
Internship Report

PyNN Populations for BrainScaleS-2

Milena Czierlinski

University of Heidelberg, Electronic Vision(s) Group

Supervisor: Eric Müller

May 2020

PyNN is a simulator-independent language for building spiking neural network models.
Its implementation for BrainScaleS-2, an accelerated analog neuromorphic system
developed as part of the neuromorphic computing activities within the European
Human Brain Project (HBP), allows users without any specific hardware knowledge
to perform their experiments on this backend. Also, it provides the opportunity of
easily transferring already existing experiments to the second-generation BrainScaleS
single-chip system. The first step of its realization, implementing PyNN populations,
has been achieved in this internship.



1 Introduction
The implementation of PyNN for BrainScaleS-2 (BSS-2) builds on top of an already existing
software stack, whose libraries were made use of. On the one hand, haldls was utilized with its
namespace lola playing an important role for configuring single neurons easily. On the other
hand, stadls was used, which allows to do general configurations on chip and the runtime
control.

1.1 The PyNN API

PyNN [1] is a Python-based domain-specific language providing a common interface for neural
network simulators and neuromorphic hardware. Besides allowing access to details of individual
neurons and synapses, the PyNN API supports a high level of abstraction for modelling spiking
neural networks. For that, neurons are grouped into populations of fixed size, which share
the same cell model and initial parameter values. These populations can be interconnected by
projections, which use different connectivity algorithms. The resulting spiking behavior and
membrane voltages of neurons in a populations can be recorded during a set runtime and read
out for analyses after.

Pop1

Pop2 Pop3

Proj1 Proj2

Proj3

Figure 1: Example Schematic of a
PyNN Network

Pop = PyNN.Population(size,
cell model,
initial values)

Proj = PyNN.Projection(presynaptic pop,
postsynaptic pop,
connector)

1.2 The LoLa Atomic Neuron

Working with neuromorphic hardware, it can be desirable to link multiple analog neuron circuits
together, representing one “logical“ neuron. This will be performed by the Logical Layer (LoLa)
[2]. It already implements an atomic neuron class, which combines the analog and digital
configurations of a single neuron circuit. This class is subdivided in structs combining hardware
parameters, that belong to the same object and are accessible for the user to configure, e.g.
threshold and membrane capacitance. Here, leak and reset are distinguished within a shared
struct, because they have the parameter source follower bias in common. All parameters of
the LoLa atomic neuron, except for some purely technical ones, represent the set of initial
values, which can be passed to the population constructor in the PyNN implementation for
BrainScaleS-2.

1



1.3 Communication with HICANN-X

The HICANN-X Application Specific Integrated Circuit (ASIC) is the most recent realization of
the second-generation BSS-2 version. It contains 512 analog neuron circuits with 256 synaptic
input channels each. Connected to the ASIC is a Field Programmable Gate Array (FPGA),
which allows communication between the host computer and the chip. In order to execute a
program on chip, firstly, a stadls.PlaybackProgramBuilder needs to be established. All con-
figurations and instructions are written in this builder using Python. Calling builder.done()
results in a program readable for the FPGA. Secondly, a stadls.PlaybackProgramExecutor
sends this program to the FPGA, which carries it out on chip and records the response. Finally,
this output data is sent back to the host computer, where it is available for the experimenter.

2 Implementation
The common PyNN API underlying all specific backend implementations is open-source [3],
alongside the source code for the PyNN backends of the neural network simulators NEST,
NEURON and Brian. It provides base classes for all commonly used objects, like populations,
projections, cell models, recorders and simulators. The specific backends inherit from those
classes and adapt the members to the corresponding ones of their simulators. Also, the func-
tions available for the PyNN user are declared in the public API, referencing methods that
partially are implemented by the specific backends again. Unfortunately, the requirements for
implementing a new backend aren’t documented well, so the workflow consisted of tracing back
each function call in the common implementation to find the required attributes and methods.
Here, the source code for the other PyNN backends was a big help. Objects and methods
they had in common provided a good starting point to build the PyNN implementation for
BrainScaleS-2.

So far, the PyNN interface is accessible via pynn_brainscales.brainscales2 and allows
operations with single populations. The neurons’ hardware parameters can be customized and
their spiking behavior is recordable for a set runtime, as well as the membrane potential of a
single neuron. Currently, only single cell operations are available, which limits the combined
number of neurons of all populations in a PyNN program to 512.

