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Abstract

The HICANN wafer scale integrated circuits of Schemmel et al. [4] emulate the dif-
ferential equations of the Adaptive Exponential Integrate-and-Fire neuron model [1].
The leakage term of this neuron model is implemented with an operational transcon-
ductance amplifier (OTA)— a voltage controlled current source. These OTAs are
key circuits since they are used for many different terms of the AdEx emulation.
In this report the characteristic of the leakage OTA is measured in the transistor

level simulation. The simulation includes the full two-denmem circuit to observe the
influence of other components. These results are compared to data from hardware
experiments.
Out of these measurements we obtain the leakage current characteristic. Espe-

cially the width of the linear range, the saturation regime and the corresponding
uncertainties. We also find a mapping from the neuron parameters to simulated
OTAs characteristic.

1. Introduction
The Adaptive Exponential Integrate-and-Fire Neuron Model [1] (AdEx) is an enhanced
classical Integrate-and-Fire neuron model. Its dynamics are described by two differential
equations. The first equation describes the dynamics of the membrane potential U . This
membrane potential is coupled to an adaption current w.

C
dU

dt
= −gL (U − EL) + gL∆T exp

(
U − UT

∆T

)
− w + I (1)

τw
dw

dt
= a (U − EL)− w (2)

The capacity C denotes the membrane capacity, gL the leakage conductance, EL the
reversal potential, ∆T the slope factor of the exponential rise and UT the threshold
potential. The current I is the external current input e.g. the synaptic input. In the
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Figure 1: Simplified schematic of the AdEx implementation [3]. Each module represents
a circuit that emulates one term of the AdEx differential equation.

second equation w is the adaption current, τw the time constant of the adaption current
and a a coupling factor. If the membrane voltage U reaches the threshold voltage UT
the neuron spikes and the membrane voltage is set to Ureset.
The circuits on the HICANN chip [4] emulate these differential equations. The sim-

plified schematic of the AdEx implementation taken from Millner et al. [3] is shown
in figure 1. Each module is a circuit that represents a term of the AdEx differential
equations.
The ion channels of the neuron—e.g. represented by the leakage term—are emulated

by operational transconductance amplifiers (OTA). These are voltage controlled current
sources. For an ideal OTA the output current is proportional to the difference of the
input voltages. The slope of the output current as a function of the difference of the
input voltages can be controlled by the current Igl. For the OTA in the HICANN circuit
the linear range depends this control current and is smaller than ±400mV [3]. The
actual width of the linear range is discussed in detail in section 3.1 The application of
the OTA in the leakage module is shown in figure 2. Within the linear range the OTA
represents a conductance between the membrane voltage and the reversal potential. The
reversal potential at which the output current is zero is set by EL.
Since the OTA is a key circuit in the hardware neuron model this report discusses the

measurement of the OTA’s characteristic in the leakage module within the integrated
circuit. On the hardware the only measurable value related to the leakage conductance
is the time resolved membrane voltage. This implies that the information has to be
extracted from the membrane voltage.
The measurements of the OTAs characteristic are made in the simulation. The pro-

posed algorithm that extractes the characteristic is tested with data provided by Dominik
Schmidt from the HICANN setup.
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Figure 2: Schematic of the leakage module and the corresponding current–voltage
characteristic.

2. Methods
On the HICANN chip no direct measurement of the leakage current is possible. It has
to be derived from the cell membrane voltage, which can be measured using an analog
readout circuit. This voltage Umem is directly linked to the total sum of all currents Ij
running from of the cell capacitor C.

dUmem
dt

= 1
C

∑
j

Ij (3)

To obtain the leakage current from this equation the currents flowing through the other
modules have to be known. This problem can be approached through choosing an
appropriate measurement setup and compare it to the simulation. Following the AdEx
model, the leakage current dominates when the cell membrane voltage is relaxing after
a current input. In this report the focus will be on excitatory current inputs since
the hardware offers only positive current inputs [4]. Therefore only membrane voltages
larger than the reversal potential of the leakage term are accessible. This yields the
characteristic I(U) for negative currents.

