast, the approximately square
wave packet shape remains.

self-trapping regime. In figure 4.11 the expansion dynamics of a wave packet in the deep
self-trapping regime is shown, which is obtained by numerically integrating the DNL and
the DNLS. In both cases an initially parabolic5 wave packet with total number of atoms
NT = 15000 and an initial width of 7.6µm rms is used. In order to compare the decay
for both cases, a transverse trapping frequency of ω⊥ = 2π · 230 Hz and ω⊥ = 2π · 53 Hz
is used for the integration of the DNL and the DNLS, respectively. For these parameters
the initial mean atomic density is similar for both cases and the initial trapping occurs
for both cases at t ∼ 10 ms with a width of ∼ 10µm.

In both systems the width remains approximately constant for ∆t ∼ 100 ms. In
the following the wave packet in the DNLS system starts to expand with increasing
velocity. In the DNL system, in contrast, a slow and steady expansion is observed. The
different behavior results from the different nature of the decay of self-trapping. In the
DNLS system the steep edges, which provide the necessary density gradient for the self-
trapping modes, decay during the evolution and thus allow the whole wave packet to
expand (see figure 4.11 lower right graph). For the DNL system the situation is different.
Here the square wave packet shape remains during the evolution with the steep edges
“conquering” one site at a time.

5Numerically obtained ground state of the initial harmonic trapping potential.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

Discussion

The above results can be understood considering the different nonlinearities U1/2K ·√Nj

and U2/2K · Nj , that determine the DNL and the DNLS, respectively (see eq. (4.37)
and (4.26)). In figure 4.12 the nonlinearities and their gradients with respect to the local
atom number Nj are plotted for the system considered in figure 4.11.
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Figure 4.12: Nonlinearity and the corresponding gradient versus the local atom number Nj in
the DNL and the DNLS system. In the wave packet edge region with small local atom numbers,
the gradient of the nonlinearity and therefore the differences in the nonlinear energy in adjacent
sites is much larger in the DNL compared to the DNLS. Consequently, self-trapping dynamics is
favored by the DNL in this region.

The nonlinearity in the DNL system depends on the square root of the local atom
number and therefore the gradient of the nonlinear energy for small atom numbers is
larger in comparison to the DNLS system. At the edge of the wave packet, with small
average atom numbers, large differences in the nonlinear energy and thus self-trapping
dynamics is favored by the DNL system.

But since for small atom numbers the approximations, entering the derivation of
the DNL, are not valid, questions concerning the applicability arise and are discussed
together with the experimental results on the decay of self-trapping in section 4.4.3.

4.3.4 Scaling behavior of self-trapped wave packets

In addition to the critical parameter Λc for self-trapping, the variational solution of the
DNLS yields an information about the final width γ∞ of the wave packet. From the
effective Hamiltonian H = Λ/(2

√
πγ0) − cos(p0)e−η we obtain the final width γ∞ =

Λ/(2
√
πH0), since in the self-trapping regime H0 > 1 and thus δ → ∞ for t → ∞.

Together with the critical parameter Λc = 2
√
πγ0 cos(p0)e−η we obtain the universal

ratio between the initial and the final width (Trombettoni, 2001)

γ0

γ∞
= 1 − Λc

Λ
(DNLS). (4.47)

Following the same lines of calculation as in (Trombettoni, 2001) the corresponding
result is obtained for the DNL (Trombettoni, priv.comm) with Λc = 2.057

√
γ0 cos(p0)

and
γ0

γ∞
=
(

1 − Λc

Λ

)2

(DNL). (4.48)
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The universal ratio tells us that the dynamics of the wave packet width is solely deter-
mined by two global parameters, the initial density of the atoms and the depth of the
periodic potential.

Please note that for the DNLS system Λ/Λc = g0Nav

∫
d�r φ4/2K · 1/√π = Λav/

√
π

and for the DNL system Λ/Λc = U1

√
Nav/2K ·1/√2 = Λav/

√
2, where Nav = NT/2γ0 is

the average local number of atoms, Λav = 〈µint
loc〉/2K is the average nonlinear parameter

and 〈µint
loc〉 is the average local interaction energy.

In order to compare the results for the DNLS and the DNL, the ratio γ0/γ∞ is plotted
versus Λav in figure 4.13.
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Figure 4.13: Scaling behavior of the effect of self-trapping. The variational results for the
ratio between the initial and the final wave packet width are plotted versus the average nonlinear
parameter for the DNLS and the DNL system. In both cases the ratio shows the critical behavior
and depicts the nature of self-trapping: increasing the nonlinear parameter Λ (by, e.g., increasing
the atom number) leads to a faster trapping and consequently to a smaller final width.

In both cases a critical behavior results, since for Λav below the critical value γ0/γ∞ =
0 with γ∞ → ∞ and above the critical value γ0/γ∞ > 0 with a finite value for γ∞. With
increasing Λav the ratio γ0/γ∞ → 1 for both the DNLS and the DNL system. The
differences between both models are discussed together with the experimental data on
the scaling behavior in section 4.4.4.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

4.4 Experimental observation of nonlinear self-trapping

In this section I report on the first experimental observation of nonlinear self-trapping.
We observed the effect in real space by looking at the expansion dynamics of 87Rb
Bose-Einstein condensates in a deep 1D lattice potential.

In section 4.4.1 the relevant details of the experimental setup and the image analysis
procedure are described.

In section 4.4.2 the experimental realization of the transition from the diffusive to
the self-trapping regime is presented. By increasing the atom number of wave pack-
ets with otherwise identical parameters, we move the system from the diffusive regime,
characterized by a continuous expansion of the wave packets, to the nonlinearity domi-
nated self-trapping regime, where the initial expansion stops and the width of the wave
packets remains finite. The detailed analysis of the shape dynamics in the self-trapping
regime shows the theoretically predicted evolution from the Gaussian wave form to a
rectangular wave form with steep density gradients at the wave packet edges.

In section 4.4.3 the decay of self-trapped wave packets is analyzed. In the experimen-
tal system additional dynamical effects, that are not included in the system described
by the DNL/DNLS, such as transverse excitations, decoherence and heating, can affect
the decay of self-trapping. In order to distinguish between these effects, a discrete non-
polynomial Schrödinger equation (DNPSE) is developed by modifying the nonlinearity
in the DNL, such that it correctly describes the relevant chemical potential both in the
regime of small and in the regime of high atomic density. The comparison of the ex-
perimental data with the numerical results of the DNPSE shows unambiguously that
the observed decay is not described by a discrete Schrödinger equation. Consequently it
must be ascribed to transverse excitations, decoherence or heating.

In section 4.4.4 the experimental results of the experiments on the theoretically
predicted scaling behavior are presented. By looking at the expansion of wave packets
with different initial conditions, the scaling behavior is confirmed qualitatively. The ratio
between the initial wave packet width and the final width in the self-trapping regime is
found to depend universally on the ratio between the mean interaction energy and the
width of the first Bloch band of the lattice potential.

At the end of this section the corresponding publication Nonlinear Self-Trapping of
Matter Waves in Periodic Potentials is included as a summary of the results.

4.4.1 Experimental setup and wave packet preparation

In the experiments the expansion of wave packets inside a 1D waveguide with a super-
imposed deep lattice potential is investigated. The wave packets are realized with 87Rb
Bose-Einstein condensates, which are obtained by evaporative cooling in a 3D optical
dipole trap. The trap consists of two crossed laser beams, the waveguide beam and a
perpendicular oriented holding beam (for more details see section 2.2).

Important parameters in the preparation process are the atom number and the width
in longitudinal (waveguide) direction of the wave packet. The number of atoms in the
wave packet is adjusted by removing atoms from the condensate through evaporation.
Both the waveguide beam and the holding beam intensity are reduced in such a way that
a defined final atom number is reproducibly obtained. Subsequently the intensity of the
waveguide and the holding beam are ramped up adiabatically, such that the waveguide
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b ca

Figure 4.14: Schematic of the preparation of wave packets in a 1D waveguide with a superim-
posed deep lattice potential. (a) A coherent wave packet in a 3D optical trap of two crossed laser
beams is created by Bose-Einstein condensation trough forced evaporative cooling. The holding
beam (drawn vertically) defines the width of the wave packet in the horizontal waveguide direc-
tion (b) A deep lattice potential realized by the dipole force of a standing light wave along the
waveguide is adiabatically ramped up. (c) The tunneling dynamics starts when the crossed laser
beam of the 3D dipole trap is turned off.

offers tight transverse trapping with ω⊥ = 2π · 230 Hz. The final holding beam intensity
is chosen such that the desired longitudinal wave packet width in the range of 7 – 20µm
rms is obtained (see figure 4.14).
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Figure 4.15: Analysis of the wave packet shape. In order to avoid large errors due to the
background noise in the absorption image (upper graph) and non-condensed thermal background
atoms, the region of interest (ROI), defined by the dark bars, is determined manually for each
experiment. Relevant values such as the number of atoms and the rms-width are calculated using
this ROI. The wave packet shape in x direction (lower graph) is obtained by integrating the ROI
along the radial direction.

