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1 Introduction

1.1 Motivation And Goals

The neuromorphic hardware [1] developed by the research group Electronic Vision(s)
[2] at the Kirchhoff Institute for Physics of the University of Heidelberg in cooperation
with TU Dresden is planned to be used for neuroscientific experiments by FACETS [3]
research collaboration. However, it is not yet fully functional, so future experiments
must be currently simulated in software with an intention to port them to the hardware
as soon as it is ready to use.

This is why we need a software model which describes the hardware as exactly as pos-
sible and incorporates all of its advantages and disadvantages. Creating such a model
using up-to-date information known about the hardware will be the first task of this
project lab.

It is also of great importance to customize the simulation data according to the hard-
ware demands and restrictions. This could change the outcome of an experiment, or
even make certain experiments impossible to run on the hardware.

The second part of this project will be dedicated to analyzing the effects of using in-
put current data with limited time resolution. This is done with an aim to use existing
current input circuits for single neuron emulations which is a subject of the Qualitative
Single-Neuron Modeling Competition (see below).

1.2 Adaptive Exponential Integrate-and-Fire Model

The hardware chips internally are using a mathematical model, which can describe the
neuronal behaviour: predict membrane potential, spike times etc. The model used in
hardware is called Adaptive Exponential Integrate-and-Fire Model.

Adaptive Exponential Integrate-and-Fire Model (AdEx) according to Brette and Ger-
stner [4]

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
− ge(t)(V − Ee)− gi(t)(V − Ei)− w (1)

τw
dw

dt
= a(V − EL)− w (2)

At spike time : V → EL;w → w + b (3)

AdEx is a two-dimensional integrate-and-fire model that provides an effective description
of neuronal activity. It takes into account the leakage current, the synaptic currents and
external currents. The spike mechanism is modeled as an exponential function, the
adaptation term (2) as an exponentially falling current, the synaptic conductances gi(t),
ge(t) are usually modeled as exponential or alpha-functions1.

AdEx model predicts correctly the timing of 96% of the spikes (±2 ms) of a detailed
model (according to Hogkin and Huxley) [4], but it is much more simple and allows
complicated simulations with far less effort. Variables and parameter are:

1Alpha function has the form: g = gmax
t
τ exp

(
τ−t
τ

)
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• V - membrane potential

• C - membrane capacitance

• gL - leak conductance

• EL - leak reversal potential

• VT - spike threshold

• ∆T - slope factor

• w - adaptation current

• τw - adaptation time constant

• a - subthreshold adaptation

• b - spike-triggered adaptation

1.3 NEST

NEST or Neural Simulation Tool [5] is a software package for Linux developed and
distributed by the “NEST initiative” – a collaboration of scientists for the development
of simulation methods for biologically realistic neuronal networks. This tool is a powerful
simulator for single neurons as well as complicated networks with many neurons in
various topologies.

NEST is modulary structured. It means that single devices, neuron models or synapse
models used by NEST are separate pieces of software written in C++. These modules
can be added, altered or changed for use in the whole package according to the demands
of certain simulation processes. This feature of NEST is very interesting and will be
used in the course of this project to create new models or alter the existing ones for
further use in simulations of hardware neurons.

1.4 Python, PyNEST, matplotlib, NumPy

NEST uses its own scripting language called SLI to construct the simulation. This can
be a difficulty for many users, due to SLI’s stack based syntax. This can be solved by
using the extension module called PyNEST [6] which is a Python [7] wrapper around
NEST.

Python is a general-purpose programming language, but because of its readability and
functionality it is often used as a scripting language, as in our case too. A very useful
feature is the ability to import external libraries for using with Python. This way it was
possible to use Python scripts for designing all of the simulations in this project lab.

Using PyNEST instead of NEST has the advantage of using a more convenient syntax
along with some other useful external packages for Python such as matplotlib [8] or
NumPy [9].

