The phenomenology of hadronic interactions at high energy, which developed in the 1960s, is briefly explained. Following the introduction of Quantum Chromodynamics (QCD) and its success in elucidating the nature of nucleon structure in the 1970s, experimental results, both new and not so new, are described which, when taken together, provide insight into the structure of hadrons and of the chromodynamic mechanisms responsible for their interactions.

Early every advance in physics can be attributed in some way or another to an understanding of the structure of the phenomenon on which it is based. Measurements of structure come from scattering experiments in which the results depend on the nature both of the quanta involved and of their interaction, sometimes in an inseparable way. They rely on the principles of quantum mechanics embodied in Heisenberg’s Uncertainty Principle [1,2,3]

\[\Delta T \cdot \Delta E \gtrsim h , \quad \Delta r \cdot \Delta p \gtrsim h . \] (1)

Particle Physics is no exception. It is driven by a wish to get to the simplest explanation for the reason why matter is the way it is. Thus it is concerned with the scattering of particles at the highest possible energy in which the shortest distances and the shortest time intervals can be resolved.

The results of scattering experiments come in the form of measurements of the spectroscopy of excitation, such as in figure 1a, or in measurements of scattering angular distributions, such as in figure 1b, and the extraction from them of form factors and structure functions. The final state in each case can be either two individual particles or two groups of particles which move together.

In this presentation I wish to explain the present state of our understanding of hadronic physics. The mass of the universe is attributable in very large part to hadrons, that is to neutrons and protons and to their excitations. The physics of hadrons is therefore central to our understanding of the universe. Nearly everything which we know about hadrons is from scattering experiments, following the time–honoured experimental principles outlined above.

In the Beginning
The first steps in understanding the structure of hadronic physics came from measurements of the dependence on interaction energy and momentum transfer of hadron scattering. Hadronic “resonances” were observed and their properties and quantum numbers were determined (figure 1a). Thereby a spectroscopy of hadrons emerges [4] in terms of that of quarks of different “flavour” up, down, and, more [5]. Three quarks, uud, constitute the proton. When in 1964 this spectroscopy was first noticed, there was a conspicuous lack of experimental evidence for the existence of such quarks as identifiable quanta.

At much higher energy the dependences of these scattering processes on momentum transfer, or scattering angle, are found to have features reminiscent of diffraction in optics, or diffraction in X-ray and neutron scattering by crystalline material. For example in proton–proton elastic scattering pp → pp, figure 2a, structure in the interaction is self-evident if one thinks in terms of diffraction [6].

Such scattering favours small scattering angles, that is small |t| – t is the 4–momentum transfer squared in

\[t = (q - q')^2 = 4p \cdot q = 4p^2 \]
Preisträger

Fig. 2:

a) The differential cross section $d\sigma/dt$ for the process $pp \rightarrow pp$ [6]; t is the 4-momentum transfer squared in the interaction; a clear “diffraction-like” structure is visible. Not shown are measurements for $t > -0.6$ GeV2 for which the peripheral dependence of $d\sigma/dt$ continues upwards to the kinematic limit at $t \rightarrow 0$ GeV2.

b) The differential cross section $d\sigma/dt dx_p$ for the inclusive production $pp \rightarrow pX$ at $t = -0.05$ GeV2 as a function of longitudinal momentum x_p expressed as a fraction of the incident proton momentum [7]; when x_p is large ($x_p = 1 - x_f$ small) the cross section $\sim 1/x_p$.

Fig. 3:

A deeply inelastic electron–proton interaction in the H1 experiment at HERA: a positron e^+ with energy 27.5 GeV from the left collides head-on with a proton p with energy 820 GeV from the right (upper calorimeter display); the positron is “back-scattered” due to the high 4-momentum transfer squared Q^2, and is reconstructed as a track pointing to a cluster of energy in the calorimeter; the proton fragments in the form of a “jet” of many tracks and associated cluster corresponding to the direction of the quark in the proton which is resolved and struck by the positron (both calorimeter displays); fragments from the remnant of the proton stay undetected in the direction of the proton beam; both a “side view” and the incident proton’s “eye view” are shown; the CST-display shows the hits from the traversal of charged particles, both the scattered positron and those in the quark jet, and the result of reconstructing these hits into trajectories of the charged particles in the axial magnetic field of the H1 experiment; the positron is seen to “balance” the jet of hadrons in direction reflecting the conservation of momentum perpendicular to the direction of the electron and proton beams.

