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1 Introduction

The core component of the FACETS neuromorphic hardware is a mixed-signal1

ASIC2, dubbed the Spikey chip, that is created using industrial photolithogra-
phic methods. This technology does not allow for the production of perfect
copies of the building blocks of the circuits (transistors, capacitors, resistors,
etc.), and therefore, the manufacturing process inevitably introduces variations
in the electrical characteristics of these components. While this is of little or no
consequence for the digital part of the chip, its analog circuits are highly influ-
enced by such variations. Since all neuron and synapse circuits contain analog
components, the parameters of the models they implement are never precise,
but rather distributed around the target value.
models3 that they implement are governed by normally distributed parameters4.

The most significant advantage of the Spikey chip its configurability, allowing
for the adjustment of most neuron and synaptic parameters. Process variations
in the underlying circuits mean that when we set a particular target value for
a neuron/synapse parameter, the value of its physical implementation on the
chip will differ from the target. The relationship (transfer function) between
the control variable and the process variable (in the lingo of control theory) is
monotonic, but non-linear, and is uniquely parametrized for each unit - neuron,
synaptic driver, etc. Control variables can take a relatively wide range of va-
lues by design, thus ensuring adequate provisions for the calibration of the chips.

The most challenging aspect of the calibration is the measurement of the pro-
cess variable. While it is straightforward in the case of neuron potentials (reset,

1Contains analog and digital circuits
2Application-specific integrated circuit
3The hardware is a physical implementation of the LIF/AdEx model
4Process variations are expected to be Gaussian

1



threshold, resting), which can be directly accessed via oscilloscope, the measure-
ment of other quantities such as the membrane time constant and the synaptic
weights require the calculation of quantities derived from different measurements
or the averaging of many experiment runs that may significantly slow down the
process. Moreover, in the case of the latter, the measurements must be done in
a particular network activity regime. This lab report presents methods and re-
sults for the calibration of the synaptic conductance courses that are generated
by the Spikey chip.

2 System Description

The proposed calibration techniques have been tested on the Spikey chip, but
have been implemented as a modular software framework that is expected to be
adapted for use with HICANN[7] chips. A brief overview of the Spikey system
is in order. More detailed information can be found in [1], [5], [4], and[6].

2.1 Implemented Neuron Model

Spikey v4 implements a leaky integrate-and-fire (LIF) model with conductance-
based synapses. It also supports short-term plasticity (STP) and spike-time
dependent plasticity (STDP), but those two capabilities will be omitted from
now on since they are not necessary for the calibration methods discussed in
this report.

The non-liner neuron model is described by the following differential equation:

−Cm

dVm(t)

dt
= gl(Vm(t)−El)+

∑

j

pj(t)(Vm(t)−Ee)+
∑

k

pk(t)(Vm(t)−Ei) (1)

When the membrane potential reaches a particular threshold Vthresh, it is pulled
to the reset potential and remains at that potential for an absolute refractory
time τref :

Vm(t) =

{

Vreset(t), if Vm > Vthresh

Vm(t), otherwise
(2)

The quantities involved in the preceding equation are summarized as follows:

• Vm(t) - Time-evolving neuron membrane potential

• Cm - Membrane capacitance

• gl - Membrane leakage conductance

• El - Membrane leakage reversal potential or rest potential Vreset
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• pj,k(t) - Conductance courses for the excitatory and inhibitory synapses

• gj,k(t) - Multiplicative factor describing the evolution of synaptic weights
in time, due to synaptic plasticity

• Ee, Ei - Excitatory and inhibitory synaptic reversal potentials

Not all of the parameters entering equations 1 and 2 are configurable or ad-
justable on an individual neuron basis. Due to a trade-off that was necessary
for more efficient die area usage, the neuron voltage potentials potentials Vrest,
Vreset, and Vthresh, as well as the reversial potential Ei, are shared for a group of
neurons (odd and even-indexed neurons on a neuron block, see[6] for details).
The membrane capacitance Cm is fixed, since it is implemented by a physical
capactor on the chip, while the membrane leakage conductance gl can be adjus-
ted individually for each neuron, allowing for the calibration of the membrance
time constant τref =

Cm

gl
. The reversal potential Ee is also fixed at 0 mV BVD 5.

2.2 Conductance-Based Synapses

As we have seen in equation 1, the instantaneous membrane potential Vm(t)
depends on the momentary conductance p?j, k(t) and the difference between
itself and the corresponding reversal potential, which is the cause of the non-
linear behavior of the neuron. The hardware implementation of this part of the
equation mimicks the biological process where ion channels at the synapse open
and close with time, resulting in an alpha-shaped total conductance course. In
lieu of having a number of discrete ion channels, however, the hardware simply
changes the conductance between Vm(t)−Erev directly, thus achieving the same
effect. The shape of this conductance course is closely related to the way it is
generated by a multi-step process which we need to examine next.

