Measurement of synaptic stimulus on a
neuromorphic HICANN Chip using
PyHalbe software

Project lab report by
Simon Ziegler

email: simon.ziegler@kip.uni-heidelberg.de

supervised by
Alexander Kononov

June 25, 2013

Contents

1

Introduction

1.1 Motivation and Goal
1.2 Structure of the Test Setupo
1.3 Used Programs

Project lab work

2.1 Orientation
2.2 Written code
2.3 Measurement of Post-Synaptic-Potential
2.4 Linearity of synaptic weights
2.5 Generating equal PSPs of different neurons

Results and Discussion

(O BEN BN NG TS 3 W w ww

(=]

1 Introduction

1.1 Motivation and Goal

The research group Electronic Vision(s) [1] at the Kirchhoff Institute for Physics of the
University of Heidelberg developed the neuromorphic hardware [2] HICANN (High Input
Count Analog Neural Network) in cooperation with TU Dresden.

The Chip contains 512 membrane circuits (neurons) and 114 thousand synapses, which
are programmable with several parameters stored in analog Floating Gate Memories [3].
There are several difficulties to control and program these analog parameters for the
neuron.

Thus the goal of this lab project is to get familiar with the newest software Pyhalbe, a
python [6] based version of the new interface Halbe, based on C++ [11]. Furthermore an
aim is to get experience with the hardware system, controlling and activating of single
parameters and stimulating neurons to measure them and to compare them with the
expected behavior.

A further goal is to bring all neurons to the same Post-Synaptic-Potential (PSP), thus
reducing the deviation between them for better synaptic measurement.

1.2 Structure of the Test Setup

The vertical SetUp, developed at the University of Heidelberg and TU Dresden is for
testing and controlling the HICANN Chips. The System Emulator Board is the con-
nection and controlling station between the Power Supply, DNC-Board, FPGA-Board,
Analog to Digital Converter (ADC) and finally the HICANNmodule with the observed
HICANN Chip. The single components are explained in [4].

In this internship the analog output of the HICANN is observed and analyzed with
the oscilloscope and later with the ADC on the PC to process the data.

1.3 Used Programs

The aim of the project Electronic Visions is also to control the hardware with PyNN [5],
which is a universal language for simulating neural networks and controlling neuromor-
phic hardware.

To achieve this objective it is necessary to create software representation of hardware
interfaces. Thus a new interface named Halbe is developed for a more intuitive way to
operate the hardware. In addition a Python interface named Pyhalbe are developed by
Christoph Koke and Eric Miiller. All programs in the project lab are written in Pyhalbe

The plotting liberary matplotlib is used for graphical visualization.

2 Project lab work

2.1 Orientation

Without any previous programming skills, the first object was to learn Python and the
basics of C++ because the new interface was just introduced and only C++ programs
were available for orientation. In addition it was essential to understand the main
architecture of the hardware to be able to control the HICANN Chip and comprehend
the theoretical models of the neurons and synapses to understand their behavior. Among
others publications it were read [7] [8] [9].

To get familiar with the Interface, the first steps were to translate C++ Halbe test-
code to Pyhalbe-code for understanding single statements. The further step was to write
a code that stimulates a neuron. This code was improved in different ways. See Figure
1 for a spiking neuron. The reset to a certain value can be observed, then the rise to the
resting potential occurs and the voltage rises due to the periodic stimulation until the
exponential term starts which increases the membrane potential quickly.

1400 | IADC readoutl

1600 [.

1800 - 1

Voltage /DAC-Value

2000 | .

2200 .

24000 2000 4000 6000 8000 10000

Time [Cycle

Figure 1: ADC recording of a spiking neuron

2.2 Written code

The program 2neurons.py stimulates one neuron with the background generator until it
spikes, which in turn stimulates another neuron, the membrane trace of both are visible
in the oscilloscope picture in figure 2.