The Structure of the Proton

In the pursuit of hadronic structure it is natural to try to use point-like particles to probe in scattering experiments the structure of hadronic aggregates, the most familiar of which is the proton, following the principle of electron microscopy. In terms of figure 1b, the contribution of one of the particles to the overall structure of the interaction is nil. The most experimentally accessible particles which appear point-like relative to hadronic dimension are electrons (e^-) and positrons (e^+). The highest energy collisions between electrons (or positrons) and protons are to date those at HERA, in DESY, Hamburg, where 27.5 GeV electrons (or positrons) collide head-on with up to 920 GeV protons. HERA is the world’s first collider of different species of particle. As such it is the electron microscope par excellence.

When they scatter at HERA, the electron and the proton interact extremely violently. The 4-momentum transfer squared Q^2 experienced by the electron is such that it resolves spatial distances of around 0.007 fm ($\Delta r \sim h/Q$ when $Q^2 \sim 900$ GeV2 – equation 1). This is about 0.7% of the diameter of the proton. The time scale of the interaction is at least a factor 10 shorter...
than that characteristic of the constituent structure making up the proton ($\Delta T = \frac{p}{M_p c^2}$; equation 1). The scattering angular distribution of the electron thus reflects a “snapshot” (ΔT very small) of the finest detail (ΔT very small) of proton structure.

The violence of such electron–proton collisions means that the target fragments; we say that the interaction $e p \rightarrow e X$ is deeply inelastic. Figure 3 shows one such electron–proton interaction in the H1 experiment at HERA. The incident electron scatters through substantial angle away from its incident (beam) direction and the proton fragments “opposite” to the electron because momentum has to be conserved in the interaction. Thereby the electron resolves one of the short distance constituents which make up the proton, a quark, and the quark appears as a “jet” of hadrons.

The inelastic nature of the interactions means that energy as well as momentum is transferred between the electron and the proton so that two variables describe the electron–proton interaction. They are most conveniently chosen to be 4–momentum transfer squared Q^2 and “Bjorken–x”. When the electron–proton interaction is viewed in a Lorentz frame of reference in which the proton momentum exceeds greatly the electron momentum, x can be thought of as the fraction of the proton momentum carried by the quark which interacts with the electron (figure 4a).

The dependence on x and Q^2 of a “structure function” $F_2(x,Q^2)$ of the proton can be extracted from analysis of these interactions. The structure function specifies how the point–like constituents of the proton, the quarks, are distributed in x and Q^2 as seen by the electron which resolves and then interacts with one of them. The interaction between the point–like electron and the proton is envisaged as in figure 4a. If the charge of each ‘flavour’, that is type, u, d, ... of quark is e_i, then

$$F_2(x,Q^2) = \sum_{i=u,d,...} e_i^2 x f_i(x,Q^2), \quad (2)$$

where $x f_i(x, Q^2)$ are “parton distribution functions” (pdf’s) or parton densities specifying the distribution of the proton momentum amongst the quarks which make up the proton. If we understand the pdf’s, we understand proton structure.

Measurements of F_2 now cover a large range of x and Q^2 (figures 5 and 6) [10, 11, 12, 13]. An unmistakable trend is observed. At lower x (≤ 0.1) F_2 rises with increasing Q^2, and more so as x decreases. At $x \sim 0.1$ F_2 is independent of Q^2. For $x \approx 0.1$ F_2 decreases with increasing Q^2.

The lack of dependence at $x \sim 0.1$ of F_1 on Q^2 amounts to “scale invariance”; there is no dependence of the electron–proton scattering process on a distance scale (equation 1). The first measurements of F_2 in 1969 were mainly at such x [13]. When discovered, this
Fig. 6: The measurements in figure 5 now in the form of a “reduced cross section”, which is approximately \(F_2 \), for deeply inelastic electron–proton interactions at larger \(x \) only, showing more clearly the decrease with increasing resolution scale \(Q^2 \) for \(x \gg 0.1 \); there is also a discrepancy of low significance at the largest \(Q^2 \) at Bjorken-\(x \) of 0.45 where the data turn up and expectation, based on our total knowledge to date of proton structure and electron–quark interactions, says that the data should turn down.