The lattice potential is realized by the dipole potential of two far red-detuned counter
propagating laser beams, which are collinear with the waveguide (for details on the cal-
ibration see section 3.2). The intensity of the lattice beams is ramped up adiabatically6

in 10 ms, such that the wave packet is prepared in the ground state of the combined
6The ramp up time is much longer than the maximum tunneling time max(τT ) ∼ 2 ms.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

trapping and lattice potential. Finally the holding beam is abruptly turned off and the
resulting wave packet dynamics is observed for different propagation times by absorption
imaging. The rms-width and the atom number of the wave packets are calculated from
the manually selected image region, as depicted in figure 4.15, in order to avoid large
errors due to the background noise in the absorption images.

4.4.2 Transition from the diffusive to the self-trapping regime

In the experiments described here, the dynamics of 87Rb atoms with a repulsive atom-
atom interaction is investigated. In free space this interaction tends to accelerate the
expansion of an initially localized atomic wave packet. In a periodic potential, for mod-
erate nonlinearity, the same accelerated expansion dynamics can be observed. This dy-
namical regime is referred to as the diffusive regime. When the nonlinearity is increased
above a certain critical value, the initial expansion stops and the wave packet remains
localized. This counterintuitive effect was first predicted theoretically in (Trombettoni,
2001) for the system considered here and is referred to as nonlinear self-trapping (see
section 4.3 for a theoretical discussion).
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Figure 4.16: Observation of nonlinear self-trapping of Bose-condensed 87Rb atoms. The
dynamics of the wave packet width along the periodic potential is shown for two different initial
atom numbers. By increasing the number of atoms from 2000 ± 200 (squares) to 5000 ± 600
(circles), the repulsive atom-atom interaction leads to the stopping of the global expansion of
the wave packet. The insets show that the wave packet remains almost Gaussian in the diffusive
regime but develops steep edges in the self-trapping regime.

Experimentally the transition from the diffusive to the self-trapping regime can be
accomplished by increasing the nonlinear parameter Λ above the critical value, such that

Λ
Λc

∼ 〈µint
loc〉

Ebw
> 1, (4.49)

where 〈µint
loc〉 is the mean local interaction energy and Ebw is the width of the lowest Bloch

band. We have chosen to observe this effect by looking at the expansion of wave packets
with identical initial width of 8µm rms and identical parameters for the waveguide
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4.4 Experimental observation of nonlinear self-trapping

(ω⊥ = 2π · 230 Hz) and the periodic potential (s = 11). The transition is accomplished
by increasing the number of atoms and thereby the atomic density in the wave packets.

In figure 4.16 the experimental signature of the transition from the diffusive to the
self-trapping regime is shown. In the experiment wave packets with a number of atoms
close to (2000±200 atoms) and above (5000±600 atoms) the critical value are prepared.
Clearly both wave packets expand initially. At t ∼ 35 ms the wave packet with the higher
initial atomic density has developed steep edges and stops expanding (see inset in figure
4.16). In contrast, the wave packet with the lower initial atomic density continues to
expand keeping its Gaussian shape. The theoretically expected faster initial expansion
due to the increased repulsive interaction for wave packets with a larger number of atoms
is also shown in the experimental results.
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Figure 4.17: Detailed temporal evolution of the wave packet shape for s = 10; 7.6(5)µm
initial rms width and 5000± 600 atoms. The graphs show the measured density distribution for
different propagation times (black). During the initial expansion in the self-trapping regime the
wave packet develops steep edges which act as stationary boundaries for the subsequent internal
dynamics. The results of the numerical integration of the DNL (4.28), depicted in orange, are
in very good agreement. For t = 50 ms a 1.5 mrad deviation of the waveguides horizontal
orientation (consistent with the experimental uncertainty) is taken into account and reproduces
the experimentally observed asymmetry.

In figure 4.17 the experimental investigation of the detailed temporal shape dynamics
of a wave packet in the self-trapping regime is shown. The experimental results clearly
show the characteristic development of steep edges during the initial expansion and the
subsequent development of strong side peaks. These pronounced side peaks disappear
and a square shaped density distribution is formed finally. The observed asymmetry of
the wave packet shapes (e.g. at t = 50 ms) appears due to the deviation from the perfect
horizontal orientation of the waveguide (±2 mrad) which results from small changes in
height of the pneumatic isolators of the optical table during the measurements.

In addition the experimental results are compared with the results of an integration
of the DNL. The propagation of the DNL allows to reproduce all the experimentally
observed features, including the observed asymmetry and the agreement is very good.

The experimental results presented in this section demonstrate for the first time the
theoretically predicted effect of nonlinear self-trapping for a quasi 1D system of bosonic
atoms in a deep lattice potential. The comparison with numerical calculations shows
that the investigated experimental system can be described very well with the help of
the DNL. This, in turn, allows us to use the results of the theoretical investigation of
the effect of self-trapping (see section 4.3) to understand and to further investigate the
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

experimental system.

4.4.3 Decay of self-trapping

In this section the experimental investigation of the decay of self-trapping is presented.
In the theoretical investigation it was shown that essentially the nonlinear parameter
Λ and the dimensionality of the system (DNL or DNLS) govern the decay of the effect
of self-trapping. In the experimental system additional dynamical effects, that are not
included in the DNL/DNLS, such as transverse excitations, decoherence and heating can
affect the decay of self-trapping.

In order to distinguish between the intrinsic decay, i.e. the decay of self-trapping
described by the discrete equations, and other external effects, the different dynamical
equations and especially the relevant local chemical potential are reviewed. As a result a
discrete non-polynomial Schrödinger equation (DNPSE) is developed by modifying the
nonlinearity of the DNL, such that it correctly describes the relevant chemical potential
both in the regime of small and in the regime of high atomic density.

Discrete non-polynomial Schrödinger equation

For the DNL the relevant chemical potential

µTF
j = U1 ·

√
Nj =

(
mω2

⊥g0√
2ππσlatt

)1/2√
Nj (4.50)

is the sum of the interaction energy in the Thomas-Fermi approximation and the po-
tential energy in transverse direction due to the increased transverse width (see section
4.2.3). For the DNLS the relevant chemical potential

µlin
j = U ·Nj = g0Nj · 1

(2π)3/2σ2
⊥σlatt

(4.51)

is only given by the interaction energy in the linear ground state approximation (see
section 4.2.2). The dependence of µlin

j and µTF
j on the local number of atoms Nj is

plotted in figure 4.18.
In the experiment the typical atomic densities are too large for the linear approx-

imation (DNLS) and too small for the Thomas-Fermi approximation (DNL). In this
intermediate regime the ground state function in a lattice site can be best approximated
by a Gaussian wave function Φ(�r) = exp(−x2/σ2

latt)·exp(−r2/σvar
⊥ (Nj)2), where the den-

sity dependent width σvar
⊥ (Nj) is obtained by a variational calculation (Baym/Pethick,

1996). The corresponding relevant chemical potential

µvar
j = g0Nj

1
(2π)3/2σvar

⊥ (Nj)2σlatt
+

1
2
(mω2

⊥σ
var
⊥ (Nj)2 − �ω⊥) (4.52)

is derived from the linear approximation, where σvar
⊥ (Nj) needs to be calculated nu-

merically. The second term accounts for the increased potential energy due to the
increased transversal width. In order to implement the corresponding discrete non-
linear equation, an explicit expression for µvar

j is desired. In the derivation of the
NPSE (Salasnich et al., 2002) (see section 2.1.3) the explicit local transversal width
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Figure 4.18: Local chemical potential µj for the different discrete nonlinear Schrödinger
equations used in this thesis. The red line shows the chemical potential µlin

j for the linear
approximation (DNLS), which is proportional to the local number of atoms Nj . The black line
shows µTF

j , where the Thomas-Fermi approximation is used in transverse direction (DNL). The
black dashed line shows µvar

j , obtained from a variational calculation (DNPSE). µvar
j describes

the intermediate regime very well.

σ⊥(x)2 = σ2
⊥
√

1 + 2asNT|Ψ(x)|2 is obtained from a similar variational calculation as
in (Baym/Pethick, 1996), where NT|Ψ(x)|2 is the local linear density. In the case of a
deep lattice potential the average linear density of a local condensate at site j can be
approximated by ρj = Nj/(4σlatt). The variational relevant chemical potential can thus
be written as

µvar
j = g0Nj

1
(2π)3/2(σvar

⊥ )2σlatt
+

1
2
(mω2

⊥(σvar
⊥ )2 − �ω⊥) (4.53)

with (σvar
⊥ )2 = σ2

⊥ ·√1 + 2aSNj/(4σlatt). As can be seen in figure 4.18, the variational
chemical potential µvar

j describes the experimental system both in the regime of small
and in the regime of high atomic density. The corresponding discrete non-polynomial
Schrödinger equation

i�
∂ψj

∂t
= εjψj −K(ψj+1 + ψj−1) + µvar

j ψn (4.54)

called the DNPSE in this thesis7 is used to investigate numerically the decay of the effect
of self-trapping.

