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Magnons???

Ground state of a FM:

S,=Ns,

Excited states:

S,=Ns,-1, S,=Ns,-2, S,=Ns,-3, ...

1 magnon, 2 magnons, 3 magnons,...
—magnons are Bose-particles

Carry transverse magnetization
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Bose-Einstein-Condensation of atoms

classical gas guantum gas BEC

Condition of BEC transition: Thermodynamics of BEC:

KT, —331—|\|/ n=




Magnons in ferromagnetic films

o e Transparent ferromagnet
YIG (yttrium-iron-garnet) Films 5.10 pm thick

No domains

H= 700 Oe
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Wavevector (1/cm) Scattering amplitude
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Magnons in ferromagnetic films

YIG (yttrium-iron-garnet)
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10* 10° 10°

k ~0.35%x10°cm™

Transparent ferromagnet
Films 5-10 um thick
No domains

L =hx2GHz =
= kg x100mK =10xeV

KT =3. 31N




(Thermo)dynamic of magnons

In equilibrium: . . .
q Magnons are quasi-particles with variable N (T).

In equilibrium with the lattice (F=F
p=0 <E;, Therefore: OF

at any temperature E >0 H= ON 0
min .

min) :

No BEC possible.

In quasi-equilibrium: We can change N

Two important time scales: Tgs Tg,

S In YIG:

Esp r, ~10-50ns

T = 0.2-0.5us
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Experimental setup for BEC observation

Magnons created by microwaves and detected by
light scattering with time and space resolution

Ar'-ion laser
Fabry-Perot |,
interferometer |
Resonator
L
()
A6 400 A0 107 100 A t
1
Wavevector, cn N
f
ﬂé
Two thresholds: :
#1. pumping itself __ sample =0 '
T||'|T|'||||“||||“|u ) MW pulse
#2: BEC |,|l||J Y generator
! Pumping pulse
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Mechanisms of magnon thermalization

Two-magnon scattering Impurity-scattering, linear effect
o =, (independent of the magnon density

k1 = k2 Elastic, k-thermalization

Four-magnon scattering: Nonlinear effect
(increase with increasing density)
W, + W, = w; + W,

Inelastic, ,k-thermalization

K, +k, =k; +Kk,

Magnon-magnon scattering keeps the number of particles constant
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MClgﬂOﬂ thermalization (step-like pumping)
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Thermalization time

@3.2GHz x 100
o——90——0—0—

@t =3.2 GHE_ 1 o

Magnon population
Thermalization time (ns

c
O
I
=
o
@)
o
c
@)
c
(o)
@©
=

0 — T T T T
e T 00 02 04 06 08 10 12
Time (ns) Pumping power (W)

Thermalization time depends on the pumping power/magnon density
At high magnon densities is below 50 ns.
Phys. Rev.Lett. "07.
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Mechanisms of magnon thermalization

Two-maghon scattering Impurity-scattering, linear effect
o =, (independent of the magnon density

k. = k. Elastic, k-thermalization

Under external influence magnon gas in YIG first
thermalizes itself to a quasi-equilibrium
(and then relax as a whole,
if pumping is switched off)

Magnhon-magnon scattering keeps the number of particles constant

Thermalization happens fast if the number of magnons is high
enough




Brillouin Light Scattering

Momentum conservation law: the geometry defines the spin-wave wavevector
Energy conservation law: change of the photon’s frequency
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Brillouin Light Scattering

Momentum conservation law: the geometry defines the spin-wave wavevector
Energy conservation law: change of the photon’s frequency

5 —

—~
N
L
©)
~
>
(&)
c
()
>
o
()
—
LL

T
1,0

Wavevector (10° cm™)

WESTF}fi.LISCHE
WESTHFARESONEVERSITAT
W OniEtewS - UNIVERSITAT

\ R




BLS spectroscopy
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Pumped magnons (step-like pumping)

1000 ns 2.08 GHz
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Time dependence of the chemical potential

I
200

T : : T :
400 600 800 1000
t, ns

Stationary state
due to spin-lattice
relaxation

For high pumping power one can reach the critical
density of magnons
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Pumped magnons (step-like pumping)

P=59W

Time development of
magnon distribution

Intensity, counts/ms

Known DOS: n(a)) fit
with U

Bose-statistics.
At 300 ns critical density:

H = Hnax
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Experiments with ultimate resolution

2,1 T=500 ns

density is of & - type
(width is <1.5 mK,
i.e. <10-9kT).

The addition to the critical . 4 n(f)-nc(f)
*

HWHM = 30 MHz

A condensate is created!
0,7

Condensate: a lot of spins
precess in phase.