Figure 1 depicts the structural unit of the Spikey chip (a neuron block and a
synapse array) and sketches out the generation of the conductance course. The
lower row of the block is comprised of 192 neurons(squares) that are connected
to 256 synaptic drivers on the left(triangles).

When a spike is generated by a neuron or is fed as an external input into the
network, it is represented by a digital pulse that enters a synaptic driver. This
can be thought of as a start signal for the driver that elicits the generation of
a voltage ramp, as shown in figure 2. Each driver sends this ramp to 192 syn-
aptic nodes, one for each neuron. The synaptic node converts the voltage ramp
into a current pulse that mirrors the shape of the desired conductance course
(see figure 3) and scales it by a 4-bit weight. This current reaches an operational
transconductance amplifier(OTA) that ultimately changes the conductance bet-
ween the membrane potential and the reversal potential. In order to distinguish

5In order to differentiate between Voltages and Times in hardware and in the models
(theoretical and software simulations), we have to specify the particular Domain to which
they belong, resulting in HVD, BVD, HTD, and BTD, respectively.
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between excitatory and inhibitory synapses, there are two separate lines for the
control currents.

Abbildung 1: A schematic depiction of the synapse array. The inset depicts the
generation of the conductance courses.

Due to their function, the synaptic drivers are necessarily analog devices and
as such underlie process variations. In order to compensate for such effects the
parameters that govern the generation of the voltage ramp are adjustable to
allow for their calibration. The following table summarizes the corresponding
configuration settings:

Parameter Name Configurability Value Range

Vstart v start global [0, 1.8] V
Iamp drviout individual [0, 2.5] µA
Irise drvirise individual [0, 2.5] µA
Ifall drvifall individual [0, 2.5] µA

Tabelle 1: Readout and input connection parameters

We can see from figure 3 that the slopes of the voltage ramp control the time
constants of the conductance course while its height is directly proportional to
its maximum.

Although the same voltage signal reaches all synaptic nodes, the conversion
process relies on analog components too, so there is neuron-to-neuron variati-

4



on in the generated conductance course even if the voltage ramp is perfectly
calibrated. There are no provisions for the calibration of this process and the
only possibility remains a coarse calibration (due to the 4-bit weights) of the
conductance course height by adjusting the weights for each neuron.

Abbildung 2: Voltage ramp generated by the synaptic driver

Abbildung 3: Conductance course

3 Calibration Methods

Due to the similarity in the controlling mechanisms used by the Spikey chip for
most of its parameters, it is possible to develop a common calibration procedure
where only the measurement routines are task-specific. It should also be noted
that the calibration of synaptic drivers requires that the membrane time con-
stant is set at the correct value, which implies that several neuron parameters
have to be in the calibrated state already.
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3.1 Binary Search

An important method that is used for most calibration tasks presented here
is the binary search method[3]. Many different model parameters on the neu-
romorphic hardware are controlled by currents that are adjustable within the
range of 0 - 2.5 µA. The transfer function for most process variables (membrane
time constant, synaptic time constant, PSP height, etc) is in most cases mono-
tonic but non-linear. Moreover, the measurement methods are often costly in
terms of execution time, so an efficient method for finding the correct settings is
needed. The binary search algorithm bisects the parameter space in two halves
and then repeats the search in the partition where the target value of the pro-
cess variable lies. This means that it is logarithmically efficient, thus executing
only for a few steps (on the order of 10) before finding the desired setting. A
small complication in its direct application to measurements on the hardware is
that most quantities display a small trial-to-trial variability for a fixed control
setting. Therefore, a certain tolerance (emipirically found) must be allowed for,
in order for the method to function effectively (if it accidentially falls into the
wrong partition, it will not terminate). On the practical side, a general version
of the algorithm has been implemented within the calibration software frame-
work, allowing for its application for many different purposes with adjustable
tolerance, maximum number of iterations and control variable ranges.