Math Utilities Help

Figure 2: Oscilloscope picture of a 2 neuron network activity

To see the functions of Pyhalbe and explore the hardware, commands were changed
and observed if the code still work like expected. Also the neuron parameters were varied
and the transformation was observed like in figure 3.

File “ertical Timehase Trigpger Display Cursors Measure Math Analysis Utiliies Help

_______ Ve

i
+

Measure

100 k=

2806 mY |---- 301.4 my

Waiting for Trigger

Figure 3: Oscilloscope picture of a 2 neuron network.
There are two spikes of neuron 1 (green) within 1 us so that the membrane po-
tential of neuron 2 (blue) does not reach the resting voltage and its membrane
voltage adds up to a higher value.

2.3 Measurement of Post-Synaptic-Potential

To compare different PSPs, a uniform unit of measure is needed. The membrane voltage
trace is the distinguishing feature of the collectable data so the best choice is to calculate
the integral over this voltage trace. The recording time (for periodic traces) has to be
long enough to ensure small statistical variances of this integral. But it should not be
to long so that processing time is not wasted. A optimum tradeoff was achieved after
some tests.

Because the resting membrane potential is not zero, one has to subtract the offset for
a correct measurement. Programming the FG affects the offset so the resting potential
has to be measured every time FG-Values are set.

2.4 Linearity of synaptic weights

After exploring the hardware, the goal is to get a linear dependency of the integral
over the PSP-trace and the synaptic weight. The weight of a synapse row are varied
by setting conductance parameters from 0 (no conduction) to 15 (max. conduction) in
steps of 1.

For recording the analog output a ADC Board is used. The integral is calculated
using Numpy’s [10] trapezoidal integration. For optimum integration result the trace of
the ADC with about 20 spikes is recorded, the offset removed, and the single integrals
are calculated. This process is repeated ten times with same conditions and the average
of the integral values is taken. The relative error is within 0.02 - 0.05 of the average
integral, depending on the size of the PSP. This only true for PSPs with acceptable
shape.

The result is that the linearity depends mainly on the local parameter Vsyntcx, re-
spectively Vsyntci (the synaptic time constant governing the decay of the PSP) and the
parameter gmax (global constant for the maximum conductance of the synapse). See
figure 3 for a rather linear rise of the average integral of the PSP for increasing the
synaptic weights.

350000 T T T T T T .
300000
.250000
200000

150000

Integralvalue

100000

50000

OO 2 4 6 8 10 12 14 16

Synaptic Weight

Figure 4: rather linear rise of the average PSP with the synapse weight

ADC readout

ADC readout

p ﬂ

]
o

250

[N
o
o
E—
—
——
L
v o
o o

|

-
v
=)

~

(=)

Voltage DAC-value

w
=]

=
o
=]

Voltage DAC-Value

~
=]

50

-
o

o

|
—
o
o

5000 10000 15000 20000
Time /Cycle

7500 5000 10000 15000 20000
Time /Cycle

Figure 5: neuron 0 Figure 6: neuron 26

ADC readout

ADC readout
15 T T 100
80
Y o
g % 60
g Z
3 [$]
a al
@ o 40
o o
s =
s R
-10 1 _s0t
=15 . . L —40 . . .
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Time /Cycle Time /Cycle

Figure 7: neuron 45 Figure 8: neuron 56

2.5 Generating equal PSPs of different neurons

The next goal is to get a set of neurons with rather similar PSP via varying Vsyntcx.
This is necessary because the size of the neurons transistors and capacitors, and their
FG differs due to the fabrication process and thus their behaviour differs too.

See figures 5 - 8 for different neurons with same FG parameters and same stimulus of
background generator.

To achieve similar PSPs for every neuron, the calculation of the integral and its
deviation is a limiting factor. Paul Miiller developed a better way to calculate this
integral by fitting the average of a PSP with a a-shape and then calculating the integral
without offset, see figure 9 for the single PSP of neuron 1 and its fit (green). There is a
sine oscillation, which is not well understood yet, but which is not significant, because
the fit is further used and this oscillation does not affect it in a decisive manner.

