
Universität Heidelberg

Electrinic Vision(s) Group
Project Internship Report

A network accessible system
controller for BrainScaleS-2

Maximilian Stucke

supervised by
Yannik Stradmann, Joscha Ilmberger

June 28, 2022

Abstract

The BrainScaleS-2 (BSS-2) Cube system is a highly configurable neu-
romorphic computing setup, consisting of neuromorphic ASICs and
up to four FPGAs, that play a crucial role in hardware stability. In
the current state, FPGAs are power cicled through a USB bussed mi-
crocontroller. This solution is not stable, nor user friendly and does
not scale well. Power management systems that are accessible through
the network offer more flexibility and stability to the user and scale
better with larger setups.
A Raspberry Pi was added to the system and the existing BrainScaleS-
1 (BSS-1) power management solution sw-macu was modified to detect
BSS-2 Cube systems by identifying the Raspberry Pi IPv4 address in
the hardware database. The Raspberry Pi provides a JTAG interface
to the FPGAs, enabling direct network control and configuration via
a XVC server.
The setup was found to work reliably while greatly improving acces-
sibility and system stability.

1

CONTENTS

Contents

1 Introduction 3

2 Implementations 5
2.1 Legacy python control . 5
2.2 SysCtrl . 5

2.2.1 Adaptations . 7
2.2.2 Build environment . 9

2.3 Xilinx Virtual Cable . 9

2

1 INTRODUCTION

1 Introduction

BrainScaleS-2 (BSS-2) systems are complex neuromorphic setups, consisting
of neuromorphic ASICs and multiple FPGAs. These FPGAs play a crucial
role in hardware stability and are key to enable stable experimentation on
this platform. This work focuses on BSS-2 Cube systems, that incorporate
a single neuromorphic ASIC and up to four FPGAs. These FPGAs can
be manually powered through a UCD9246 [Ins22] power management chip
via I²C. Currently, this is handled through a microcontroller in the setup,
interfaced by a USB bus. This approach is unstable and does not scale for
larger setups. Hence, a network approach through TCP is better suited to
improve stability, avert scaling issues and impove user accessibility.
Since the microcontroller lacks this ability, it is omitted and replaced by a
Raspberry Pi with network access. This work focuses mainly on adapting
the existing sw-macu repository, the current BSS-1 solution, to fit the needs
discussed above.

Raspberry Pi

FPGA slots

Power Supply

BSS-2 Cube setup

Figure 1: Typical BrainScaleS-2 Cube setup

3

1 INTRODUCTION

The sw-macu repository includes server- and client-side software, that en-
ables network communication through the Remote Call Framework (RCF)
[Del22b]. The repository contains three different modules. The SysCtrl
server runs on the Raspberry Pi and handles communication with SysStatus
and reticleCtrl, which run on a cluster machine in the network, as well as
I²C communication with the power management IC..

sysStatus

retCtrl

Client
sysCtrl
@ PI

Network

BSS-2 System

R
C
F

R
C
F

I²C

I²C

Figure 2: System interface diagram

The Raspberry Pi enables further connectivity to BrainScaleS-2 systems. It
is able to provide a generic JTAG interface to the FPGAs, that can then be
used by Vivado [Xil22] through a Xilinx Virtual Cable (XVC) [der22] server.
This enables network control and configuration of the FPGAs, improving
user accessibility and general hardware stability.

4

2 IMPLEMENTATIONS

2 Implementations

2.1 Legacy python control

The sw-macu repository also contains python scripts, that can be executed
directly on the Raspberry Pi to control the power management IC as well.
As a first step, the functionality of this code was tested. It has to be noted,
that this is legacy code and not intended for live usage anymore.

python fpga_ctrl.py --wafer 4 --fpga 1 --power 1

Listing 1: Manual powering of an FPGA through I²C

As a consequence, FPGA no. 1 was powered up. This script works by di-
rectly writing to the power management chip via I²C. To further simplify
this, consider the snippet in listing 2.

import smbus

import time

I2C bus on Raspberry Pi

DEVICE_BUS = 1

Address of power IC

DEVICE_ADDR = 0x68

bus = smbus.SMBus(DEVICE_BUS}

Write to power FPGA (FF for on)

bus.write_byte_data(DEVICE_ADDR ,0,FF)

Listing 2: Minimal python script to power FPGA

2.2 SysCtrl

The SysCtrl server runs on the Raspberry Pi and can be interfaced through
RCF by a client on the network, e.g. by a user on the cluster frontend.
The software has implemented functionality, such as temperature and volt-
age monitoring, that are not present on current BrainScaleS-2 Cube systems.
The code is written in a way, that uninitialized features can cause segmenta-
tion faults, as well as verbose logging errors. Corresponding object are not
created, despite their pointers getting called in other functions.
Consider an example from funcs.cpp in listing 3.