3.2 Dynamic Range Calibration

The membrane potential voltage of the hardware neuron has a different range
than the one expected biologically and must therefore be converted from HVD
to BVD by a linear transformation. Nonetheless, the setting of particular poten-
tial values for Vthresh, Vrest, and Vreset is not done exactly, but has a small error
∆W associated with it, due to the use of operational amplifiers. It follows that
the actual HVD values differ from the target HVD values by a fixed amount for
each neuron. Moreover, the mechanism for reading out the membrane potential
of each neuron also relies on an operation amplifier, thus adding an additio-
nal error ∆R for each measurement. Finally, there are four different lines that
connect the neurons on one side of the chip to an external device, such as an
oscilloscope, resulting in an error ∆L. We see that the expected uncertainty for
setting a particular parameter is ∆X = ∆R+∆W+∆L. Fortunately, the rela-
tive error between the potentials is only ∆W. As the dynamics of the neuron do
not depend on absolute values of the potentials, we are justified in defining the
measured values as the ones we are setting, due to the constant ∆R+∆L for a
particular neuron. Since most of the neuron dynamics is in the range Vthresh -
Vrest, we can interpret this interval as the dynamic range and use the measured
values to define a linear transformation HVD → BVD for each neuron. This is
the first calibration must be performed with the software framework.

The rest potential Vrest is measured by averaging the rest potential of a neuron
over several independent trials. The threshold and reset potentials are measu-
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red by setting the threshold under the resting potential of the neuron. Figure 4
shows the corresponding HVD values for the whole neuron block. The horizon-
tal lines represent the HVD targets (which can not be reached due to ∆X. For
subsequent calibration purposes it is useful to pick a neuron whose potentials
lie close to the measured means.
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Abbildung 4: Measured threshold (red) and reset (green) potentials of all 192
neurons in a Spikey block.

The difference in the dynamic range of the neurons causes the same conductance
course to have a different impact on the membrane potential. The only way to
correct for this effect on Spikey is to find a multiplicative weight factor for each
neuron to scale the PSP heights, the same solution proposed earlier for the
homogenization of synaptic node variances. Due to the coarse resolution of 4
bits, such a calibration can mitigate the dynamic range differences only to a
certain extend and also limits the available weight range.

3.3 Membrane Time Constant Calibration

Since the membrane time constant has a low-pass filtering effect on the conduc-
tance course, it is one of the factors that directly determine the shape of the
PSP, from which we would like to infer conductance course parameters. In order
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to achieve the correct activity regime for the simulation, τm must be properly
calibrated prior to any PSP measurement.

3.3.1 Measurement

Due to process variations in the neuron potentials described above, the mem-
brane time constant measurement requires the knowledge of the neuron-specific
Vthresh and Vreset in advance. Along with interspike interval data, this allows for
the calculation of τm as described in[6].

3.3.2 Calibration

The membrane time constants for each neuron are calibrated using the binary
search method by adjusting the membrane leakage conductance. Figure 5 shows
the result of this calibration on the FHW1v4 system, chip 445. The target value
of 5 ms is the same for the measured τm in the uncalibrated state(blue) and the
calibrated one(red) for a target value of 5 ms. The mean over all neurons in the
first case is µ = 3.34 ms with a standard deviation of σ = 0.83 ms, resulting in
a coefficient of variation σ

µ = 0.25 ms.
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Abbildung 5: Calibrated (red) and uncalibrated(blue) membrane time constants.

The calibrated neurons, on the other hand, have a mean of µ = 4.73 ms with
a standard deviation of σ = 0.66 ms. The coefficient of variation displays a
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marked decrease to σ
µ = 0.14 ms and would obviously be even smaller if outliers

(non-calibrated neurons) are excluded.

3.4 Synaptic Driver Calibration

Mixed-signal neuromorphic hardware does not strive to emulate software si-
mulators of neural networks, but provides a novel approach to experimental
neuroscience due to its speed and power efficiency. As we have seen, the pa-
rameters characterizing the implemented neuron/synapse models are in effect
randomly distributed.
While this may be the case to some extent in biology, variation that can not
be controlled may render the performed experiments meaningless (after all the
implemented LIF/AdEx neurons are far simpler than biological neurons). It is
therefore necessary to compensate such variations to a maximum possible extent.

The dynamics of the membrane potential is largely determined by the shape
and timing of the post-synaptic potentials, and the former depend for the most
part on the corresponding conductance courses. The greatest impact on the
conductance course has the voltage ramp generated by the synapse driver. It is
also the only aspect of conductance course generation that can be well-controlled
on the Spikey chip. Therefore, the calibration of the synapse drivers is cruicial
for most modeling tasks.

3.4.1 Measurement

FACETS/BrainScaleS neuromorphic hardware systems do not provide any fa-
cilities for measuring conductances directly. The parameters of a conductance
course generated by a particular driver, therefore, have to be determined indi-
rectly by measuring the resulting post-synaptic potential on a given neuron in
a subthreshold regime.