Fig. 7: Feynman “vertices”, or “splitting diagrams”, in Quantum Chromodynamics (QCD) governing the interactions, and therefore also the quantum fluctuations, of the field quanta, quarks and gluons:

- \(q \) gluon Bremsstrahlung by a quark \(q \to qg \).
- \(g \) gluon pair creation of a quark–antiquark pair \(g \to q\bar{q} \).
- \(g \) gluon pair creation of a gluon pair \(g \to gg \). Gluons \(g \) appear as “springs”, quarks \(q \) as lines.

scale invariance of deeply inelastic electron–proton scattering confirmed a prediction of Bjorken [14] and was the first evidence that the incident electron resolved and interacted with point–like (with no scale!), almost free, “partons” in the proton [15]. These partons were later identified as quarks (figure 4a).

Clearly, \(F_2 \) is not universally scale invariant – there is an “evolution” of quarks from larger to smaller fractional momentum \(x \) with increasing resolving power. With increasing \(Q^2 \) it becomes more and more likely that the electron interacts with a quark which carries less and less of the proton’s momentum. Such violations of scale invariance (often colloquially referred to as “scaling violations”) carry with them a simple message.

Because they are confined to form a proton, the quarks in a proton cannot be completely free; they must interact to some extent with each other. Any description of these interactions based on quantum field theory requires field quanta – gluons \(g \) – as well as quarks (just like the field quanta in quantum electrodynamics QED are photons as well as electrons). This quantum field theory is called quantum chromodynamics, or QCD, because in it the coupling strength is specified by a quantum number “colours” assigned to quarks and to gluons.

As in any quantum field theory, quantum fluctuations in QCD of the form of gluon Bremsstrahlung from quarks \(q \to qg \) are possible (figure 7a) – compare QED Bremsstrahlung of photons. The interaction of the electron with a quark in the proton may therefore be after the quark has emitted one or more gluons when it then carries less of the proton’s momentum (figures 4b and c). As the electron is able to resolve finer and finer detail in the proton, and thus finer and finer detail close to the quark, it is able to see the quark after it has lost momentum due to more and more gluon emissions. In this way a point–like quark looks different at different resolution scales – it has structure due to its quantum fluctuations. So as \(Q^2 \) increases the fraction of momentum \(x \) carried by the quarks is seen to evolve to lower values and more and more of the momentum of the proton becomes attributable to gluons. A feature of QCD is that the interaction between quarks becomes weaker as the distance between them gets smaller – “asymptotic freedom”. Thus, when confined within a proton, quarks appear almost free and the structure of the proton can be expressed in such terms – equation 2 above.

There are also quantum fluctuations in QCD of the form of gluon pair production of quark and antiquark \(g \to q\bar{q} \) (figure 7b) – compare e+e− pair production in QED – and also of two gluons \(g \to gg \) (figure 7c) – for which there is no QED analogue. As \(Q^2 \) increases more and more quarks and antiquarks arising from gluon quantum fluctuations are also resolved by the electron. In this way the proton appears to the electron as having a density at low \(x \) of so called “sea” quarks and antiquarks which grows with increasing resolution and which is associated with the growing density of gluons. Thus as \(x \) decreases the rising dependence of \(F_2 \) on \(Q^2 \) becomes steeper.

The picture of proton structure outlined above can be quantified. The processes in figure 7 are calculable in QCD [16]. Parton distribution functions, or densities, \(x f_i(x) \) can be extracted from the \(x \) and \(Q^2 \) dependence of \(F_2 \) (figure 5 and equation 2). Figure 8 shows the structure of the proton which is obtained at a low and at a high resolution scale \(Q^2 \) in terms of valence quark, sea
quark and gluon pdf's \(x f_{\text{valence}}(x), x f_{\text{sea}}(x), \) and \(x f_{\text{gluon}}(x) \). With increasing resolution scale \(Q^2 \) the valence quark structure evolves slowly to lower \(x \), and, at low \(x \), the gluon and sea quark momentum densities grow.

So we have an understanding of proton structure based on the QCD dynamics of three valence quarks (\(uud \)) together inevitably with sea–quark and gluon densities which arise through quantum fluctuation. These features are epitomised in the nature of the scaling violations at different \(x \). At low \(x \), where gluon pair production is important, the structure function \(F_2 \) of the proton rises with increasing \(Q^2 \) (figure 5), and at larger \(x \), where gluon Bremsstrahlung from valence quarks is important, \(F_2 \) falls with increasing \(Q^2 \) (figure 6). The original scale invariance first observed at \(x \approx 0.1 \) arises from a balance of two contrasting consequences of quantum fluctuations in QCD together with the distribution functions specifying the quark and gluon densities in the proton.