Nature 443 430 '06




The condensate is doubly degenerate
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Detection of the coherent magnetic precession

Condensate: a lot of spins precess in phase.
The precessing spins should radiate af f,;,

Low-noise
Amplifier

Dielectric
resonetor

Pulse
Ganerator

Pump magnons.
Analyze the ringing of the sample using MW spectrum-analyzer.
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Spectrum of magnetic precession

The measured width

corresponds to
0.3mK, i.e. 2-106kT

Very high temporal
coherence of the
condensate

o o o
RN o (0]
1 1 1

Spectral power, a.u.
o
N

0,0

Appl. Phys. Rev. Lett. 92 162510 08
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Critical index

Sweeping pumping power just above the BEC threshold

; : Kalafati & Safonov
JFit: Ppog =a(P,-P..)? ] predicted (1993)

Prad OC(Pp-Pcr')2

for BEC of magnons
due to double
degeneracy of the
spectrum and
phase-locking
between to
components of the
condensate
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Pumping
wire
resonator
Single-
frequency
laser

pumping pulses

Study with k-resolution

30 ns wide

Wide-angle
objective

-

Focusing

e v1G film

To the
interfe-
rometer

Movable
pinhole
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Instead integrating
the signal over (k, k)
k-resolved
measurements are
performed.

Goal: investigation of
maghon kinetics
during the formation
of the condensate and
spatial coherence
properties of the
condensate.




Magnon kinetics in the phase space

a) =20 ns

Magnons are gathered at the point in the phase
space corresponding to the minimum frequency.
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Spatial coherence of the condensate

The width of the magnon
cloud in the k-space first
decreases and then
saturates.

The corresponding
coherence length ¢ =n/Ak
can be determined:




Spatial coherence of the condensate

The width of the magnon
cloud in the k-space first
decreases and then
saturates.

The corresponding
coherence length ¢ =n/Ak
can be determined:

t.,.=220 ns (:II =6 Lm Z:u > 10 (LM
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400 800 g anisotropic, reflecting the
anisotropy of the magnon
spectrum.
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Phase-locking between the k and -k components

CW measurements

Probin
~ light g Injected Two components of

magnons

s e s the condensate are
Microwave e \ TG m phase locked

resonator ‘ W w The paSE-|OCking IS
H, probably due to the

oo oemsates—" K, defect-mediated
Wave vector Coup”ng

SIOVI37dia | In addition to regular
BN RANTUEE' ‘ 5 periodic structure
stationary vortices
are observed
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Correlation of the k and -k components

CW measurements

The amplitude of the
modulation grows
faster than the total
density.

!

The pase-locking is
due a nonlinear
interaction between
the components of
the condensate

Modulation Depth (%)
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Vortices in the condensate




Spatio-temporal evolution of the condensate

| L

Experiment 1
il s + :,[ + 4 i ++ 5 ( il + ,__: 4+ j-lln.lx +
F (0 o [ ?) T pir (JU4 oa W 7) Ty = —f ()

=Ll p — E |I|'.I|

= B =

. 1
H I |!_ + [to i + = | 1. |" + I.'_i.ll,1l,r

The nonlinearly coupled equations,

4 "™ written for amplitudes of the right-
CB C‘ ( K, ) and left-traveling
( —k, ) waves, combininig basic
features of the Gross-Pitaevskii and

P =BW P =W
CE m complex Ginzburg-Landau models.

B.Malomed et al., Phys. Rev. B 81 024418 "10
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Sound in the condensate

Propagating Wave Position of Wire

- Dielectric Res.
- YIG film+Subst.

60 80 100 120 140
Condensate is created by the
microwave pumping via dielectric
resonator

It is disturbed by radio-field using a

: The wire excites waves propagating in
narrow wire
the condensate

Z(UM)  Near Field Region
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Sound in the condensate

Propagating Wave Position of Wire

9,5 SR
9,0
8,5

8,0

7,54

1 L 1 L 1

10 15 2,0 25 7.0
k(10°‘m™)

80 100 120 140

z(pm) Near Field Region

Vo = % =tan &
Theory based on the GPE and

the known spectrum of The wire excites waves propagating in
magnons. the condensate
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Sound in the condensate

Propagating Wave Position of Wire

9,5 SR
9,0
8,5

8,0

7,54

10 15 20 25 7.0 . -
k(10°m™) 80 100 120 140

z(pm) Near Field Region

Vo = % =tan &
Theory based on the GPE and

the known spectrum of The wire excites waves propagating in
magnons. the condensate
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Summary

Doubly degenerated Bose-Einstein condensate of
magnons is created at room temperature

Coherence properties of the condensate as well its
spatio-temporal dynamics are studied

http://www.uni-muenster.de/Physik/AP/Demokritov/
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