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Abstract: In the first part of this report considerations about the emulation
circuitry for the AdEx model done in [3] are made and analytical analysis for
ideal and numerical considerations non-ideal circuit behaviour are presented.
The second part consists of simulations done on the emulation circuit for the
AdEx neuron. The testbench used for these simulations is described and a
number of states found in literature are reproduced.
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1 Introduction

The part of the Human Brain Project 1 project I was working on in this intern-
ship aims at building a waferscale neuromorphic device capable of emulating the
adaptive integrate and fire neuron model (short: AdEx) [4]. The development of
the integration is described in [1] and [3]. The aim of this waferscale integration
is to enable neuromorphic experiments on a scale not accessible with conven-
tional simulation in concerns of speed and power efficiency. A neuron model was
designed and tested by Sebastian Millner in the thesis cited above. This work is
about further testing the capability and limitations of the neuron model. First
an analytical analysis is done, assuming ideal circuit elements. This analysis is
used to get equations for parameter translations in numerical treatment of simu-
lation results of the transistor level circuits. The derived equations are inverted
to be able to calculate the parameters needed for certain time constants. In the
second part of this internship report the response of the circuit to variation of a
number of parameters is recorded in transistor level simulations using a neuron
testbench that is described in the appendix. Also some spiking patterns found
in literature are shown and discussed.

2 Theory

2.1 AdEx model equations

As they are referenced heavily in this report I describe the fundamentals of the
AdEx model [4]. I rely on the description given in [3] as well.

The two dimensional model describes the activity of a neuron and is based
on an integrate and fire neuron model. As a description for the state of the
neuron the voltage over the membrane (V ) is chosen.

− Cm
dV

dt
= gl(V −El)− gl∆te

V −Vt
∆t + ge(t)(V −Ee) + gi(t)(V −Ei) + w (1)

− τw
dw

dt
= w − a(V − El) (2)

Here gL, ge(t) and gi(t) are the conductances for leakage, excitatory and
inhibitory synapses, just as El, Ee and Ei are the reversal potentials for the
respective terms. Cm, ∆t and Vt are the membrane capacitance, the slope
factor and the spike threshold. Finally w is the adaptation current, τw the
adaptation time constant and a the subthreshold adaptation conductance.

When the membrane voltage reaches a certain threshold Θ a spike is fired.
In the model this means the membrane voltage is set to a reset value and the
adaptation current is increased by b to implement spike triggered adaptation.

1Human Brain Project, website of subdivision: https://www.humanbrainproject.eu/de/neuromorphic-
computing-platform
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V → Vreset (3)

w → w + b (4)

These differential equations are emulated in a circuit designed in [3], con-
taining a transformation of the adaptation current w found in section 3.5.1 of
the cited dissertation:

w = a(Vw − El) (5)

Here Vw is called adaptation voltage. Whit this transformation the litera-
ture equations can be rewritten in a way that allows for better translation into
circuits:

−Cm
dV

dt
= gl(V −El)−gl∆te

V −Vt
∆t +ge(V −Ee)+gi(V −Ei)+a(Vw−El)−I (6)

− Cw
dVw
dt

= gw(Vw − V ) (7)

The reset condition has to be rewritten as well, to accommodate the fact
that the measure of adaptation is a voltage now and not a current:

Vw → Vw + Vq (8)

Here Vq is the voltage rise of the adaptation voltage at spike time. In the
rest of the document (6), (7) and (8) are used as representation of the AdEx
equations.

2.2 Simulation results found in literature

A part of this report will concentrate on reproducing certain spiking patterns
that can be found in literature and are basic requirements of any neuron model.
In [2] the biological relevance of the various spiking patterns is discussed. In-
cluded in that paper is also a overview over the transient behaviour for these
states summarized in a plot taken from that paper (figure 1).

Directly liked to our experiment is [6]. Here the focus is on spiking pattern
reproducible with the AdEx neuron model. This publication allows for the
comparison of phase plane trajectories as well. Some of the spiking patterns
shown there can be reproduced in our circuit.

3 Translation of the AdEx parameters

The neuron emulation discussed here was developed in [3]. It realizes the terms
of the AdEx model as separate circuits, as shown in (figure 2). The neuron
model is tuned by a large quantity of parameters, all of which are accessible to
the neuron testing environment. A description of this environment is given in
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Figure 1: This picture summarizes the neuro-computational properties of bio-
logical neurons. Electronic version of the figure and reproduction permissions
are freely available at www.izhikevich.com

the appendix, containing all parameters that can be tuned on the testbench and
describing each pin and its function available on the circuits representation the
terms of the AdEx model in detail.

3.1 Analytical treatment assuming ideal circuit elements

This section summarises work done in [3] and aided by Andreas Hartel, who
contributed the analytical treatment of the exponential term. The synaptic
terms will be neglected in this analysis, as they are not central to the neuron
models behaviour and would need further analysis.