The Structure of the Photon

Unlike the proton, the photon is a field quantum with well prescribed "point–like couplings" to other electrically charged field quanta, such as electrons, positrons and quarks. The existence of quantum fluctuations of the photon to these charged quanta means that a photon will thereby also have a "structure", the detail of which is visible to the extent that it can be resolved by a probe.

Quantum fluctuations of a photon to electrons and positrons contribute to the QED structure of the photon. The most notable consequence of such structure is the anomalous magnetic moment (\(g \)-factor > 2) of the electron. The effect of quantum fluctuation is also manifest in atomic spectroscopy – the Lamb shift [17]. Another consequence is electron–positron pair production \(e^+e^- \rightarrow q\bar{q} \) by high energy (for example \(X \)- and \(y \)-ray) photons.

There are also quantum fluctuations of the photon to quark and antiquark \(y \rightarrow q\bar{q} \), and thus there is expected to be a QCD, or hadronic, structure of the photon. Observation of this structure is therefore a test of our QCD–based picture of hadronic physics. Moreover, just as for the QED structure of the photon, Witten showed that the QCD structure could be calculated [18].

In analogy with deeply inelastic electron–proton interactions and proton structure, hadronic photon structure can be observed in deeply inelastic electron–photon interactions (figure 9) in the process \(e^+e^- \rightarrow e^+e^-X \) (\(X \) is a hadronic system). One electron [3] scatters with a momentum transfer squared \(Q^2 \) and the other with \(p^2 \). It is possible to arrange \(p^2 \) to be less than \(Q^2 \) in which case one electron interacts more violently with momentum transfer squared \(Q^2 \) and so probes the hadronic structure of the "target" photon of mass squared \(p^2 \) arising from a less violent electron interaction. The kinematic variables \(Q^2 \) and \(x \) have the same definition and physical meaning as for deeply inelastic electron–proton scattering, and we can measure structure functions of photons of different mass squared \(p^2 \).

The first measurements of the photon structure function \(F_2 \) were made at the PETRA \(e^+e^- \) storage rings at DESY in the early 1980s. An example is shown in figure 10a [19] for the easiest case to measure, namely when \(p^2 \) is very nearly zero so that the "target" photon is very nearly real. The \(x \)–dependence of \(F_2 \) shows a tendency to increase, and there are clear scaling violations in which \(F_2 \) everywhere rises with increasing \(Q^2 \).

The \(Q^2 \) dependence of \(F_2 \) follows that expected if hadronic photon structure is dominated by quantum fluctuation. Quark antiquark splitting \(y \rightarrow q\bar{q} \) is very like gluon splitting \(g \rightarrow q\bar{q} \). At low \(x \) where gluon splitting dominates proton structure, the scaling violations of \(F_2 \)

5) Here no distinction is made between electron and positron because it is not necessary - the term electron is generic.
rise with increasing Q^2 (section 3 and figure 5). So the rising scaling violations of F_2 over the whole range of x which is measured follow the expectation of a structure driven by the quantum fluctuation $y \rightarrow q\bar{q}$. Moreover, an understanding of such measurements of F_2 in terms of ab initio calculations of hadronic photon structure in QCD (following Witten) has been achieved.

We can also test further the QCD picture of photon structure by increasing the mass squared P^2 of the “target” photon, that is by “squeezing it” ($\Delta P - P$ larger, so ΔP smaller – equation 1). The parent electron of the target photon is thus required to scatter through somewhat larger scattering angles thereby increasing P^2. The only such measurement until recently was also made at the PETRA e^+e^- storage rings [20] in the early 1980s. The results demonstrate that, as the size of the photon decreases, its hadronic structure diminishes broadly as expected in QCD (figure 10b).

Nowadays new measurements of real and virtual photon structure are available from experiments at e^+e^- colliders such as LEP [21] and, using a different experimental approach, from experiments at HERA [22, 23].

So the hadronic structure of the photon is the archetype for the structure of point–like quanta through quantum fluctuation. It is driven by a leading splitting function $y \rightarrow q\bar{q}$ in which the scaling violations of the structure function show a rise with increasing Q^2 for all but the largest x, and for which the x dependence of the structure function tends to increase with increasing x. Furthermore, ab initio QCD calculations of photon structure are found to be broadly consistent with measurement.