5

2 IMPLEMENTATIONS

...

LOG(INFO) << "Add Power:";

for (YAML:: iterator it = yamlNode["power"].begin ();

it != yamlNode["power"].end(); ++it) {

...

if (type.compare("powerit") == 0) {

...

else if (pitVersion == 2) {

LOG(INFO) << "use powerit_v2 class";

(sys.power)->mainpower = new powerit_v2(

i2cPowerItBus ,

i2cPowerItAddr ,

sys.i2cMutexes["power"],

kibLogptr);

...

}

...

}

...

}

Listing 3: readPower function from funcs.cpp

BrainScaleS-2 Cube systems do not have a dedicated power board and hence
no additional power information that is supplied in the yaml file. If this node
is not read, themainpower object is never created. However, this module gets
called in other functions by default during runtime, raising a segmentation
fault.
To avert this issue, sysCtrl is built with the hardware-database hwdb as
a dependency, allowing to query for system information. The local IPv4
address of the Raspberry Pi is compared to the database. If the address
corresponds to a BrainScaleS-2 Cube system, erronious routines are skipped.
Additionally, a register inside the FPGA is set via I²C, containing the so-
called wafer-id that defines the physical setup. This information is used by
the FPGA to determine its IP address for network communication.

6

2 IMPLEMENTATIONS

2.2.1 Adaptations

The BrainScaleS-1 solution depends on RCF 2.2. In the current iteration,
RCF was migrated to version 3.2 to prevent maintaining multiple branches
[Del22a]. To enable system detection, a SystemInfo class was added to SysC-
trl.

class SystemInfo {

public:

halco:: hicann ::v2::IPv4* local_ip =

new halco:: hicann ::v2::IPv4;

int* wafer_id = new int;

// Constructor

SystemInfo ();

// Destructor

~SystemInfo ();

private:

//get local ip of macu

void getLocalIp ();

// get wafer id from hwdb

void getWaferId ();

};

Listing 4: SystemInfo class header

The function getLocalIp queries the IPv4 address of the Raspberry Pi on the
current network interface, getWaferId then queries the hardware database
for all available system information and compares the previously obtained
IPv4 address. When a match has been found, the corresponding system type
and wafer-id are known.

7

2 IMPLEMENTATIONS

void SystemInfo :: getWaferId () {

...

db.load(db.get_default_path ());

wafers = db.get_wafer_coordinates ();

for(auto & wafer : wafers) {

hwdb4cpp :: WaferEntry entry;

entry = db.get_wafer_entry(wafer);

if(*addr == entry.macu) {

*wafer_id = wafer.toEnum ();

}

else {

continue;

}

...

}

Listing 5: Implementation of getWaferId

The results are saved in public member variables, as defined in the public
section of listing 4.

8

2 IMPLEMENTATIONS

2.2.2 Build environment

One needs to differentiate between client and server targets. The former are
always run on x86 hardware and can be build with the latest visionary con-
tainer. SysCtrl is run on the Raspberry Pi and therefore needs to be cross
compiled with a new container.
To have a reproducible way of meeting all package requirements of hwdb and
sysCtrl, containerization is best. To manage different versions of packages
that are required, a modifed version of the package manager Spack [Gam+19]
was used to bootstrap the required packages into a Singularity [ncc22] con-
tainer.
For hwdb, all package requirements can be met by installing the visionary-
dls spack-package. The main challenge lies with satisfying dependencies for
sysCtrl, since the previously used containers do not have any available defi-
nition files. Hence, needed packages and their versions had to be discovered
manually.
From the resulting package list, a spack-package was created. The deployed
containers are listed in table 1.