The conductances in the circuit are realized as Operational Transconduc-
tance Amplifiers (short: OTA). A ideal OTA is characterized by the following
equation [7]:

Iout = h · Ibias(V+ − V−) (9)

Here Iout is the output current, Ibias the biascurrent and V+, V− are the
voltages at the negative and positive input of the OTA. h is a parameter con-
taining dependency on process, circuit and temperature. This ideal OTA can
be set to any conductance value by adjusting the current Ibias.
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Figure 2: Overview over the simplified neuron schematics. The various parame-
ters affection the subcircuits are explained in the appendix. Picture taken from
[1]

All terms of the form ”current = conductance (voltage1 - voltage2)” are
realized as OTAs in the emulation circuit.

The only term containing a different structure is the exponential term, whose
ideal circuit behaviour can be described by the following equation provided by
Andreas Hartel, that finalizes analysis made in [3]:

Iexp = I0exp

(
Vmem − Vexp − 5R2Irexp

4λnUTR2Irexp
− Uth
nUT

)
(10)

Matched with the term given in the theoretical model (gl∆te
V −Vt
∆t ) this gives

for the slope factor (∆t) and the product of slope factor and leakage conductance
(gl∆t):

∆t = 4λnUTR2Irexp

”gl∆t” = I0exp

(
− 5

4λnUT
− Uth
nUT

)
Important to mention here is that the term representing the fore factor is

not identical to the product of Igl and ∆t. This is a imperfection of the circuit,
even when considering perfect circuit elements.

Excluding the synaptic terms we can now give a representation of the AdEx
equations, containing only hardware parameters. The validity of these equations
is very limited, as the circuit elements do not behave ideally, but this can be used
as basis for the numerical treatment of simulation results in the next section.

8



−Cm
dV

dt
= hglIgl(V − El)− I0exp

(
V − Vexp − 5R2Irexp

4λnUTR2Irexp
− Uth
nUt

)

+hadaptglIgladapt(Vw − El)− I

(11)

− Cw
dVw
dt

= hradaptIradapt(Vw − V ) (12)

The additional voltage that adds to the adaptation voltage is realized by a
defined charge flowing on the capacitor storing that voltage:

Vw → Vw +
tfireIfireb

Cw
(13)

The reset functionality for the membrane potential can still be modelled by
3.

3.2 Numerical treatment of transistor level circuits

The equations given above would be sufficient for describing the circuit, if the
circuit elements (like OTAs and amplifiers) would act like ideal models. As this
is not the case the derivations from the ideal behaviour need to be taken into
account.

The terms in the above equations are using just two kinds of devices: The
OTA and the exponential circuit. Both will need to be analysed to get a correct
translation of the hardware parameters to the circuits behaviour.

The OTA is sensitive to voltage differences and the range in which the out-
put current depends linearly on the voltage difference at the input terminals is
limited as found in [3]. Here I redid some of the plots found there to get the
functional dependence of the conductance on the biascurrent Ibias.

The OTA is set up like in the leakage term, the voltage at the positive
terminal is fixed, the voltage at the negative terminal is sweeped over the valid
range (0 to 1.8 V). The output current and the sweeped voltage are recorded
and exported to a pyhton script. From this data the conductance is derived
(derivative of the I-U-curve). The derived data is averaged over a range of ±150
mV, a procedure similar to [3, Figure 3.9]. This averaged value is recorded for
all bias currents. A polynomial of the 3. Order is fitted to the dependence of
the averaged conductance vs. the bias current.

f(x) = ax3 + bx2 + cx+ d (14)

This is done for various voltage levels, to verify that the OTA behaviour does
not depend to heavily on this and see possible differences from ideal behaviour.
To get an overview over the results see figure 3.

Quite large deviations from the ideal behaviour can be found, the OTA
is not scaling linearly over the whole voltage range. The behaviour is rather
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Figure 3: plot showing the conductance against the bias current Ibias and the
voltage at the negative input that is hold fastened. The conductance was cal-
culated using scans of the negative terminal, plotting the output current onto
the voltage supply that was connected to the negative output vs the voltage
difference between the two terminals. The derivative of this curve was averaged
over ± 150 mV. Each point in this plot is such a mean value of derivatives.

cubic. While this is hardly noticeable as long as one stays within range of the
bias current it becomes apparent in the used variety of different voltage ranges
that can be found in the experiment.