Matplotlib is a Python 2D plotting library that can be used in scripts, i.e. one can
visualize the data directly from the neural simulation script. This is very useful, as it
saves us the time and effort to buffer the data on the hard drive and visualize externally.

NumPy is a fundamental Python package for scientific computing. It is used to create
and handle arrays of data, import and export data to/from the hard drive and apply
algebraic computing to the data arrays.
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1.5 Neuronal Hardware And Its Limitations

The neuromorphic hardware (i.e. the HICANN chips and their wafer-scale analogue) is
currently being developed by Electronic Vision(s) Group. With all the benefits in speed,
it is also expected to have some limitations, constraining all of the parameters of the
AdEx model. The exact relations will be discussed in the corresponding section below.

Also the memory writing rate of the HICANN chips is restricting the maximum reso-
lution of the input current data that can be used. I.e. for the continuous current input
there has to be a time grid defined on which the data has to be embedded. Also the
grid has to be chosen carefully, because of the limited time resolution.

1.6 Qualitative Single-Neuron Modeling Competition 2009

The data, which is used in the second part of this lab to simulate the behaviour of
a biological neuron originates from the neuron competition, which took place in 2009
[10]. The goal of the challenge was to predict spike times with accuracy of ±2 ms using
different neuronal models. The challenge provided biological data for several seconds of
current input and membrane voltage responce as training-data which we used for our
simulation purposes.
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2 Part I: Extending The Existing AdEx Model For NEST

At the beginning of this project lab NEST had already got an AdEx model originally
implemented by Marc-Oliver Gewaltig [5]. The program itself is distributed as the source
code in C++ and the permission to modify it is given by the authors. The modular
structure of the program gives the ability to integrate the modified models immediately
without recompiling the entire NEST software.

2.1 Altering AdEx Model For NEST To Match Hardware Givens

The model implemented by Marc-Oliver Gewaltig was an Adaptive Exponential Inte-
grate-and-Fire Model of the form (1) with synaptic conductances shaped as Alpha-
Functions. It included one adaptation term w (2),(3). However, the model implemented
in hardware has synaptic conductances shaped as exponential functions2.

It is also possible to interconnect two hardware neurons to use them as one with
two different adaptation terms, which could be useful in the latter simulations, so our
software model should have two adaptation terms as well (the second one should be set
to zero when not used).

2.1.1 Modifying The Form Of Synaptic Conductances

The general idea how the software model works is the following: A general-purpose
integrator from the GNU Scientific Library [11] is used. It demands several things as
input: A function containing the mathematical model as a system of ordinary differential
equations, buffers to store the transitional solving information, current model parameters
and state variables (e.g. membrane potential, adaptation current).

At first the model parameters are initialized to their values: membrane potential to
reversal potential; synaptic conductances and adaptation terms to zero.

Then they are passed on to the solver (integrator), which uses Runge-Kutta-Fehlberg
method to make an integration step of the predefined length. If the spike is emitted
(V > Vth after the step), then the membrane potential and the adaptation term are
corrected accordingly (3). The new state variables are then logged using internal NEST
functions and the new state becomes initial condition for the next integration step.
This is repeated until the end of simulation. At the end the progression of the relevant
variables is stored in memory and can be processed further.

To change the form of synaptic conductances, the differential equations for the alpha
functions had to be replaced in the source code by the corresponding equations for
exponential functions: dge

dt
= −ge

τe
and dgi

dt
= −gi

τi
. Where τe, τi are slope factors for

excitatory and inhibitory synaptic conductances respectively.
The result can be seen in Figure 1. Both graphs are simulation data of excitatory

synaptic conductances with a spike coming in at 10.0 ms. The time constants are equal
in both cases. Left is the model before alteration, on the right the alpha-function has
been replaced by exponential slope.

