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Internship report

As the BrainScaleS project aims to cover both neuroscientific and computational aspects
it also incorporates a custom processor in the HICANN-DLS that handles the synaptic
weights of neurons on a wafer, hence its name Plasticity Processor Unit (PPU). Because
of the custom nature of the PPU it is not fully supported by any compiler right now so
current users have to handle register allocation and memory structures on a regular basis
which is uncommon for users mainly familiar with higher level languages. Therefore it
is planned to extend the GCC back-end to support the PPU. The main part of this is
the expansion with custom built-in functions, that any front-end or language is meant
to support. These built-in functions then allow for a more comfortable use of directives
that still enable the user to trigger certain actions in the PPU.
This report will analyze the way built-in functions are implemented in the rs/6000 or

PowerPC back-end in order to check the feasibility of such a back-end in the near future
and to provide a first insight into the rs/6000 back-end in GCC.
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1 Compiler Structure

Typically a compiler consists of a front-end, middle-end and back-end. These three parts
sit on top of each other with the front-end at the very top and the back-end at the bottom
and pass down the program’s code as it is translated and optimized or compiled. But
communication is also possible between front-end and back-end directly (as we will see
later on). Therefore changes that are made to the back-end affect the front-end as well!
Such modular architecture allows for a compiler to support many different front-ends

and back-ends independently and at the same time as all code needs to pass the same
middle-end no matter which front-end or back-end is used. In normal cases front-ends
are associated with programming languages and back-ends with CPU architectures or
“targets” while the middle-end is at the heart of the compiler and is usually what dis-
tinguishes between different compilers, as does the communication between the three
parts.
The first part of the compilation process is the translation of code which is written

in some programming language by the front-end into a so called Intermediate Repre-
sentation (IR) that looks the same for every front-end language and usually is never
seen by the user. AS already described, any supported programming language (C, C++,
Java. . . ) is implemented in its own front-end that defines how the language is translated
into IR. After that the IR is send to the middle-end where it is mainly optimized and
then passed to the back-end. The back-end first performs further optimization that is
target-specific followed by allocating registers and handling relative memory. Finally the
code is translated into the assembly language that is supported by the target which the
back-end belongs to (Mogensen, 2010).
This last step executed by the back-end can seen as independent from the back-end

as the translation into assembly is pretty straight forward, but the rs/6000 back-end for
instance allows for direct assembly output that is not dependent on IR. Therefore we
combine these the assembler and the back-end.
After the code is compiled and emitted as an object file it is also linked, which means

combining different object files and assigning absolute memory addresses to them and at
last the symbols which are used in assembly are substituted by their respective opcodes.
Opcodes are almost the lowest representation of machine code as the machine would not
accept strings a input but rather bits that are represented as hex literals. These opcodes
form pairs with assembly macros and can be found in binutils. Finally the resulting
binary file is emitted by the linker and loaded into the memory of the processor to be
executed.
GCC generally obeys this scheme and therefore the PowerPC architecture (also called

rs/6000) is a good example of a back-end that supports different extensions to the stan-
dard architecture such as the AltiVec vector extension. This makes is more complex than
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the Cell Synergistic Processor Units (SPU) back-end but all back-ends in GCC share the
same functions defined by macros. Still besides those macros the back-ends obey only
few restrictions by the middle-end and thus this guide will not easily be transferable to
other GCC back-ends and especially not to other compilers back-ends!
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2 Creating an intrinsic function