As visible in 3 the conductance is almost independent of the membrane
voltage in a range from about 400mV to 1000mV. I averaged the fit parameters
over this range and derived one equation catering for this range with good
precision.

a = (3.30± 0.22)10−10

b = (−2.53± 0.12)10−6

c = (7.41± 0.15)10−3

d = (3.419± 0.030)10−1

(15)

To get a full understanding of the circuits and to be able to plot the nullcline,
a similar analysis of the exponential term would be needed. This is omitted,
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voltage [mV] a [10−10] b [10−6] c [10−3] d [10−1]
100 3.9119 - 2.1652 4.6016 0.029912
200 3.7851 -2.3214 5.8151 - 1.8854
300 3.3932 - 2.3354 6.7215 -3.3866
400 2.6665 - 2.1177 6.8133 -3.4949
500 2.7289 -2.2170 7.0302 -3.4447
600 2.9114 -2.3456 7.2174 - 3.4417
700 3.1960 - 2.5062 7.4203 - 3.4504
800 3.5020 -2.6676 7.6087 - 3.4407
900 3.7987 - 2.8230 7.7789 - 3.4301
1000 4.2792 - 3.0548 8.0220 -3.2431
1100 4.3936 - 3.1610 8.1063 - 3.2777
1200 5.8262 - 3.8404 8.4810 - 3.3919

Table 1: Fitparameters for different fixed voltages at the positive terminal are
scanned. Used in a polynomial f(Ibias) = aI3

bias + bI2
bias + cIbias they trans-

late the bias current into the OTA’s conductance. These conductances where
averaged over a ± 150 mV interval, outside this interval the equations start to
deviate a lot from the actual measurement (due to saturation effects).

because of timing reasons. In [3] additional details about this circuit can be
found

4 Spiking behaviour in transitor-level simula-
tions

This chapter aims at gaining further insight into the system by simulation of
the complete circuit with transistor level simulations. This is important, as the
analytical and numerical considerations above do not take all parameters into
account, as the parameter space is to big to derive useful spaces changing all
parameters. As these transistor level simulations of the whole circuit take quite
long (approximately 5 to 20 minutes per analysis), a multi dimensional sweep
over all available parameters (ca. 20) using 100 points in each parameter sweep
in the valid ranges to cover everything would take significantly longer than the
universe is old. Therefore I chose to do the sweeps one dimensional for a limited
number of interesting neural states in the first section of this chapter.

While doing these analysis I wrote a documentation about the neuron testing
environment to be able to understand what I can influence in the circuit. Many
of the parameters have technical meaning and do not have to be altered, I
concentrated the sweeps on parameters that have direct relation to the AdEx
model and left the others untouched.

In the first section the above described sweeps are performed, and the reac-
tion of the circuit recorded. The second section focuses on reproducing states
found in literature.
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Figure 4: This shows the mean fit for the plateau. In blue all fits in the range
between 400mV to 1000mV are shown. In red the curve that is made up of the
mean fits is plotted.

4.1 Sweeping parameters for basic patterns

In this section the parameter sweeps described above will be done on three basic
patterns: ”tonic spiking”, ”adaptation” and ”tonic bursting”. The state of toinc
bursting contains initial bursting as a special case. In all these simulations a
current step of 600 nA amplitude and 16 µs is used to stimulate the neuron.
The total simulation length is always chosen to be 35 µs (16 µs before and 3
µs after the stimulation are visible). The parametrization given in 2 is used for
each analysis. This parametrisation is only altered in the variable described and
the influence of that variable on the circuit is recorded.

4.1.1 Tonic Spiking Neuron

Tonic Spiking describes the reaction of a type of neuron that reacts to step-
current-stimulation by repetitive spiking with constant frequency. This is a
spiking pattern that can be realized without complications on the AdEx em-
ulation circuit. To reach this pattern the adaptation is turned off. This can
be easily achieved by setting the bias current for the Output of the adaptation
OTA to 0 (Igladapt). Further explanations concerning this state can be found in
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section 4.2.
In the following list an overview over the change that the system is expe-

riencing is given due to changes in certain parameters. This should give an
overview over the behaviour on the neuron emulation circuit in total.

• El: When El is chosen very low (more than 60mV below the exponential
threshold), no spiking behaviour is visible, as the leakage current draws
the membrane down to the leakage potential. With increasing El the
neuron starts spiking with increasing frequency. If El is chosen very high
(voltage similar to exponential threshold), the neuron fires spikes even
without stimulation.

• Vexp: When Vexp is chosen very low (about 100mV below El), the neuron
spikes continuous, as the threshold for the exponential rise is depended
on this voltage (section: 3.2). When Vexp is chosen higher, the spiking
threshold rises and fewer spikes are emitted. When Vexp is to high the
spiking threshold is not reached and no spikes are emitted.

• Vt: When Vt is below Vreset and El there is a continuous reset and the
neuron does not start spiking, but stays on the reset potential. When Vt

is growing, there is a steeper part of the exponential term showing, when
its very high saturation effects start to play a role and inhibit further rise.

• Ibexpb: for very low values of Ibexpb the exponential rise is very broad,
with rising values it gets narrow. The spike frequency rises analog to this
development.

• Igl: has almost no effect on the spiking behaviour, only a small rise in the
spiking frequency can be observed, as the value for Igl grows.