2.1. Measurement sequence
After a relaxation time the neuron is stimulated with a short excitatory current input.
It increases the membrane voltage from its resting potential Ur next to the threshold
potential Ut. The current that represents the exponential term of the AdEx model is
expected to grow exponentially when the membrane voltage is next to the threshold
potential. It is therefore turned off. A further discussion of the exponential term is
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Figure 3: Sketch how the parameters are passed to the simulation software. The
HALbe [2] library is used with the cadence backend. Another backend may be
the HICANN wafer.

provided in the experiments section 3.2. The remaining currents through other modules
are estimated with the simulation of this set up.

2.2. Simulation workflow
The neuron circuits are simulated with cadence on the transistor level. To configure
the simulation all neuron parameters are passed to HALbe [2] with the pyhalbe API.
These parameters include the neuron configuration and the stimulus. The halbe API
is executed with a dump flag that toggles halbe to dump the configuration commands
to an XML file. This XML file is then converted to a format that is readable by the
simulation software. Figure 3 sketches how the simulation parameters are passed to the
simulation software. The results of the simulation are written into a Json file. This Json
file includes all currents and voltages on any component of the circuit.

2.3. Mathematical description
The simulation results provide all currents and voltages in the simulated circuit. There-
fore we can directly plot the current-voltage characteristic of the leakage module. This
measurements are taken to find an appropriate parameterization to describe the charac-
teristic I(U). As described in section 3.1 equation 4 fits the OTA characteristic of the
simulation very good. Other tested parameterizations were a piecewise linear curve and
a second order spline.

I(U) = a log
[
exp

(
−αI
a

(U − Us)
)

+ exp
(
−αII

a
(U − Us)

)]
− Is (4)

Figure 4 sketches this curve. The parameters of the equation are:

Us Saturation voltage of the OTA

Is Saturation current of the OTA
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Figure 4: Sketch of the parameterization of the characteristic of the OTA. The slopes
are given by αI and αII .

αI Differential conductance of the OTA for U << Us

αII Differential conductance of the OTA for U >> Us

a This parameter is related to the width of the transition from conductance αI to αII

For a → 0 the function I(U) is the maximum of two lines with slopes αI and αII and
an intersection at (Us, Is). With larger a the transition from the first to the second line
widens.
The differential conductance is the derivative of the current-voltage characteristic.

g(U) = −∂I(U)
∂U

= αIe
−αI

a
(U−Us) + αIIe

−αII
a

(U−Us)

e−
αI
a

(U−Us) + e−
αII
a

(U−Us)
(5)

The negative sign comes from the convention that positive currents are flowing onto the
membrane capacitor. With the parameters one can calculate the width of the linear
range. We define the linear range ∆Ulin as the range from El to the voltage where
the ratio of the conductance relative to αI is larger than a fixed parameter 0 < δ < 1.
Within the linear range defined by the parameter δ there holds equation 6.

1 ≤ g(El + ∆lin)
g(El)

≤ δ (6)

With the approximation that El ≈ Us + Is
αI

we obtain a closed expression for the width
of the linear range.

∆Ulin(δ) = a

αI − αII

[
log (1− δ)− log

(
δ − αII

αI

)]
+ Is
αI

(7)
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While equation 5 is invariant under the exchange of αI and αII , equation 7 only holds
for αI < αII . This is due to the approximation of El which is only valid for αI larger
than αII .
Assuming that only the leakage current I is flowing out of the membrane capacitor

C the time dependence of the membrane voltage is given by the following differential
equation.

dU

dt
= I(U)

C
(8)

U(t) = Up + 1
C

∫ t

t0
I(U(t′))dt′ (9)

Equation 9 is the equation that is used for solving equation 8 numerically with the
boundary condition U(t0) = Up. This equation is fitted to the membrane voltages
measured in the simulation and to the data provided from the HICANN setup. There
are therefore 6 free parameters. 5 parameters describing the OTA’s characteristic and
one parameter—Up—as a boundary condition of the integral. If this function fits to the
data we have extracted the parameters, especially αI for the leakage current.
Within the linear range of the OTA, which is in the range El < U < Us, the membrane

voltage follows an exponential decay towards the reversal potential El if there are no
other currents except the leakage current.

