Beetle1.2 MA0 submission

The multi-anode pmt (MApmt) tube is the back up solution for the LHCb RICH detector.

A readout chip is required to be able to collect and store signals from the MApmt in a LHCb specific way.

The Beetle chip from Heidelberg conforms to the LHCb specifications but cannot handle the large signal input from a MApmt.

Modifying the Beetle to be able to accept these signals is possible, but which is the best approach. A MPW will be submitted on the $2^{\text {nd }}$ of December 2002 with a modified Beetle 1.2 chip
(Beetle1.2_MA0) which has three different front end amplifiers.

Introduction

MApmt specifications
The standard simulation test bed used.
A look at the various front end schematics.
A look at the various front end layouts.
Layout of the Beetle 1.2MA0 chip and test points.
Can the Beetle pipe line accept the new dynamic range of the FE amp.
The layout checks that have been done.
Some first order simulations.

Beetle1.2_MA0 submission

Specifications for input pulse from MApmt

Single photon signal 300,000e- @ -800V
Pmt capacitance 1.5 pF without base
Rise/Fall time 2ns baseline width 5ns
Gain spread 3 (tube to tube 2, pixel to pixel 2)
Signal/pedestal width 40:1
Dynamic range 9 (gain spread $\times 3$ photons)
Beetle noise figure $\sim 483 \mathrm{e}-+45.7 \mathrm{e}-/ \mathrm{pF}$
Assuming worse case 10 pF load so work with noise $\sim 1000 \mathrm{e}-$
Output of amp needs to be $30 \mathrm{mV} /$ photon to $270 \mathrm{mV} / 9$ photons

Beetle1.2 MA0 submission

All simulations use the following values unless otherwise stated.
$300,000 \mathrm{e}-/$ photon (delivered by a voltage step across a 3.2 pF cap. Rt and Ft $=0.1 \mathrm{~ns}$, pulse width 10 us , Vpeak is -15 mV for $300,000 \mathrm{e}-$)

All simulations done on a three channel segment with parasitic extraction and biased by the bias generator.

10 pF load
$\mathrm{Vfs}=0 \mathrm{~V}, \mathrm{Vfp}=0 \mathrm{~V}$. This gives best rise time and input rate capabilities.
$\mathrm{Vfs}=0 \mathrm{~V}, \mathrm{Vfp}=405 \mathrm{mV}$ for the attenuator amp.
I-shape=78.8uA, I-pre=590.5uA, I-buf=78.8uA. From Beetle bias generators. Standard Beetle 1.2 settings.
$\mathrm{R}=1 \mathrm{M} / / \mathrm{C}=1 \mathrm{pF}$ on output buffer to give pipeline loading.

A three channel simulation test bed, allows cross talk measurements.

Frontendistt_3ch_test

Standard Beetle1.2 Frontend

Beetle1.2MA0 FrontendDiv

Red box means different to the standard Beetle 1.2

Beetle1.2MA0 FrontendAtt

Red box means different to the standard Beetle 1.2

The folded cascode pre-amp

30/10/2002
Nigel Smale University of Oxford

The folded cascode shaper amp

The source follower buffer

The layout of the three pre-amps

68.6um

Standard pre-amp, no change

Pre-ampDiv, 990 ohm (3x11um²)+ 996fF (42x33.6um²) added.

39um
Pre-ampAtt, Cfbp stretched from 400fF (18.4x30.4um²) to 807fF (38x30um²).

Zoom of the preampDiv RC network

The layout of the three Shaper-amps

 Shaper \& ShaperDiv have no change.

ShaperAtt, coupling C reduced from $700 \mathrm{fF}\left(33.9 \times 29.1 \mathrm{um}^{2}\right)$ to $190 \mathrm{fF}\left(26 x 10 \mathrm{um}^{2}\right)$.
Cfbs increased from $48.8 \mathrm{fF}\left(2_{\text {caps }} \mathrm{x} 13.14 \times 10 \mathrm{um}^{2}\right)$ to $197 \mathrm{fF}\left(1_{\text {cap }} \mathrm{x} 27 \times 10 \mathrm{um}^{2}\right)$.