• Irexp: For very low values of Irexp (0n to 240nA) we get very high frequency
spiking, with and without stimulus. Next to this regime a higher value of
Irexp means a higher threshold voltage. As soon as the threshold voltage
is not reached any more by the excitation, no spiking is observed.

4.1.2 Spike Frequency Adaptation

Spike frequency adaptation is basically tonic spiking with decreasing frequency
[2]. The answers of this spiking pattern to most of the parameters described
above is similar to tonic spiking, but certain parameters that where turned off
before effect the behaviour now, for the other parameter see section 4.1.1.

• Ifire: With rising Ifire (named Iadaptb on the testbench) the current that
is flowing on the adaptation capacitor grows and the adaptation voltage
rises. That means a higher Ifire results in greater adaptation per spike.

• Igladapt: Small values mean that next to no current is put out by the
adaptation OTA, so no adaptation can be observed.
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• Iradapt: This current controls the amount of discharge that happens in the
subthreshold regime.

4.1.3 Tonic Bursting

Following [6] we define a burst as a number of sharp resets followed by a broad
reset. The room in the parameter space for this firing pattern is very small,
only for certain differences of the reset voltage and the exponential threshold
we get bursting behaviour. Further explanations can be found in section 4.2.

• El: If the leakage potential El is very low the membrane voltage is to low
to ever reach VT . By choosing El larger more bursts and more spikes per
burst can be observed. If El is chosen too high the neuron fires continu-
ously.

• Ibexpb: The offset current of the operational amplifier regulates the strength
of the exponential rise as soon as VT is reached, higher values result in a
steeper rise.

• Ifire: Low values of Ifire result in many spikes per burst, high values
decrease it so much that the system crosses the V-nullcline with one spike,
resulting in slow tonic spiking.

• Igl: A rising leakage current draws the system faster back to leakage and
lowers the V-nullcline. This results in a decrease of spikes per burst with
increasing Igl.

• Igladapt: The influence of the adaptation current grows with this quantity,
higher values result in lower frequency. System transversing from tonic
spiking to bursting with lowering spiking frequency.

• Ipl: for low values of Ipl slow tonic spiking can be observed. For higher val-
ues this transverses via a regime where bursting is possible into continuous
spiking with very high frequency.

• Iradapt: With higher bias current for the subthreshold adaptation the
recovery of the adaptation Voltage (and therefore the adaptation current)
decline faster, resulting in higher bursting frequency.

• Vt: if the spike threshold is below El and Vreset the membrane voltage is
continuously reset. At higher values the number of spikes per burst grows
with Vt.

• Irexp: For very low values of Irexp the exponential threshold is very low,
resulting in high spiking frequency (permanent spiking if Vt is low enough).
For too high values the threshold can not be reached any more. The tonic
bursting regime is just a few nA wide and surrounded by tonic spiking for
lower values and initial bursting [6] (also called mixed mode [2]) for higher
values.
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• Ispikeamp: As the offset voltage for the comparator gets higher, the fre-
quency of spiking (for higher values bursting) grows. The voltage at which
a spike is detected is lower for higher voltages.

• Vexp: For very low values the exponential threshold is reached continu-
ously, for high values the spiking threshold is not reached any more. In
the intermediate regime there is a small voltage range for tonic bursting,
surrounded by tonic spiking on the lower side and initial bursting on the
other.

• Vt: For very low values (below El, Vreset) we get continuous reset like
before. When the reset voltage is high, there are more spikes per burst.
If the value is to high (more than 350 mV above El) there is no reset any
more

• Vreset: Bursting is, as pointed out in [3], extremely sensitive to variation in
the reset voltage, as this voltage determines the line of constant membrane
voltage where the system climbs up the the V-nullcline. In the presented
setting tonic bursting is just visible for a single mV step.

quantity tonic spiking spike frequency adaptation tonic bursting
El 880 mV 880 mV 860 mV
Esyni 800 mV 800 mV 800 mV
Esynx 1.4 V 1.4 V 1.4 V
Ibexpb 2 uA 2 uA 2 uA
Iconvi 0 0 0
Iconvx 0 0 0
Iadaptb 100 nA 100n 1u
Igl 1.8 uA 1.8 uA 900 nA

Igladapt 0 900 nA 900 nA
Iintbb 1 uA 1 uA 1 uA
Ipulse 500 nA 500 nA 500n
Iradapt 500 nA 500 nA 2u
Irexp 400 nA 400 nA 195 nA

Ispikeamp 1 uA 1 uA 1 uA
Vexp 820mV 820 mV 820 mV
Vsyni 1V 1 V 1 V
Vsyntci 1.4 V 1.4 V 1.4 V
Vsyntcx 1.4 V 1.4 V 1.4 V
Vsynx 1 V 1 V 1 V
Vt 1.1 V 1.1 V 1.1 V

Vreset 850 mV 850 mV 857 mV

Table 2
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4.2 Reproduction of neuron states found in literature

First I will try to reproduce the firing states found in [6] shown here in a figure
taken out of that paper (figure 5). The ability to produce these diagrams is
central for the emulating circuit, as it shows its ability to cater for different
neuron types that are found in the cortex. As an important reference for this [2]
is used, as it includes links between the spiking patterns and biological neurons.