U(t) = (Up − El) exp
(
− t− t0

τ

)
+ El (10)

The time t0 and the voltage Up are the initial condition of this exponential decay. From
the parameter αI we can derive the time constant τ of this process.

τ = C

αI
(11)

3. Experiments and Results
3.1. Simulation
The simulation is executed with different OTA control currents. The parameter Iparamgl

is variied from 200 nA to 2400 nA in steps of 200nA. This current is scaled down with
a current mirror that has three different settings. This current mirror is included in the
simulation as well. In its default configuration the current is scaled down with a factor
designed to be 3. The factor measured in the simulation is 2.75+0.10

−0.22. Figure 5 shows
the membrane voltage for the simulation run with Iparamgl = 400nA. The full parameter
set used in the simulation is listed in table 3. After a time of 5 µs there is an excitatory
current input of 1.2mA for 0.55 µs to the membrane capacitor. The membrane voltage
rises within this time from 0.60V to ≈ 1.10V. After this current input the voltage
of the capacitor falls back to its resting potential of 600mV which is equivalent to the
reversal potential El of the leakage current. As expected this relaxation is driven by the
leakage module. According to Igl the leakage current at the membrane’s peak voltage is
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Figure 5: Voltage of the membrane capacitor during one simulation run with Iparamgl =
400 nA.

between 115 nA and 953 nA. There is also a current running through the excitatory and
inhibitory synaptic input with a total sum smaller than 38 nA. Figure 10 in the appendix
shows this currents through the synaptic inputs for different membrane voltages. The
sum of the synaptic input currents goes to zero as the membrane voltage goes to the
reversal potential. The currents running through the other modules are each smaller
than 1 nA.
While the OTA’s characteristic can directly be extracted from the simulation results,

the total neuron characteristic I(Umem) has to be calculated with equation 12. The
current I is the sum of all currents, not only the leakage current.

I(Umem) = C · dUmem
dt

(12)

The voltage as a function of time returned by the simulation is smooth enough to be
calculated numerically by dividing the differences of the voltage array by the differences
in the time array. There is no noise in the membrane voltage of the simulation.
There were different parameterizations tested for the measured OTA U-I characteristic.

Equation 4 fits the OTA characteristic very good. Other tested curves are a quadratic
spline or a piecewise linear function. The curve was fitted with the membrane voltage
as a function of time, which means that Umem(t) was fitted with the numerically solved
differential equation 9. The absolute residuals vary within ±124 µV. As described before
there is no noise in the voltage returned by the simulation. The numerical calculation
precision of 0.11 fV is smaller by four orders of magnitude. Therefore all residuals are
systematic errors. Figure 6 shows the fitted voltage for Igl = 152 nA and the errors
relative to the voltage.
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Figure 6: The upper plot shows the fitted voltage as a function of time returned by the
simulation for Igl = 152nA. The residuals of the curve fit with equation 9 are
shown below. They are normalized to the corresponding membrane voltage.
In the upper plot the measured curve isn’t drawn since it is indistinguishable
on the drawn voltage scale.

The fit parameters for the different control currents are plotted in the appendix C
as a function of Iparamgl . Since the curve was fitted to the membrane voltage the fit
parameters describe the I(Umem) dependence and not the isolated OTA characteristic.
The conductances for different control currents derived by the curve fit are shown in
figures 7.
There are large non diagonal elements in the correlation matrix of the fit parameters,

therefore the fit might easily become unstable. These large correlations have to be
taken into account when calculating uncertainties of the current voltage-characteristic
(compare section 3.3.1). Matrix 13 is the correlation matrix for Igl = 250nA.



