
Simulation of a Cortical Column Using
Leaky Integrate-and-Fire Neurons with

Conductance Based Synapses

Moritz Hornung
University of Heidelberg, supervised by Hartmut Schmidt

July 2020

Abstract

A cortical column is a neural network which is found in the cerebral
cortex of mammals and is considered to be a building block of the brain.
It is modeled using cell-type specific connectivity between the neurons that
was obtained through anatomical studies. Since this is a well studied model,
it would be of interest to simulate it on the BrainScaleS-1 waferscale system
to obtain a benchmark for the hardware and to see whether it withstands
the imperfections of such a system. Since BrainScaleS-1 uses conductance
based leaky integrate-and-fire neurons, the previously existing model that
was realised with current based synapses has to be adapted. The goal of
this internship was to extend the software simulation to support conductance
based synapses.

1

Contents
1 Introduction 3

1.1 The Leaky Integrate-and-Fire Neuron 3
1.2 The Cortical Microcircuit Model 4
1.3 The Simulation Software NEST 5

2 Implementation 6
2.1 Transition towards COBA Simulation 7
2.2 Speed Up . 9
2.3 Analysis Tools . 10

3 Summary and Outlook 13

2

1 Introduction

1.1 The Leaky Integrate-and-Fire Neuron
The neuronmodel used throughout this work is that of a leaky integrate-and-fire
(LIF) neuron. It is a rather simple model that still succeeds at retaining biological
relevance and produces reasonable results. The main principle is, as the name
suggests, that of a leaky integrator. The dynamics of the membrane voltage are
hence given by

Cm
du

dt
= gl(El − u) + Isyn + Iext (1)

Here, u denotes the membrane potential, Cm the membrane capacitance, gl the
leak conductance and El the leak potential. In addition, there is an input current
which is divided into a synaptic part Isyn, modeling synaptic events, and an arbi-
trary external part Iext, that allows for additional tuning of the model. Taking a
look at equation 1, we can identify a leakage (u ∝ −u̇) and an integration term
(u ∝ I).
Once the membrane potential reaches a certain threshold ϑ, a spike is emitted and
it is pulled onto the reset potential Ereset. To account for the time it takes a real
neuron to reset the ion channels, the refractory time τref is introduced. After emit-
ting a spike, the neuron is clamped to the reset potential for this time and only
then is allowed to propagate according to the above equation. Since the leakage
potential and leakage conductance as well as the membrane capacitance are con-
stant, the time evolution of the membrane potential is determined mainly through
the synaptic current Isyn. There are two commonly used ways of describing the
synapses, a current based (CUBA) and a conductance based (COBA) model. As
both of them are of relevance, a short summary will be given in the following
paragraphs.
In the CUBA case, the main assumption is that most synapses are far away from
the soma and thus what reaches the membrane is effectively a current pulse. The
synaptic current is then given through

Isyn =
∑
k

∑
s

ωkε(t, ts,k) (2)

with the synaptic weights ωk and the synaptic kernel ε(t, ts,k) that describes the
time course of the synaptic event. The first sum is over the synapses and the
second sum over the spikes with the respective spiketimes ts,k. In this model,

3

the synaptic currents are independent of each other and the postsynaptic potential
(PSP) is solely determined by the synaptic weights.
The mechanisms of the COBA model stay a bit closer to that of the biological
neurons, since the assumption of far away synapses is dropped. A synaptic event
is described through a change of the conductance ge/i towards an excitatory or
inhibitory reversal potential Erev,e/i. In this case the current is given by

Isyn = ge(t)(Erev,e − u) + gi(t)(Erev,i − u) (3)

where the time development of the conductances is controlled through the synaptic
weights and the synaptic kernel

ge/i(t) =
∑
k

∑
s

ωkεe/i(t, ts,k) (4)

The dynamics of this model are a lot more complex, since the membrane potential
appears in the formula for the synaptic current. Because of this, PSPs are affected
by other synaptic events that arrived shortly before. Another important effect that
occurs only in the COBA case is the change of the membrane reaction speed.
The time constant of a capacitor is generally given as τm = C/g. Since COBA
synapses change the overall conductance of the membrane, this naturally results
in a reduction of the membrane time constant τm

