
Towards Closed-Loop Experiments on
Neuromorphic Hardware

Visual Feedback Experiment Implementation

Nils Fischer

Electronic Visions, Kirchhoff Institut für Physik, Universität
Heidelberg

Projektpraktikum im Sommersemester 2014

This experiment is designed to probe the capabilities of the Hybrid Mul-
tiscale Facility (HMF) neuromorphic hardware system in Heidelberg to run
in a closed-loop environment, communicating with a cluster computer in
realtime. The work presented here lays the foundation to implement such
an architecture by providing a working implementation of the experimental
setup running on a neuronal simulator (NEST) with both continuous and in-
cremental updates and on the HMF in DNC loopback mode. Additionally, a
preliminary hardware neuron calibration is explored to find suitable neurons
for this experiment.

Contents

1 The Visual Feedback Experiment 2

2 Software Architecture 3

3 Neuronal Simulator Implementation 4

4 Neuromorphic Hardware Implementation 5

5 Hardware Neuron Calibration 6

6 Next Steps 7

1



1 The Visual Feedback Experiment
Figure 1 gives an overview of the experimental setup. A cluster computer
simulates an object in the Feedback Environment, given by its position on
an axis. The neuromorphic hardware models a number of neurons that rep-
resent a simple retina, the Retinotopic Response. In every timestep, the
Feedback Environment generates a number of spikes for each of the Retino-
topic Response’s neurons that follow a gaussian curve centered around the
object position. Upon receiving the spikes, the neurons mirror the incoming
spikes, thus effectivly seeing the object. The Feedback Environment then
assumes the object to be at the position given by the mirrored spikes and
applies a force

F = k · x (1)

Figure 1: Setup of the Visual Feedback Experiment: an virtual environment (left) inter-
acts with a neuronal ‘network’ (right).

2



to it, with the object’s position x and a feedback constant k, moving it along
the axis.

2 Software Architecture
The Visual Feedback Experiment is mostly implemented in Python, with
crucial realtime components running in C++.

The retinotopic_model Python module provides the Model, Update and
ModelEnvironment classes that implement the communication between the
experiment’s components. The ModelEnvironment distributes spikes be-
tween any number of Model objects it was provided with in the form of
Update objects that store the input spikes and can be applied to a Model.

A Model applies updates either in sequential or incremental mode. Fig-
ure 2 shows the difference between them. In sequential mode, every update’s
output spikes are computed by applying the update to the given situation,
whereas in incremental mode, for every update the model is reset and all
previous updates are combined to one.

Figure 2: Experiment execution modes: the stepwise or sequential mode is shown on the
left, the ‘incremental’ mode is illustrated using ever-growing simulation times
(right).

There is a Model subclass VisualFeedback for the Feedback Envi-
ronment, as well as for every architecture used in this experiment,
namely NeuronalSimulatorModel for the neuronal simulator NEST and
NeuromorphicHardwareModel for the Hybrid Multiscale Facility (HMF) neu-
romorphic hardware. They expose the same public interface, but differ in
their implementation.

3



3 Neuronal Simulator Implementation
To verify the experiment’s functionality and aquire data for comparison pur-
poses, the first step of this project involved simulating the Retinotopic Re-
sponse with the NEST neuronal simulator. Using the PyNN language, an
input population and a same-size population of IF_curr_exp neurons are
created and connected one-to-one. For the sequential update mode, the in-
put spikes are simply queued and the simulator is run for the timestep ∆t.
In incremental update mode, the simulator is reset and all timesteps’ input
spikes up to the given time are queued. Both methods should producing the
same mirrored output spikes.

Figure 3 shows the simulated time series of the object’s position with differ-
ent feedback constants and a time delay to produce an oscillating behaviour.
Because the resulting time series is the same for both update modes, the
figures don’t differentiate between them.

Figure 3: Time series of the object’s position with different parameters (i.e. feedback
constant and time delay) using a NEST simulator-based neuronal network
implementation.

4



4 Neuromorphic Hardware Implementation
Running the experiment on the HMF neuromorphic hardware in realtime
is challenging, because the simulating machine has to “keep up” with the
hardware’s speed. A first implementation of the Visual Feedback experi-
ment on the hardware is therefore performed in the conventional “Playback”
mode, where spikes are queued incrementally and the hardware is reset be-
tween timesteps. This also provides a testing environment for non-realtime
hardware experiments.

Figure 4: Object position and detection spikes for hardware in Playback mode with DNC
loopback

Before using hardware neurons, the experiment was conducted with the
DNCs in loopback mode. This way, the experimental setup could be tested
without relying on hardware neurons to be calibrated. Instead, input spikes
are simply mirrored by the DNCs. Figure 4 shows a sample run in this
configuration that shows the desired behaviour similar to the outcome of the
simulation.

5



5 Hardware Neuron Calibration
To now use hardware neurons for the experiment, we have to select a set of
neurons that are calibrated to mirror incoming spikes. Because at the time
of the experiment, we could not rely on a hardware calibration algorithm,
we performed a test to probe a number of neurons for their reactivity with
the goal to find a sufficient number with the desired behaviour to conduct
the experiment.

In particular, we performed a parameter sweep for the Vt parameter, quan-
tifying each neuron’s “reactivity quality” for a given value of Vt by computing
the ratio between incoming and outgoing fire rate, with a ratio of 1 being
desirable. Figure 5 shows the results of this test for a number of selected
neurons for illustration purposes. Note, that other parameters were set to
default values (e.g. El = 400) but could easily be tested with this method
as well. This could be particularly useful to put a hardware calibration
algorithm to the test.

Figure 5: Neuron quality quantified by the ration between incoming and outgoing fire
rate for 400 ≤ Vt ≤ 520

Additionally, a linearity test was performed for neurons that showed the
desired mirroring behaviour in the parameter sweep. Here, the input fire rate
νBEP was varied and compared to the output fire rate νN to make sure they
behave linearly.

6



These tests produced a sufficient number of neurons with the desired pre-
dictable behaviour to be used in the experiment.

6 Next Steps
The work presented here lays the foundation to conduct further experiments,
some of which were already outlined above.

First, the hardware neurons found using the preliminary calibration de-
scribed here should be used instead of the DNC loopback for the hardware
implementation of the Visual Feedback experiment to put the hardware’s
conventional “Playback” mode to a test.

Then, realtime experiments can be conducted using the same neurons.
The SpiNNaker interface already implemented in the software stack can be
used for realtime communication.

Also, a hardware calibration algorithm can be tested by running the pa-
rameter sweep and linearity test on the calibrated hardware. A well-functioning
calibration should drastically improve the individual neuron quality and their
linearity described above. Eventually, such a calibration should be used to
calibrate the hardware instead of using specific neurons for the experiment,
so that arbitrary neurons can be selected for the Retinotopic Response.

7


	The Visual Feedback Experiment
	Software Architecture
	Neuronal Simulator Implementation
	Neuromorphic Hardware Implementation
	Hardware Neuron Calibration
	Next Steps