αI αII Is Us a Up

αI 1.0
αII −0.67 1.0
Is −0.69 0.99 1.0
Us −0.90 0.29 0.30 1.0
a 0.96 −0.83 −0.86 −0.75 1.0
Up −0.28 0.68 0.59 0.01 −0.40 1.0


(13)

The correlation matrix gives a measure of the correlation of two fit parameters. Let
x = (αI , αII , Is, Us, a, Up) be the vector of the parameter set. An entry in the correlation
matrix at position (i, j) is the expectation value E(xixj) − E(xi)E(xj) normalized to
the error ∆xi∆xj . Two variables coding the same information have a correlation of 1.0
or −1.0.
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Figure 7: Differential conductances for different control currents of the OTA. The control
current Igl is varied from 79 nA to 841nA. This corresponds to parameter
Iparamgl is varied from 200 nA to 2400 nA in steps of 200nA. The largest control
current leads to the largest conductance.

3.2. Disabling the Exponential Leakage Current
As described in section 2 the module representing the exponential current is supposed to
be turned off. The operational amplifier of the circuit representing the exponential term
can be disabled by setting Ibexp = 0 nA. It was found that disabling the operational
amplifier of the exponential circuit is not sufficient.
With the configuration of the exponential term shown in table 1 a current of Iexp =

250 nA is running onto the cell membrane in its equilibrium state. The cell membrane

parameter value comment
Vbexp 1042 nA control current for Vexp buffer
Ibexp 0 nA control current for the exponential term OP
Vexp 536mV threshold voltage for the exponential current
Irexp 750 nA strength of exponential term

Table 1: Parameter set concerning the exponential term, leading to a large current
flowing onto the cell membrane in its equilibrium state. All other parameters
in the simulation run are the ones listed in table 3. The reason for this current
is that a current Vbexp = 1042nA disables the unity gain buffer of Vexp. It is
enabled with Vbexp = 0nA.

voltage is then 717mV in its equilibrium instead of the expected resting potential which
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should be equal to the parameter El = 600mV. The current Iexp is compensated by the
leakage current.
When the cell’s membrane voltage is higher than 0.900mV the current Iexp is zero. Be-

low this threshold the exponential current increases rapidly and saturates at a membrane
voltage of 770mV with a value of 250nA.
The experiment described above was accidentially taken with a disabled unity gain

buffer for Vexp. A unity gain buffer is an amplifier with a amplification factor of one.
They are needed for the parameters Vexp and Iexp since multiple neurons share the samce
digital to analog converter. The voltage controlled by the Vexp buffer was 1120mV. This
high voltage after the buffer explains this large current running onto the membrane
capacitor when the membrane voltage drops below 900mV.

3.2.1. Tested Parameter Sets

To avoid such an unexpected current running through the exponential term in the future,
different parameter sets where tested. Three variables are measured for each parame-
ter set. The current running from the exponential term module onto the membrane
capacitor, the membrane voltage and the voltage controlled by the input buffer.
The simulation without the stimulus was executed for those different parameter sets

listed in table 5. The voltages and currents were measured after a relaxation time
> 10ms. Appendix D contains a summary of the tested parameter sets and a short
description of the parameters.
With the activated input buffer for Vexp no unexpected currents ran onto the cell

membrane. Therefore in future experiments one should always enable the unity gain
buffer of the voltage Vexp even if the exponential term is supposed to be turned off. It
is not sufficient to disable the OP of the exponential term circuit.

3.3. Hardware
The parameterization in equation 4 for the current voltage characteristic was derived
from the simulation phenomenologically. Data of the same stimulation process as de-
scribed in methods section is provided for 63 neurons on the HICANN wafer by Dominik
Schmidt. The membrane voltage is sampled with a frequenzy of 96MHz. Those mem-
brane voltages are averaged over multiple runs of the stimulation process for each neuron.
Since only the relaxation process is of interest, the U(t) measurements are cut 50

time steps after the maximum voltage. This is a very simple method but proofed to be
successful in most cases. It fails for 9 out of the 63 neurons. In this 9 cases the cutted
data doesn’t show the relaxation process, therefore those were removed from the sample.
There are 3 neurons where the averaging process failed since the data wasn’t triggered
correctly. For one neuron the relaxation process wasn’t centered in the trace. They are
removed from the neuron data samples as well. Figure 17 shows such a bad neuron.
There are 50 U(t) samples left for different neurons.
To each of these neurons the curve 9 is fitted with the 6 free parameters. As described

in the simulation section (3.1) the correlation matrix for the simulation fit shows large
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category number of neurons
statistical error 10
systematic periodic error 27
systematic error 12

