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Abstract

The BrainScaleS Project and a subproject of the Human Brain Project aim to better
understand the human brains communication and information processing structure
and to develop Neuromorphic Hardware inspired by the brains architecture. Such
Neuromorphic Hardware makes it possible to physically emulate neuroscientific models
on different time and spatial scales where todays computers face limitations of time
and energy consumption due to the complexity of most biologically relevant models.
The scope of this internship was to learn the tools and techniques used to simulate
neuroscientific model networks using the PyNN environment and to compare results
from emulating the networks on neuromorphic hardware with results on simulators
such as NEST or NEURON. A simple neuron chain was simulated with NEST and
emulated on a HICANNv2 wafer scale system. It was possible to reproduce similar
spiking patterns.
While working on the internship, interactive widgets with IPython where programmed.
These help to better understand the influence of different cell or network parameters on
membrane potential or spiking patterns as the parameters can be changed interactively
while directly observing the effect on the output.
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1 Introduction

1.1 The High Input Count Analog Neural Network
(HICANN) chip

In this internship physical emulation experiments have been carried out on the
HICANNv2 wafer module.
The following is a short introduction on building structure and components of the hard-
ware used in this internship. For detailed technical information see HBP SP9 partners
(2014).

1.1.1 Analog neuron and synapse circuits

One HICANN wafer module contains 384 HICANN microchips. Each one of these
chips can implement up to 512 neurons and 114688 synapses (Jeltsch, 2014). Every
neuron has two synaptic input circuits, which reversal potentials can be set individually.
Those two synaptic inputs are connected to 224 synapses. Neighbouring neuron circuits
within blocks of 64 can be combined to form one larger neuron with more connected
synapses. Therefore one block of 64 combined neuron circuits can implement a neuron
with 64 × 224 = 14336 individual inputs.
The dynamics of the analog neuron circuits have a configurable speedup of 103 to 105

compared to biological time. That means a speedup of 104 results in a emulation time
of 10−4 seconds for one second in biological time.

1.1.2 Implemented Neuron Model

The neuron circuits implement the Adaptive Exponential Integrate-and-Fire (AdEx)
model (Gerstner et al., 2014), which is characterized by two differential equations:

τm
dV

dt
= −(V − Vrest) + ∆T exp

(
V − Vthresh

∆T

)
− τm
Cm

· w +
τm
Cm

· I (1.1)

τw
dw

dt
= a(V − Vrest) − w (1.2)

The equations are expressed in terms of the parameters used in PyNN, where V
is the membrane potential of the neuron, τm the membrane time constant, Vrest the
resting membrane potential (also called leak reversal potential), ∆T the slope factor
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1 Introduction

controlling the non-linear dynamics of the exponential term, Cm the membrane capaci-
tance, I the injection current, w the adaptation variable, a the subthreshold adaptation
conductance and τw the adaptation time constant.
Whenever the membrane potential V reaches a spike detection threshold Vspike, a spike
is detected and the membrane potential is reset to the value Vreset. At the same time
the adaptation variable w is increased by the spike-triggered adaptation constant b.
This can be expressed by following equations:

if V (t) = Vspike


lim

δ→0;δ>0
V (t+ δ) = Vreset

lim
δ→0;δ>0

w(t+ δ) = w + b
(1.3)

Therefore for positive b the excitability is reduced after each spike and is increasing
again to its default excitability following equation 1.2. Additionally after a spike the
neuron cannot be excited at all for a refractory time τrefrac.
The exponential term of equation 1.1 and the adaptation w can be turned off on
the hardware, making it possible to emulate different Leaky Integrate and Fire (LIF)
models.