High Conductance State As we have seen, the conductance between Vm

and Erev changes depending on the OTA control signal that is generated by a
synaptic node and is propagated along a switch matrix column. This current
lies in the microampere range, so that the parastic capacitance caused by the
conductor material and the other elements on its path (all synaptic nodes share
the same line to one neuron) have a dampening effect on the signal while they
are charging. This means that when a single spike source is connected to a single
neuron (conductance courses generated by a single synapse can not overlap in
time on Spikey), it will produce a smaller, wider PSP than intended. This effect
is difficult to correct for, since the current from each synaptic node must tra-
verse a path of different length. In addition, this path contains slightly different
capacitances for different neurons (switch matrix columns) due to process va-
riations in the individual synaptic nodes. Finally, we do not know the absolute
magnitude of the driver signal to begin with (again, due to process variations),
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and process variations in the neuron circuit will result in a slightly different
distance between Vm and Erev for each neuron. Effectively, that means that the
hardware can only be used for experiments where each neuron receives enough
input to neutralize the parasitic capacitances and that the measurement of the
post-synaptic potentials is valid only under these conditions.

Spike-Triggered Averaging The only way to measure the PSPs under reali-
stic stimulation is to utilize the technique of spike-triggered averaging. When we
are interested only in a single synaptic driver, the input generated by the rest can
be seen as a background noise. With Poisson-distributed synapse contributions
to this noise, the membrane potential of the neuron, Vm(t) is normally distribu-
ted in time. Overlayed on this background noise are the PSPs generated by the
investigated driver. It is possible to determine the location of these PSPs from
the spike times that signal conductance course generation in the driver. Taking
the average of many small windows containing the PSPs reduces the variance
of the background noise, thus revealing the shape of the mean PSP produced
by the driver. In order to simplify the process, the driver can be programmed
to fire periodically, so that the membrane potential trace can simply be sliced
into equidistant windows that are easily averaged. This is the technique used in
this lab for measuring the post-synaptic potentials.

Working Point The measurement of the parameters that govern a particu-
lar conductance course can be determined from the resulting PSP by fitting a
function that theoretically describes it. As the experiments on the chip must oc-
cur in higher conductivity regimes though, we are faced with several difficulties
when trying to implement this measurement:

• PSPs are dependent on the total conductance and the corresponding con-
ductance course parameters that are used as target values must therefore
be calculated in advance.

• Individual conductance courses on the Spikey chip are randomly parame-
terzed due to process variations, which makes it impossible to predict the
total conductance.

• In contrast to theoretical models, the synaptic time constant on Spikey
is also conductance-dependent, therefore the calibration can only be done
for a specific conductance regime.

The first problem can be addressed relatively easy by performing STA in a soft-
ware simulation under the desired conditions, which will provide us with the
exact parametrization that the hardware has to achieve. These can also be cal-
culated directly, based on the theory described in[2].

If the conductance courses are alpha shaped (a fairly good assumption for the
neuromorphic hardware), it is possible to calculate the mean total conductance
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by a single synapse with weight w, synaptic time constant τsyn, and Poisson
frequency ν in the following way:

gsyn := 〈gsyn(t)〉 = ν w τsyn (3)

The mean total conductance is therefore the sum of all individual synapse con-
tributions (excitatory or inhibitory) and the membrane leaking conductance:

gtot := gl +
∑

syn

νsyn + wsyn + τsyn (4)

Theoretically, setting all three parameters νsyn, wsyn, and τsyn to particular
values will result in an effective potential (which can be equated with the mean
membrane potential in this context):

Veff =
∑

syn

gl + gsynErev

gtot
(5)

where Erev is excitatory/inhibitory, depending on the synapse.

Setting these in hardware, however, will result in a different Veff due to process
variations. Therefore, the only way to determine the total conductance reliably,
is to set two of the parameters and then adjust the remaining one until the
theoretically determined effective potential is reached. The best candidate for
the task is the synaptic weight wsyn, since the rate νsyn is well-determined (spike
delivery is controlled by digital electronics and is quite exact), and the control
over the synaptic time constant τsyn is more limited. Thus, changes in the syn-
aptic strength (or weight in the theoretical sense) has the greatest impact on
the PSP shape and should be used for calibration purposes.

There are two different lines for the excitatory and the inhibitory signals from
the synaptic nodes. This means that the effective potential receives two inde-
pendent contributions (barring unforeseen parasitic effects), so that the required
synaptic strenghts for the excitatory and the inhibitory synapses can be deter-
mined independently and when used together will result in the correct Veff .
This suggests the following procedure for establishing a well-defined working
point in hardware:

a. Calculate the excitatory Veff,exc for the given Nexc, τexc, νexc, wexc.

b. Set these parameters in hardware and vary the control current Iamp,exc

until the desired Veff,exc is reached (thus effectively finding a particular
mean weight).

c. Turn on the inhibitory synapses with parameters Ninh, τinh, νinh, winh and
vary Iamp,inh until the target Veff is reached.