Table 2: Number of neurons in the different categories

non diagonal elements, e.g., a large correlation between αII and Is. It turned out that the
fit didn’t converge for many neurons if not either αII or a was fixed1. αII was therefore
set to 72.8 nS. This is the differential conductance extracted from the simulation results
at Iparamgl = 250 nA. All fits of the 50 neurons converged for fixed αII within 10000
iterations. The membrane voltage noise was measured for each neuron and taken as its
voltage uncertainty. The fit parameters show very large uncertainties for some neurons.
Those high uncertainties are the result of the large correlation between the parameters a
and Is. This also results in large fit times for some measurements. The fit times with a
fixed parameter αII are 0.6+8.0

−0.5s There is a very large deviation in the positive direction
of the fit time. The fit time of the Levenberg-Marquardt algorithm implemented in [5]
was taken with an 64-bit quad core processor running at 800MHz.
Looking at the residuals of the fits, there are three different error patterns. The error

patterns are in the following referenced as ‘statistical error’, ‘periodic systematic error’
and ‘systematic error’:

statistical error The residuals are spreading symmetrically in the ±3σ range. See fig-
ure 18.

periodic systematic error The residuals vary periodically. The frequency is much higher
than the time constant. See figure 20.

systematic error The residuals show a systematic deviation from the fitted curve. See
figure 22.

In the section E there are graphs shown for fits of each of those groups. Table 2 shows
the number of neurons in those categories.
The parameter a that describes the transition width from conductance αI to αII has

a very large uncertainty for all neurons. The mean value of a = 50nA is within the
uncertainty range of all the neuron’s fit values for a and is set fixed. This is done
to minimize large correlations between the free fit parameters. With a fixed the fitting
algorithm converges much faster as expected. The uncertainties for the other parameters
shrink significantly as well. This is due to the eliminating the large cross correlations with
fixing one of the correlated values. The fit times with fixed αII and a are 0.083+0.025

−0.014s
on the same machine. There are now 4 free parameters left—αI , Us, Is, Up—of which 3
describe the OTA’s characteristic. The parameters of the fitted curves for the 50 neurons
are shown in figure 8.

1 The data was fitted with the Levenberg-Marquardt algorithm implemented in numpy [5]. For the
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Figure 8: The fit parameters for the hardware neurons, excluding the bad neurons. The
time constant τI is derived from parameter αI—see section 2.

3.3.1. Extracted Characteristics

The parameters returned by the fit algorithm describe the I(U) characteristic of the
OTA of the leakage module. The uncertainty of the characteristic can be calculated
from the parameter uncertainties as well. Since the covariances are large, relative to
the parameter uncertainties, they have to be taken into account. At a voltage U and
for a given parameter set x the uncertainty of the current I(U ;x) is calculated with
equation 14.

∆I =

√√√√∑
i,j

(
∂I

∂xi

)(
∂I

∂xj

)
∆(xixj) (14)

∆(xixj) denotes the covariance between parameter xi and xj . For i = j this is the
variance of parameter xi. The sum is over i, j ∈ {αI , Us, Is}. The cross correlation
terms are therefore summarized twice each.
In the appendix E figure 19, 21, 23 and 25 show the extracted characteristics and the

uncertainties for specific neurons. In the same graphs there are also shown the measured
data points. The currents are calculated with I = C∆U