Experimental investigation of the decay of self-trapping

In figure 4.19 the experimental results on the long term expansion of wave packets is
shown. In the first experiment the expansion of a wave packet with a total number of
atomsNT = 5000, a lattice potential depth Ulatt = 11 Er and an initial width σ0 = 7.6µm
rms is investigated. For these system parameters the tunneling time is tT = �/K ∼
2.4 ms, which is still larger than the transverse oscillation time t⊥ = ω−1

⊥ ∼ 0.7 ms. The
temporal evolution of the wave packet width is very well described by the three discrete

7Since a rigorous derivation is not done so far, the name is given for the use in this thesis only.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

equations DNPSE, DNL and DNLS8. The observed decay of self-trapping is therefore
mainly of intrinsic nature, i.e. a consequence of the coupling of single wells to two
adjacent lattice sites.
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Figure 4.19: Experimental investigation of the decay of self-trapping. (a) For a lattice
potential depth of Ulatt = 11Er and ω⊥ = 2π · 230 Hz the experimentally observed decay of
self-trapping is described by the discrete dynamical equations DNL (solid line), DNLS (dashed
red line) and DNPSE (dotted line) and is thus mainly of intrinsic nature. (b) For Ulatt = 10Er

the decay is faster than predicted theoretically. This is mainly due to the reduced tunneling time
and the corresponding increased probability of transversal excitations. (c,d) Moving deeper into
the self-trapping regime by increasing the number of atoms does not prevent the fast decay.

In the second experiment the lattice potential depth is decreased to Ulatt = 10 Er

with a corresponding tunneling time tT = �/K ∼ 1.8 ms, which becomes comparable to
the transverse oscillation time. Thus the probability of transverse excitations during the
dynamics for these system parameters is increased. The experimental data shows the
theoretically predicted evolution until the initial expansion is stopped. The wave packet
remains trapped for ∼ 20 ms and then a fast decay is observed, which cannot be described
by the discrete dynamical equations and must therefore be attributed to transverse
excitations. Comparison with the numerical integration of the DNLS underlines that the
experimentally observed decay is not due to the enhanced decay of a system described
by the DNLS.

In the following experiments the number of atoms is increased to NT = 8000 and
NT = 12000 and therefore the system is moved deeper into the self-trapping regime.
Although the nonlinear parameter Λ is now comparable to the experimental system
with NT = 5000 and Ulatt = 11 Er, the transverse excitations due to the decreased
tunneling time dominate and lead to a fast decay of the self-trapped wave packets.

The experimental results show that the tunneling time defined by the lattice potential
depth is the most important parameter which governs the external decay of self-trapping.
Other sources of heating and decoherence, such as the coupling to the non-condensed
thermal cloud and possible phase fluctuations of the lattice potential may also play an
important role.

8For the integration of the DNLS ω⊥ is chosen such that the average initial atomic density corresponds
to the experimental situation.
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4.4 Experimental observation of nonlinear self-trapping

4.4.4 Scaling behavior

In this section the results of the experimental investigation of universal scaling are pre-
sented. A simple variational solution of the DNLS/DNL system predicts a universal
scaling behavior: the ratio between the initial and the final width γ0/γ∞ of a freely ex-
panding wave packet in a deep lattice potential is only determined by the ratio between
the initial average interaction energy and the band width of the lattice potential, i.e.
the average nonlinear parameter Λav = 〈µint

loc〉/2K (see section 4.3.4). In other words,
varying the single system parameters such as the depth of the lattice potential, the initial
width of the wave packet and the total number of atoms will not alter the ratio γ0/γ∞,
as long as Λav is kept constant.

For a system with Λav less than the critical value9 the final width is unbound and
thus γ0/γ∞ = 0 (diffusive regime). Above the critical value the final width γ∞ is finite
(self-trapping regime) and γ0/γ∞ → 1 for Λav → ∞ . This behavior is depicted by the
theoretical curves shown in figure 4.20(a).
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Figure 4.20: (a) Experimental investigation of the scaling behavior. The solid lines show the
theoretical curves given by eq. (4.47) and (4.48). Experimentally the parameter Λav was varied
by using three different periodic potential depths: s = 10.6(3) (stars), 11.1(3) (squares), and
11.5(3) (diamonds). For each potential depth, wave packets with different atom numbers and
initial widths are prepared and the width for t = 50 ms is measured. The experimental data show
qualitatively the scaling behavior predicted theoretically and are in quantitative agreement with
the results of the numerical integration of the DNL (dashed line). (b) The temporal evolution
of two wave packets with different atom numbers depicts the nature of the scaling: increasing
Λav (by, e.g., increasing the atom number) leads to a faster trapping and thus to a smaller final
width.

In order to confirm the scaling behavior experimentally, the width γt=50ms of the
wave packet after 50 ms evolution is measured for different system parameters, i.e., total
atom number, initial width of the wave packet, and depth of the periodic potential.
For each experimental run the initial width of the wave packet is deduced from the
measured number of atoms. To this end the initial width γ0 of wave packets with
different number of atoms with otherwise identical system parameters is recorded and
fitted by a 1D Thomas-Fermi density distribution (see e.g. Ketterle et al., 1998). For
each experimental run the ratio γ0/γt=50ms is plotted in figure 4.20(a) versus the model

9The exact theoretical value depends on the model (DNLS or the DNL), which describes the system.
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

independent average nonlinear parameter

Λav = µvar
av /2K, (4.55)

where the average local chemical potential µvar
av is calculated using eq. (4.53).

The experimental data show scaling in the sense that all data points collapse onto
a single universal curve, i.e. data points with the same nonlinear parameter Λav show
the same ratio γ0/γt=50ms. The experimental data show quantitative agreement with a
numerical scaling curve obtained from an integration of the DNL (dashed line in figure
4.20a).

The experimental data points lie above the theoretical curves, i.e. the experimentally
observed trapping occurs faster than theoretically predicted. This quantitative difference
between the experimental data and the result of the variational calculation (solid lines)
is mainly due to two reasons. In the variational calculation an initial Gaussian shape
is assumed, while in the experiment the initial wave packet shape is nearly parabolic.
In addition, the variational calculation assumes a Gaussian shape during the evolution,
in contrast to the experimental situation, where a square shaped density distribution is
formed during the dynamics.

The experimental investigation of the scaling behavior shows again that the ratio
Λav = 〈µint

loc〉/2K governs the transition between the diffusive and the self-trapping regime
and, in addition, governs the global dynamics of the wave packet width.

4.4.5 Publication: Nonlinear Self-Trapping of Matter Waves in Periodic Po-
tentials

The experimental results on the nonlinear self-trapping of matter waves are published
in (Anker et al., 2005). As a summary, the publication is included below. In comparison
to the original publication, here equation (4) is corrected.
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Nonlinear Self-Trapping of Matter Waves in Periodic Potentials

Th. Anker1, M. Albiez1, R. Gati1, S. Hunsmann1, B. Eiermann1, A. Trombettoni2 and M.K. Oberthaler1
1 Kirchhoff Institut für Physik, Universität Heidelberg,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

2 I.N.F.M. and Dipartimento di Fisica, Universitá di Parma,
parco Area delle Scienze 7A, I-43100 Parma, Italy

We report the first experimental observation of nonlinear self-trapping of Bose-condensed 87Rb
atoms in a one dimensional waveguide with a superimposed deep periodic potential . The trapping
effect is confirmed directly by imaging the atomic spatial distribution. Increasing the nonlinearity
we move the system from the diffusive regime, characterized by an expansion of the condensate, to
the nonlinearity dominated self-trapping regime, where the initial expansion stops and the width
remains finite. The data are in quantitative agreement with the solutions of the corresponding
discrete nonlinear equation. Our results reveal that the effect of nonlinear self-trapping is of local
nature, and is closely related to the macroscopic self-trapping phenomenon already predicted for
double-well systems.

PACS numbers: N03.75.Lm,63.20.Pw
Keywords:

The understanding of coherent transport of waves is es-
sential for many different fields in physics. In contrast to
the dynamics of non-interacting waves, which is concep-
tually simple, the situation can become extremely com-
plex as soon as interaction between the waves is of rel-
evance. Very intriguing and counter intuitive transport
phenomena arise in the presence of a periodic potential.
This is mainly due to the existence of spatially localized
stationary solutions.

In the following we will investigate the dynamics of
Bose-condensed 87Rb atoms in a deep one dimensional
periodic potential, i.e. the matter waves are spatially lo-
calized in each potential minimum (tight binding) and
are coupled via tunneling to their next neighbors. This
system is described as an array of coupled Boson Joseph-
son junctions [1]. The presence of nonlinearity drastically
changes the tunneling dynamics [2] leading to new local-
ization phenomena on a macroscopic scale such as dis-
crete solitons, i.e. coherent non-spreading wave packets,
and nonlinear self-trapping [3]. These phenomena have
also been studied in the field of nonlinear photon optics
where a periodic refractive index structure leads to an
array of wave guides, which are coupled via evanescent
waves [4].