An intrinsic or builtin function is a medium link between inline assembly and normal
functions. They look like normal functions but usually trigger certain machine instruc-
tions on a very basic level. This can make intrinsic functions very effective at the cost of
being very specific compared to normal functions. Intrinsic functions are usually directly
built into the compiler or rather its back-end and provide the compiler with additional
information that allows for highly optimized code. Usually there is one specific machine
instruction at the core of every intrinsic function.
Most of this is done in the machine description that builds an interface between machine

instructions and IR. Every instruction that is used within the compiler is part of a so
called insn (short for instruction). An insn is an expression that is identified by its
code and adds information to a machine instruction. It is written in Register Transfer
Language (RTL) that has its own syntax and keywords.
We will not dive further into this specific topic since these details are not needed for

the purpose of this report. Therefore we will utilize existing insns and see what makes
them complete intrinsic functions.
The functions we will take a look at are called vec_addc or vec_vaddcuw when used in

any front-end. This is one of the differences between normal functions and intrinsics as
the latter one is the same for every front-end because it is implemented into the back-end.
This function, which takes two vectors that have unsigned int elements as arguments,

“returns a vector containing the carries produced by adding each set of corresponding
elements of two given vectors“ ibm (2015), this means for c = vec_addc(a,b) that the
resulting vector c’s elements’ bits are 1 if adding a and b produces a carry at that bit
position and 0 otherwise. Therefore the name “Vector ADD Carry Unsigned Wordsize“.
But the use of this function is less important than the way it is implemented.
The alternative acronym vaddcuw depicts the name of the instruction on a processor

level which is “ vaddcuw %c,%a,%b“ and is implemented as a synonym intrinsic to vec_addc.
Hence vaddcuw and vec_addc have their specific insn with the code altivec_vaddcuw.
(define_insn "altivec_vaddcuw"
[(set

(match_operand:V4SI 0 "register_operand" "=v")
(unspec:V4SI [( match_operand:V4SI 1 "register_operand" "v")

(match_operand:V4SI 2 "register_operand" "v")]
UNSPEC_VADDCUW))]

"VECTOR_UNIT_ALTIVEC_P␣(V4SImode)"
"vaddcuw␣%0,%1,%2"
[( set_attr "type" "vecsimple")])

To explain this in a few words: The first line depicts the insns name altivec_vaddcuw ,
the next four lines specify what the instruction does (in this case an unspecified function
this with input operands named UNPEC_VADDCUW ; there are other insns that consist of
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known RTL Templates such as plus , minus ... ) and which constraints and predicates
the operands (0, 1 and 2) need to fulfill (this is RTL) (A constraint in this regard looks
similar to constraints in assembly and has quite the same task of specifying what kind of
operand (memory address, register...) is allowed. A predicate specifies additional, more
detailed restrictions for the operand). It is followed by a boolean function, to check if
this insn is valid to be used and the assembly symbol with its operands. The attributes
set at the end are only used internally.
Now our first step is to add an entry into the builtin description file rs6000 -builtin.

def. This file holds all builtin functions and connects them to insns. The very beginning
of this file consists of convenience macros for different extensions that allow for better
readability as most of the properties of a builtin function are similar or even the same
for each extension.
#define BU_ALTIVEC_1(ENUM , NAME , ATTR , ICODE) \

RS6000_BUILTIN_1 (ALTIVEC_BUILTIN_ ## ENUM , /* ENUM */ \
"__builtin_altivec_" NAME , /* NAME */ \
RS6000_BTM_ALTIVEC , /* MASK */ \
(RS6000_BTC_ ## ATTR /* ATTR */ \
| RS6000_BTC_UNARY), \

CODE_FOR_ ## ICODE) /* ICODE */

There are different types of macros for different types of builtin functions. Each macro
takes four arguments besides it’s enumeration name which are:

• the name of the function as string literal

• a bit-mask that indicates which options are enabled

• attribute information

• the insn code

The macros then add information for each extension and divide the builtin functions into
certain groups which depend on the number of arguments. In our case the macros are
called BU_ALTIVEC_1 , BU_ALTIVEC_2 , BU_ALTIVEC_3 for up to three arguments respectively
and all of these have the RS6000_BTM_ALTIVEC bit-mask as well as the same prefix for their
enumeration name and function name. These are ALTIVEC_BUILTIN_ for the enumeration
name and __builtin_altivec_ for the function name. Besides that each macro has a
specific attribute such as RS6000_BTC_TERNARY for function with three arguments.
Now we finally move to specifying the builtin function. The line of code we are inter-

ested in is:
BU_ALTIVEC_2 (VADDCUW , "vaddcuw", CONST , altivec_vaddcuw)

