
Brain-Inspired Computing (SS 2017) � Python Exercise Sheet

Due date: None

0.1 Introduction to Python

a) Install Python 2.7 on your computer (c.f. https://wiki.python.org/moin/BeginnersGuide/

Download).

b) If you have not yet worked with Python, reproduce the �rst 7 Chapters of the Python

tutorial https://docs.python.org/2.7/tutorial/. (You can omit sections 2.2, 4.7, 4.8,

5.8, 6.4 since they discuss more advanced topics)

c) Implement the Seive of Eratosthenes https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes,

an ancient algorithm for �nding prime numbers.

d) Using your implementation, �nd the sum of all the primes below two million (https:

//projecteuler.net/problem=10).

Solution:

"""Solution to exercise 0.1"""

import math

def sieve(n):

"""Return a list of boolean values of length n indicating whether the integers

from 1 to n are primes or not"""

A = [True for _ in range(0, n)]

A[0] = False

A[1] = False

for i in range(2, int(math.sqrt(n))+1):

if A[i] is True:

j = i*i

while j < n:

A[j] = False

j += i

return A

MAX = 2000000

result = 0

for val, isprime in enumerate(sieve(MAX)):

if isprime:

result += val

print result

-> 142913828922

1

https://wiki.python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org/2.7/tutorial/
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://projecteuler.net/problem=10
https://projecteuler.net/problem=10

0.2 Values and References

The di�erence between assignment by reference or assignment by value in programming languages

can be explained using the following analogy: When browsing the Internet, you might hit a page

that you want to store for later use. In this case, you can either bookmark it (i.e., save its URL

to your disk) or save the complete page to your disk.

This distinction exists in high-level programming languages as well. There, if you assign a

variable to another variable you can either copy the value or copy the memory location address.

a) Describe the advantages and disadvantages of both behaviors in terms of memory usage,

data consistency and the posibility that the original data source might disappear.

In Python, variable assignments are by reference 1 by default (except for number types, such as

bool, int and �oat).

As examples, take the following exerpts from a Stackover�ow question https://stackoverflow.

com/questions/13530998/python-variables-are-pointers:

i = 5 # create int(5) instance, bind it to i

j = i # bind j to the same int as i

j = 3 # create int(3) instance, bind it to j

print i # i still bound to the int(5), j bound to the int(3)

i = [1,2,3] # create the list instance, and bind it to i

j = i # bind j to the same list as i

i[0] = 5 # change the first item of i

print j # j is still bound to the same list as i

However, by using the copy module, you can enforce assignment by value. The distinction

between value and reference assignment is re�ected in the existance of the two comparison

operators == and is. The == operator compares the values of two variables while the is operator

checks whether two variables reference the same object. Given the following de�nitions:

import copy

a = [1, 2, 3, 4, 5]

b = a

c = copy.deepcopy(a)

Write down the results of the following statements (without using your Python interpreter):

b) print a == b, a == c, b == c

c) print a is b, a is c, b is c

Now, we'll change a: a[0] = 42. What do the statements now result in:

d) print a == b, a == c, b == c

e) print a is b, a is c, b is c

f) print a[0], b[0], c[0]

g) What's the di�erence between deepcopy and copy? Could we have used copy for our

example as well?

1In other programming languages (like C++), there is a distinction between references and pointers. In Python
variable hold what is called a reference to an object. They should however not be mistaken for C++ references or
pointers. See http://scottlobdell.me/2013/08/understanding-python-variables-as-pointers/ and https:

//www.tutorialspoint.com/cplusplus/cpp_references.htm.