In this letter we report on the first experimental confir-
mation of the theoretically predicted effect of nonlinear
self-trapping of matter waves in a periodic potential [3].
This effect describes the drastic change of the dynamics
of an expanding wave packet, when the nonlinearity i.e.
repulsive interaction energy, is increased above a critical
value. Here the counterintuitive situation arises that al-
though the spreading is expected to become faster due
to the higher nonlinear pressure, the wave packet stops
to expand after a short initial diffusive expansion. Since
we observe the dynamics in real space, we can directly
measure the wave packet width for different propagation
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FIG. 1: Observation of nonlinear self-trapping of Bose-
condensed 87Rb atoms. The dynamics of the wave packet
width along the periodic potential is shown for two different
initial atom numbers. By increasing the number of atoms
from 2000±200(squares) to 5000±600(circles), the repulsive
atom-atom interaction leads to the stopping of the global ex-
pansion of the wave packet. The insets show that the wave
packet remains almost gaussian in the diffusive regime but
develops steep edges in the self-trapping regime. These edges
act as boundaries for the complex dynamics inside.

times. In Fig. 1 we show the experimental signature
of the transition from the diffusive to the self-trapping
regime. We prepare wave packets in a periodic potential
and change only the nonlinear energy by adjusting the
number of atoms in the wave packet close to (2000±200
atoms) and above (5000±600 atoms) the critical value.
Clearly both wave packets expand initially. At t ∼35 ms
the wave packet with higher initial atomic density has
developed steep edges and stops expanding (see inset in
Fig. 1). In contrast, the wave packet with the lower initial
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Chapter 4 Tunneling dynamics of matter waves in deep 1D lattice potentials

atomic density continues to expand keeping its gaussian
shape.

The coherent matter-wave packets are generated with
87Rb Bose-Einstein condensates realized in a crossed light
beam dipole trap (λ= 1064nm, 1/e2 waist 55µm, 600mW
per beam). Subsequently a periodic dipole potential
Vp = s·Er sin2(kx), realized with a far off-resonant stand-
ing light wave (λ = 783nm) collinear with one of the di-
pole trap beams is adiabatically ramped up . The depth
of the potential is proportional to the intensity of the
light wave and is given in recoil energies Er = h̄2k2

2m with
the wave vector k = 2π/λ. By switching off the dipole
trap beam perpendicular to the periodic potential the
atomic matter wave is released into a trap acting as a
one-dimensional waveguide Vdip = m

2 (ω2
⊥r

2 +ω2
‖x

2) with
radial trapping frequency ω⊥ = 2π · 230Hz and longitu-
dinal trapping frequency ω‖ ≈ 2π ·1Hz. The wave packet
evolution inside the combined potential of the waveguide
and the lattice is studied by taking absorption images of
the atomic density distribution after a variable time de-
lay. The density profiles n(x, t) along the waveguide are
obtained by integrating the absorption images over the
radial dimensions and allow the detailed investigation of
the wave packet shape dynamics with a spatial resolution
of 3µm.

In Fig. 2 the measured temporal evolution of the wave
packet prepared in the self-trapping regime (s = 10,
7.6(5) µm initial rms-width, 5000±600 atoms) is shown.
The evolution of the shape is divided into two charac-
teristic time intervals. Initially (t < 20 ms) the wave
packet expands and develops steep edges. This dynam-
ics can be understood in a simple way by considering
that the repulsive interaction leads to a broadening of the
momentum distribution and thus to a spreading in real
space. Since the matter waves propagate in a periodic
potential the evolution is governed by the modified dis-
persion (i.e. band structure) E(q) = −2K cos(dq) where
d = λ/2 is the lattice spacing, h̄q is the quasimomen-
tum and K is the characteristic energy associated with
the tunneling. The formation of steep edges is a conse-
quence of the population of higher quasimomenta around
q = ±π/2d where the dispersion is strongly reduced and
the group velocity is extremal. In order to populate qua-
simomenta |q| > π/2d the initial interaction energy has
to be higher than the characteristic tunneling energy K
and thus the critical parameter depends on the ratio be-
tween the on-site interaction energy and the tunneling
energy as we will discuss in detail. While in the linear
evolution the steep edges move with the extremal group
velocity [5], in the experiment reported here they stop af-
ter their formation. As we will show this is a consequence
of the high atomic density gradient at the edge which sup-
presses tunneling between neighboring wells. The further
evolution is characterized by stationary edges acting as
boundaries for the complex internal behavior of the wave
packet shape. The formation of the side peaks is an indi-

cation that atoms moving outwards are piled up because
they cannot pass the steep edge. Finally the pronounced
features of the wave packet shape disappear and a square
shaped density distribution is formed.
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FIG. 2: Comparison between theory and experiment for s =
10, 7.6(5) µm initial rms-width, and 5000±600 atoms. The
upper graphs show the measured density distribution for dif-
ferent propagation times. During the initial expansion in
the self-trapping regime the wave packet develops steep edges
which act as stationary boundaries for the subsequent inter-
nal dynamics. The results of the numerical integration of
eq. 2 (depicted in the lower graphs) are in very good agree-
ment. For t = 50 ms a 1.5 mrad deviation of the wave guides’s
horizontal orientation (consistent with the experimental un-
certainty) is taken into account and reproduces the experi-
mentally observed asymmetry (gray line).

In order to understand in detail the ongoing complex
self-trapping dynamics we compare quantitatively our ex-
perimental findings with numerically obtained solutions
(see Fig. 2). For our typical experimental parameters of
s ∼ 11 and ∼ 100 atoms per well we are in the regime
where the dynamics can be described by a macroscopic
wave function Ψ(�r, t) and thus by the Gross-Pitaevski
equation (GPE) [6]. Since we use deep optical lattices
the description can be reduced to a one dimensional dis-
crete nonlinear equation, which includes the fundamen-
tal processes, namely tunneling between the wells and
nonlinear phase evolution due to the interaction of the
atoms [3, 7]. In our experiment the trapping frequency
in a single well along the lattice period is on the order
of ωx ≈ 2π · 25 kHz, whereas the transverse trapping
frequency of the wave guide is ω⊥ = 2π · 230Hz. Thus
our system can be described as a horizontal pile of pan-
cakes, and the transverse degree of freedom cannot be
neglected. In [7] a one dimensional discrete nonlinear
equation (DNL) is derived which takes into account the
adiabatic change of the wave function in the transverse
direction due to the atom-atom interaction. A general-
ized tight binding ansatz

Ψ(�r, t) =
∑

j

ψj(t)Φj(�r,Nj(t)) (1)

is used, with ψj(t) =
√
Nj(t)eiφj(t), where Nj(t) is the

atom number and φj(t) is the phase of the jth con-

92



4.4 Experimental observation of nonlinear self-trapping

densate. Φj is normalized to 1 (i.e.
∫
d�rΦ2

j = 1) and
Ψ(�r, t) is normalized to the total number of atoms NT

(i.e.
∑

j |ψj |2 = NT ). The spatial real wave function
Φj(�r,Nj(t)) is centered at the minimum of the j-th well
and is time dependent throughN(t). Integrating over the
spatial degrees of freedom, the following DNL is obtained
from the GPE :

ih̄
∂ψj

∂t
= εjψj −K(ψj+1 + ψj−1) + µloc

j ψj . (2)

K is the characteristic tunneling energy between ad-
jacent sites. εj =

∫
d�rm

2 ω
2
‖x

2Φ2
j is the on-site en-

ergy resulting from the longitudinal trapping potential,
which is negligible in the description of our experi-
ment. The relevant chemical potential is given by µloc

j =∫
d�r
[

m
2 ω

2
⊥r

2Φ2
j + g0|ψj(t)|2Φ4

j

]
with g0 = 4πh̄2a/m (a

is the scattering length). It can be calculated approx-
imately for our experimental situation assuming a par-
abolic shape in transverse direction (Thomas-Fermi ap-
proximation) and a Gaussian shape in longitudinal direc-
tion for Φj(�r,Nj(t)) (ωx � µloc

j /h̄ > ω⊥). This leads to
µloc

j = U1|ψj(t)| with

U1 =

√
mω2

⊥g0√
2ππσx

. (3)

Here σx = λ/(2πs
1
4 ) is the longitudinal Gaussian width

of Φj in harmonic approximation of the periodic potential
minima. Please note, that if the local wave function Φj

does not dependent on Nj eq. 2 reduces to the well known
discrete nonlinear Schrödinger equation with µloc

j ∝ Nj

[3, 8].
We compare the experimental and numerical results

in Fig. 2 and find very good agreement. The theory
reproduces the observed features such as steepening of
the edges, the formation of the side peaks and the fi-
nal square wave packet shape. It is important to note
that all parameters entering the theory (initial width,
atom number, periodic potential depth and transverse
trapping frequency) have been measured independently.
The observed asymmetry of the wave packet shapes (e.g.
see Fig. 2, t = 50ms) appears due to the deviation
from the perfect horizontal orientation of the wave guide
(±2mrad) which results from small changes in height of
the pneumatic isolators of the optical table during the
measurements.