First the name for the enumeration is set as ALTIVEC_BUILTIN_VADDCUW, which is used in
later code when the builtin is referenced to, then the builtin functions name is set as
__builtin_altivec_vaddcuw. Next the attribute is set as CONST which means that no other
registers are altered when the insn is used but the three registers that are directly called.
At last the insn code is given as CODE_FOR_altivec_vaddcuw, which references the insn code
by its name, that we saw earlier, in later code. This already gives us a usable builtin
function! To use it we first set our vector variables:
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2 Creating an intrinsic function

vector unsigned int a,b,c;
c = __builtin_altivec_vaddcuw(a, b);

But this function still has some flaws as it would not give an error for this case:
short a,b,c;
c = __builtin_altivec_vaddcuw(a, b);

Because there is no type-checking the user could use the function in a completely wrong
manner. To avoid this though, there are overloaded builtin functions that include a
type-checking routine.
An overloaded builtin function is basically just another builtin function that is less

specific than the previous function as it only specifies two names and no insn code.
Thus they have their own macros (BU_ALTIVEC_OVERLOADED_1 , BU_ALTIVEC_OVERLOADED_2

, BU_ALTIVEC_OVERLOADED_3) and differ in a way that the enumeration prefix is
ALTIVEC_BUILTIN_VEC_ and the function name prefix is __builtin_vec_ also the attributes
are completely set in advance as well as the specific attributes. For an overloaded builtin
we will use a simpler name which will be __builtin_vec_addc

BU_ALTIVEC_OVERLOAD_2 (ADDC , "addc")

Since there is no insn code given all overloaded builtins are connected to existing builtins
which we will do next in rs6000-c.c.
We will overload the builtin __builtin_vec_addc with __builtin_altivec_vaddcuw and

add argument and return types. In principle this is similar to a functions argument types
but for intrinsics these are declared in a struct that allows for different combinations of
argument and return types. The struct is called altivec_builtin_types and consists
of an overloaded builtin code, a normal builtin code, the return type and up to three
argument types. For ADDC exists only one struct though because it only works for vectors
of unsigned ints (V4SI = Vector of 4 Single Integers):
{ ALTIVEC_BUILTIN_VEC_ADDC , ALTIVEC_BUILTIN_VADDCUW ,
RS6000_BTI_unsigned_V4SI , RS6000_BTI_unsigned_V4SI , RS6000_BTI_unsigned_V4SI , 0 }

ALTIVEC_BUILTIN_VEC_ADDC is now overloaded with the working builtin function
ALTIVEC_BUILTIN_VADDCUW from earlier and has a return type and argument types which
are vectors of unsigned ints. The last entry is 0 because there is no third argument.
Basically this is enough for the overloaded builtin function to work properly and it can

be used in a way such as
vector unsigned int a,b,c;
c = __builtin_vec_addc(a, b);

and would give an error if the types would not match those we set earlier.
To give all of this a nice touch and increase usability in the end. We define synonyms

for our newly created overloaded builtin function. We will not do this for the original
builtin function since we want to avoid the missing type checking.
#define vec_vaddcuw vec_addc
...
#define vec_addc __builtin_vec_addc