In the following sections the various spiking patterns that could be repro-
duced are discussed and the link to simulation literature pointed out.

Figure 5: ”Phase plane representation of eight firing patterns. Firing patterns
observed during a step current stimulation are: a tonic spiking, b adaptation,
c initial burst, d regular bursting, e delayed accelerating, f delayed regular
bursting, g transient spiking and h irregular spiking.” Figure and caption taken
from [6]

4.2.1 Tonic Spiking

Tonic spiking neurons fire spikes with constant frequency when stimulated.
There is no alteration of the spiking frequency visible. In our model this is
done by turning the adaptation current of by setting Igladapt to 0 and inhibiting
the accumulation of adaptation voltage by turning off the Ifire current that
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charges the membrane (just like descibed before). The result of this is visible in
6. There is still some accumulation of adaptation voltage visible in the phase-
diagram, but it is one order of magnitude smaller than for the other spiking
states. This state resembles a out of 5. It can be found in 1 as subfigure (A).

(a) (b)

Figure 6: Tonic spiking observed in the transistor-level simulation of the neuron
model. This pattern is similar to the tonic spiking state found in figure 5

4.2.2 Adaptation

The adaptation state is very much similar to the tonic spiking state, with the
change that here the accumulation of adaptation voltage is turned on (via Ifire)
and the adaptation current is turned on (Igladapt). Clearly visible is the decrease
of spiking frequency with every spike like in subfigure b out of figure 5 or in
figure 1 as subfigure (F).

(a) (b)

Figure 7: Adapation
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4.2.3 Inital Burst

The inital burst state in [6] can be found in 1 as subfigure (E) under the name
mixed mode. It is obtained in the simulation by enhancing a tonic bursting
state by rising the Iradapt current, so that once the system crosses the nullcline,
it transverses that point with every spike following again. This results in low
frequency spiking behaviour.

(a) (b)

Figure 8: Inital Burst, also called mixed mode in [2]

4.2.4 Regular Bursting

The regular bursting state out of [6], also called tonic bursting in 1 is possible
only for a very small room in parameter space. Especially for Vreset the range
of voltages for that this behaviour is observed is very small (see discussion in [3]
and above). According to [2] these states are believed to contribute to gamma
oscillations in the brain.

(a) (b)

Figure 9: Regular Bursting, also called tonic bursting in [2]

18



4.2.5 Transient Spiking

In this state, which is called phasic spiking in 1 one can observe only one spike
at the onset of the stimulus and no other state following. Behaviour like this is
obtained by making the amount of adaptation per spike quite large and slowly
decaying (in hardware parameters this means hight Ifire and low Iradapt), con-
nected whit a high threshold for spiking (in hardware: high value for Vexp) that
is not reached when any adaptation current is flowing.

(a) (b)

Figure 10: Transient Spiking, also called phasic spike in [2]

5 Conclusion and Outlook

This internship consisted totally of work on the 180nm HICANN neuron. I
summarized findings out of [3] assuming ideal behaviour for all elements. I had
a close look on what the characteristics of the OTA2 are and how to describe
the bias current Ibias changes the conductance behaviour. Also I wrote a doc-
umentation about the various variables I encountered during my work with the
neuron testbench. I showed how the variation of certain parameters influences
three basic states. Finally I reproduced the diagrams that where reproduced
before using a number of neuron states can be realized with transistor level
simulations of the emulation.

During all my work here I neglected the synaptic term, this will be the
task of my bachelor thesis: working with the input coming from the synaptic
array and showing the results and deviations from ideal behaviour. I will start
from ideal transistor-level simulations and carry on to analytical work, scans
of temperature, monte carlo simulations including transistor missmatch and
various other analysis of this term.

2Operational Transconductance Amplifier
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Figure 11: Schematics of the exponential term. Taken from [3]

Figure 12: The current mirror emulating a adjustable resistor. Taken from [3]

6 Appendix

6.1 Analytical work on the exponential term

All credit for these calculations goes to Andreas Hartel. They depend on ideal
behaviour of the OP3. The schematics used for these calculations are taken out
of [3].

The transistor Mexp is connected like a diode (figure 11):

IDS = I0exp

(
VGS − Vth
nUT

)
The operational amplifier keeps its two terminals at the same voltage, due

to negative feedback. It holds:

3Operational Amplifier
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Vmem − Vexp = (Vout − Vexp)
R2

R1 +R2

⇒ Vout = (Vmem − Vexp)
R1 +R2

R2
+ Vexp

For Mexp you get out of this:

⇒ VGS,M0 =
R1

R2
(Vmem − Vexp)

R1 is realized as a variable resistor via a current mirror, channel length
modulation used for mimicking of the resistive property.