In general, PyNN uses parameters in biological domain, aiming towards an easy operating.
However, since the translation between hardware and biological parameters is a science itself,
neuron parameter values are passed in the hardware domain for now. This also acknowledges
the acceleration of chip-time by a factor of 1000 with respect to biology (the runtime is set in
the common PyNN unit ms, though). To do so, a new cell class is defined: the HXNeuron. It
possesses all parameters of the LoLa atomic neuron and uses the same names, only each “.“ is
replaced by a “_“. That means what is nested in the LoLa atomic neuron class is stored flat in a
dictionary with its corresponding default value for the HXNeuron. If the user wants neuron val-
ues to differ from the default, they can be passed to the population’s constructor as a dictionary.

The recording of spikes and membrane voltage is managed by a recorder class. It holds the
information what properties of which populations are monitored. After the run, it reads back

2



the recorded data of the simulator and returns it to the user. If the spikes of a population are
recorded, the individual spiketrains for each neuron can be accessed. Concerning the membrane
potential, only a population of size one can be recorded. The reason for this is that there is
only one fast (∼ 30 MHz) analog-to-digital converter (ADC), the membrane ADC (MADC).
Being able to observe all neurons in parallel, it would be necessary to use the column ADC
(CADC), providing a sampling rate of only ∼ 0.5 MHz.

The actual execution of the program on chip is performed by the simulator class. Firstly, the
set number of LoLa atomic neurons with given initial values for all instanced populations are
generated. These neurons are then placed on chip linearly. For the neurons in those populations,
whose spikes are recorded, the parameters of the LoLa atomic neuron enabling this are set to
true. If the membrane potential of a neuron is recorded, the MADC will be configured. After
that, the neurons are left to behave following their model with given input for the set runtime
and their output data is recorded. When the run is finished, the recorder class can access the
monitored spiketrains and the values of the membrane voltage, alongside the times they were
measured.

PyNN Toplevel

PopulationHXNeuron Recorder

Simulator

haldls, stadls

HICANN-X

lola

Figure 2: Schematic of the underlying PyNN Structure

3



3 Application Examples

3.1 Leak over Threshold

A simple example to demonstrate the usage of PyNN for BSS-2 is a leak over threshold neuron.
As the name suggests, the leak potential of this neuron is set over the threshold voltage, while
the reset voltage is below. Hence, before reaching its resting state, the neuron’s membrane
potential crosses the threshold and a spike is emitted. Simultaneously, the membrane voltage is
pulled back to its reset potential, where it is held for the refractory period, before it is allowed
to charge again. Thus, a continuous firing state is achieved.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [ms]

150

200

250

300

350

400

450

500

M
em

br
an

e 
Po

te
nt

ia
l [

LS
B]

Figure 3: Membrane Potential of a Leak over Threshold Neuron

INFO 08:30:59,458 leak_over_threshold Number of spikes of recorded neuron: 6
INFO 08:30:59,458 leak_over_threshold Spiketimes of recorded neuron:
[0.008688 0.042736 0.076872 0.111144 0.145408 0.179504] ms
INFO 08:30:59,844 leak_over_threshold Number of MADC Samples: 5881

4



The source code producing the membrane trace depicted in Figure 3 and the console output
below it can be found here.

1 import matplotlib.pyplot as plt
2 import pynn_brainscales.brainscales2 as pynn
3 from dlens_vx import logger
4

5

6 init_values = {"threshold_v_threshold": 400,
7 "threshold_enable": True ,
8 "leak_reset_leak_v_leak": 1022,
9 "leak_reset_reset_v_reset": 50,

10 "leak_reset_leak_i_bias": 420,
11 "leak_reset_reset_i_bias": 950,
12 "leak_reset_leak_enable_division": True ,
13 "leak_reset_reset_enable_multiplication": True ,
14 "membrane_capacitance_capacitance": 32,
15 "refractory_period_refractory_time": 100}
16

17

18 def main(initial_values: dict):
19 log = logger.get("leak_over_threshold")
20 pynn.setup ()
21

22 pop = pynn.Population (1, pynn.hxneuron.HXNeuron ,
23 initial_values=initial_values)
24 pop.record (["spikes", "v"])
25

26 pynn.run (0.2) # in ms
27

28 spikes = pop.get_data("spikes").segments [0]
29 spiketimes = spikes.spiketrains [0]
30 log.INFO("Number of spikes of recorded neuron: ", len(spiketimes))
31 log.INFO("Spiketimes of recorded neuron: ", spiketimes)
32

33 mem_v = pop.get_data("v").segments [0]
34 times , membrane = zip(*mem_v.filter(name="v")[0])
35 log.INFO("Number of MADC Samples: ", len(times))
36