1.2 The Cortical Microcircuit Model
A cortical column is a network of neurons that can be found in the early sensory
cortex of mammals. It is thought to be a building block of the brain that sup-
port its functionality. There are many different approaches to model the column.
Throughout this work a model based on LIF neurons, which was first proposed by
Potjans and Diesman in 2014, will be applied. [1]
The model consists of 4 layers, each one being realised through two neuron pop-
ulations. These 4 layers are labeled as L2/3, L4, L5 and L6 respectively and are
divided into an excitatory (E) and an inhibitory part (I). Anatomical and phys-
iological data of the structure is used to derive a connectivity map between the
individual layers. The populations are then connected randomly using the con-
nection probabilities obtained from said map. A schematic view of the resulting
connections can be seen in Figure 1. Overall, the model encompasses about 80000
neurons and roughly 3×108 synapses, thereby covering 1 mm2 of the cerebral cor-
tex. A more detailed description of the methods used to derive the connectivity
map can be found in the initial publication from Potjans and Diesmann [1].

4

Figure 1: Schematic illustration of the connectivity in a cortical column taken
from [2]

1.3 The Simulation Software NEST
Since part of this report also deals with speeding up the simulation, this section
gives a short overview of the simulation software NEST and how it handles paral-
lelization.
NEST is a simulation software aimed towards simulating large neural networks.
It focuses on the dynamics of neural systems instead of single neurons, making it
a reasonable choice for simulating a large scale model such as the column. The
simulator also supports the python based language for neural networks PyNN,
which is also used on the BrainScaleS-1 system. This is useful when comparing
results between the software simulation and the implementation on the hardware,
since it guarantees an identical experiment.
Given that NEST is aimed at simulating large networks, it already has a built-in
parallelization mechanism that can be used to speed up simulation time. It sup-
ports multithreading and/or distributed computing to achieve the optimal speed
up. Internally, NEST combines the number of running processes Np and the num-
ber of threads in every process Nt to a total of Nvp = Np ∗ Nt virtual processes
(VPs). Then the neurons are distributed equally over all of the virtual processes

5

and integrated individually in time steps of the simulation resolution (0.1 ms per
default). Communication with the other VPs only occurs in larger time steps,
which are defined by the minimum delay used for the connections. This is possi-
ble because any occurring spike can only influence the rest of the simulation after
the minimum delay has passed.

23e 23i 4e 4i 5e 5i 6e 6i
Populations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Me
an

 R
at

e
in

 H
z

target rates
simulated rates

Figure 2: Mean firing rates of the downscaled 10% CUBA model. The additional
scaling parameters are set to exc = 0.5 and inh = 1.5 and the simulation was run up
to 5000ms with a timestep of 0.1ms. The first second of the simulation is excluded
since the network needs time to achieve stable firing rates. The error bars that are
plotted give an insight over the spread of the firing rates throughout the neuron
populations and are not to be taken as an error of the mean value itself.

2 Implementation
The model as described in section 1.2 is too large to apply it directly to the hard-
ware, since the amount of neurons and synapses on the waferscale system is lim-
ited. Therefore, the simulation has to be downscaled to a fraction of its initial
size. Unfortunately, keeping the amount of synapses per neuron constant when
scaling down is not possible, since that would still take too many synapses. To

6

bypass this problem, the indegree for the neurons is decreased and simultaneously
the weights of the synapses are increased. This is done to keep the overall input
to the neurons constant. Using this approach to the scaling, the variance of the
model grows, since now single neurons have more influence. To balance this, the
external poisson input used in the original model is substituted with a DC input,
which counteracts the change in variance to a certain degree. Because this is not
enough to guarantee the same firing rates as in the full model, the two additional
multiplicative parameters ”exc” and ”inh” were added. They scale the excitatory
and inhibitory weights independently and can be set manually when running a
simulation. To obtain the best settings, a parameter sweep was performed result-
ing in exc = 0.7 and inh = 1.1. The problem with the variance still persists, so for
now only the first order statistics are of relevance in the results.
The starting point for this internship was a properly working, scaled CUBA simu-
lation of the Cortical Column, that yields per population firing rates similar to the
ones of the full-scale model (Figure 2).