In this state we have ensured that the background stimulation produces the cor-
rect mean total conductance gtot and we can proceed with the characterization
of the PSPs.
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PSP Shape The ultimate goal of the measurement procedure is to fit a func-
tion that describes the expected form of the PSP in order to find the parameters
best fitting the data. Usually, this is is an alpha function that can be expressed
by the scaled difference of two exponentials:

Vpsp(t) = ω
(

e
−

t

τeff − e
−

t

τsyn

)

(6)

The effective time constant depends on the total conductance, τeff = Cm

gtot
.

In the high conductance state the scaling factor ω can be calculated using the
approximations described in[2] as follows:

ω =
wsyn (Erev − Veff) τg

gtotτeff
(7)

with

τg =

(

1

τsyn
−

1

τeff

)

−1

(8)

Theoretically, this fit provides us with a great deal of information:

• We can determine directly ω, τeff , and τsyn

• From τeff we can determine gtot

• From ω we can determine the weight wsyn.

Unfortunately, this does not work so well in practice, due to way that the con-
ductance course is generated on Spikey. As we have seen, the controlling current
that changes the conductance via the OTA has been designed according to the
shape given in figure 3. The actual conductance course in hardware, however,
could be more complex6, which means that the estimation for τeff given by the
fit is not valid. Since the alpha function is a difference of exponentials, and as
such very sensitive to small changes in the constant, this means that the mea-
surement of τsyn has a great uncertainty associated with it. In addition, the
value of the reversal potential Erev is also not exactly known, due to process
variations in the neuron circuit, so that we can not estimate the weight from ω
very well (it also includes the great uncertainty from the time constants in τg.

One way to solve this problem is to calculate the shape of the PSP for the ex-
pected conductance course in hardware. The resulting function is fairly complex
and with many degrees of freedom, which means that the fitting procedure can
not be automated very well and often fails.

If we take into account the high-conductance state approximations used in the
derivation of the PSP shape in[2], we can solve the resulting differential equation

6Personal communication with J.Schemmel
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--------- Data ----------
Data Height: 1.3273
Data Veff: -58.2502
Data Integral: 15.4104
------- Predicted -------
Predicted height: 1.1755
Predicted gtot: 59.5120
Predicted tau_eff: 3.3607
Predicted omega: -18.3716
Predicted g_exc: 14.9040
Predicted g_inh: 4.6080
Set weight: 3.0000
Set tau_syn: 4.0000
-------- Fitted ---------
Fitted Veff: -58.4043
Fitted gtot: 79.1253
Fitted tau_eff: 2.5276
Fitted omega: -3.8087
Fitted weight: -3.1763
Fitted tau_syn: 6.5748
Fitted integral: 15.4145
Fitted offset: 21.1896

PSP drv: 001 nrn: 014 (20000 Samples)

Abbildung 6: PSP with an alpha function fit

for a conductance course shown in figure 3 (under the simplifying assumption
that the background conductance courses are alpha shaped). Unfortunately, the
resulting function is fairly complex and difficult to automate the fitting process
with, so it is better to assume a somewhat simpler conductance course where
the instantaneous rising part (induced by Vstart, see figure 2) is omitted.

The rising part of the conductance course is an exponential with a time constant
λ that rises until time t1, so that w = exp(t1/λ) − 1. The falling part of the
curve is parameterized by the synaptic time constant, exp(−t/τsyn). By solving
the equation for both region, we obtain the PSP shape:

VI(t) = Aτµ

(

et/λ − e−t/τeff
)

+Aτeff

(

et/τeff − 1
)

for t ∈ [t0, t1] (9)

VII(t) = ω
(

e−t/τsyn − e−t/τeff
)

+VI(t1)e
−t/τeff for t > t1 (10)

with

τµ =

(

1

τeff
+

1

τλ

)

−1

(11)

τg =

(

1

τeff
−

1

τsyn

)

−1

(12)
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A = (Erev − Veff) /Cm (13)

ω = wτg (Erev − Veff) /Cm (14)
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--------- Data ----------
Data Height: 1.3322
Data Veff: -58.2395
Data Integral: 13.8572
------- Predicted -------
Predicted gtot: 59.5120
Predicted tau_eff: 3.3607
Predicted omega: -18.3682
Predicted g_exc: 14.9040
Predicted g_inh: 4.6080
Set weight: 3.0000
Set tau_syn: 4.0000
-------- Fitted ---------
Fitted Veff: -58.3781
Fitted gtot: 52.2950
Fitted tau_eff: 3.8245
Fitted weight: 2.6467
Fitted tau_lam: 1.6925
Fitted tau_syn: 3.8256
Fitted offset: 19.8603

PSP drv: 001 nrn: 014 (20000 Samples)

Abbildung 7: PSP fit with the custom conduction function solution

In any case, the alpha shape approximation is good enough for the hardware so
that it should be used for calibration purposes, since there is no more appealing
alternative.