V− − Vexp = R2I2 = R2Irexp(1 + 4 + 4λ(Vout − V−))

⇒ Vout − V− =

(
Vmem − Vexp − 5R2Irexp

R2Irexp4λ

)
= VGS

By this a expression for the exponential term follows:

Iexp = I0exp

(
Vmem− Vexp − 5R2Irexp

R2Irexp4λnUT

− Uth
nUT

)
This expression is used above to describe the ideal circuit behaviour of the

AdEx emulation.

6.2 Documenting variables in neuron model

As a convention I choose to call the complete neuron schematic 4 ”neuron model”
and the with exterior circuitry realized testbench ”neuron testbench”. The
neuron schematic contains the emulating circuit for AdEx neuron model as it is
integrated in the wafer system and the testbench is build to make experiments
on the bench possible. This documentation will map each variable found on the
neuron model (on the schematics level) to a variable on the testbench. Further
it will describe the function of all variables in the model (which term is affected,
which parameter tuned) and the meaning on a circuit level approach (what
kind of signal is needed, what kind of electronic component is controlled). To
describe the variables I start with every term of the model on a single OTA level
and describe the effect of tunable parameters on the terms. For this description
I keep close to [3], but also include the names found in the schematics. The
schemiatics for all terms can be found in [3].

There are two identical neurons drawn in one neuron schematics. These share
the same parameters on the testbench and are identical except for the INOUT
EXT term and the OUT term, where the neurons can be selected separately for
interaction with other neurons.

4with schematic a electronic schematic realized in the virtuoso software is denoted

21



6.2.1 Leakage Term

The first term I want to describe is the leakage term in (1): ”gl(V −El)”. This
term is directly modelled by an OTA with negative feedback, as the OTA’s ideal
behaviour is described by IOTA = h(Vinput1 − Vinput2) [7]. The circuit can be
found in [3, figure 3.5] and has 3 pins:

• membrane: the circuits current output is set onto this pin. It is connected
directly to the membrane potential and gives the negative feedback to the
OTA.

• Igl: this input current adjusts the value for gl in the leakage term ac-
cording to gl = hIgl, where h is a function of process, temperature and
differential voltage [7]. Technically it is a bias current to the OTA. There
are strong limits to the vaidity of the mentioned linear relation, these are
discussed in [3, section 3.3.3]. Igl is supplied by a current source on the
neuron testbench to the neuron model and can be set as a parameter of
the simulation. In the neuron model it is transferred over a current mir-
ror (default: 3:1; fast: 1:1; slow: 27:1) onto the input pin of the circuit
representation of the term described above.

• El: this input voltage is provided to the neuron model directly by a volt-
age source on the neuron testbench and represents the leakage reversal
potential in the model. El can be set directly in the simulation. This
variable is used more than one time, as explained below

6.2.2 Membrane

The Membrane is not found in the neuron model. It is set up on the neuron
testbench and connected to an external pin to the neuron model (see figure 13).
This model has 4 parameters, each of them can be set directly in the simulation.

• cmem: this is the membrane capacitance

• cext : an external capacitance connected in parallel to cmem

• Eload: this is a reversal potential charging the membrane over Rload

• Rload: a usually very large resistance over which cmem is charged by Eload

6.2.3 Adaptation

The adapation term represents the adaptation current in 6 and the subthreash-
old adaptation in 8. This circuit has 7 pins whose function is described in the
following list. Important to mention is that inside this schematic the voltage
Vω is measured over the storage capacitor Cω. Vω is the storage variable for the
amount of adaptation taking place and important later for describing the state
of the neuron.
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+
−Eload
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cmemcext

Figure 13: This circuit emulates the neuron capacitance. It is not included in
the neuron model but realizied as drawn here on the neuron test bench and
connected to the membrane pin.

• Ileak: bias current for OTA a. With this variable it is possible to control
the subthreashold adaptation conductance a. This variable is mirrored to
the outside (default: 3:1; fast: 1:1; slow: 27:1) of the neuron model named
”Igladapt” and can be set on the neuron testbench under this name.

• Eleak: the leakage reversal potential. This is the same parameter as in
the leakage term and is available as pin of the neuron model. It can be
set on the neuron testbench. The fact that it is the same potential as in
the leakage term limits the configurability of the circuit [3, section 3.5.2].

• Iradapt: bias current for OTA gw. With this variable it is possible to con-
trol the conductance gw, which emulates the change of Vw. This variable is
accessible over a current mirror (default: 32:1; fast: 8:1; slow: 640:1) as a
pin on the neuron model and can be set directly on the neuron testbench.

• Ifireb: controls the current Ifire. Higher current means a higher adap-
tation per spike (larger change in Vω). This current is directly mirrored
onto the capacitor, as long as the digital fire signal arrives. To the on the
neuron model this variable is mirrored (1:10.4) under the same name, but
in the neuron testbench it is called Iadaptb.