1.2 The PyNN Interface

Neural network models in this internship were written using the PyNN interface. PyNN
is a description language for neuron networks implemented in Python. Code written
in PyNN can be executed with different simulation backends such as Nest, Neuron or
Brian. To use the same description language for emulations on the HICANN wafer
system, the PyNN compatible software interface PyHMF was developed. Through
several software layers mapping of simulated neurons to hardware neurons is done and
calibration parameters for the hardware are used to achieve better uniformity between
different hardware neurons. For more details see HBP SP9 partners (2014).
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2 Tools
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Figure 2.1: IPython notebook with interactive widgets for analyzing neuron model be-
haviour for different neuron models and parameter settings. Units of time
and time constant parameters are ms, unit of cm is nF, unit of weight
is nA and unit of voltages and potentials is mV. The plot result changes
interactively when moving the sliders.
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2 Tools

To gain a better understanding of the dependency of different models and networks
on certain parameters, interactive Widgets where written with IPython Notebook to
make it possible to change parameters and see the effect on model characteristics (e.g.
membrane potential) directly without having to rerun the simulation manually for
each parameter set. This is useful only for small networks as the simulation is still
rerun automatically each time a parameter changes. In figure 2.1 an interactive widget
simulating a LIF neuron with fixed threshold and decaying post synaptic conductance
(IF cond models in PyNN) is shown. The parameters can be changed by sliding the
sliders and for a set of parameters the neuron model can be switched between the
IF cond exp and IF cond alpha, simulating an exponential and alpha function shaped
post-synaptic conductance, respectively.
Similar interactive simulations were written for other neuron models used in PyNN.
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3 Methods and Results

3.1 Chain network model

A simple network model was used to get used to working with PyNN and Python and
to reproduce results of previous network emulations on the HICANNv2 wafer scale
system. The network used was a feed forward chain consisting of several populations
of LIF neurons with fixed threshold and exponentially-decaying post-synaptic conduc-
tance (IF_cond_exp neuron model in PyNN). A fixed number of neurons of each
population is connected excitatory to each neuron of the following population. The
neurons of the first population are excited by a single spike source. An exemplary
network with 3 populations, 4 neurons per population and 2 connections between suc-
cessive populations is shown in figure 3.1.

Pop1 Pop2 Pop3

Spike Source

N1

N2

N3

N4

N1

N2

N3

N4

N1

N2

N3

N4

N neuron not connected to next population

N neuron connected to next population

Figure 3.1: Chain Network with 3 Populations of 4 Neurons each and a connectivity of
2. Each neuron of the first population receives excitatory synaptic input
from a spike source, each neuron of the following populations receives exci-
tatory synaptic input from 2 random neurons of the preceding population.
Arrows indicate excitatory connections.
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3 Methods and Results

3.2 Simulations in NEST

First the network described in section 3.1 was simulated using the NEST simulator with
the PyNN interface. As in simulation in the network each neuron of the same popula-
tion receives exactly the same input from the previous population, the simulation can
be simplified to single neurons being connected several times depending on the num-
ber of connections between neurons of following populations in the original network.
This simplification made it possible to create another interactive IPython Notebook
(see figure 3.2) to analyze the change of spiking rates of the different populations for
different network and cell parameter settings.
For the final simulation a network size of 14 populations with 12 neurons per popu-

lation and a connectivity of 4 was chosen. To get the same simulation input for each
neuron in the network, the spike source is connected 4 times with each neuron of the
first population. The simulation parameters were chosen similar to the ones used for
the hardware emulations in section 3.3 and the network was simulated for different
threshold voltages Vthresh. The other parameters stayed unchanged for each simulation
and can be found in the appendix A. In figure 3.3 the simulation results are shown.
To stimulate the network one spike from the spike source is sent at t = 10 ms.
For −48 mV ≤ Vthresh ≤ −45 mV the simulation results in the same spike counts
as can be seen in figure 3.3a. In the figures 3.3e and 3.3f the corresponding mem-
brane potentials for the first population neurons are shown for Vthresh = −45 mV and
Vthresh = −48 mV, respectively. We can observe that for lower threshold potentials the
membrane potential after the first spike comes closer to the threshold potential, just
as would be expected. Due to the equal connectivity between spike source and popula-
tions all neurons receive the exact same input in all populations if the first population
only spikes once. Therefore we receive the given spike pattern and every neuron will
show the exact same voltage trace as the first population.
For Vthresh = −49 mV the membrane potential of the first population neurons now
reach the threshold a second time after the first spike as can be seen in figure 3.3g.
The neurons of the second population now receive two input spikes of which each
would trigger two spikes again following a voltage trace similar to the one of neurons
in the first population if the neuron of the second population was at rest when the
second input spike arrives. If the second spike arrives earlier, the membrane voltage
of the receiving neuron would still be below the resting potential which could result
in less spiking for the second input as happens e.g. in figure 3.3b where the second
population (index 1) spikes only 3 times and not 2× 2 as would have happened, if the
neuron already reached its resting potential before the second input spike. The spiking
still increases from first to second population and that effect even increases for later
populations receiving exponentially more input spikes.
For Vthresh = −50 mV the second population spikes 4 times and the effect increases
even more resulting in even more spikes for populations coming later in the chain.
When the threshold potential is set below the resting potential Vthresh < Vrest, the neu-
rons start spiking continuously even without receiving any input as they cross Vthresh
every time they try to reach Vrest as can be seen in figure 3.3d. The resting potential
was set to Vrest = −50 mV for each simulation.
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3.2 Simulations in NEST
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Figure 3.2: IPython notebook with interactive widgets for analyzing the spike be-
haviour for different parameter settings. A network with 3 populations
and 1 neuron per population is simulated. Units of time and time con-
stant parameters are ms, unit of cm is nF, unit of weight is nA and unit of
voltages as potentials is mV. The resulting raster plot and the membrane
voltage of population 0 change interactively when moving the sliders.