2 g = gmaxexp
(
− t
τ

)
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Figure 1: Two forms of synaptic conductances

2.1.2 Implementing A Second Adaptation Term

As mentioned before, one will be able to connect two hardware neurons to act as one
with two adaptation terms. To match this in software, the differential equations in the
source code had to be changed accordingly, and some new parameters had to be added.
The final form of our new equations is the following:

C
dV

dt
= −gL(V −EL)+gL∆T exp

(
V − VT

∆T

)
−ge(t)(V −Ee)−gi(t)(V −Ei)−w1−w2 (4)

τw1

dw1

dt
= a1(V − EL)− w1; τw2

dw2

dt
= a2(V − EL)− w2 (5)

At spike time : V → EL; w1 → w1 + b1; w2 → w2 + b2 (6)

The idea behind this model expansion is that biological neurons show not only a
short-term adaptation of spiking behaviour, but also long-term adaptation, which can
be described by our new model [12]. By setting the appropriate time constants τw1, τw2

and adaptation parameters a1, a2, b1, b2 one can set up the short-term and long-term
spiking behaviour of a simulated neuron.

Figure 2 shows example adaptation currents for two cases with equal input currents:
on the left only the short-term adaptation is active (time constant τw = 70 ms), on
the right - both terms are active, and long-term adaptation parameters a and b are set
to be (for demonstration purposes) 1

3
of the short-term ones (τw1 = 70 ms, τw2= 500

ms). Both subthreshold and spike-triggered adaptation currents now have two decay
constants. One can observe this effect considering the same general shape of the curve
(mostly characterized by the short-time term) but longer decay times (characterized by
the long-time term).
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Figure 2: Adaptation currents with one and two adaptation terms

2.1.3 Adding Data Logging Device

NEST uses internally certain devices to log the data produced during simulations. For-
merly there had to be a separate device created for every kind of information to be
logged. A shortly introduced device called multimeter is intended to solve these prob-
lems and ease up the creation of simulations. It can log many values simultaneously.
However, the NEST model has to be properly modified for use with multimeter.

In the course of this project lab the AdEx model for NEST was altered to use multi-
meters to log the values of membrane potential, excitatory/inhibitory conductances and
adaptation currents.

2.1.4 Making A Unit Test

As NEST is a modular software, one has to be sure that changes in one module do not
affect flawless working of the other modules. This is why one has to introduce a unit
test along with a new model. The unit tests are usually run upon a new installation to
assure everything is ready to use.

The unit test created for the new model consists of a short simulation using all new
features. During this simulation a neuron is stimulated by a DC current and excitatory
and inhibitory spikes are received. Membrane potential and spike behaviour are then
logged and compared to the expected values. Success is returned at the end of the test
if every compared value matches the predicted one.

This way one can keep track of changes in the program and be sure that the simulations
still provide correct data if a part of the program is altered (e.g. the integrator routine
is changed etc.).
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2.2 Applying Hardware Restrictions To The New NEST Model

The HICANN chips are currently being analyzed by simulating the implemented in-
tegrated circuits. During these tests all the hardware parameters and their behaviour
(e.g. linear, exponential etc.) are analyzed and compared to theoretical ones to assure,
that the hardware is capable of emulating biological data properly. The limitations and
offsets of single parameters are also determined.

2.2.1 Ranges Of Parameters And Variables

Due to technical limitations (e.g. minimum/maximum supply voltage or current), none
of the parameters or variables of the AdEx model can be just set to any value at random.
There are only certain ranges in which the varying of the parameters is safe. Setting a
parameter outside of its range will cause false results. Moreover, some parameters are
interdependent, and there are some completely new effects not considered by the model.

This is why the restrictions have to be implemented in software first - to be able to
determine if it is meaningful at all to try to emulate certain data sets in hardware.

The first and most meaningful restriction is concerning the voltage. Due to limited
linearity region of certain components, the hardware voltage has a working range of
VHW=[0,800 .. 1,200]mV. This means one has to comply with the resulting range of 400
mV during emulations. At the same time one would want the used voltage range to be
as wide as possible because the greater the range the lower the noise/signal ratio is. So
the idea is to estimate the biological voltage range beforehand and then scale it properly
to match the 400 mV in hardware. This introduces the formula:

Vrange = S · (Vmax − Vmin) ≤ 400mV (7)

Where Vmin, Vmax are the estimated minimum/maximum biological voltage values, and
S is the scaling factor which has to be as high as possible, but at the same time low
enough for the voltage range not to exceed 400 mV.

