
Report about an Internship at the

University of Heidelberg
Institut: Kirchhoff Institut für Physik

Group: BrainScales

Professor: Karlheinz Meier

Area: Software

Adviser: Eric Müller

Student: Christoph Klein

Time: 17-02-15 to 26-03-15

March 25, 2015

Abstract

The group developes analog neural network chips [5] [4] [2], which are able to
emulate PyNN [1] modeled networks. As the realization of a PyNN modeled network
on a analog neural network chip is not trivial, the usage of an appropriate software
stack is inevitable. Espcially the questions where the modeled neurons are placed on
the chip and how the connections between them are realized by setting the available
switches have to be resolved by software. This mapping process for the most recent
chip (HICANN) is described in Jeltsch’s Ph.D. thesis [3]. This report describes
where the model neuron placement information can be found in the code and how
the access to this information was simplified. Furthermore the class structure and
control flow from parts of the mapping software is presented in a comprehensible
way.

1 Introduction

The BrainScales group in Heidelberg developes a PyNN [1] based Python interface
(pyhmf) to emulate modeled networks on analog neural network chips user friendly.
A software developement goal is to uncouple the different tasks: modeling, mapping,
running the experiment and getting the results on software level. For analysis purposes
the user wants to know which electricic circuits (denmen circuits) realize a distinguished
model neuron. This information could not be found explicitly in the existing code and
was added in an appropriate class.

This document explains firstly how the control flow for the neuron placement takes
place in the mapping software (marocco). Second the reader gets an overview of the

1

placement result datastructure and where to find the neuron placement information.
Third the implemented simplified access to the placement information is presented. In
the end of the report problems of the existing mapping software are discussed.

2 Control Flow

The mapping software is written and structured in c++11 classes. Each class has a run
member function, which is generally called to solve the problem the class was designed
for. In figure 2 you can see in which run functions the displayed objects are created.
The initialization of marocco begins by creating and running the object of class main.
Objects of class MappingJob are created to run mapping processes in parallel. Therefore
objects of class Mapper are created and ran by objects of class MappingJob. Objects
of class Mapper organize all concrete mapping processes like model neuron placement,
merger tree routing and routing. The concepts of these steps are described in detail
in Jeltsch’s Ph.D. thesis [3]. For this work the called object of class Placement is
important, as this handles the actual assignment from model neurons to denmen circuits.
This object creates and runs an object of class ReverseMapping, which provides the
assignment from output spikes to model neurons. Therefore this object is passed from
Placement→ Mapper → MappingJob → Reader. The Reader gets the ReverseMapping

and the ObjectStore, fetches the output spikes with low level hardware commands and
writes the model network output to the ObjectStore. Objects of class ObjectStore

contain various information about the PyNN modeled network for the user. Before the
object of class Reader is created an object of class MappingJob creates and runs an object
of class Control, which takes the hardware configuration, configures the hardware and
runs the experiment on chip.

3 Placement Result Data Structure

In figure 3 you can see the class diagram of the result class for the mapping process.
It is an incomplete diagram, thus it contains only the parts needed to understand the
model neuron placement. Mostly the displayed classes are used for wrapping purposes.
The important part is the std::unordered_map<graph_t::vertex_descriptor,

assignment::Mapping>, as this class gives an assignement of populations to a vector
of Hardware objects. Objects of class Hardware describe a certain amount of denmen
circuitson one NeuronBlockOnHICANN with an offset (figure 3). The assignement of
model neurons to denmen circuits is saved implicitly to be consecutive. This means
for example that model neuron number one of a population is emulated by the first
HardwareNeuronSize denmen circuitsfrom the head of std::vector<Hardware>.

4 The Implementation

The ReverseMapping class was choosen for modification, as the assignment from model
neurons to denmen circuitsbelongs contextually to the ReverseMapping. Furthermore

2

Figure 1: Control Flow in marocco necessary for the placement process.

3

Figure 2: Class diagram of the mapping result data structure.

4

Figure 3: Schematic description what an object of class NeuronBlockOnHICANN describes.

5

Figure 4: Used coordinate system to identify a denmen circuitglobally.

this assignment can easily be written to the ObjectStore, thus being available in the
pyhmf interface. Moreover the class was renamed to LookupTable, as it contains from
now on the assignement from L1Adresses to model neurons and from model neurons to
denmen circuits. To identify a denmen circuitglobally a structure denmen_id was added
to LookupTable.h, which contains a global HICANN coordinate and a 2D vector. The
2D vector gives the denmen circuit’s positon on a HICANN (fig. 4). In figure 4 you
can see the part of the code, which was implemented in the run member function of
class LookupTable. This code provides an easy access to the model neurons to denmen
circuitsassignment.