Fig. 11:
Schematic "Feynman diagrams" of a deep–inelastic ep interaction at low Bjorken–x in which there is a rapidity gap between the proton remnant Y and other produced hadrons X.

- **a)** The presence of the rapidity gap allows two hadronic system X and Y to be distinguished. The mass of system Y is constrained to be less than 1.6 GeV by means of forward secondary particle detectors. The mass M_X of system X is measured in the central region of the experiment.
- **b)** If such interactions are viewed as deeply inelastic scattering then they amount to a probe of the structure of the momentum transfer in the proton interaction $p \rightarrow Y$ in which the quark resolved by the electron is part of the structure of the interaction rather than the structure of the proton; f is the Bjorken–x momentum variable for the resolved quark now as a fraction of the momentum transfer $P = P - Y$ in the interaction.

Fig. 12:
The first measurement of the structure function $F^{E5}(x, Q^2, s_\rho)$ [26]; the x_ρ dependence is shown for different fixed values of Q^2, the deep–inelastic probe scale, and s_ρ, the curves are the result of a fit in which a universal diffractive dependence, corresponding closely to that in inelastic pp interactions, is fitted to the data.

The Structure of Hadronic Interactions

Proton structure at low x is dominated by the consequences of QCD quantum fluctuations, namely by sea–quarks and gluons and their growth with increasing probe resolution Q^2 (figure 8). A long “chain”, or “ladder”, of QCD radiation in the form of gluon and quark emission can occur before the electron interacts with a quark – figure 4c, and the quark now has performed only a tiny fraction x left of its parent proton’s momentum.

A consequence of such a ladder is the way in which hadrons are distributed in the final state of the deeply inelastic electron–proton interaction. As we have seen (figure 3), quarks appear as single identifiable “jets” of hadrons. The presence of a ladder of emissions means therefore that hadrons from this QCD radiation must appear between the direction of the quark which is resolved by the electron “at the top of the ladder” and the remnant of the proton “at the bottom of the ladder”.

In an interaction in which the electron resolves the quark after substantial QCD radiation, as in figure 4c, it is of course something of a matter of choice as to whether one still considers the quark as part of the structure of the proton, or more as a consequence of the interaction with which we observe it. Thus one may begin to see how the ladders which can occur in deeply inelastic scattering can better be thought of as part of the structure of the electron–proton interaction, rather than as part of the structure of the proton.

There are however also deeply inelastic electron–proton interactions in which there is no hadron production adjacent to the proton beam direction – so called “rapidity gap” interactions – and they correspond topologically to figure 11a [24, 25]. Two hadronic systems, X and Y, are distinguished between which there is no other hadron production. System Y remains undetected continuing in a direction close to that of the incident proton. Thus the incident proton’s interac-
tion $p \rightarrow Y$ is peripheral (as in a high energy interaction with another hadron – section 2). The electron, on the other hand, has substantial resolving power Q^2. As figures 11a and b imply, the interactions $ep \rightarrow eXY$ are thereby concerned more with the structure of the peripheral proton interaction, and less with the structure of the proton itself. In the old phenomenological picture in which we understand hadronic interactions in terms of the exchange of hadrons (Yukawa and Regge – section 2), we probe the structure of the exchanged system of hadrons, whatever that may be.

“A future theory must be unitary in a very wide sense; it must connect all the present theories of particles and their interactions in a single rational system.”
Max Born [1]

Interactions of the form $ep \rightarrow eXY$ in figure 11 can be described with the variables Q^2 and x, and the additional variables 4-momentum transfer squared t and x_p (section 2). Here P is the 4-momentum vector specifying the transfer in the proton interaction $p \rightarrow Y$, i.e. $P = p - Y$ and $t = P^2$. In the picture pioneered by Yukawa and Regge (section 2), the 4-momentum transfer vector P corresponds to that of the exchanged particle(s), and x_p is this momentum as a fraction of the incident proton momentum P (see also figure 2).

The variable $\beta = x/x_p$ is also introduced to specify the fraction of the momentum P which is taken by the quark in its interaction with the electron (figure 11b). Thus β plays the role of a fractional momentum variable for the deeply inelastic scattering of the electron by the momentum transfer P (like x for the deeply inelastic scattering of the electron by the proton).

