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Abstract

The neuromorphic hardware BrainScaleS [1] at the university of Heidelberg is
an attempt to emulate neural processes of the human brain on a largely
simplified scale.

Due to the analogue implementation of the neuron circuits, experiments on the
BrainScaleS hardware are subject to partly large fluctuations caused by
deviations in the hardware components.

Other sources of errors and confusion are the frequent updates of the
calibration data and other software components.

In this internship, it was thus tried to implement a series of automated test
programs, that assure basic functionalities of the hardware to produce
comparable data over time.

1 Spiking Leak over Threshold Neuron

A neuron on the BrainScaleS hardware is specified by some parameters.

In the neuron model used by the emulation, the membrane voltage converges
exponentially against a resting potential V.cg;.

If a certain threshold level V;;, is reached, the voltage is reset to the reset
voltage Vieset-

The membrane voltage of a neuron whose resting potential is higher than its
threshold value should behave as can be seen in Figure 1.1:
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Figure 1.1: Membrane potential of a single firing
Leak-over-Threshold(LoT)-neuron



The real value of those voltage levels, as well as the firing rate of the neuron,
resulting from those, should not vary too much over time and using different
HICANNS.

This is to be tested automatically.

For the calibration, the experimental setup is run in total 400 times, on 2
different wafers and on 10 different HICANNS each.

The mean firing rates are then averaged and saved to a calibration file
together with the standard deviation.

As can be seen in Figure 1.2, the biggest deviation can be found due to
differences in the HICANN-configurations, whereas there is no significant
deviation in firing rates between the two used wafers 21 and 33:
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Figure 1.2: Mean firing rate of each experiment run; the grey vertical lines
indicate a switch to a different HICANN.

Measurements on the left of the red vertical line are done on wafer 33, to the
right on wafer 21.

The grey dashed lines display the mean value of each wafer, the black line the
overall average.

The distribution of mean firing rates looks as follows:



Distribution of mean firing rates
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Figure 1.3: Distribution of mean firing rates, measurements on wafers 33 and
21, 10 HICANNs each

The automated test runs the experiment on the given HICANN and wafer,
measures the mean firing rate and compares it to the average firing rate saved
in the calibration file.

The test is rejected if the deviation is greater than 3o.

2 LoT neuron connected to receiving neuron

As a next step, we want to implement a setup, where a LoT neuron as in the
previous part is connected to a second neuron, whose threshold is higher than
its resting potential.

The weight of the connection is varied, in our example it takes the values 5, 10
and 15.

The resulting membrane voltages of both neurons can be seen in Figure 2.1-2.3:
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Figure 2.1: Membrane potential for the two neurons, connected with synapse
strength 5
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Figure 2.2: Membrane potential for the two neurons, connected with synapse
strength 10
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Figure 2.3: Membrane potential for the two neurons, connected with synapse
strength 15

As can be seen, the receiving neuron does not spike in the case of the weight
set to 10, whereas at weight 15, every spike of the firing neuron causes the
receiving neuron to spike exactly once.

This behaviour should be maintained over time and on different HICANNs.
The automated test therefore rejects an experiment, if either the receiving
neuron spikes at least once at synapse weight 10 or there is at least one spike
of the firing neuron that does not evoke a spike of the receiving neuron at
synapse weight 15.

If we examine Figure 2.3, we see that each spike of the receiving neuron is
delayed by a delay time tgeiqy < 10ms < t;5; with #;5; being the average
inter-spike interval of the firing neuron.

We therefore define a spike of the receiving to be corresponding to a firing
neuron spike if it occurs 10 ms or less after this spike.

If a firing neuron spike occurs less than 10 ms before the end of the
measurement, there is no corresponding answer spike needed, because it might
have occurred after the experiment stop.

3 Sea of Noise network

A sea of noise network is a large population of LoT-neurons which are
connected with an amount of randomly picked inhibitory and excitatory
synapses. [2] In our example, the population size is 100 and a
fixed-probability-connector is used.

Each pair of neurons in the population has a probability of 15 % to be
connected by an inhibitory synapse and of 1 % to be connected in an



excitatory way.

Without any connections, all the network neurons would spike permanently at
a regular frequency that is defined by the neuron parameters.

Some of the spikes are however inhibited by inhibitory incoming spikes from
other network neurons.

The large number of connections between random neurons causes the spiking
behaviour of a single neuron to be basically unpredictable, thus creating a
pseudo-random spiking behaviour of the whole system.

This can be seen in the irregular distances of the spikes in Figure 3.1.

Membrane potential of a randomly chosen SoN-neuron
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Figure 3.1: Membrane voltage over time of a randomly picked network-neuron
One way to quantify the network-behaviour is to take a look at the coeflicient

of variation (CV) of the inter-spike-intervals (ISIs).
The CV of a physical quantity is defined through: [3]

V=2 (1)

If we plot the CV of the ISIs over the mean firing rate for all network neurons,
we obtain the following result:



CV over mean firing rate for all SoN neurons
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Figure 3.2: CV of ISIs over mean firing rate for all 100 network neurons

In the case of a perfectly random process, a discrete variable would take the
form of a Poisson distribution with CV 1.