The implementation delivers correct results if a model neuron is emulated by 2 + 2n

with n ∈ [0, 31] denmen circuits. The denmen circuits, which emulate a model neuron,
must be aligned consecutive such that a model neuron is emulated eqally by denmen
circuitsfrom the first row and denmen circuitsfrom the second row. Another constraint
is that a HICANN must be diveded exactly in eight equal NeuronBlockOnHICANN objects.
As the mapping software actually has the same constraints, the implemented assignment
is correct.

6

1 auto const& onm = get <0>(result); // get output neuron mapping

result

2 auto const& placement = onm. placement (); // get the distributed

placement map

3 auto unordMap = placement . getMap (); // get the std :: unordered_map

for iteration

4 int bio_neuron_index ;

5 // loop over all populations wrapped as graph vertex type

6 for (auto entries = unordMap . begin (); entries != unordMap .end ();

++ entries) {

7 auto const& mapping = entries -> second ;

8 std :: vector < assignment :: Hardware > const& am = mapping .

assignment ();

9 auto const& population = * popmap [entries ->first];

10 bio_neuron_index = 0; // set index of first bio neuron in

a population to zero

11 // each population has a vector with assigned denmen

circuits

12 // wrapped in marocco / assignment / Hardware .h

13 for (std :: vector < assignment :: Hardware >:: const_iterator

hardware = am.begin (); hardware != am.end (); ++

hardware) {

14 auto denmen_count = (* hardware).size ();

15 auto const& terminal_proxy = (* hardware).get ();

16 // get global HICANN Coord

17 auto chip = terminal_proxy .chip;

18 // the 256 x2 array of denmen circuits on a HICANN

is distributed into

19 // 8 blocks of size 32x2

20 auto block = terminal_proxy .block ;

21 int blockNr = block .value (); // in [0 ,7]

22 auto offset = (* hardware). offset ();

23 auto hw_neuron_size = (* hardware). hw_neuron_size

();

24 int bio_neurons_in_terminal = denmen_count /

hw_neuron_size ;

25 // iterate over all bio neurons in this terminal

26 for (int i = 0; i < bio_neurons_in_terminal ; ++i)

{

27 bio_id bio { population .id(),

bio_neuron_index };

28 // iterate over the belonging denmen

circuits

29 for (int d = 0; d < hw_neuron_size ; ++d)

{

30 int x = blockNr * 32 + offset .x +

i * hw_neuron_size / 2 + d /

2;

31 int y = d % 2;

32 Point2D point{x,y};

33 denmen_id id {chip , point };

34 mBio2DenmenMap [bio]. push_back (id)

;

35 }

36 ++ bio_neuron_index ;

37 }

38 }

39 }

Figure 5: Implemented code for easy access to the model neurons to denmen circuitsas-
signment in LookupTable.cpp’s run routine.

7

5 Discussion and Outlook

To make the implemented assignment available in the pyhmf interface, one has to imple-
ment a transfer in the Reader class, where the assignment is given to the ObjectStore.
Furthermore an appropriate command has to be built into the pyhmf interface, to get
the assignment from the ObjectStore. Two problems of the mapping software are the
overloaded class structure and the superfluous templated code. The first problem gets
already obvious if you take a look at the class diagram in figure 3. One should keep in
mind that this is only a class diagram with important parts for the placement process.
Moreover the code contains a lot of unnecessary wrapping classes and typedefinitions
(typedef), which make understanding the code more difficult.

The second problem was not mentioned yet. Many classes and functions are written
in a generic way by using c++11 templates, although they are only used with one specific
set of types. In such a case templates are not mandatory and have a negative effect on
code readability.

References

[1] Andrew P. Davidson et. al., PyNN: a common interface for neuronal network simu-

lators, 2009.

[2] Johannes Fieres, Johannes Schemmel, and Karlheinz Meier, Realizing biological spik-

ing network models in a configurable wafer-scale hardware system, 2008.

[3] Sebastian Jeltsch, A scalable workflow for a configurable neuromorphic platform,
Ph.D. thesis, University of Heidelberg, 2014.

[4] Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karheinz
Meier, and Sebastian Millner, A wafer-scale neuromorphic hardware system for large-

scale neural modeling, 2010.

[5] Johannes Schemmel, Johannes Fieres, and Karlheinz Meier, Wafer-scale integration

of neural networks, 2008.

8