Removed one of the fb transistors

Zoom of the shapampAtt mods

Beetle1.2 MA0 Layout Scheme

Prebias, Prebias1, Shabias, Shabias1, Bufbias, Att_T, Div_t, 1.2_T

Dynamic input range of the Beetle 1.2
 pipeline. Plot treated by Sven Loechner HD

Beetle1.2MA0 FrontendAtt

Beetle1.2MA0 FrontendAtt

Channel 2 (centre) peak vs input with signal on adjac channels

Beetle1.2MA0 FrontendAtt

Beetle1.2MA0 FrontendAtt
 AC Response

Nigel Smale University of Oxford

Beetle1.2MA0 FrontendAtt

AC Response

Beetle1.2MA0 FrontendAtt

Beetle1.2MA0 FrontendAtt

Prebias-1 problem

Beetle1.2MA0 FrontendDiv

30/10/2002

Deviation
Deviation \% 7.34310383 1.76791384
0.79961132

Gain is $\sim 20 \mathrm{mv} / 0.3 \mathrm{Me}-$
Ft to 30\% remaining ~ 9ns
Channel 2 (centre) peak vs input with signal on adjac
$\rightarrow 1=03=2.7$
$-1=03=1.2$
$-1=03=0.3$
$-1=03=0$
*- $1=0.33=2.7$
$\rightarrow-1=0.33=1.2$

- $1=0.33=0.3$
— $1=0.33=0$
- $1=1.23=2.7$
$1=1.23=1.2$
- $1=1.23=0.3$

1=1.2 3=0

- $-1=2.73=2.7$
* $1=2.73=1.2$
- $-1=2.73=0.3$
$1=2.73=0$

Nigel Smale University of Oxford

Beetle1.2MA0 FrontendDiv

Beetle1.2MA0 layout checks

Nigel Smale University of Oxford

Beetle1.2MA0 FrontendDiv

Worst case cross talk (26\%) is when neighbour channels have 2.7 M -e input. More realistic is . 3 Me - on neigbours giving $<1 \%$ cross talk. Depends on occupancy.

Charge input on neighbouring channels Me-

With and without Parasitic extraction

The effect of changing pre-amp bias Vfs

Beetle1.2MA0 layout checks

Three adjacent channels for both Div and Att have passed DRC, extraction and LVS.

Simulations look o.k for a first order for both, and are as expected.

Sven has incorporated these into a full chip structure, and completed extraction and LVS. Since this time the Div has had a modification made to the resistor block. The resistor has been surrounded by dummies.

Sven will do another full test when he is back and generate the gdsII file.

Consideration of changing a track width.
There was one warning in the DRC.

Charge attenuator Pre-amp, $\mathrm{RL}=1 \mathrm{~K}, \mathrm{Cdiv}=900 \mathrm{fF}$,

Charge attenuator $\mathrm{FE}-\mathrm{amp}, \mathrm{RL}=1 \mathrm{~K}, \mathrm{Cdiv}=\mathbf{9 0 0 f F}$,

FE differential non linearity

FE linearity
10% sampling window $=4.51 \mathrm{~ns}$

Charge attenuator $\mathrm{FE}-\mathrm{amp}, \mathrm{RL}=1 \mathrm{~K}, \mathrm{Cdiv}=900 \mathrm{fF}$,

The effect of load capacitance

3 photon input at 50 ns rate gives a 5.1 mv baseline shift

Rate capabilites measured at 2 us

Nigel Smale University of Oxford

The Cpre,Cd and Cshap mod FE

In layout terms

30/10/2002
Nigel Smale University of Oxford

The pre-amp and shaper output

Pre-amp, vfp=400mv,Cfp=735fF,Cfs=192fF,Cd=147fF

FE-amp, vfp=400mv,Cfp=735fF,Cfs=192fF,Cd=147fF

10% sampling window $=5.17 \mathrm{~ns}$

Nigel Smale University of Oxford

FE-amp, vfp=400mv,Cfp=735fF,Cfs=192fF,Cd=147fF

The effect of load capacitance

The effect of changing shaper bias Vfs

3 photon input at 250 ns rate gives a 10% baseline shift

Rate capabilites measured at $2 u s$

Nigel Smale University of Oxford

Consecutive 9 photon input gives a variation of 10%

Conclusions and questions outstanding

- Beetle 1.2 is in good condition, other than bug in control logic. Should we submit with new or old logic.
-Only three amplifiers are worth considering for the RICH option The preferred is the C modified FE, the charge division is a definite contender if ac coupling is required, the op-amp needs consideration.
-Detailed study of how these amplifiers really fit into the rest of the Beetle1.2 architecture now needs to be studied. Real parasitic capacitance and inductance needs to be added to simulation when layout is complete.
-Detailed look at the binary comparator compatibility with the new amps needs to be studied.

Extra slides

For the shaper mod with vfb at 400 mv etc, put here because interesting that shaper out is at 2 v

Reference FE pre-amp

Cfb made larger on Pre-amp

30/10/2002
Nigel Smale University of Oxford

Buf-amp with Cd \& Cfs adjusted

30/10/2002

Buf-amp with Cfp, Cd \& Cfs adjusted

30/10/2002
Nigel Smale University of Oxford