Here the first line defines a synonym for the function for people familiar with the assembly
macro. This brings our task of defining a builtin function to an end!
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But there is still one kind of common builtin function left that differs to normal
one-to-three-argument-builtins in some ways such as requiring a memory address for
assembly macro instead of a register or simply not having a return value. These are
called special builtin functions that have the convenience macros BU_ALTIVEC_X and
BU_ALTIVEC_OVERLOADED_X, though a special macro can also be overloaded with a normal
overload macro like BU_ALTIVEC_OVERLOADED_2. The special X-macro has CODE_FOR_nothing

as insn code like the overloaded macros did earlier and thus is not intended to be handled
normally but will be caught in the main file rs6000.c which we will see later.
We will have an example that uses a normal overloaded macro since it is slightly easier

and special overloaded functions tend to need special handling in the main back-end file
because they have very specific properties. Therefore we take a look at vec_mtvscr(a)

which copies the value of a into the Vector status and Control Register (VSCR) (Move
To VSCR). The insn code for this builtin function is altivec_mtvscr and the machine
instruction is mtvscr %a. It is obvious that this function does not generate any return
value and therefore would not fit a one-argument-builtin.
BU_ALTIVEC_X (MTVSCR , "mtvscr", MISC)
...
BU_ALTIVEC_OVERLOAD_1 (MTVSCR , "mtvscr")

The other difference for this builtin is that it is not a CONST builtin but carries a MISC

attribute. This argument is only used in special cases that make an exception to CONST

or any of the other special attributes and means specifically that there are no special
attributes. We will not discuss the other attributes but an explanation can be found
in the rs6000.h file. In contrast to the builtin function __biultin_altivec_vaddcuw from
earlier, the builtin function __builtin_altivec_mtvscr is of no use now since there is no
insn code connected with it. Thus we will add special cases in the function that handles
the builtin functions or “expands“ them. This is done in the altivec_expand_builtin

function that handles special builtins exclusively. Normal builtins are expanded de-
pending on their number of arguments at the very end of rs6000_expand_builtin where
altivec_expand_bulitin is called before hand.
In the expander function the compiler switches between all special cases, which means

there has to be an entry for every special builtin there is. For mtvsrc this entry looks
something like:
case ALTIVEC_BUILTIN_MTVSCR:

icode = CODE_FOR_altivec_mtvscr;
arg0 = CALL_EXPR_ARG (exp , 0);
op0 = expand_normal (arg0);
mode0 = insn_data[icode]. operand [0]. mode;

/* If we got invalid arguments bail out before generating bad rtl. */
if (arg0 == error_mark_node)

return const0_rtx;

if (! (* insn_data[icode]. operand [0]. predicate) (op0 , mode0))
op0 = copy_to_mode_reg (mode0 , op0);

pat = GEN_FCN (icode) (op0);
if (pat)

emit_insn (pat);
return NULL_RTX;
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2 Creating an intrinsic function

This code is probably the most difficult part when adding a special builtin function.
The easiest way is to look for a similar function, copy its code and modify it if necessary.
But we will go through this code briefly:
First we see some important variables that get their respective values. icode obviously

holds the insn code, arg0 holds whatever the function gets as first argument, op0 makes
an operand of that argument, and mode holds the mode of the operand that the insn needs
(modes are for example Single Integer, Vector of 16 Quarter Integers etc.. It then checks
if the argument is actually valid and returns an error otherwise. Next it checks whether
mode and op0 match and tries to convert the operand if they do not match (it tries to
match the proveded operand and requested mode to the predicate for that operand in
the insn). pat holds the directive to build an insn with code icode and operand op0 and
if this gives no error the final insn is emitted. The return value has no purpose but
detecting errors and thus is NULL_RTX.
Now the compiler knows the insn code of this special insn but it needs to define

the builtin as well. For special builtin functions this is not done automatically but in
altivec_init_builtins:
def_builtin ("__builtin_altivec_mtvscr", void_ftype_v4si , ALTIVEC_BUILTIN_MTVSCR);