37 plt.figure ()
38 plt.xlabel("Time [ms]")
39 plt.ylabel("Membrane Potential [LSB]")
40 plt.plot(times , membrane)
41 plt.savefig("plot_leak_over_threshold.pdf")
42 plt.close ()
43

44 pynn.end()
45

46

47 if __name__ == "__main__":
48 main(init_values)

5



3.2 Interspike Interval Calibration

A second small application can be performed calibrating the interspike interval (ISI) of a leak
over threshold neuron. The ISI is the time between a pair of spikes, which is dependent on the
distance between reset and leak potential, as well as the threshold voltage and the membrane
time constant. Latter cannot be set explicitly, but it is directly related to the membrane
capacitance and the leak conductance. While these parameters influence the shape of the
exponential rise, the refractory period τrefrac affects the time before the membrane voltage
starts rising and, therefore, the time between spikes linearly. That is why a sweep of it is used
for this ISI calibration.

0 50 100 150 200 250
Refractory Period [LSB]

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

IS
I [

m
s]

Figure 4: ISI Calibration towards 0.035 ms, result highlighted red

As expected, larger refractory periods yield longer interspike intervals. The straight line in
the frame of statistical uncertainties informs, that the relation between refractory period in LSB
and in seconds is linear. Only one measurement point at τrefrac = 5 LSB deviates. To investigate
this discrepancy, the membrane potential for this refractory period is plotted, alongside the ones
for the calibration result τrefrac = 95 LSB and two others for comparison (Figure 5). One can
observe, that as expected only the time between charging processes varies, but not the shape
of the exponential rises. Looking closely, it becomes evident that for a refractory period setting
of τrefrac = 5 LSB the membrane doesn’t have enough time to fully reach the reset potential,
which explains the aberration. Additionally, some jitter of the refractory period can be seen
in Figure 5a. This is caused by a hardware bug, leading to incorrect settings for very small
refractory periods, which should be investigated further.

6



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [ms]

150

200

250

300

350

400

450

500

M
em

br
an

e 
Po

te
nt

ia
l [

LS
B]

(a) τrefrac = 5 LSB

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [ms]

150

200

250

300

350

400

450

500

M
em

br
an

e 
Po

te
nt

ia
l [

LS
B]

(b) τrefrac = 15 LSB

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [ms]

150

200

250

300

350

400

450

500

M
em

br
an

e 
Po

te
nt

ia
l [

LS
B]

(c) τrefrac = 95 LSB

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [ms]

150

200

250

300

350

400

450

500

M
em

br
an

e 
Po

te
nt

ia
l [

LS
B]

(d) τrefrac = 255 LSB

Figure 5: Membrane Potential for different τrefrac settings

The time between spikes varies for different neuron circuits, since they were not calibrated.
Wanting to modify the range of interspike intervals manually, it can be extended upwards by
choosing a slower refractory clock and downwards by choosing a lower membrane time constant.
Secondly is achieved by reducing the membrane capacitance or increasing the leak conductance.

7



4 Summary and Outlook
PyNN is a neural network modelling language, implemented for such simulators and neuro-
morphic hardware. Its easy to use interface enables users from a variety of fields to write code
and run their programs on a simulator of their choice or the BrainScaleS hardware. It is not
necessary to have any specific knowledge about the hardware configuration or how to communi-
cate with the HICANN-X chip, using PyNN for BSS-2, since this is being done by the backend
implementation automatically.

Applications using single populations can already be performed successfully. So far, the
neuron placement on chip works linearly and cannot be controlled by the user. It is being
discussed, whether the experimenter should be allowed to chose neurons on chip for his or her
populations freely and how this could be realized. Furthermore, the next step then of course is
the connection of populations, i.e. the implementation of projections, enabling the construction
of networks with multiple interacting populations.

References
[1] Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski DA, Perrinet L

and Yger P (2009) “PyNN: a common interface for neuronal network simulators“ url:
https://doi.org/10.3389/neuro.11.011.2008

[2] Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn,
David Stöckel, Timo Wunderlich, Johannes Schemmel (2020) “Extending BrainScaleS OS
for BrainScaleS-2“ url: https://arxiv.org/abs/2003.13750

[3] Public PyNN API Source Code:
https://github.com/NeuralEnsemble/PyNN/tree/0.9.5/pyNN

8

https://doi.org/10.3389/neuro.11.011.2008
https://arxiv.org/abs/2003.13750
https://github.com/NeuralEnsemble/PyNN/tree/0.9.5/pyNN

	Introduction
	The PyNN API
	The LoLa Atomic Neuron
	Communication with HICANN-X

	Implementation
	Application Examples
	Leak over Threshold
	Interspike Interval Calibration

	Summary and Outlook