• fireb: triggers firing current onto capacitor when 0. The length of this
signal represents tfire. This is connected to the Ifirebottom and Ifiretop
pins of the ”Out” module, see below.

• reset: resets Vw to the value of the membrane capacitance. On the neuron
testbench this happens every 2 seconds. Neither height nor frequency of
the signal are available as parameters in the simulation.
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• Vmem: connection to membrane

6.2.4 Synaptic Term

This circuit simulates the synaptic input terms ge(t)(V −Ee) and gi(t)(V −Ei)
one at a time. The conductances control the time dependence of the circuit
and are triggered by synaptic input. This synaptic input comes in very short
pulses, the circuit modulates a time-dependence onto the signal (exponential
decay by leaky integrator). This means two identical circuits are available for
both excitatory and inhibitory input. The variable names are distinguished by
the postfix ”x” for excitatory and ”i” for inhibitory. There are 7 pins apart from
the voltage supply connected to this circuit.

• Esyn: sets the reversal potential for the synapse. Accessible on the neuron
model via ”Esyn + i/x” and can be set under this name on the testbench.

• Vsyn: voltage offset for integrator circuit. Accessible on the neuron model
via ”Vsyn + i/x” and can be set under this name on the testbench.

• Vsyntc: sets resistance for leaky integrator via the circuit described in [3,
section 3.6.2]. The resistance does not depend linearly on this voltage,
exact measurements can be found in the cited Dissertation. Accessible on
the neuron model via ”Vsyntc + i/x” and can be set under this name on
the testbench.

• Iintbb: offset current for differential pair in operational amplifier, can be
used to tune the differential gain. It is accessible on the neuron model via
a current mirror (1:1) under the name ”Iintbb + i/x” and can be set in
the simulation.

• membrane: connected to membrane potential, gives negative feedback.

• Iconv: sets the influence of the synaptic term, higher values mean higher
influence of the synaptic term. Technically this a bias current to an OTA
whose output current is proportional to an exponential decay modelled
by an leaky integrator. This output current is an bias current again to
an OTA whose current is proportional to the difference between reversal
potential and membrane potential. This variable is available on the neuron
model via ”Iconv + i/x” and can be set under this name on the testbench.

• Isyn: The synaptic input current usually coming from the synapse array.
This current can be controlled directly at a pin on the neuron model under
the name ”Isyn + i/x” and can be set in the simulation to constant values.

6.2.5 Exponential Term

The exponential term drives the membrane potential to the spiking thresh-
old as soon as a certain spiking threshold is reached, described by Iexp =

−gl∆texp
(
V−Vt

∆t

)
.
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The term is emulated by the circuit seen in [3, Figure 3.22]. The exponential
dependency is realized by a mosfet connected like a diode. The rest of the circuit
should control the current through that diode. The exact description can be
found in [3, section 3.7], here we only describe the 5 controllable pins and their
meaning

• Irexp: Technically this current is mirrored by a current mirror (3:1), which
realizes a adjustable resistor. Higher current results in lower resistance.
The effect of this lower resistance is a higher ∆t and therefore lower ex-
ponential threshold. This value is accessible as pin on the neuron model
and accessible on the neuron testbench

• Ibexpb: This current is the offset current for the operational amplifier in the
circuit. A higher value of this current results in a stronger amplification of
differences at the Inputs of the amplifier. It is mirrored to the outside of
the neuron model (1:2) and accessible under the same name on the neuron
testbench

• Vexp: sets the voltage at which the exponential term starts influencing the
membrane. Higher values result in a higher threshold, but this voltage is
not identical to the threshold voltage as it is transformed according to [3,
section3.7.1]

• Vbexpb: turns a buffer for the exponential voltage on and off (high value:
off, low value on), if the buffer is off Vexp is replaced by a high impedance.
This pin is available on the neuron schematics and connected to vbb on
the outside, permanently it is on a voltage around 1.2 V

• membrane: connected directly to the membrane

6.2.6 Spike Detection

The spike detection circuit compares the spike threshold with the current mem-
brane voltage. It is connected to various pins but not important in this intern-
ship, so we decide to not describe the individual pins, but only list them.

• Ispikeamp: offset voltage for the amplifier comparing the threshold voltage
with the membrane voltage. Accessible directly as pin on the neuron model
and can be set in the neuron testbench

• membranetop: connected to the membrane at the top, when the mem-
branes are to be connected. There is an analogous membranebottom pin.
This pin is accessible on the neuron model and connected to nothing on
the neuron testbench

• conncettotopb: this variable controls the connection to the upper mem-
brane. If the value of conncettotopb or memi5 is 0 the neuron membrane
is connected to the top neuron. conncettotopb is hard-wired to vdd (1) on
the neuron testbench. There is an analogous connecttobottomb pin, which
is connected to nothing on the neuron testbench
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• fireouttop: Inverted fire signal of this neuron.