The relations of other parameters are simpler and are presented in Table 1 as they
have been implemented in the AdEx model for NEST. Each time the parameter is set
externally, its range and interdependences with other parameters are checked to comply
with allowed values.

2.2.2 Offset In The Adaptation Term

During the testing of a HICANN chip it was noticed, that the adaptation circuits on
the chip deliver constant output voltage even if there is no output voltage expected [13]
(Vm = EL). This offset voltage Voff was also implemented into AdEx model for NEST
to examine if it could affect the results of emulations in the future.

As a result, the differential equations (5) had to be changed to take offset voltage into
account. The new form of ODEs is:

τwi

dwi
dt

= ai(V + Voff − EL)− wi (8)
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Name Range/Dependence Note

VT -50 mV The parameter is fixed in hardware

∆T 2 mV The parameter is fixed in hardware

All voltages (Vmax − Vmin) ≤ 400
S

mV HW voltages must stay in 400 mV spread
Cm

gL
[5 .. 50] ms Cm

gL
= τm - Membrane time constant

τw1, τw2 [20 .. 200] ms
a1

Cm
, a2

Cm
[40 .. 400] S

F
a = Cm·aHW

CHW ·104 , CHW=2pF, aHW ∈[0,4..4]µS

b1, b2 [0 .. 92
S

] pA S - Hardware scaling factor, see (7)

ge,i, Ee,i - Yet to be determined

Table 1: Hardware imposed restrictions

This form was eventually implemented into AdEx model for NEST along with other
hardware restrictions.
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3 Part II: Preparation For Future Neuron Competitions

Because of the enormous emulation speed (104 times faster than in-vivo processes) the
data flow (for example spike trains) to HICANN chips has to be very high to emulate the
real biological processes. However to the date of this report it is unknown whether the
input rate for current data to the hardware will be high enough to use the full resolution
of biological input data. It means that input data will have to be reduced to some degree
(time resolution will have to be lowered).

In this part of the project lab we tried to simulate hardware behaviour using different
input data rates to examine the robustness of the model in case of data reduction and
see if it will be possible to use real biological data for future emulations, what data
alterations will be needed for that and if these alterations can compromise the results
of experiments.

3.1 Estimating HICANN Current Input Update Rate

HICANN current memory buffer is designed to work with 5 possible clock frequencies:
the highest is 62,5 MHz, the lowest - 62,5/16 ≈ 3,9 MHz. These are the frequencies at
which input data from a buffer can be applied to the executing circuits. It is yet to be
determined how fast this buffer (containing 129 values) can be re-written. One can see,
that in case of slow writing rate this buffer is depleted very quickly (33 µs at 3,9 MHz),
so it is of crucial importancy to find ways to avoid it, which brings us to reduction of
time resolution.

As the actual writing frequency is unknown, we assume that it is equal to the memory
clock. The slower the clock - the lower writing rate can be used. Assuming we run
emulation at 3,9 MHz, the delay between sequent current values is then ∆THW

= 256
ns.

In this test we use biological data from Neuronal Challenge 2009 (see above) which
has a time resolution of 0,1 ms. If we take into account the 104 hardware speed-up
factor, 0,1 ms would correspond to ∆Tbiol

= 10 ns in hardware time.
As one can see it is not possible to use the raw biological data to make a proper

emulation. What one could do is to reduce the time resolution so that the biological
current rate is equal to the hardware current rate. In our case we should shrink the raw

data by the factor R =
∆THW

∆Tbiol

= 25,6. This means, however, that the results could show

significant deviation compared to results without data reduction.

3.2 Reducing Biological Data And Analyzing The Effect

To test how far one could reduce the data without compromising the results a simulation
in NEST has been written using our enhanced AdEx model.