∆t . One point in the graph is
the average over 25 values. The error bars are the error of the average—which is the
standard deviation of the 25 values divided by the square root of the count of samples
minus one. It needs to be noted that 25 samples represent a time difference shorter

desired output errors the default values were taken. The number of maximum iterations is set to
10000.
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that the typical period of the periodic systematic errors seen with many neurons, e.g.
figure 20.
It can be seen why the calculation with a free slope parameter αII failed for many

neurons. There are not enough data points for high voltages which could give a precise
curve shape in the saturation regime. An example for a large uncertainty for high
voltages due to few data points at large membrane voltages is shown in figure 9.
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Figure 9: The I(U) characteristic for a neuron with few data points for high voltages.
The saturation current can’t be estimated precisely.

4. Discussion
The fit of the proposed parameterization 4 extracts the leakage current module charac-
teristic of a simulated neuron circuit. It yields intuitively accessible parameters of the
leakage module. This includes the differential conductance in the linear and in the sat-
uration regime. Parameters describing the transition from the linear to the saturation
regime are the saturation voltage, the saturation current and the transition width. The
measured characteristic is biased by leakage currents through other circuits connected
to the membrane capacitor.
For the conductance at membrane voltages next to El we find the calibration curve 15.

αI =

( Iparamgl

1.286× 10−5 nA

)0.4615

− 1027

× 1 nS (15)

This characteristic was also extracted from membrane voltage data of neurons on
the HICANN wafer. For the 53 data samples the parameters of the characteristic were
extracted if the conductance in the saturation regime was set to a fixed value. Otherwise
the Levenberg-Marquardt algorithm used for the fit wouldn’t converge. The fit time can
be improved significantly by setting the transition width fixed as well. The processing
for one neuron measurement takes 0.083+0.03

−0.01s for 4 free parameters, and 0.6+8.0
−0.5s for 5
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free parameters. The efficiency of the suggested workflow regarding computational cost
and small uncertainties strongly depends on the coverage of the saturation regime in the
data sample.
To make this calibration workflow practicable the data has to be filtered automatically.

In this report the bad traces were sorted out by hand. Data samples that don’t cover
the saturation regime need to be filtered as well. As another point the trigger of the
falling edge of the membrane voltage in the data samples has to be improved. In this
report 9 traces out of 63 were triggered wrong. With this improvements the proposed
parameterization may be used in the hardware calibration process to yield a detailed
view on the neuron’s leakage circuit.
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A. Full Simulation Parameter Set

parameter value comment
El 600mV the reversal potential of the leakage current
Esyni 500mV
Esynx 700mV
Ibexp 0 nA control current of the exponential term OP. Zero is off
Iconvi 2500 nA bias current for synaptic input
Iconvx 2500 nA bias current for synaptic input
Ifire 0 nA adaptation term b
Igladapt 0 nA adaptation term
Iparamgl 200− 2400 nA corresponds to a control current of the OTA of 79− 841nA
Iintbbi 2000 nA integrator bias in synapse
Iintbbx 2000 nA integrator bias in synapse
Ipl 2000 nA
Iradapt 2500 nA
Irexp 0 nA control current of Rexp
Ispikeamp 2000 nA
Vexp 536mV exponential term threshold current
Vsyni 1000mV technical parameter that drives the integrator
Vsyntci 1375mV inhibitory synapse input
Vsyntcx 1375mV excitatory synapse input
Vsynx 1000mV technical parameter that drives the integrator
Vt 1000mV threshold potential
Vbout 750mV
Vbexp 1042 nA control current for the unity gain buffer of Vexp. Zero is on
fast Igl False
slow Igl False
bigcap True

Table 3: Base parameters used in the simulation and on the hardware measurements.
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B. Currents Through the Synaptic Input

Figure 10: Currents running through the excitatory and inhibitory synaptic input at
different membrane voltages.
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C. Simulation Fit Results

Figure 11: Fitted characteristics. The control current Igl is varied from 79 nA to 841 nA.
This corresponds to parameter Iparamgl varied from 200nA to 2400 nA in steps
of 200 nA. The uncertainties — only visible for the largest control current
— are calculated with the error propagation considering also the correlation
coefficients described in section 3.3.1.
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parameter calculation