7



3 Methods and Results
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(a) Vthresh = -45mV to -48 mV

0.0 0.2 0.4 0.6 0.8 1.0
bio time [s]

0

2

4

6

8

10

12

14

p
o
p
u
la

ti
o
n
 i
n
d
e
x

Rasterplot for all spikes

(b) Vthresh = -49mV
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(c) Vthresh = -50mV
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(d) Vthresh = -51mV
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(e) Vthresh = -45mV
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(f) Vthresh = -48mV
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Figure 3.3: Rasterplots ((a)-(d)) and
membrane voltage traces
for neurons of the first pop-
ulation ((e)-(g)) are shown
for simulations with NEST
simulator as backend. For
each population only one
neuron was simulated as
each neuron of one popu-
lation receives the same in-
put.
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3.3 Emulation on HICANNv2 wafer

3.3 Emulation on HICANNv2 wafer

To emulate the chain network on the HICANNv2 wafer, hardware specific code had
to be added to control the emulation setup. For the hardware emulation a network
with 14 populations of 12 neurons per population and synaptic input for each neuron
of a population from 4 neurons of the previous population was implemented. The first
population is connected 4 times with the spike source and the spike source sends one
spike at the times t1 = 1 ms, t2 = 1000 ms and t3 = 2000 ms.
For each network neuron four hardware neuron circuits are connected as this is the
neuron size, for which the mapping software has been tested before and which most
previous hardware experiments used so far.
Therefore one population uses 4 × 12 = 48 hardware neurons. Each HICANN consists
of 8 output buffers for blocks of 64 hardware neurons each. As the input of each
output buffer is limited, only one population per output buffer is emulated. The
mapping of simulated neurons to hardware neurons is done neuron by neuron, e.g.
if in the simulation code the last neuron of one population is defined just before the
first neuron of the next population, they will be implemented on successive hardware
neurons. Therefore, to use only one output buffer for one population, 64−48

4 = 4
dummy neurons (each consisting of again 4 hardware neuron circuits) were created in
the simulation code to fill up the buffers. Additionally the last output buffer is reserved
for background event generation and external spike input. Therefore 7 populations
can be emulated on one HICANN chip, of which two are used for this setup to emulate
14 populations. Code written by Sebastian Schmitt and used in the HBP Platform
Demonstrator for the HBP Summit 2014 1 was reused for this purpose. Parameters to
receive reasonable spiking patterns were already given in the code and can be found
in the appendix B.
To investigate the effect of changing certain parameters, the network was emulated
for different values of the threshold voltage Vthresh as can be seen in figure 3.4. The
figures show exemplary raster plots of all neurons emulated, including the dummy
neurons used to fill up the buffers. Therefore between two populations 4 neuron
IDs belong to not connected neurons which should not spike at all. This should
leave a blank spot between successive populations. The ticks for the neuron index
axis where chosen in a way, that they always mark the first neuron of a new population.