3.4.2 Calibration

In order to perform the calibration of the synaptic drivers, the following steps
are necessary:

Membrane Time Constant The calibration of synaptic drivers starts with
the calibration of the membrane time constant of the neuron that will be used
for this purpose. Based on the measurement of the dynamic range, the best
choise for a neuron is one whose threshold and reset voltages are close to the
mean values, measured for the whole neuron block. An optimal value that allows
for the successful calibration of most neurons is τm = 5 ms.
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Working Point Parameters Once this is done, the theoretical weights wsyn

that are needed to reach the working point with given (by modeling conside-
rations) νsyn andτsyn have to be found. This can be done either via software
simulation with the WP method described above or approximately by calcula-
ting the needed weights.

Obtain Target PSP Parameters Using the working point parameters, per-
form STA in software or calculate the PSP theoretically in order to obtain target
values for the calibration. At the moment the synaptic time constants can not
be measured accurately (although the target value is known) from the PSPs,
so the best way is to calibrate the amplitude of the PSPs. Due to the pro-
blems described above, measuring the weights from fits is somewhat less reliable
than directly determining the PSP height from the data/theoretical calculati-
ons. Therefore, the calibration target for the synaptic driver calibration is the
PSP height, defined as |max(VPSP(t))− Veff |.

Find the Working Point in Hardware In order to ensure that the PSP
measurement is done in the proper conductance regime, the working point is
found by a method parallel to the described software method. However, due to
the nature of the hardware there are some important details. Firstly, all drivers
produce PSPs of varying amplitude, so at the start of the WP calibration a
particular set of excitatory and inhibitory drivers is chosen randomly from the
available pool, excluding the driver that is to be calibrated. This configuration
is retained throughout the WP and height calibration for this driver.

At the end of the PSP height calibration, drivers that achieve the target are
marked as successfully calibrated. Their Iamp values are not changed during
subsequent WP calibrations. Since this may cause a shift of the WP, the WP
search is performed each time before a driver is calibrated.

The target weights obtained from the software simulation obviously do not cor-
respond to the 4-bit weights that are used by the synaptic node to divide a PSP
amplitude into 15 possible parts. There is an arbitrary translation factor that
is used to discretize the theoretical weights and map them into the 0-15 range,
but this is only a matter of convenience. Choosing a particular weight on the
hardware is therefore independent from the actual weights, since the amplitude
of the PSP can be adjusted by Iamp. When using a particular chip, however,
it may be the case that the drivers are too weak or too strong to achieve the
calibration target. Therefore a judicial setting for these bit-weights is necessary
before performing the WP search.

PSP Height Calibration Using the target value for the PSP height, the
binary search algorithm is used to find a setting for Iamp that will achieve that
target within a particular tolerance. Drivers that can not be calibrated are left
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uncalibrated. The number of successfully calibrated drivers may depend on the
working point chosen for a particular experiment.

4 Calibration Results

The following calibration has been performed on the Spikey chip 445 using a Le-
Croy WR44Xi oscilloscope for the analog membrane trace measurements. Each
single experiment on the chip had a length of 100000 ms BTD. A PSP window
of 100 ms BTD therefore provides 1000 samples for averaging. Since good PSP
measurements require at least 10000 samples, the oscilloscope is automatically
configured by the measurement routine to average the membrane potential tra-
ces resulting from N experiments, saving the mean on a different channel which
is read at the end of the measurement. In this way the data that has to be
transferred from the scope is kept relatively small and the slicing of the resul-
ting data array to obtain the mean PSP is very efficient. It has been determined
that a number of N = 20000 samples is sufficient so that the variance of the τsyn
is kept within 1 ms (athough as we discussed above, the measurement itself is
not necessarily accurate).
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Abbildung 8: Uncalibrated drivers.