As can be seen, not all of the neurons’ CVs are in this range.

Moreover, the "randomness” of the firing is clearly rate-dependent, a neuron
firing less random when its mean firing rate is higher.

This can be explained keeping in mind the way we’re producing the
”randomness”:

Without the inhibitory connections, the neurons would all spike very regularly
at a frequency mainly determined by their time constant 7., and the
refractory time 7.

These parameters are set to Tmem = 20ms and 7,y = 4ms in our set-up.
The time that the neuron takes to reach the threshold level of

Vihresh = —20mV from the reset level V,cser = —70mV with the resting
potential being V.5t = +10mV is given by solving the solution:

V(t) = ‘/reset + (Vrest - ‘/reset)(l - eXP(*T )) ; ‘/thresh (2)
and adding the refraction time, which in total leads to:
t— Tref — Tmem " ln(l o V;fhresh - Vreset) (3)

‘/rest - ereset

For our values, we obtain 7y,:4; = 23.6ms, which corresponds to a firing
frequency of 42.4 Hz.

Therefore, the neurons that fire with a frequency closer to this value have to
receive a very small amount of inhibitory signals in order to achieve such a
high firing rate.



This, on the other hand, means that they are much less influenced by the
pseudo-random incoming signals and show a firing behaviour closer to the
”unconnected case” with small CVs.

In the case of Figure 3.2, the maximum average firing rate (=~ 12kH z) lies
quite far from the frequency calculated from equation (3).

This is due to the erroneous calibration of the hardware, that causes
deviations of all potentials in the order of 10-30mV.

Tt is likely that the actual maximum firing rate given by (3) and the actual
potential values is only slightly higher than the measured 12 kHz and that
those neurons are therefore almost uninfluenced by the inhibitory signals.

The automated test for the Sea-of-Noise-Network should test if

a) the average firing rate of the neurons is approximately constant over
time and on different HICANNs/wafers and if

b) the characteristic curve in the CV-mean-rate-diagram (Figure 3.2) can
be reproduced.

For a), the same test procedure as in the first chapter (Spiking LoT neuron)
can be used, with calibration data obtained on different HICANNs and wafers
setting a 3o-range that has to be kept by any future measurement.

For b), we fit a function to the characteristic curve and save the values and
covariances of the fit parameters as calibration data. A future measurement
will be processed equally, again the test will be rejected if the fit parameters
deviate by more than 30 from the calibration data.

3.1 Problems in implementing the CV-test

When calibrating the target fit parameters for test b), we found ourselves
confronted with some problems:

While some of the CV-diagrams could be fitted very accurately (e.g. in Figure
3.3), the fit function failed to display the desired curve shape of a parabola
open at the top, even though the CV-distribution apparently showed the
desired appearance. (Figure 3.4 & 3.5)
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Figure 3.3: CV diagram with correct fit curve
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Figure 3.4: CV diagram with failed fit curve
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Figure 3.5: CV diagram with failed fit curve
Since this problem would cause the test to fail even though the SoN-network is
configured correctly, it was decided to cancel this test and use only the

rate-based test a).

Again, we take a look at the calibration data and plot the mean rate over runs
on different HICANNS:

Calibration of the experimental setup
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Figure 3.6: Mean firing rate of each experiment run; the grey vertical lines



indicate a switch to a different HICANN.

Measurements on the left of the red vertical line are done on wafer 33, to the
right on wafer 21.

The grey dashed lines display the mean value of each wafer, the black line the
overall average.

The distribution of mean firing rates looks as follows:
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Figure 3.7: Distribution of mean firing rates, measurements on wafers 33 and
21, 10 HICANNs each

In this case, it does look like the 2 wafers would produce different average
firing rates.

The deviation is not significant though, also our sample of only 10 HICANNS
per wafer is not very big.

That there is a deviation independent of any HICANN change is evident, as
the random connections between the neurons are drawn randomly again after
every new configuration.

The calculated target rate and deviation are again used to decide if a tested
SoN-network is accepted or rejected by the automated test.

4 Conclusion

The analogue implementation of the neuromorphic hardware lead to
sometimes unanticipated errors and difficulties.
To be able to distinguish more easily between mistakes in the own



implementation and errors in the configuration of the hardware, automated
tests for some standard examples of neural networks were developed.

The question of finding an adequate measure of quality for a given
configuration and thus determine when a test should be accepted or rejected
had to be answered for each example separately.

Especially in the case of the Sea-of-Noise-Network, it was hard to find a good
measure for a good-working-network.

Since the attempt to fit a curve to the CV-rate-diagram failed due to the lack
of uniqueness of the fit parameters, it was decided to apply the previously used
mean-firing-rate-test as well to this experiment.

The thought behind this decision was, that a correctly configured SoN-network
surely has to comply with more conditions than a correct mean firing rate.
Nevertheless, the probability of a defective network producing a firing rate in
exactly the range given by the calibration data is very low. A constant firing
rate therefore is an acceptable measure for problems resulting from changes in
the hardware behaviour.

During the time of the test configuration, the experiment results remained
constant and the automated tests were passed for all valid HICANN
configurations.
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