2.1 Transition towards COBA Simulation
As mentioned in the beginning, a software simulation based on CUBA neurons is
not sufficient. To obtain an impression of what the hardware simulation is going to
look like, the model has to be adapted to match the conditions of the BrainScaleS-
1 hardware. This means that the synapse model needs to be changed to support
COBA synapses.
The main aspect that needs to be taken care of when transitioning the model are the
synaptic weights, since they change from being a current to being a conductance.
Starting from the known weights of the CUBA simulation, we can estimate those
of the COBA model using a rather simple approach.
As a first step, a mean membrane potential of the neurons is calculated. To this
end, the number of synapses per neuron K together with the average firing rates
r and the known synaptic weights we/i of the CUBA model are combined, which
yields an estimate for the average excitatory and inhibtory synaptic input xe/i to
the neurons

xe/i = we/i ∗K ∗ r (5)

This can easily be converted to the mean membrane potential Vmean by combin-
ing it with the synaptic time constant and the membrane resistance. Note that
the external input is included in the leak potential, since the poisson input was

7

substituted with a DC input, which is equivalent to an increased leak potential.

Vmean = Vl +
τm

Cm
(τsyn(xe + xi)) (6)

Now the formulas for the synaptic current described in section 1.1 can be com-
pared to calculate the synaptic weights for the COBA model from those of the
CUBA case.

ge/i =
we/i

Vrev, e/i − Vmean
(7)

Using the weights obtained from equation 7, we find the firing rates shown in Fig-
ure 3. They are already very close to the rates in the CUBA simulation, thereby
justifying the ansatz used. In both the COBA and the CUBA model, the main de-
viations from the target rates are within populations 4e and 5e. The 4e population
is spiking at an increased rate where as the rate of the 5e population is too small.
To further improve the results, the thresholds of the different populations could be
adjusted.

8

23e 23i 4e 4i 5e 5i 6e 6i
Populations

0

2

4

6

8

10

12

14

16
Me

an
 R

at
e

in
 H

z
target rates
simulated rates

Figure 3: Firing rates of the 10% COBA simulation using the synaptic weights
obtained with equation 7. The simulation was run up to 5000 ms with a timestep
of 0.1 ms, once again excluding the first second when calculating the rates. The
optimal additional scaling parameters differ from the CUBA case with exc = 0.9
and inh = 1.5

2.2 Speed Up
Transitioning to the COBA model increases the simulation time to roughly 5 times
that of the CUBA case, the reason being the more complex dynamics of the COBA
equations. Hence it is convenient to do a speed up using the NEST intern paral-
leliztion mechanisms.
A considerable speed up can be achieved, using the multithreading aspect of par-
allelization. Since NEST already has an internal option to do this, the number of
threads used can be specified when setting up the simulator. The possibility to use
distributed computing through MPI was neglected, since the NEST version was
not compiled to support it and the speed up using multithreading was enough to
run the simulations without having to wait too long.
Figure 4 shows the simulation time as a function of the number of threads used.
Due to a trial to trial variation, the measurements are repeated 50 times and the
ensuing mean and standard deviation are depicted. The Plot shows a strong de-

9

1 2 3 4 6 8 12 16 20
number of threads

40

60

80

100

120

140

160

180
sim

ul
at

io
n

tim
e

(s
)

8 cores

Figure 4: Simulation time depending on the number of threads used in the sim-
ulation. The measurements were taken using a single host with 4 physical and 8
virtual cores and averaged over 50 runs

crease over the first few threads up to the number of cores used, where it reaches
a minimum at roughly one third of the initial simulation time. In the NEST docu-
mentation, it is suggested to try oversubscribing (using more threads than cores),
as this might decrease the simulation time further [3]. However this did not work
here, even leading to a slightly worse performance. It should be noted that the
simulation time also depends heavily on the host and its current workload.