Neuron with value

0.550 . :
0.545| 1
V_syntcx_value: 808
0.540 - Neuron 1
E Integral 3.09904674504
o 0535 1
g
= 0530] 1
0.525} 1
0.520 1 1
AN NN N
0515 | | \h/l \\\J/’ \?\/'/
70 5 10 15 20 25
Time ps

Figure 9: PSP of neuron 1 with fit and data

After measuring all integrals of different PSPs, the program adapt.py compares these
integrals with a target value. If a neuron has an integral value in a set range around
this target value, it is not treated further. For the other neurons, Vsyntcx is changed
according to their integral value and the integral is measured again. This process is
repeated until all neurons have an integral value in the range of the target value.

3 Results and Discussion

The parameter Vsyntcx is very sensitive and is hard to control the integral value with
this parameter. In addition the floating gates are analog memories, so every round
of programming changes the floating gate values a little. The combination of these
two problems leads to different integrals, although using the same parameters for a
measurement. Figure 10 shows the resulting end values of applying adapt.py with the
target integral value of 3.0+£0.3 to 3 neurons.

Not only do all neurons show a special behaviour with Vsyntex value, but also the
results for a single neuron with the same parameter spreads over up to 10%. Furthermore
a higher Vsyntcx value does not lead to a real trend to higher integral like expected.

3 Neurons with target value 3.0 (+-0.3)

3.3 . Rot Neuron 0
® e Griin Neuron 1
3.2} . Blau Neuron2 |
' @
L
o 31f :
=
o [
s 3.0 °
on
g
c = ®
2.9 @ .
2.8 . ° |
[]
2.7
L]

2'&06 807 808 809 810 811 812 813 814 815
V_syntc value

Figure 10: Intgral and Vsyntcx value after adpation of 3 neurons: 6 measurements

This shows that the programming of the FG changes their behaviour every time and the
PSPs can not be reproduced with this parameter.

The problem is that a FG-Cell cannot be programmed solely, but FGBlocks with 128
FG-Cells, each corresponding to a set of neuron parameters, has to be written. Thus
also the neurons with an integral in the range of the target value will be programmed
again and consequently their PSP integral will change, possibly leading to an integral
value which is not in range any more.

For a better configuration of the PSP, there has to be a more precise floating gate
programming and the bandwidth of the synaptic time constant has to be increased
yielding a better regulation of this parameter.

References

[1] Electronic Vision(s) Group:
Web: http://www.kip.uni-heidelberg.de/cms/groups/vision/, 2010

2] FACETS: Fast Analog Computing with Emergent Transient States.
Web: http://www.facets-project.org/, 2009

10

Andre Srowig, Jan-Peter Loock, Karlheinz Meier, Johannes Schemmel,
Holger Eisen- reich, Georg Ellguth, and Rene Schueffny. Analog float-
ing gate memory in a 0.18 pm single-poly CMOS process. FACETS internal
documentation, 2007.

Alexander Kononov Testing of an Analog Neuromorphic Network Chip

PyNN Language http://facets.kip.uni-heidelberg.de/public/PyNN/
index.html

Python http://www.python.org/

Wafer-Scale Integration of Analog Neural Networks Johannes Schemmel,
Johannes Fieres and Karlheinz Meier

Realizing Biologival Spiking Network Models in a Configurable Wafer-
Scale Hardware System Johannes Schemmel, Johannes Fieres and Karlheinz
Meier

A VLSI Implementation of the Adaptive Exponential Integrate-and-
Fire neuron Model Sebastian Millner, Andreas Gruebl, Karlheinz Meier,
Johannes Schemmel and Marc-Olivier Schwartz

Numpy: fundamental package for scientific computing with Python
Web: http://www.numpy.org/

Web: http://www.cplusplus.com/

11