Container host arch target arch
Debian11-x86-cross.sif x86 64 x86 64/aarch64
Debian11-aarch64.sif aarch64 N/A

Table 1: Containers

2.3 Xilinx Virtual Cable

Xilinx Virtual Cable (XVC) is a protocoll, based on TCP/IP, that enables
the communication to many SoCs, e.g. FPGAs. The Raspberry Pi provides
a JTAG-interface through bit-banging its GPIO pins, that can then be ac-
cessed through Vivado from any cluster machine, by running a XVC server
on the system.

Vivado
XVC
@PI

JTAG
FPGA

@BrainScaleS-2 Cube system

Figure 3: XVC interface

9

2 IMPLEMENTATIONS

One of the issues encontered with this setup were signal inconsistencies,
present within the JTAG-interface. The TDO signal, that is send from the
GPIO pins of the Raspberry Pi passes through a logic level shifter present on
a HAT board. The resulting signal was observed as faulty, as its amplitude
is below the needed 3.3 V threshold. A bad solder connection was identified
as the cause of this problem. Upon rectifying the connection, a usable TDO
signal was observed.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

time [µs]

−1

0

1

2

3

4

A
m

p
li

tu
d

e
[V

]

TDO signal 25 Hz

Figure 4: TDO signal comparison

As illustrated in figure 4, a valid signal was obtained. Due to inconsistent
timing of the Raspberry Pi, one should adhere to minimum JTAG delay of
100 µs
With this infrastructure, direct communication between FPGAs on BrainScaleS-
2 systems and any networked host on the cluster is possible, making it very
easy to flash bitfiles, read FPGA information, etc.

10

Glossary

Acronyms

ASIC Application-specific integrated circuit. 1, 3

BSS-1 BrainScaleS-1. 1, 3

BSS-2 BrainScaleS-2. 1, 3, 4

FPGA Field Programmable Gate Array. 1, 3, 4, 6

XVC Xilinx Virtual Cable. 1

Glossary

sw-macu BrainScaleS-1 system monitoring solution. 1

11

REFERENCES

References

[Gam+19] Todd Gamblin et al. “Spack Community BoF”. In: ISC High
Performance 2019. June 2019.

[Del22a] Deltavsoft. Migrating RCF 2.2 to RCF 3.0. Apr. 6, 2022. url:
https://www.deltavsoft.com/doc/_migration.html.

[Del22b] Deltavsoft. Remote Call Framework. Version 3.2. Apr. 6, 2022.
url: http://deltavsoft.com.

[der22] derekmulcahy. xvcpi. https://github.com/derekmulcahy/
xvcpi. 2022.

[Ins22] Texas Instruments. UCD9246. Apr. 6, 2022. url: https://www.
ti.com/product/UCD9246?utm_source=google&utm_medium=

cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-

eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=

EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_

BwE&gclsrc=aw.ds.

[ncc22] nccgroup. Singularity. https://github.com/nccgroup/singularity.
2022.

[Xil22] Xilinx. Vivado. Version ML. Apr. 6, 2022. url: https://www.
xilinx.com/products/design-tools/vivado.html.

12

https://www.deltavsoft.com/doc/_migration.html
http://deltavsoft.com
https://github.com/derekmulcahy/xvcpi
https://github.com/derekmulcahy/xvcpi
https://www.ti.com/product/UCD9246?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_BwE&gclsrc=aw.ds
https://www.ti.com/product/UCD9246?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_BwE&gclsrc=aw.ds
https://www.ti.com/product/UCD9246?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_BwE&gclsrc=aw.ds
https://www.ti.com/product/UCD9246?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_BwE&gclsrc=aw.ds
https://www.ti.com/product/UCD9246?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_BwE&gclsrc=aw.ds
https://www.ti.com/product/UCD9246?utm_source=google&utm_medium=cpc&utm_campaign=app-null-null-GPN_EN-cpc-pf-google-eu&utm_content=UCD9246&ds_k=UCD9246&DCM=yes&gclid=EAIaIQobChMIvrvonJ2O9wIVFobVCh1B5wHrEAAYASAAEgJsL_D_BwE&gclsrc=aw.ds
https://github.com/nccgroup/singularity
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Introduction
	Implementations
	Legacy python control
	SysCtrl
	Adaptations
	Build environment

	Xilinx Virtual Cable