Conductance αI
[(

Iparam
gl

1.286× 10−5 nA

)0.4615
− 1027

]
× 1 nS

Conductance αII
[(

Iparam
gl

5.722× 10−5 nA

)0.3264
− 74.22

]
× 1 nS

Transition width a
[(

Iparam
gl

4.902 nA

)0.8694
+ 19.20

]
× 1 nA

Saturation current Is
[
−
(
Iparam
gl

1.674 nA

)0.9311
− 33.37

]
× 1 nA

Saturation voltage Us
[(

Iparam
gl

4.048× 104 nA

)0.9315
+ 0.6892

]
× 1V

Table 4: Calculation of the fit parameter as a function of Iparamgl . These functions are
drawn in the following corresponding plots with a blue line.

Figure 12: Differential conductance αI for membrane voltages next to the reversal po-
tential as a function of the OTA control current. The parameterization of the
blue line is listed in table 4.
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Figure 13: Differential conductance αII at the OTA’s saturation regime as a function of
the control current. The parameterization of the blue line is listed in table 4.

Figure 14: Saturation voltage as a function of the control current. The parameterization
of the blue line is listed in table 4.
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Figure 15: Saturation current as a function of the control current. The parameterization
of the blue line is listed in table 4.

Figure 16: Transition width as a function of the control current. The parameterization
of the blue line is listed in table 4.

20



D. Exponential Term Parameter Sets

I_bexp V_bexp I_rexp V_exp current buffer voltage membrane voltage
[nA] [nA] [nA] [mV] [nA] [mV] [mV]
2500 0 2500 1800 0.00± 0.03 1547 597
2500 0 100 1800 0.00± 0.03 1547 597
2500 0 100 600 = El 0.00± 0.03 600 597
0 0 100 200 0.00± 0.03 205 597
0 0 2500 0 0.00± 0.03 76 597
2500 2500 2500 1500 0.00± 0.03 601 599
2500 2500 100 1500 0.00± 0.03 601 599
2500 2500 100 600 = El 0.00± 0.03 601 599
0 2500 100 200 39.3 950 604
0 2500 2500 0 637.8 1144 681
0 2500 750 536 637.8 1144 681

Table 5: Tested configurations of the exponential term. The measures are taken in the neuron’s equilibrium state. The
column ‘current’ lists the currents running off the cell membrane. The ‘buffer voltage’ is the voltage controlled by
the input buffer of Vexp. It is supposed to be equal to Vexp. A description of the parameters, especially for Vbexp and
Ibexp, is given below.

Ibexp Control current to switch the operational amplifier that drives the exponential current on or off. The OP is enabled
with Ibexp = 2500nA and disabled with Ibexp = 0nA.

Vbexp Control current to switch the input buffer of the voltage Vexp on or off. The input buffer is enabled with Vbexp = 0nA
and disabled with Vbexp = 2500nA.

Irexp Current to control the feedback resistor that sets the strength of the exponential rise.

Vexp Threshold voltage at which the exponential rise of the current starts.
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E. Hardware Neuron Curve Fits

Figure 17: The membrane voltage and the curve fit of a bad neuron.
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Figure 18: Membrane voltage of neuron 157. This is a typical graph of the curve fit.
The noise is spread symmetric.
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Figure 19: The I(U) characteristic extracted from the data sample shown in figure 18.
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Figure 20: Membrane voltage of neuron 72. Another type of typical graph of the curve
fit. The noise is spread periodically symmetric.
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Figure 21: The I(U) characteristic extracted from the data sample shown in figure 20.
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Figure 22: Membrane voltage of neuron 429. The curve fit shows a systematic error.
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Figure 23: The I(U) characteristic extracted from the data sample shown in figure 22.
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Figure 24: Membrane voltage of neuron 453. The curve fit for this neuron shows the
worst systematic error.
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Figure 25: The I(U) characteristic extracted from the data sample shown in figure 24.
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