The working point has been adjusted before the calibration of each driver by

16



reassigning the background drivers randomly and subsequently performing the
working point calibration as described above. Using the binary search algorithm,
the control current Iamp has been adjusted until the PSP height matches the
target with a tolerance of +/− 0.05 mV. The calibration of drivers that could
not achieve half of the required height with 2/3 of the maximum Iamp has been
aborted, so that they do not slow down the calibration process.

The bit-weights used for this calibration have been set to 6 for the excitatory
and 4 for the inhibitory drivers. The calibration has been performed on neuron
14, whose membrane time constant has been calibrated for 5 ms. The target
synaptic time constant has been set at 4 ms. The excitatory effective potential
for the WP calibration was -55 mV, while the target effective potential has been
set to -58.33 mV.

4.1 PSP Strength
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Abbildung 9: Distribution of uncalibrated drivers.

As it can be seen in figures 8 and 9, the uncalibrated drivers exhibit significant
variation in their height. The horizontal line represents the target PSP height
of 1.24 mV that has been determined by a software simulation. Before calibra-
tion the mean of the PSP heights is µ = 0.54 mV, with a standard deviation
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of σ = 0.35 mV. The coefficient of variation is therefore µ
σ = 0.65 mV. For

simulations in the high-conductance state where PSP amplitudes are generaly
in the range of 1-2 mV, this variation will have significant impact.

Interestingly, the PSP heights seem to follow an exponential distribution, as
seen on figure 9.

At the end of the calibration, 71 out of 256 excitatory drivers have been success-
fully adjusted to reach the target PSP height. This result is largely dependent
on the characteristics of the particular chip and the required conductance re-
gime. In this case a large number of drivers could not reach the target height
even at maximum values of the control current Iamp. It is possible to optimize
the yield empirically by increasing/decreasing the bit weights of the drivers, but
this is a tradeoff against the weight configurability, because it would limit the
range of the synaptic weights used by the experimenter when the bit weight is
set too high or too low.

The bimodal distribution shown in figure 11 shows that some of the drivers can
not be configured outside of a very narrow range, while others achieve successful
calibration targets.

The mean PSP height of the successful drivers is µ = 1.21 mV with a standard
variation of σ = 0.05 mV, which is exactly the tolerance value used for the cali-
bration. The small coefficient of variation, σ

µ = 0.04 shows that drivers capable
of achieving the target PSP height can be calibrated very accurately.

4.2 PSP Time Constant

Due to the considerations described above, the synaptic time constants τsyn have
not been calibrated and at the moment it is unclear how well it is possible for
them to be calibrated. In the course of the lab, several approaches have been
tried, but no consistent procedure was found that is comparable to the high
accuracy of PSP height calibration. The problems are several:

• The PSP fitting method does not deliver reliable results, as already dis-
cussed

• The adjustment of Ifall that changes the falling slope of the voltage ramp
used to generate the conductance course leads to massive changes in the
height of the PSP (so possible τsyn calibration must be done before the
height calibration), which in turns causes the rise time of the PSP to
change. The fitted τeff therefore varies for different settings of the syn-
aptic time constant, leading to non-monotonous behavior that precludes
calibration by the binary search method.

• The synaptic time constant seem to be adjustable in a very narrow range,
leading to small possible yields.
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Abbildung 10: Calibrated drivers. The horizontal line represents the target
height.

Despite these problems, as it can be seen on figure 12, there is some systematic
deviation from the target value of 4 ms, since the mean is µ = 5.71 ms, with a
standard deviation of σ = 3.07 ms. The coefficient of variation, σ

µ , is comparable
to that of the uncalibrated PSP heights.

5 Calibration Framework

As we have seen, the calibration of the synaptic drivers requires a number of
different measurement and calibration steps to be performed. This process was
made possible by the development of a robust, failure-tolerant software frame-
work that can be easily configured for use with different FHW1v4 chips in a way
that automates as many functions as possible. This section describes the design
goals and the architecture of that framework. Additional information about its
utilization and a user manual is contained in the accompanying documentation.

The framework has been developed in the Python programming language, since
it requires heavy use of PyNN and also requires some additional modules to
access the chip and the hardware.
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Abbildung 11: Distribution of calibrated drivers.

5.1 Design Goals

There are several design goals that the implementation of the framework strives
to achieve:

• User-friendliness: The measurement and configuration commands are ac-
cessible through a standards-complying command-line interface, based on
the argparse Python module. They are grouped in 3 main categories - mea-
surement, calibration, and plotting. Since there are various dependencies
(e.g. some calibration tasks can not be made before others are completed),
an accounting process that is under development will remind the user of
dependencies and prevent possibly erroneous operations.