The threshold voltage was varied in a range of −49 mV ≤ Vthresh ≤ −44 mV as for
higher voltages no spikes seem to occur at all and lower voltages result in continuous
spiking throughout all chain neurons as can be observed in figure 3.4f.
For −43 mV ≤ Vthresh, the emulation exits with an error. This behaviour seems to be
the result of the PyHMF command that reads the array containing times and neuron in-
dices of recorded spikes in an assembly of populations (PyHMF.assembly.getSpikes()).
The error occurs in simulation if the spikes array is empty. We can therefore assume,
that we don’t have any spiking behaviour for the given voltage.

1https://github.com/electronicvisions/hbp_platform_demo

9

https://github.com/electronicvisions/hbp_platform_demo


3 Methods and Results
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(a) Vthresh = -44mV
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(b) Vthresh = -45mV
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(c) Vthresh = -46mV
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(d) Vthresh = -47mV
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(e) Vthresh = -48mv
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(f) Vthresh = -49mV

Figure 3.4: Raster plots for hardware emulation of the chain network on a HICANNv2
wafer module for different values of the threshold voltage Vthresh of the
emulated neurons.
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3.3 Emulation on HICANNv2 wafer

For Vthresh = −44 mV only a few spikes in the first population can be observed. The
emulation was repeated 5 times and in none of them did the spiking reach the second
population. For Vthresh = −45 mV we see that only the first population and a few neu-
rons of the second population start to spike. The emulation was repeated 5 times and
for some of the stimulations the spiking reached further then the second population
but for most it didn’t.
For high voltages of Vthresh = −48 mV and Vthresh = −49 mV the network neurons start
spiking continuously. When in simulation the threshold voltage is set to be smaller
then the resting voltage Vthresh < Vrest, we can observe the exact same behaviour as
explained in section 3.2 and shown in figure 3.3d. In both, simulation and hardware
emulation, the resting voltage was set to be Vrest = −50 mV. As both, Vthresh and
Vrest, have a relative deviation of around 1% and 9% (Schmidt , 2014), respectively,
for some neurons both voltages will be close enough to initiate continuous spiking.
The connectivity in the network will then result in other neurons receiving continuous
input followed by again continuous spiking, and so on. This explains why we observe
the effect already for Vthresh = −48 mV.
For Vthresh = −46 mV (figure 3.4c) and Vthresh = −47 mV (figure 3.4d) we can observe,
how the neurons of a population spike only a few times, transporting the signal from
one population to the next. We therefore reproduced similar spiking patterns as the
simulations in figures 3.3b and 3.3c showed. The main difference to the simulations is
that we can not observe a significant increase of spikes per population for populations
coming later in the chain. At the same time it was not possible to produce a spiking
pattern where neurons of each population spike only once.
Both can be explained with the variation of hardware parameters. A setup that in
simulation would result in exactly one spike per neuron as can be seen in figure 3.3a is
very likely to result in a break up of the signal transportation in a hardware emulation
as can be seen in figure 3.4a and 3.4b. Exactly 4 input spikes result in a rise in mem-
brane potential of a receiving neuron that triggers exactly one spike in that neuron, in
simulation. When connecting only 3 neurons, the receiving neuron might, depending
on the other parameters, not spike anymore. Considering hardware parameter varia-
tions, we can assume that in a setup which should result in each neuron to spike only
once, some hardware neurons might not spike even when receiving 4 input spikes. If
such a neuron is one of the four neurons connected to the next population, the signal
forwarding could already be stopped as the entire next population only receives three
input spikes. This is just a qualitative example that should make clear how hardware
parameter variations result in breaking of the spike chain.
If a neuron would receive two input spikes at the same time in simulation, on the
hardware those two inputs would be sent just behind each other with a little delay.
Therefore two spikes that would in simulation reach a neuron at the exact same time
and increase the membrane potential of the receiving neuron just enough to trigger a
spike, might not do so on hardware as the delay between the two spikes would leave
room for membrane potential to decrease again towards its resting potential. Popu-
lations coming later in the chain network receive several spikes in short time from 4
sources (in simulation these inputs would arrive at the exact same time). Therefore
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3 Methods and Results