In the following we will use the numerical results to
get further insight into the self-trapping dynamics. We
investigate the local tunneling dynamics and phase evo-
lution by evaluating the relative atom number difference
∆Nj = (Nj+1 − Nj)/(Nj+1 + Nj) and the phase differ-
ence ∆φj = φj+1 − φj between two neighboring sites. In
Fig. 3a) the wave packet shapes for t = 0 and t = 50ms
are shown. In Fig. 3b) we plot the relative atom number
difference ∆Nj averaged over the whole propagation du-
ration of 50ms. The graph indicates two spatial regions
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FIG. 3: A numerical investigation of the site to site tunneling
dynamics. (a) The atomic distribution Nj of the wave packet
for t = 0 and 50 ms. (b) The relative population difference
∆Nj time averaged over the expansion time indicates two re-
gions with different dynamics. (c) The dynamics of ∆Nj and
the phase difference ∆φj for the marked site oscillate around
zero known as the zero-phase mode of the Boson Josephson
junction. (d) The dynamics in the edge region is character-
ized by long time periods where |∆Nj | is close to 1 while at
the same time ∆φj winds up very quickly (phase is plotted
modulo π) known as ’running phase self-trapping mode’ in
Boson Josephson junctions. Thus the expansion of the wave
packet is stopped due to the inhibited site to site tunneling
at the edge of the wave packet.

with different characteristic dynamics. While the aver-
age vanishes in the central region (shaded in light gray)
it has significant amplitude in the edge region (shaded
in dark gray). The characteristic dynamics of ∆Nj and
∆φj in the central region is depicted in Fig. 3c). The
atom number difference as well as the phase difference
oscillate around zero. This behavior is known in the con-
text of BEC in double-well potentials. It is described as
the Boson Josephson junction ’zero-phase mode’ [2] and
is characteristic for superfluid tunneling dynamics if the
atom number difference stays below a critical value. At
the edge in contrast, ∆Nj crosses the critical value during
the initial expansion (steep density edge) and locks for
long time periods to high absolute values showing that
the tunneling and thus the transport is inhibited. At the
same time the phase difference winds up. This charac-
teristic dynamics has been predicted within the Boson
Josephson junction model for a double-well system and
is referred to as the ’running phase self-trapping mode’
[2]. This analysis makes clear that the effect of nonlinear
self-trapping as observed in our experiment is a local ef-
fect and is closely related to Boson Josephson junctions
dynamics in a double-well system.

Although the local dynamics just described is very
complex, the evolution of the root mean square width
of the wave packet, i.e. the global dynamics, can be pre-
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dicted analytically within a very simple model. In [3]
a Gaussian profile wave packet ψj(t) ∝ exp(−( j

γ(t) )
2 +

i δ(t)
2 j2) parameterized by the width γ(t) (in lattice units)

and the quadratic spatial phase δ(t), is used as an ansatz
for quasimomentum q = 0 to solve the discrete nonlinear
Schrödinger equation. The time evolution of the width
γ(t) is obtained analytically applying a variational prin-
ciple. The result of this simple model is, that the dy-
namics of the wave packet width is solely determined by
two global parameters - the density of the atoms and the
depth of the periodic potential. Also a critical parameter
Λ/Λc can be deduced, which governs the transition from
the diffusive to the self-trapping regime. The transition
parameter Λ/Λc for the 2D case described by eq. 2 is
obtained following the same lines of calculation as in [3].
Assuming that the initial width γ0 � 1 (in the experi-
ment typically γ0 ≈40) we obtain

Λ =
U1

√
NT

2K
and Λc =

3
2

(
9π
8

) 1
4 √

γ0.

A surprising result of this model is the prediction of the
following scaling behavior (shown in Fig. 4):

γ0

γ∞
=
(

1 − Λc

Λ

)2

(4)

for Λ/Λc > 1, where γ∞ is the width of the wave packet
for t → ∞. For Λ/Λc < 1 the width is not bound and
thus the system is in the diffusive regime. In the regime
Λ/Λc > 1 the width is constant after an initial expansion
(see inset Fig. 4). Since Λ/Λc ∝ µloc

av /K, the self-trapping
regime is reached by either reducing the initial width,
increasing the height of the periodic potential or, as is
shown in Fig. 1, by increasing the number of atoms.

Scaling means that all data points (i.e. different ex-
perimental settings with the same Λ/Λc) collapse onto a
single universal curve. In order to confirm the scaling be-
havior experimentally we measure the width of the wave
packet after 50ms evolution for different system parame-
ters, i.e. atom number, initial width of the wave packet,
and depth of the periodic potential. The experimental
results shown in Fig. 4 confirm the universal scaling de-
pendence on Λ/Λc and follow qualitatively the prediction
of the simple model. The dashed line in Fig. 4 is the re-
sult of the numerical integration of the discrete nonlinear
equation given in eq. 2 evaluated at t =50ms. It shows
quantitative agreement with the experiment. The differ-
ence between the numerical (dashed line) and analytical
calculation (solid line) is due to the initial non-gaussian
shape (numerically obtained ground state) and the strong
deviation from the gaussian shape for long propagation
times.

Concluding we have demonstrated for the first time
the predicted effect of nonlinear self trapping of Bose-
Einstein condensates in deep periodic potentials. The
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FIG. 4: Experimental investigation of the scaling behavior.
The solid line shows the curve given by eq. 4. Experimentally
the parameter Λ/Λc was varied by using three different peri-
odic potential depths: s = 10.6(3) (stars), 11.1(3) (squares)
and 11.5(3) (diamonds). For each potential depth wave pack-
ets with different atom numbers and initial widths are pre-
pared and the width for t = 50 ms is determined. The experi-
mental data show qualitatively the scaling behavior predicted
by eq. 4 and are in quantitative agreement with the results
of the numerical integration of the DNL (dashed line). The
inset depicts the nature of the scaling: increasing Λ/Λc (by
e.g. increasing the atom number) leads to a faster trapping
and thus to a smaller final width.

detailed analysis shows that this is a local effect, which
occurs due to nonlinearity induced inhibition of site to
site tunneling at the edge of the wave packet. This be-
havior is closely connected to the phenomenon of macro-
scopic self trapping known in the context of double-well
systems. Furthermore we quantitatively confirm in our
experiments the predicted critical parameter which dis-
criminates between diffusive and self trapping behavior.
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5 Outlook

Bose-Einstein condensates in 1D optical lattice potentials constitute a very versatile
model system. The implementation of dispersion management, the realization of bright
atomic gap solitons and the observation of nonlinear self-trapping, described in this
work, demonstrate some of the possibilities offered by this system. In this context I
summarize in the following some ideas for future investigations concerning the field of
quantum mechanics, chaos and atomic physics.

Following the lines of (Raghavan et al., 1998), the equations of motions for the local
fractional population difference and the local relative phase for a system described by
the DNLS can be derived analytically. Based on these equations, the derivation of
an analytic expression for intrinsically localized modes (IlM), such as discrete solitons
(Ahufinger et al., 2004) and stable edges (Darmanyan et al., 1999) should be possible.
ILM are important for the quantum transport in lattice potentials and allow a deeper
understanding of the local self-trapping dynamics.

Also from a theoretical point of view, a comparison of the results of self-trapping in
lattice potentials with the results of the recent observation of self-trapping in random
potentials (Clément et al., 2005) should provide additional information on the process
of self-trapping.

Our experimental setup allows the implementation of the atom optics realization
of the delta kicked rotor (Moore et al., 1995) with Bose-Einstein condensates and thus
with a very small width in momentum space. The atom optics system has enabled
the experimental study of the transition between quantum and classical behavior. For
example, the effects of decoherence, i.e the mechanism whereby quantum interference
effects are destroyed via environmental coupling (Zurek, 1991), have been studied in the
quantum system. More classical-like behaviour is observed when decoherence is added,
e.g. by spontaneous emission (Klappauf et al., 1998).

The standard map, a pair of mathematical transformation equations known in the
field of chaos, represents the physical system of the delta kicked rotor. It is useful for
studying the basic features of chaotic motion. In this context, the implementation of
the standard map by means of the atom optics realization of the delta kicked rotor with
Bose-Einstein condensates allows to study localization effects and possibly the formation
of an Arnol’d stochastic web (Gardiner et al., 2000).

By adding two pairs of counter propagating laser beams perpendicular to the waveguide
axis, an array of tube potentials with large transversal trapping frequencies can be real-
ized. Together with the lattice potential along the waveguide (Paredes et al., 2004) and
its velocity control, this system allows to investigate the regime of strongly interacting
atoms in a moving system (Altman et al., 2005).

Since the author will leave the working field of experimental research at the university,
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m1 m1

m2

atom detector 1 detector 2

m3
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m4

m5
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m1

Figure 5.1: Complete quantum system. An initially excited two-level atom is coupled to the
electro-magnetic field mode m1. Two spatially separated photon detectors are coupled resonantly
to mode m1. The detection of the photon m1 is given by an increase of the temperature of the
heat reservoirs, to which the top detector levels are coupled, e.g. via phonons m4 - m9. The
environment is included in form of far detuned and not necessarily identical modes m2 and m3
(photon or phonon), which are coupled to the detectors.

the personal future project will be the numerical investigation of the collapse of the wave
function, i.e. the measurement problem in quantum mechanics. The hope is, to identify
the quantum process of measurement by investigating numerically the unitary evolution
of a complete quantum system that comprises the system of interest, the detectors and
the environment.