• fireintop: Signal coming from next neuron, gets inverted and is set on the
fire pin.

• memi : these variables are responsible for the connection to other neurons,
they are all connected to voltage sources on the neuron testbench. They
can take the digital values 0 and 1 (0 and 1.8 V respectively). For every
memi pin there is a memib pin, that gives out the inversion of the signal.
Inside the connection block the value of these pins is written to SRAM cells
with a certain writing frequency given by the pulsed writeMem. Each of
them is accessible as a output pin of the neuron model and can be assigned
their digital values in the neuron testbench

– memi0, memi1 and memi2 are translated to ext0, ext1 and ext2 over
the SRAM cells and given to the outside via an ext pin.

– memi3 : This pin connects the two membranes realized on the neuron
testbench: if the digital value is 1, the membranes are connected to
each other. It is accessible as connect12 on the neuron testbench and
usually set to 1.

– memi4 : controls an inverter connected to the output of the compara-
tor that detects the spike. If memi4 is set to 1, the output is inverted
and connected to the next stages fire, fireouttop, post), if it is set to
0 the spike signal never reaches these stages. Its name on the neuron
testbench is neuron2active. The pin memi7 is analogous to this pin
and controlled via neuron1active on the neuron testbench.

– memi5 : set as connectTop on neuron testbench, controlls inverter
for firein signals. memi6, set as connectBottom on the testbench
controlls the same for the below neuron.

• reset: Resets the output of the comparator circuit onto ground.

• ext : connected to the INOUT EXT term. No function in this circuit.

• writeMem: Controlls the wordline of SRAM cells that store the values for
memi, running with 10 Mhz on neuron testbench.

• Vt : Spiking threshold, compared by the comparator with the membrane
voltage.

6.2.7 Reset

As soon as a spike is detected by the spike detection circuit the reset mechanism
pulls the membrane voltage to the reset value. It is controlled by 5 pins.

• fire: digital fire signal put out by the Spikedetection term.

• membrane: connected to membrane.

26



• Viresetgolbal: Enables the reset mechanism when ”high”. On the neuron
testbench its hardwired to be a voltage close to the positive rail, as the
reset is always enabled.

• Vreset: Voltage on which the membrane voltage is reset when the spike
detection finds that the threshold voltage is reached.

• ipulse: recharges a capacitor that closes the reset. This capacitor is charged
in the standard case, but uncharged when a fire signal arrives at the reset
term. When the current is higher, the reset voltage is presented to the
neuron for a longer time.

6.2.8 INOUT EXT

To perform experiments like they are possible with real neurons, this term opens
the possibility to connect the neuron to the outside or inject currents onto the
membrane. As there are two neurons available, there is a possibility to select
one of them as an output and on which to inject a current

• currentin: If the currentenable signal for the respective neuron is on (table
4) the input current is set on the membrane. This value can be set directly
on the neuron testbench.

• out : output of the INOUT EXT term, connection to membrane is made
possible via a buffer circuit that can be controlled by the ext variables de-
scribed below. If the buffer is disabled the output is set to high impedance.
This pin is accessible on the neuron model and connected to nothing on
the testbench

• ext0, ext1, ext2 : the ext pins are connected over the OUT module de-
scribed above, they are accessible under the same names on the neuron
testbench and carried into the neuron schematics as memi0, memi1 and
memi 2. They can take binary values.

To descibe the behaviour due to the ext variables we analyse the circuits
and transform it to truth tables:

Connection of the membrane to the out pin is realized by the buffer men-
tioned above, the following truth tables show in which way the buffers can be
controlled for neuron 0 and 1:

The currentin connection is controlled by just two variables: ext1 and ext2.
These control logic gates that enable or disable a switch allowing the current to
flow on the membrane.
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ext2 ext1 ext0 bufferenable

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

(a) neuron 0: bufferenable = ext1 · ext2 ·
ext0

ext2 ext1 ext0 bufferenable

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

(b) neuron 1: bufferenable = ext0 · ext2 ·
ext1

Table 3: these tables describe the control of the output circuit by the variables
ext0, ext1 and ext2.

ext2 ext1 currentenable

0 0 0
0 1 0
1 0 0
1 1 1

(a) neuron 0: currentenable = ext1 · ext2

ext2 ext1 currentenable

0 0 0
0 1 0
1 0 1
1 1 0

(b) neuron 1: currentenable = ext1 · ext2

Table 4: the way in which the variables ext1 and ext2 control the current onto
the membrane

ext2 ext1 ext0 bufferenable0 bufferenable1 currentenable0 currentenable1
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 1 0 0
0 1 1 1 1 0 0
1 0 0 0 0 0 1
1 0 1 0 0 0 1
1 1 0 1 1 1 0
1 1 1 0 0 1 0

Table 5: summary table concluding the above derivations
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