2.3 Analysis Tools
This last section covers part of the analysis tools used to investigate the column.
When doing the transition to the COBA model, there were some problems setting
the weights correctly. To generate the weight distributions for the inhibitory con-
nections in the CUBA simulation, a random number generator with the boundaries
-∞ and 0 was used. After the transition, all the weights are now positive. However
the boundary restriction still applied, which led to the weights being set to zero for
the inhibitory connections. Since there was no logging of the drawn weights, this
was overlooked. To avoid errors like these and help with further debugging in the

10

future, the options to print a raster plot of the individual spiketimes for the neurons
in every population and to plot the drawn weight distributions were added.
Figure 5 (a) shows a spike time raster plot. For every spike a neuron sends out,
a dot is generated in the plot at the corresponding time. To keep the data man-
ageable, this is only done for 10 % of the neurons in the downscaled simulation.
This kind of plot helps noticing irregularities in the spiking pattern that might hint
at different error sources. It also helps with identifying behaviour were only very
few neurons in every population spike and the others are inactive, which is a case
that occurred before and is also not desired.
5(b) shows a histogram of the weight and delay distribution that are used for a
specific connection. We clearly see the gaussian shape underlying the distribu-
tions. The peak that can be seen for small delays close to zero originate from
the boundary condition that only non negative delays are used. When drawing a
negative number, it will automatically be set to 0.1 ms.

11

0 500 1000 1500 2000 2500 3000 3500 4000
time [ms]

23e

23i

4e

4i
5e
5i

6e

6i

Po
pu

la
tio

n

(a) Spike time raster plot for 10% of the neurons in every population

0.0075 0.0100 0.0125 0.0150
weights (S)

0

200

400

600

800

1000

1200
weight distribution (23e to 4e)

0 2 4
delay (ms)

0

200

400

600

800

1000

1200

delay distribution (23e to 4e)

(b) Weight and delay distribution for the connection between layers 23E
and 4E

Figure 5: Exemplary look of the plots added to the analysis tool

12

3 Summary and Outlook
The cortical column is a rather well known structure found in the early sensoric
cortex of the brain. There are already many studies concerning it, using a variety
of neuronmodels. In particular, there are already several studies based on CUBA
LIF neurons.
The main purpose of this internship was to get used to the existing software imple-
mentation of the CUBA LIF model and to conduct the transition towards a model
based on COBA LIF neurons. This was done successfully with the approach de-
scribed in section 2.1. On top of that, the simulation was sped up and a raster
spiketime plot as well as the option to plot the weight distributions between the
neuron populations were added to the analysis tool.
With the simulation running properly, the next step now is to conduct some sta-
bility tests of the network, e.g. checking the influence of some variation between
the neuron parameters of individual neurons. This distribution of the parameters
is expected on the hardware due to the manufacturing process. Therefor a NEST
simulation that includes parameter variation might help with predicting some of
the effects that might occur when running the model on the BrainScaleS-1 system.

References
[1] Tobias C. Potjans, Markus Diesmann, The Cell-Type Specific Cortical Mi-

crocircuit: Relating Structure and Activity in a Full-Scale Spiking Network
Model, Cerebral Cortex, Volume 24, Issue 3, March 2014, Pages 785–806,
https://doi.org/10.1093/cercor/bhs358

[2] Sacha J. van Albada, Andrew G. Rowley, Johanna Senk, Michael Hop-
kins, Maximilian Schmidt, Alan B. Stokes, David R. Lester, Markus
Diesmann, Steve B. Furber Performance Comparison of the Digi-
tal Neuromorphic Hardware SpiNNaker and the Neural Network Sim-
ulation Software NEST for a Full-Scale Cortical Microcircuit Model,
https://www.frontiersin.org/article/10.3389/fnins.2018.00291

[3] NEST documentation,
https://nest-simulator.readthedocs.io/en/nest-2.20.1/guides/index.html

13