An example model system is described in figure 5.1. We first think of detectors 1 and
2 as two-level systems which are coupled only to mode m1. Then, during the evolution,
the energy of the excited atom is transferred into mode m1 and subsequently absorbed
by the detectors and we find the system in a state, where both detectors are in an equal
superposition of ground and excited state. In a second step we introduce an environment
by a coupling of detectors 1 and 2 to different far detuned modes m2 and m3, respectively.
The difference of the two modes m2 and m3 is due to e.g. the different spatial positions
of detector 1 and 2. This environment has the form of a perturbation and consequently
does not induce decoherence (Braun et al., 2001). Preliminary calculations have shown
that such a perturbation can lead to a small asymmetry in the excitation of the two
detectors.

In the future calculations the detectors will be coupled to a macroscopic heat reser-
voir, here described by a strong coupling to many initially empty phonon modes m4 -
m9. Then the detection is described by an increase of the temperature of the spatially
separated heat reservoirs, to which the detectors are coupled. The calculations shall
provide an understanding of the influence of an environment in the case of macroscopic
detectors.

The numerical implementation of the photon(phonon)-atom interaction can be done
using the Jaynes-Cummings model (Cohen-Tannoudji et al., 1992). The technical chal-
lenge is to reduce the very large number (>103) of basis states of this many-particle
system.
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A.1 Matlab c© code for the wave packet propagation in 1D with
the NPSE

% numerical propagation of the NPSE with a split-step Fourier method
clear
tic
% --------- constants --------------------------------------
m = 1.4445e-25; % Mass of 87 Rb
h = 6.626e-34;hbar=h/2/pi;% well ...
a = 5.32e-9; % scattering length
lambda = 783e-9 % wavelength of beam realizing lattice pot
kr = 2*pi/lambda; % recoil momentum
Er = (hbar^2*kr^2/2/m); % recoil energy
% --------- numerical propagation parameters ---------------
N = 2^13; % number of discrete points of Psi(x) / Psi(k)
G = 2*kr; % lattice recoil vector
dk = 8*G/N; % momentum sampling length (# of B-zones)/N
k = [-(N-1)/2*dk:dk:(N-1)/2*dk]-1/2*dk; % momentum vector
dx = 2*pi/(dk*N) % corresponding real space sampling length
x = [-(N-1)/2*dx:dx:(N-1)/2*dx]-dx/2;min(x),max(x) % real space vector
dt = 5e-6; % single time step dt
% --------- physical system parameters ----------------------
omega = 2*pi*0.1; % axial frequency of harm. waveguide pot.
omega_perp = 2*pi*200; % radial frequency of harm. waveguide pot.
atoms = 1000; % number of atoms in wave packet
g1d = atoms*2*hbar*a*omega_perp; % 1d coupling cons. in meanfield energy
Ek = hbar^2*k.^2/(2*m)/Er;% vacuum dispersion relation
sigma0 = 10e-6; % 1/e^2-width of initial gaussian wave packet
psi_x = exp(-(x).^2/(sigma0)^2); % Initial Gaussian wave function
Norm = sum(abs(psi_x).^2);% Norm
psi_x = psi_x/sqrt(Norm); % Psi normalized
T = 50e-3; % propagation time
save_t = 5e-3; % time between saved wave functions
% -------- program variables ----------------------------------
counter=0;
steps = round(T/dt); % # of single propagation steps
save_steps = round(save_t/dt); % # of s. prop. steps between saved Psi’s
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saves = 1+floor(T/save_t);% # of saved wave functions
PSI_x = zeros(saves,N); % empty matrix with wave functions Psi(t,x)
PSI_k = zeros(saves,N); % empty matrix with wave functions Psi(t,k)
psi_k =fftshift(fft(psi_x));% initial momentum distribution
PSI_k(1,:) = psi_k; % save initial functions
PSI_x(1,:) = psi_x;
% ------ propagation --------------------------------
toc
psi_k = exp(-i*Ek*Er/hbar*dt/2).*psi_k; % dt/2 in momentum space
psi_x = ifft(psi_k); % FFT^-1 -> real space
for i2=1:steps
Vx = 1/2*m*omega^2*x.^2; % axial wg potential
V2x = g1d*abs(psi_x).^2/dx./sqrt(1+2*a*atoms.*abs(psi_x).^2/dx)...

+0.5*hbar*omega_perp.*(1./sqrt(1+2*a*atoms.*abs(psi_x).^2/dx)...
+sqrt(1+2*a*atoms.*abs(psi_x).^2/dx)); % mean field energy

psi_x = exp(-i*(Vx+V2x)/hbar*dt).*psi_x; % dt in real space
psi_k = fft(psi_x); % FFT -> k-space
psi_k = exp(-i*Ek*Er/hbar*dt).*psi_k; % dt in k-space
psi_x = ifft(psi_k); % FFT^-1 -> real space
if i2/save_steps==round(i2/save_steps); % save/plot intermediate steps

counter=counter+1;
PSI_k(counter,:)=psi_k;PSI_x(counter,:)=psi_x;
subplot(2,2,1);
plot(x,abs(psi_x).^2,x,Vx*max(abs(psi_x).^2)/max(Vx));
axis([-100e-6 100e-6 -inf inf]);
str1(1)={[’propagation time=’ num2str(i2*dt*1000,3) ’ms’]};
str1(2)={[’elapsed calc. time=’ num2str(toc)]};
str1(3)={[’remaining calc. time=’ num2str(toc*(steps-i2)/i2,3)]};
text(-20e-6,0.5*max(abs(psi_x).^2),str1)
subplot(2,2,3);
plot(k/kr,abs(psi_k).^2);
axis([-.5 .5 -inf inf]);
subplot(2,2,2);
plot(x,atan(imag(psi_x)./(real(psi_x))))
axis([-100e-6 100e-6 -inf inf]);
subplot(2,2,4);
plot(k/kr,atan(imag(psi_k)./(real(psi_k))))
axis([-.5 .5 -inf inf]);
drawnow;

end;
end;
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A.2 Matlab c© code for the numerical calculation of the optical
imaging

% numerical fourier optics to propagate the imaging beam
% system:
% 1. Light@BEC -> free propagation to lens
% 2. phase imprint @ the lens (ideal lens with finite size)
% 3. Light@lens -> free propagation from lens to CCD-camera
% 4. record Intensity @ CCD-camera
%-------------------------------------------------------------

% ----- constants ---------
lambda=780e-9; % wavelength
width_beam=1.8e-3; % 1/e^2 width of the imaging beam
N=2^19; % Number of discrete points
Length_xaxis=.1; % size system
dx=Length_xaxis/(N-1); %smallest step size of x-axis
x=[-(N-1)/2*dx:dx:(N-1)/2*dx]-1/2*dx; % x-axis
k=2*pi/lambda; % wave vector
M=10; % Magnification
f_lens=0.08; % focal length of lens
xlens=0e-19; % distance of lens from beam axis
lens_size=50e-3; % diameter of lens
z1=(M+1)/M*f_lens; % distance from bec -> lens
z2=(M+1)*f_lens; % distance from lens -> CCD-camera
sigma=2e-6; % width of the BEC
OD=1; % optical density
delta=0; % detuning from resonance
amplitude=exp(-OD);

% ----------------BEC profile and phase due to detuning---
beam_int=exp(-2*x.^2/width_beam^2);
int_attenuation=(1-(1-amplitude)*exp(-2*x.^2/sigma^2));
Int_att_beam=beam_int.*int_attenuation; Norm=sum(Int_att_beam);
Ex_bec=sqrt(Int_att_beam)/sqrt(Norm);
Ex_bec=Ex_bec.*exp(-i*k*delta*exp(-2*x.^2/sigma^2));

% ---------------- free propagation for z1----------------
% free propagation is convolution of every position x with
% exp(i*k*geo_l) where geo_l=sqrt(x.^2 + z1^2) =z1+1/(2*z1)*x^2 is
% the geometric distance of point x’ on final plane at z1 to
% point x on initial plane (approx: ampl. does not change !)
% convolution = multiplication in k-space !
Ek_bec=fft(Ex_bec); Ek_freeprop=fft(exp(i*k/(2*z1)*x.^2));
% --- shift, so that profile is centered
Ex_before_lens=ifftshift(ifft(Ek_bec.*Ek_freeprop));
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% --------------- phase shift at the lens in real space---
% exp(-i*k*(f_lens+sqrt(f_lens^2+(x-xlens).^2))) is exact,
% numerically its better to use the second order Taylor approx.
phase_lens=exp(-i*k/(2*f_lens)*(x+xlens).^2);
finite_lens=-theta(x-xlens-lens_size/2)+theta(x-xlens+lens_size/2);
Ex_after_lens=Ex_before_lens.*phase_lens.*finite_lens;

% ----------- free propagation for z2 after the lens -----
Ek_after_lens=fft(Ex_after_lens);
Ek_freeprop=fft(exp(i*k/(2*z2)*x.^2));
Ex_ccd=ifftshift(ifft(Ek_after_lens.*Ek_freeprop));

% ------------ calculate normalized intensity ------------
Intensity_ccd=abs(Ex_ccd).^2;
Norm=sum(Intensity_ccd);
Intensity_bec=Intensity_ccd/Norm;

% ----------- and plot it --------------------------------
figure(1);
plot(x/M,Intensity_bec);
axis([-30e-6 30e-6 -inf inf]);
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A.3 Experiment control software flow diagram

NO

YES

“update parameter list [0]”
Put all the parameters from the 
parameter input array into variable
“Global parameters”

“Initialize the variables”

“main while-not-stop-loop”

“Edit the sequence [0]”
Channel or index changed ?
YES (read): update contens of the edit boxes
                     resize variable VT to “#sequence steps + 5”
 NO(default): write contents of the edit boxes to variable VT

“delete step pressed ? [1]”
YES : delete step from VT
 NO: nop

“copy step pressed ? [2]”
YES : move step contents into copy buffer
 NO: nop

“paste step pressed ? [3]”
YES : paste contents of buffer into step 
 NO: nop

“insert step pressed ? [4]”
YES : insert step with contents 
           of buffer into VT
 NO: nop

“Play or print sequence [5]”
Play-once, print, set-value-@,
save-player-seq. or save-graph 
pressed ?