This adds __builtin_altivec_mtvscr to the list of defined functions and also gives the
argument and return types (void_ftype_v4si, everything before ftype is the return type
everything after the arguments). In this case it is not obvious why this needs to be done
but there do exist builtins that have different insn codes depending on the used modes
thus the type of the input arguments helps distinguish these differences. In this case
only v4si is chosen as mode because we will also have an overloaded builtin for this new
builtin function. This is done similar to earlier by adding entries in rs6000 -c.c for each
combination of arguments and return types:
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_V4SI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_unsigned_V4SI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_bool_V4SI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_V8HI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_unsigned_V8HI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_bool_V8HI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_pixel_V8HI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_V16QI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_unsigned_V16QI , 0, 0 },
{ ALTIVEC_BUILTIN_VEC_MTVSCR , ALTIVEC_BUILTIN_MTVSCR ,

RS6000_BTI_void , RS6000_BTI_bool_V16QI , 0, 0 }

The return type obviously should be the same for all entries since there is no return type
thus RS6000_BTI_void as first entry. Next there are 3 modes with different submodes,
because all integer vector modes are allowed as first argument. A normal mode means
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that the elements are signed integers and an unsigned mode has unsigned elements. Bool

elements have a single bool variable at each element and pixel is used for graphic usage
of the AltiVec extension. The 0 at the end marks the second and third argument unused.
This sets the last step to completing our special builtin function that has a normal
overloaded part.
At last we define a shorter function name in s2pp.h:

#define vec_mtvscr __builtin_vec_mtvscr

This completes our special intrinsic function!
For implementing a builtin function for earlier GCC versions (4.4 and earlier) I highly

recommend the guide by Mauricio Alvarez Alvarez (2006).
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3 Discussion

This report had the goal of explaining the implementation of AltiVec intrinsic functions.
It started straight forward with explaining the basic structure of compilers such as GCC
and emphasized on the rs/6000 back-end. This followed by a step-by-step guide on how
intrinsic functions are build bottom-up and added the case of special builtins.
The value of intrinsic functions can be questioned when compared to inline functions

and inline assembly but in any way intrinsics do allow calling specific actions on the
processor that are otherwise not available while also allowing for optimization by the
compiler. This generates the perfect use case for extensions such as AltiVec where differ-
ent versions of add instruction are crucial to the usefulness of such an extension. Intrinsics
therefore provide the common user to take control over the Processing Unit in a simple
way that neither requires knowledge of assembly nor forces the user to produce efficient
code by himself.
This is contrary to the current state of PPU support which demands assigning registers

by hand as well as choosing the right memory address. In comparison this is more
complicated and prone to inefficiency when done by an unexperienced user especially for
large programs.
As it is obvious that this report does not help a lot in understanding how a compiler

back-end completely works but rather is a tutorial on how to add intrinsic functions to
the rs/6000 back-end it is meant to rather advertise the future use of implementation of
intrinsic functions for the PPU. Though it also did not show all possibilities there are
for intrinsics, most of these are barely needed and it would require further knowledge of
a back-end. This goes beyond what is needed in case of the reduced instruction set of
the PPU. Ultimately this guide may help the most when there is an instruction set to
be added to the rs/6000 back-end and to give an overview of what may be possible to
include in a GCC back-end. We leave further explanation of the internals of GCC to
the official GCC internals handbook GCC (2017) as it provides a more detailed look into
RTL and insn defintion.
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4 Outlook

As it was hinted in the discussion of this report, there are plans on extending the rs/6000
back-end of GCC so it supports the PPU’s vector unit This is surrently in the works
currently as there are even some PPU-specific intrinsics already. Because the PPU is
a simple PowerISA chip with a custom vector unit the implementation of intrinsics is
easily transferable from the AltiVec vector extension to the PPU by swapping the ALTIVEC

keyword with S2PP. With some knowledge of RTL this report then allows to add new
composite intrinsic functions based on the instruction set of the PPU. By then this guide
should be accompanied by a more complex thesis that explains the extension of the
rs/6000 back-end and is meant to provide the reader with more insight into things like
RTL and maybe makes reading the GCC internal obsolete.
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