it is possible that some of the spiking in simulation is lost due to spike delays on the
hardware. The delay effect is very small though and it would need some further inves-
tigation to determine if it actually has any affect.
Additionally the output buffers on the HICANN are capable to only register a limited
amount of data. In a population coming later in the chain network every neuron will
produce several spikes. This possibly could reach a limit in the output buffer resulting
in not all spikes being registered.
In figure 3.4e we observe a surprising behaviour. In each of 4 hardware emulations
with Vthresh = −48 mV the second input from the spike source array resulted in a stop
of all spiking in the network. The same could be observed for 2 out of 4 emulations
with Vthresh = −49 mV. This could be either a bug in the spike recording mechanism
or in the analog neuron circuit. To determine weather the spikes are just not recorded
correctly or do not occur at all an analog voltage trace should be recorded. As at
the time of writing this report the voltage recording function of the PyHMF module
(PyHMF.Population.record_v()) seems to only record noise around 0.08mV instead
of the actual membrane potential2, it was not possible to investigate this further.

3.4 Summary

In this internship a simple network model (section 3.1) was simulated and the spiking
behaviour of neurons of different populations was investigated for different values of
Vthresh. The different spiking behaviour was analyzed and explained and similar spiking
patterns could be reproduced in hardware emulations on the HICANNv2 wafer.
Not entirely clear was the effect that continuous spiking in the network was interrupted
by a single input spike from the spike source to the neurons of the first populations
(figure 3.4e). To understand the source of this behaviour, an analog voltage trace needs
to be recorded and more detailed experiments could be useful to investigate under which
circumstances this behaviour is most likely to occur. More emulations for smaller steps
of different threshold voltages in the range of −49 mV ≤ Vthresh ≤ −47 mV could be
done to find out if this effect really is related to the value of Vthresh, which cannot be
concluded from the few experiments taken in this internship.

2https://brainscales-r.kip.uni-heidelberg.de/issues/1567
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4 Outlook

After gaining necessary knowledge and skills to run simulations and hardware experi-
ments it is planned to implement a more complicated network model on the HICANNv2
wafer. The chosen network is a modular network model of the cerebral neocortex first
suggested by Lundqvist et al. (2006) and later adapted to the hardware limitations of
the HICANNv2 by Petrovici et al. (2014).
To investigate the behaviour of single cells of the network on hardware, typical spike
inputs of network neurons have already been recorded from the network simulation1.
For recording single cells input the pyrec program2 written by Paul Müller was used. It
is planned to implement those neurons with the recorded inputs on the HICANNv2 and
try to receive similar output as in the simulation. After that the network is planned
to be build up step by step starting with smaller subunits and continuing towards im-
plementing a downscaled version of the entire network used by Petrovici et al. (2014).

1https://brainscales-r.kip.uni-heidelberg.de/projects/hbp-sp9-benchmark-model-kthl23
2https://brainscales-r.kip.uni-heidelberg.de/projects/hicann-dls-modeling
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Appendix

A: Simulation Parameters

Parameter Value
Cm 0.2 nF
τm 20.0ms
τrefrac 0.0ms
τsyn,E 5.0ms
τsyn,I 5.0ms
Erev,I -60mV
Erev,E -40mV
Vreset -70mV
Vrest -50mV
Vthresh varied
Ioffset 0.0 nA
weight 0.016 nA
delay 0.1ms

Table .1: Parameters used in PyNN. Neurons were simulated with IF_cond_exp model
and NEST backend.
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B: Hardware Emulation Parameters

Parameter Value
Cm 0.2 nF
τm 409.0ms∗

τrefrac 20.0ms∗

τsyn,E 5.0ms
τsyn,I 5.0ms
Erev,I -60mV
Erev,E -40mV
Vreset -70mV
Vrest -50mV
Vthresh varied
Ioffset 0.0 nA
weight 0.004 nA
delay 0.1ms

Table .2: Parameters used in PyNN for emulation on HICANNv2 wafer. Neuron model
used: IF_cond_exp.
∗Note that τm and τrefrac were taken from the original code by Sebastian
Schmitt where they were passed to the hardware directly as DAC values (hack
in calibtic software). When the code was rerun, this hack was not used but
instead the calibration software set the corresponding hardware parameters
to to the fixed values of Igl = 409 DAC and Ipl = 100 DAC for any values of
τm and τrefrac, respectively.
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