• Automation: The measurements and calibration steps use a number of
components and devices to accomplish their task. The user can not be ex-
pected to know all details about the low-level functionality, therefore the
individual calibration steps are automated as much as possible. Complete
automation, however, has proved illusive at the moment, since differences
between hardware systems may require device-specific configuration for
some of the calibration steps. Moreover, the whole process uses a number
of different devices (oscilloscope, chips, etc.) that may need to be prepa-
red prior to performing the calibration. Future neuromorphic hardware is
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Abbildung 12: Synaptic time constants

expected to provide more integrated interfaces to access the experimental
data that would enable complete automation.

• Modularity: All routines and algorithms that are reused for different mea-
surements are encapsulated in functions or classes that can be used accross
the framework. The measurement and calibration methods should be app-
licable with minimum reprogramming effort for future hardware versions.

• Backward compatibility: The framework is stand-alone so that it does
not reqiure any legacy calibration code, but since it has been tested with
Spikey, it produces calibration data that are recognized by the FHW1v4
system. Due to its modularity, it is expect that it will be easily extended
to work with other formats and storage schemes.

• Robustness: Mixed-signal neuromorphic devices are designed to function
even when some of their components are malfunctioning, so that a certain
failure rate is expected. The calibration framework must deal with indivi-
dual neurons and synaptic drivers that can not be calibrated. It should fail
gracefully and notify the user. Since many measurements and calibration
methods take a lot of time, they have been programmed in such a way that
each action can be performed on individual neurons and synapse drivers.
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This prevents the user from having to repeat hours-long calibration runs
that terminate due to problems with individual components.

5.2 Architecture

In order to achieve the design goals outlined above, the framework has been
developed around its command-line interfaces. A top-level module contains the
definitions and the configuration options for the individual commands. These are
hierarchical and organized in groups as already mentioned. For each command
there is a Python function that is executed with the command-line arguments
and options as its arguments. In addition to parsing the commands, the top-
level module also loads the configuration file settings at startup and converts
it to a Param object of the type described below. The last important function
that is performed at startup is the instantiated of a Python logger object that
can be used by all modules.

Each type of measurement is encapsulated by a special Meter class that can be
reused by other parts of the framework, e.g. for calibration purposes.

Most measurements require to perform experiments on the hardware. They are
largely stereotypical, using a single neuron with N excitatory and M inhibitory
inputs (where N,M could be zero). In order to avoid writing different PyNN
scripts for each type of measurement, a special class that covers all usage sce-
narios needed for the calibration has been developed. A great contribution to
its flexibility is offered by the Parameter object.

A neuroscientific model typically depends on a large number of parameters. The
ability to organize these parameters in a meaningful way and to manipulate them
in order to change the behavior of the model is central for the measurement and
calibration purposes described in this lab report. A clean hierarchical model
using the dot notation (e.g. parameters.neuron.threshold, etc.) enables the user
to group parameters in a very transparent way which simplifies the program-
ming and utilization of the framework. The serialization and deserialization of
the parameter object from plain-text files also simplifies debugging and simula-
tion accounting.

The clear separation between individual measurement and calibration steps
opens the possibility to plug in different routines and retain the same command-
line interface for future neuromorphic devices. Currently all data regarding mea-
sured quantities, calibration settings, and simulation results are saved in plain-
text files and numpy arrays. The calibration of the synaptic drivers of future
neuromorphic devices may require a database for larger volumes of data.
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5.3 Usage Manual

The user manual for the calibration framework can be found in its code reposi-
tory at:

git@gitviz.kip.uni-heidelberg.de:spikey-calib.git

Please note that the code is still heavily under development and has not yet rea-
ched production-grade maturity. Until that milestone is achieved, please consult
its documentation and developer.

6 Conclusion

Experiments on mixed-signal neuromorphic hardware differ significantly from
software simulations due to the variability in neuron and synaptic parameters
that is introduced by the manufacturing process. In the uncalibrated state such
variations are large enough to preclude the emulation of many neuroscientific
models. Since the largest contribution the behavior of the network is given by
the post-synaptic potentials, it is crucial that the conductance courses genera-
ted by the hardware be calibrated. Based on [1], [2], and [6], we have developed
calibration methods and a software framework for calibration that has been tes-
ted with the FHW1v4 system and can also be extended for usage with other
neuromorphic hardware developed within the VISION(s) group. We have shown
the distributions of PSP parameters in the calibrated and uncalibrated state,
thus demonstrating the effectiveness of the method.

At this time the software has been used mainly with chip 445 and must be
tested with other systems. In addition, while the main functionality is already
implemented, several steps have to be completed, if the calibration process is to
be automated further and applied to a whole block of neurons that can be used
for network simulations.
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