“load/save sequence [6]”
load/save sequence pressed ?
YES : load/save sequence
 NO: nop

“zoom into graph [7]”
zoom used ?
YES : update printed graph
 NO: nop

“collect time indices [1]”
parse time definitions and put them 
in right order of mutual dependence

“generate player sequence [2]”
parse human readable time- and 
step-definitions and put them in a 
machine readable format into 
variable “player sequence”

“save player sequence [3]”
save-player-sequence was pressed ?
go home and think deeply about it !

“generate binary sequences [4]”
generate 2d-arrays (channel-time) 
with corresponding floating point value
(the bytes for the 8-bit digital channels 
are generated by a subfunction from a c++ library)

“print/save the sequence graph [5]”
save-graph or print-graph was pressed ?
gsave the graph into an Excel sheet
or print the complete graph into graph box 

“here comes the action! [7]”
1. set value @ t=0 
2. feed the two analog output cards with bin. seqs. 
    and make them wait for the sync. timing pulses 
    from the dig. card “slave mode”
3. feed the digital output card with bin. seqs. start, 
    once the MOT is full
4. wait until the sequence is over 

“set values@ t=0 [8]”
set the output cards to 
the values@ t=0 !

“set value @ t=? [6]”
set value @ t=? was pressed ?
read values for all the channels from binary 
sequence and set the values on the output cards

Figure A.1: Flow diagram of the experiment control software written in Labview c©. The
program can be divided into a main loop (left), which cares about the editing of the human
readable experiment sequence, and the “run” part (right), where a binary sequence is generated
and executed. The program uses the main variable “VT” for the human readable sequences, and
the “player-sequence”, where the machine readable sequence is stored.
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A.4 Matlab c© code to obtain Bloch-bands and Bloch-functions

% Calculate Bloch bands E_n(q) and Bloch functions Phi_(n,q)(x)
% -------------------------------------------------------------
s=1.20; % Potential depth V_0=s E_r

%(energies in units of E_r !!)
Vq=-s/4; % coefficients in fourier series of

% V(x)=V_0 cos^2(k_l x)
E0=[];E1=[];E2=[]; % clear all arrays
m=15; % number of bands -- must be odd !
Q=2; % reciprocal lattice vector Q=2 k_l

% (all reciprocal vectors in unit of k_l)
K=-(m-1)/2*Q:Q:(m-1)/2*Q; % reciprocal lat. vectors in Hamilt. matrix
quasimomentum=[-1.5:.05:1.5]; % all quasi momenta q for which

% E_(q) is calculated
% ------------- calculate -------------------------------------
for q=quasimomentum;
H1=diag((q-K).^2);
H2=diag(ones(m-1,1)*Vq,1);
H3=diag(ones(m-1,1)*Vq,-1);
H=H1+H2+H3; % generate Hamiltonian matrix H_(m,m’)
[Cq,Eq]=eig(H); % diagonalize H_(m,m’)

% -> eigenvalues Eq and eigenvector coeff. Cq
E0=[E0,Eq(1,1)]; % generate array E(q) for bands 1,2 and 3
E1=[E1,Eq(2,2)];
E2=[E2,Eq(3,3)];

end;
% ----------- calculate Bloch function for q=1 -----------
q=1; H1=diag((q-K).^2);
H2=diag(ones(m-1,1)*Vq,1);
H3=diag(ones(m-1,1)*Vq,-1);
H=H1+H2+H3; % generate Hamiltonian matrix H_(m,m’)
[Cq,Eq]=eig(H); % diagonalize H_(m,m’)

lambda=780e-9; % periodicity of the potential is lambda/2
dx=lambda/2/100;
x=[-2*lambda/2:dx:2*lambda/2]; % range in real space
XX=(ones(size(x,2),size(Cq(:,1),1))’*diag(x))’; % generate matrix with m

% columns of x-rows
argument=i*XX*diag(K*2*pi/lambda); % generate matrix with

% arguments: (i*m*2k*x)
% ------- calc Eigenfunc=exp(iqx)*SUM_m[ exp(-imQx) ] ----------------
eigenfunc=sum((exp(argument)*diag(Cq(:,1)))’).*exp(i*q*2*pi/lambda*x);
Neigenfunc=eigenfunc/sqrt(sum(abs(eigenfunc).^2)*dx); % normalize
density=abs(Neigenfunc).^2; % probability density
realpart=real(Neigenfunc); % real part of eigen function

104



A.5 Matlab c© code for the generation of Wannier functions

A.5 Matlab c© code for the generation of Wannier functions

% Calculate Wannier functions from Bloch functions for cosine potential
clear
% physical and system constants
Mass=1.443e-25; % Mass of 87 Rb Isotop
h=6.626e-34;
hbar=h/2/pi; % Plank constant
s=3; % Potential depth s[E_r] ( V=s*E_r*cos(k*x)^2 )
lambda=783e-9; % wavelength of the standing wave laser light
d=lambda/2; % lattice periodicity in real space
k=2*pi/lambda; % laser light wave vector
N=1e3; % Number of points in one period d (N even !)
dx=d/N; % sampling in real space
x=[-4.5*N*dx:dx:4.5*N*dx]; % x-range in real space
wannier=zeros(size(x)); % "empty" wannier state
J=11; % Number of Bloch Bands (J odd!)
Ks=2; % Periodicity in reciprocal lattice [k_laser]
K=-(J-1)/2*Ks:Ks:(J-1)/2*Ks; % reciprocal lattice vectors
q=s/4; % fourier coefficient of lattice potential [E_r]

%---------------- 1. generate Bloch functions "phi=exp(iqx)*u_q"
%---------------- for all quasi momenta q in a Brillouin zone
%---------------- 2. generate Wannier functions
%---------------- w=sum_q[ exp(-i q x_0)* phi_q] @ x=x_0
dm=0.001; %sampling of q in a Brillouin zone
for m=[-1:dm:1];

M1=diag((m-K).^2);
M2=diag(ones(J-1,1)*q,1);
M3=diag(ones(J-1,1)*q,-1);
M=M1+M2+M3;
[Ck,Ek]=eig(M);
n=1;
u_q=zeros(size(x));
for l=(-(J-1)/2:(J-1)/2); % generate u_q

u_q=u_q+Ck(n,1)*exp(-i*l*2*k*x);
n=n+1;

end;
phi=exp(i*m*k*x).*u_q; % generate Bloch function phi_q
phi=phi*exp(-i*angle(phi(round(size(phi,2)/2)))); % !! important !!

% assure that the global phase
% of phi_q = 0 for all q at x=0 !!

wannier=wannier+exp(-i*m*k*lambda/4).*phi; % generate Wannier function
end;
Norm=sqrt(sum(abs(wannier).^2)*dx); % normalization
wannier=wannier/Norm;
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A.6 Matlab c© code for the wave packet propagation with the
DNL

% Propagate 1D DNL with Runge-Kutta function "ode45"
function Propagate_DNL

%--------------- physical constants
h=6.626e-34;
hbar=h/2/pi; % Plank constant
m=1.443e-25; % Mass of 87Rb Isotop
a=5.6124e-009; % scattering length 87Rb
lambda=783e-9; % wavelength d2 line
omega_r=hbar*(2*pi/lambda)^2/2/m; % recoil frequency
E_r=hbar*omega_r; % recoil energy
d=lambda/2*1e6; % inter well distance [m]
DimPsi=501; % Number of Wells !ODD!
xrange=[-d*(DimPsi-1)/2:d:d*(DimPsi-1)/2];

% hole x-range [m]

%--------------- experimental parameters
s=12; % lattice potential depth [E_r]
omega_perp=230*2*pi; % transverse frequency of waveguide
omega_long=0.500*2*pi; % longitudinal frequency of waveguide
N=5000; % total number of atoms
TOF=50e-3; % propagation time [s]
sigma_xwave=10; % width of the initial. w-packet [m]

%--------------- build wave function
PSI=(exp(-xrange.^2/sigma_xwave^2))’; % initial wave function
Norm=sqrt(sum(abs(PSI).^2)); % well ...
PSI=PSI/Norm*sqrt(N);
PSI_in=PSI; % start wave function for the propagation
%Psis=[];
PSI_save=zeros(100,DimPsi); % array where the wave f’s are stored

%--------------- calculate relevant values for the propagation of the DNL
omega_latt=2*omega_r*sqrt(s); % approx. harmonic frequency in one well
sigma_x=sqrt(hbar/m/omega_latt); % long. length of wave f. in single well
eps=(0.5*m*omega_long^2*xrange.^2*1e-12/hbar)’;