First of all we used the training data set from Neuronal Challenge 2009 to estimate
AdEx model parameters which deliver reasonable results compared to original biological
data. Table 2 features these parameters. Synaptic parameters are irrelevant in this case
because the data represents a response to an external current with no synaptic input.
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Cm gL EL ∆T Vth Vreset τw1 τw2 a1 a2 b1 b2

240pF 13,5nS -65,8mV 2,2mV -51,5mV -51,6mV 98ms 300ms 4,0nS 0,3nS 160pA 30pA

Table 2: Parameters used for simulation

Figure 3 shows a small exerpt comparing our simulation to biological data. It does
not exactly reproduce the biology, but one can see that it is reasonably correct in general
tendencies and spiking behaviour.

The reduction method is following: We are provided with an input data, which
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Figure 3: Comparison of biological and simulated data using our parameters

consists of current values and times on which these currents are injected into a neuron.
Original time resolution is 0,1 ms. It means every 0,1 ms the input current is changed
to a new value. Given a scaling factor R (in our case the desirable value would be 25,6)
we calculate a new time grid (i.e. new current value every 2,56 ms). For each of these
new time values a mean current value is calculated using the original data ahead of the
new time point (i.e. next 2,56 ms). An example of current steps for R=15 compared
with original data is given in Figure 4.

As reference for comparison we take the simulation with no reduction. The quality
of reduced simulation is rated by evaluating the deviation of spike times. Neuronal
Challenge 2009 suggests that spike times are a match if the deviation is less than 2ms.
We also took this measure for our evaluation.

After a series of simulations with varying R we were able to construct a plot, which
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Figure 4: Input current: Unreduced and reduced by factor 15

can be seen in Figure 5.3 This plot shows the dependence of matching spike percentages
on the scaling factor.

The simulation without reduction included 177 spikes, so the statistics in this survey
are only meaningful to some degree and a certain error should be considered. The error
can be reduced later by making longer simulations.

Regardless of an error, one can clearly see the tendencies of the model behavior if a
reduced input data is used. Up to a factor R=5 (equivalent to one current step every
0,5ms) it is not critical to reduce the data. At our desirable factor of R=25,6 the match
ratio is still at around 90%, which is fairly good, having in mind that we reduced data
volume by 96%!

This insight is rather promising, because we can see now that the model is relatively
robust to data reduction and, if the buffer writing rate is increased in the future, the
emulation precision will increase substantially. In Figure 5 one can also see the possible
memory clock frequencies for the hardware and the corresponding scaling factors (vertical
lines). At 62,5 MHz the scaling factor will only be R=1,6 so the reduction of data will
have virtually no effect on the quality of emulations.

3The plots for time boundaries of 1 ms and 3 ms are included in the appendix for better understanding
of tendencies.
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Figure 5: Spike time match dependence on scaling factor

4 Conclusion

To summarize the results of this project lab:
A software model, matching a model implemented in the neuromorphic hardware has

been created. The form of synaptic conductances has been changed, a second adapta-
tion term has been added, the voltage offset in hardware adaptation circuits and the
limitations of hardware parameters have been taken into account. This model will help
us at predicting the behaviour of the hardware, that is still being tested and is not yet
fully functional. For example one could use a proper algorithm to fit biological data with
our model and extract the fitting parameters. The performance of the model could serve
as an estimation of the hardware performance in future neuron modeling competitions,
and the resulting parameters could be used later to estimate the corresponding hardware
parameters.

To prevent possible problems in future emulations, a test has been performed, ana-
lyzing the robustness of the implemented model regarding data reduction. The outcome
of this test is overall promising, however the actual buffer update frequency (which is
still to be determined) has to be at least 3,9 MHz. At this frequency the current input
is distorted significantly, but only ≈ 10% of the spike times do not match. This fact
encourages us to participate with our hardware at future neuron modeling competitions
using external current input.
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