The dependence of a structure function $F^{(D)}(\beta)$ on x, x_p and Q^2 can be extracted. At fixed x_p, $F^{(D)}_2$ specifies the deeply inelastic structure of the energy/momentum transfer P in the proton interaction (figure 11b) in an analogous way to that in which the structure functions F_2, specifies the deeply inelastic structure of the proton.

Figure 12 shows the first measurement [26] of the x_p dependence of $F^{(D)}_2(Q^2,x_p)$ for different values of Q^2 and β. Clearly this structure function falls sharply with increasing x_p in an approximately universal manner, very much like the cross section for high energy inelastic proton–proton interactions ($pp \rightarrow XY$ – figure 2 and section 2). Thus the inelastic proton interaction $p \rightarrow Y$ in $ep \rightarrow eXY$ is very much like its interaction in an inelastic diffractive interaction $pp \rightarrow XY$.

To try to understand the structure of the proton interaction we resort as before to the dependence on resolution scale Q^2 of the structure function $F^{(D)}_2$. Figure 13 shows the Q^2 dependences at fixed x_p for different β [27,28]. There are again “scaling violations" which show a slow rise with increasing Q^2 at all but the largest β. As for both proton structure at low x (figure 5) and photon structure (figure 10a), they signal that the structure of the proton interaction is driven in large part by gluon quantum fluctuation. This is presumably because the momentum transfer P is associated with a gluon–dominated hadronic structure which is only resolved by the probing electron after the quantum fluctuation $q \rightarrow q\bar{q}$. Furthermore the β dependence of $F^{(D)}_2$ (not shown directly but apparent in figure 12) is relatively featureless, reminiscent of that of the photon structure function (figure 10a).

Unlike the case of the photon and like the case of the proton, successful ab initio calculation in QCD remains elusive because the QCD structure of P must involve more than one gluon. However, application of the same theoretical “QCD machinery“ which is used to fit the proton structure function F_2 (section 3) confirms the conclusion of gluon dominance of P and thus the structure of the proton interaction (figure 13) [27].

These measurements at HERA of the deeply inelastic structure of hadronic interactions have challenged QCD theory. The interpretation in terms of gluon dominance, which is based on the persistence of rising scaling violations for all but the largest values of the fractional momentum variable β, is now confirmed in other measurements [29,30,31,32].

Into the Future

It is of course of paramount importance to strive to extend the precision of the probe which we have to look at the deepest structure of hadrons and their interactions. Already HERA has revealed hints of its uniquely important future in such physics – figure 6 [10].

At the highest Q^2 the status of measurements of the scale dependence of positron–proton scattering is tantalising because of the present experimental limits in accuracy. Overall there is no evidence for any breakdown of our present understanding of proton structure, in that the curves in figure 6 do not deviate significantly from the measurements throughout the whole range of resolution scale Q^2. However notice that there is a suggestion of a discrepancy at the highest $Q^2 = 10^4$ GeV2 and at $x = 0.45$ where the experimental uncertainty is greatest and where the results suggest a “turn up” [33,10]. Expectation says that the results should here “turn down”. Only with more data, which will come soon at HERA, can such a discrepancy be established, or otherwise, and possible new electron-quark physics established.

Conclusion

Understanding the structure of hadronic physics is a pre-requisite in our quest for the ultimate laws of nature. It is today's frontier in the noble pursuit of the structure of matter which has so dominated 20th century physics. After decades of experimentation, guided by the simplest principle of Quantum Mechanics, we have a theory of hadronic physics, Quantum Chromodynamics or QCD.

However, ab initio prediction with this theory continues to pose many challenges. Calculations from first principles of either the structure of a hadron or the way hadrons interact prove to be extremely challenging. Progress to date continues to involve a close symbiosis of experiment and theory to understand the dependences on resolution scale when
probing different hadronic phenomena. The future will be no exception – new physics will be manifest in the form of evidence for new hadronic structure. The HERA electron microscope is the most precise and comprehensive tool which we have in this quest.

Epilog

Natürlich spielt DESY unter all diesen Instituten eine besondere Rolle. Ich hatte das Glück, über mehr als zwanzig Jahre an dem großartigen, wissenschaftlichen Abenteuern teilzunehmen, das die Grundlage der Existenz dieses Labors bildet. Ich nutze deshalb den heutigen Anlaß, meinen Respekt und meinen Dank allen auszusprechen, die DESY weiterhin zu dem machen, was es heute darstellt, angefangen beim Steuerzahler bis hin zum Direktor.

References