% on-site energies
U_1=sqrt(m*omega_perp^2*4*pi*a/m/(sqrt(2*pi)*pi*sigma_x));

% nonlinear par. U1
%K=E_bandwidth(s)/4/hbar; % tunn. energy K, calc. with Band width
K=4/sqrt(pi)*omega_r*s^(3/4)*exp(-2*sqrt(s));

% alternative: K from ref: "w. Zwerger"
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%--------------- the propagation with 100 intermediate saved time steps
options=odeset(’RelTol’,3e-8,’AbsTol’,1e-8,’Stats’,’off’,’MaxStep’,1e-5);
dt=TOF/99; % time between two saved time steps
for counter=1:100

[TT,PSI_out]=ode45(@DGLFUNC,[0 dt/2 dt],PSI_in,options);
% solve DNL for one time step dt

PSI_in=PSI_out(3,:); % start function for next time step
subplot(2,2,2); % plot |psi|^2
plot(xrange,abs(PSI_in).^2,xrange,abs(PSI).^2,’r’);
title([’Prop. time = ’ num2str(counter*dt*1e3,4) ’ ms / ’ ...

num2str(counter*dt/TOF*100,3) ’ %’]);
xlabel(’lattice site n’);
subplot(2,2,4); % plot angle(psi)
plot(xrange,unwrap(angle(PSI_in))/2/pi);
title(’angle [2\pi]’);
xlabel(’lattice site n’);
PSI_save(counter,:)=PSI_out(3,:); % save time step
drawnow;

end;

%--------------- calculate and plot the rms-width versus time
rms_width=zeros(length(TT),1); for t=1:100

PSI_out2=abs(PSI_save(t,:)).^2;
Ewx=sum(PSI_out2.*xrange)/sum(PSI_out2);
Erw2x=sum(PSI_out2.*(xrange.^2))/sum(PSI_out2);
Var=2*sqrt(Erw2x-Ewx^2);
rms_width(t)=Var;

end; subplot(1,2,1); plot([0:dt:TOF]*1e3,rms_width/2);
xlabel(’Propagation time [ms]’); ylabel(’rms-Width [m]’);

%--------------- save data
%filename=[’testS10N5000_DNL.mat’];
%save(filename)

%--------------- nested DNL function
function DPSI= DGLFUNC(t,PSI);

psi_j=PSI;
psi_jm1=[0; PSI(1:DimPsi-1); ];
psi_jp1=[PSI(2:DimPsi); 0;];
DPSI=-i*(eps+U_1*abs(psi_j)).*psi_j+i*K*(psi_jm1+psi_jp1);

end % DGLFUNC

end % Propagate_DNL
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A.7 Matlab c© code for propagation of the two-mode DGL’s for
double well MQST

% --- Propagate double well macroscopic self-trapping DGL for population
% --- imbalance z and relative phase phi with Runge-Kutta function "ode45"
function Propagate_MQST_DGL
%--------------- experimental parameters
TOF=5.0; % propagation time [tunneling time hbar/2K]
z0=.6; % initial fractional imbalance
phi0=-0*pi; % initial relative phase
%--------------- build initial function (point in phase plane)
PSI=[z0;phi0]; % initial coordinates in phase plane
PSI_in=PSI; % start function for the propagation
phi_save=zeros(1000,1); % array for time series of phase_point’s
z_save=zeros(1000,1); % array for time series of imbalance_points’s
%--------------- calculate relevant values for the propagation of the DNL
Lambda_c=(1+sqrt(1-z0^2)*cos(phi0))*2/z0^2; % Lambda critiacal
Lambda_s=1/sqrt(1-0.6^2); % Lambda stationary
Lambda=Lambda_c*0.991; % Lambda for DGL
%--------------- the propagation with 1000 intermediate saved time steps
options=odeset(’RelTol’,3e-8,’AbsTol’,1e-8,’Stats’,’off’,’MaxStep’,1e-4);
dt=TOF/999; % time between two saved time steps
for counter=1:1000 % solve DGL

[TT,PSI_out]=ode45(@twomodeDGLFUNC,[0 dt/2 dt],PSI_in,options);
PSI_in=[PSI_out(3,1);PSI_out(3,2)]; % start function for next time step
phi_save(counter)=PSI_out(3,2);
z_save(counter)=PSI_out(3,1);
plot(phi_save/pi,z_save,’-r’);
axis([-2 2 -1 1]);
title([’Prop. time = ’ num2str(counter*dt,2) ’ T_{tunnel} / ’ ...

num2str(counter*dt/TOF*100,3) ’ %’]);
xlabel(’relative phase \phi’);
ylabel(’population imbalance z’);
drawnow;

end;

%--------------- save data
filename=[’2mode_z0_0.6_phi0_0Lc0.91.mat’];
save(filename)

%--------------- nested DGL function
function DPSI= twomodeDGLFUNC(t,PSI);

DPSI=[-sqrt(1-PSI(1)^2)*sin(PSI(2)) ; ...
Lambda*PSI(1)+PSI(1)/sqrt(1-PSI(1)^2)*cos(PSI(2))];

end % twomodeDGLFUNC
end % Propagate_MQST_DGL
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I. Bloch, T. W. Hänsch, and T. Esslinger. “Atom Laser with a cw Output Coupler”,
Phys. Rev. Lett. 82, 3008 (1999).

N. Bogoliubov. “On the theory of superfluidity”, J. Phys. 11, 23 (1947).

S. N. Bose. “Plancks Gesetz und Lichtquantenhypothese”, Zeitschrift für Physik, 26
(1924).

D. Braun, F. Haake, and W.T. Strunz. “Universality of Decoherence”, Phys. Rev. Lett.
86, 2913 (2001).

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyap-
nikov, and M. Lewenstein. “Dark solitons in Bose-Einstein condensates”, Phys. Rev.
Lett. 83, 5198 (1999).

S. Burger, F.S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M.L. Chiofalo, and M.P.
Tosi. “Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic
optical potential”, Phys. Rev. Lett. 86, 4447 (2001).

O. Carnal and J. Mlynek. “Young’s double-slit experiment with atoms: A simple atom
interferometer”, Phys. Rev. Lett. 77, 5315 (1991).

Y. Castin and R. Dum. “Bose-Einstein Condensates in Time Dependent Traps”, Phys.
Rev. Lett. 77, 5315 (1996).

F.S.Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi,
M. Inguscio. “Josephson Junction Arrays with Bose-Einstein Condensates”, Science
293, 843 (2001).

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin. “Three-dimensional
viscous confinement and cooling of atoms by resonance radiation pressure”, Phys.
Rev. Lett. 55, 48 (1985).

D. Clément, A.F. Varón, M. Hugbart, J.A. Retter, P. Bouyer, L. Sanchez-Palencia, D.M.
Gangardt, G.V. Shlyapnikov, and A. Aspect. “Suppression of Transport of an Interact-
ing Elongated Bose-Einstein Condensate in a Random Potential”, cond-mat/00005568
(2005).

C. N. Cohen-Tannoudji. “Manipulating atoms with photons”, Rev. Mod. Phys. 70 (1998).

C. Cohen-Tannoudji, J. Dupont-Roc und G. Grynberg. “Atom-Photon Interactions, Ba-
sic Processes and Applications” Wiley-Interscience (1992).

M.B. Dahan, E. Peik, J. Reichel, Y. Castin and C. Salomon. “Bloch oscillations of atoms
in an optical potential” Phys. Rev. Lett. 76, 4508 (1996).

110



Bibliography

J. Dalibard and C. Cohen-Tannoudji. “Laser cooling below the doppler limit by polariza-
tion gradients: simple theoretical models” J. Opt. Soc. Am. B 6, 2023 (1989).

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. “Theory of Bose-Einstein
condensation in trapped gases”, Rev. Mod. Phys. 71(3), 463 (1999).

S. Darmanyan, A. Kobyakov, F. Lederer, L. Vazquez. “Discrete fronts and quasirectan-
gular solitons”, Phys. Rev. B 59, 5994 (1999).

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn,
and W. Ketterle “Bose-Einstein Condensation in a Gas of Sodium Atoms”, Phys.
Rev. Lett. 75, 3969 (1995).

L. Deng, E. W. Hagley, J.Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian,
K. Helmerson, S. L. Rolston and W. D. Phillips. “Four-wavemixing with matterwaves”,
Nature 398, 218 (1999).

K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller, and J.T.M Walraven. “Two-
dimensional magneto-optical trap as a source of slow atoms”, Phys. Rev. A 58, 3891
(1998).

B. Eiermann, P. Treutlein, Th. Anker, M. Albiez, M. Taglieber, K.-P. Marzlin, and M.
K. Oberthaler. “Dispersion Management for Atomic MatterWaves” Phys. Rev. Lett.
91, 060402 (2003).

B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin and M. K.
Oberthaler. “ Bright Bose-Einstein Gap Solitons of Atoms with Repulsive Interaction”
Phys. Rev. Lett. 92, 230401 (2004).
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war, bei meinen philosophischen Ausschweifungen. Danken möchte ich ihm für die span-
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