2

https://stackoverflow.com/questions/13530998/python-variables-are-pointers
https://stackoverflow.com/questions/13530998/python-variables-are-pointers
http://scottlobdell.me/2013/08/understanding-python-variables-as-pointers/
https://www.tutorialspoint.com/cplusplus/cpp_references.htm
https://www.tutorialspoint.com/cplusplus/cpp_references.htm

Solution:

import copy

a = [1, 2, 3, 4, 5]

b = a

c = copy.deepcopy(a)

#c = copy.copy(a)

print a == b, a == c, b == c

-> True True True

print a is b, a is c, b is c

-> True False False

a[0] = 42

print "Changing a"

-> Changing a

print a == b, a == c, b == c

-> True False False

print a is b, a is c, b is c

-> True False False

print a[0], b[0], c[0]

-> 42 42 1

g) c = copy.copy(a) gives the same results

Counter-example:

d = [a, c]

e = copy.copy(d)

f = copy.deepcopy(d)

print "At first they are all equal"

print "d", d

print "e", e

print "f", f

-> d [[42, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

-> e [[42, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

-> f [[42, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

e[0][0] = 17

f[0][0] = 23

print "Changing e changes d, changing f does not"

print "d", d

print "e", e

print "f", f

-> d [[17, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

-> e [[17, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

-> f [[23, 2, 3, 4, 5], [1, 2, 3, 4, 5]]

3

0.3 Matrix multiplication and numpy

This exercise introduces you to a very important Python package called numpy. With it, you can

create and e�ciently handle large, multi-dimensional arrays and do mathematical operations on

them.

Your task will be ot compare the run-time of the matrix multiplication in numpy with an imple-

mentation that you will do yourself.

a) Write a function that creates a random NxM matrix as a numpy array (see https://docs.

scipy.org/doc/numpy/user/basics.creation.html#arrays-creation and https://docs.

scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.

randint)

b) Implement a matrix multiplication using for loops.

c) Compare your implementation's results with that of numpy (https://docs.scipy.org/

doc/numpy/reference/generated/numpy.dot.html). Hint: Numpy arrays can be com-

pared with the == operator, using their all() method.

d) Measure the runtime of both implementations. For this, you can either use the timeit

package or the following approach (you might have to introduce some repetitions to get a

meaningful measurement):

import time

start = time.time()

print("hello")

end = time.time()

print(end - start)

Solution:

import timeit

import numpy as np

def create_linear_filled(N, M):

"""Create an NxM matrix which is filled with linearly increasing values.

According to Wikipedia, N is the number of rows and M is the number of

columns.

"""

ret = np.empty((N,M))

for row in range(N):

for col in range(M):

ret[row][col] = row*M+col

return ret

def create_random_matrix(N, M, maxint):

return np.random.randint(1, maxint, size=((N,M)))

def matrixmult(A, B):

sh_a = A.shape

sh_b = B.shape

assert sh_a[1] == sh_b[0]

C = np.empty((sh_a[0], sh_b[1]))

for row in range(sh_a[0]):

for col in range(sh_b[1]):

4

https://docs.scipy.org/doc/numpy/user/basics.creation.html#arrays-creation
https://docs.scipy.org/doc/numpy/user/basics.creation.html#arrays-creation
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

C[row][col] = 0

for step in range(sh_a[1]):

C[row][col] += A[row][step]*B[step][col]

return C

if __name__ == '__main__':

check correctness first

N = 10

I = 8

M = 7

maxint = 100

A = create_random_matrix(N, I, maxint)

B = create_random_matrix(I, M, maxint)

C1 = np.matmul(A, B)

C2 = matrixmult(A, B)

assert C1.all() == C2.all()

reps = 10000

setup = 'import numpy as np;import solution3;'

setup += 'A=solution3.create_random_matrix('+str(N)+','+str(I)+','+str(maxint)+');'

setup += 'B=solution3.create_random_matrix('+str(I)+','+str(M)+','+str(maxint)+');'

T1 = timeit.timeit('np.matmul(A,B)',

setup=setup, number=reps)

T2 = timeit.timeit('solution3.matrixmult(A,B)',

setup=setup, number=reps)

print T1

-> 0.0643570423126

print T2

-> 8.64190196991

print T2/T1

-> 134.280595555

5

	Introduction to Python
	Values and References
	Matrix multiplication and numpy

