
3D visualisation of the mapping of
a neural network model onto

a neuromorphic hardware system

Projektpraktikum Informatik

Supervisor: Eric Müller, Daniel Brüderle

v2

1 Introduction

The Electronic Visions group [1] of the
Kirchhoff Institut für Physik (KIP) is de-
veloping digital hardware with analog main
components to simulate neural networks.
This approach of using ‘neuromorphic hard-
ware’, which is not just application-specific
reconfigurable hardware for numerical simu-
lations but rather has analog spiking neu-
rons, which operate in parallel for them-
selves, allows for faster than real time sim-
ulation of neural activity, greatly facilitat-
ing experiments. As a first stage a chip
(‘Spikey’) with 2 synapse arrays, each prop-
agating to 192 artificial neurons, which to-
gether with their array of synaptic weights
form a core and in turn are able to forward
propagate to every other neuron of its core,
was developed. However to reduce the com-
plexity the connections between neurons of
different cores are far more limited, a de-
sign principle similar to the kind of biolog-
ical networks targeted, exploiting the spar-
sity of the connection matrix. This creates
unfortunately the problem of allocation of
the hardware neurons which correspond to
those of the biological model a user of the
system has, especially for the second stage
of this system [2] which greatly increases the
number of possible neurons, synapses and
the complexity. This mapping process is
done by algorithms, developed at the TU
Dresden, that don’t need action from the
user who doesn’t need intimate knowledge of
the hardware and its limitations but rather
can use the abstracting Python scripting
language interface PyNN1 [3] that is devel-
oped in conjunction with other groups of
other universities within the scope of the
FACETS Project [4] and allows to perform

1pronounced a like ‘pine’ tree

experiments interchangeably on neuromor-
phic hardware as well as, in principle com-
pletely limitation free in-software simulators
like NEST, NEURON.

The algorithms use an abstract graph of
the hardware and another one for the neural
network, both subclassing a common highly
generic GraphModel. To visualise2 the map-
ping of neurons and synapses of a biologi-
cal neural network model (which for biologi-
cal simulations should be three-dimensional)
to the hardware (which is effectively two-
dimensional) in order to help the developer
or user of the software environment in its
verification, and the models themselves, the
internship of Tobias Harion [5] resulted in a
module to the mapping software for 3D dis-
play using OpenGL.

2 glVisu
‘glVisu’ is a set of C++ source files
(GraphVisu.h / GraphVisu.cpp, glCon-
trol.h / glControl.cpp) which use the C
API of OpenGL (the 1.X fixed-function
pipeline) for 3D rendering of the graphs
and GLUT (OpenGL Utility Toolkit) for
platform integration like window man-
agement and user input with mouse
and keyboard. It is is invoked by
the function AlgorithmController::
StartVisualization() from the C++-
code that is managed by Boost.Python for
the interoperability with Python.

Although more of a demonstrator it has a
range of features. Neurons of the hardware
are displayed on a square lattice as spheres,
the ones used in a different colour as the
others ones. The neurons of the bio model

2As a compromise American English is used for
the software, a German variant of British English
for this report

2

are also little spheres and can be positioned
on a cubic lattice, a square lattice, or on
random positions on the inside of a sphere.
They can be selected separately by clicking,
by pressing of a key, or by aiming at them
and pressing another key. For a selected bio
neuron parameters from the graph are dis-
played on-screen, the outgoing synapses are
displayed with different colours for excita-
tory and inhibitory impact and a mapping
connection to hardware neurons, the only
part of‘stage 1’ that is included, can be show.
There is a context menu for the window with
options, like what components to show or
hide.

The user moves around in the 3D space
in first-person navigation with mouse input
for direction and keyboard for translation.
There is also a full-screen mode which locks
the mouse, giving standard game controls.

A console can be opened for input of a
limited set of commands, the most impor-
tant being the one to input a fille name for
a simulation mode in which a spike train is
loaded from the file and the spiking neurons
are eye-catchingly coloured.

The scene can be rendered with an
anaglyphic 3D effect for use with a set of
filtering glasses.

The neurons and synapses of the bio graph
are tranferred into structs for faster and
easier rendering. In this process bio neurons
are assigned numbers according to the order
in which they appear in the graph.

Because GLUT is a C-API that executes
user-provided callbacks, a global variable ap-
proach with wrappers is used to mix C call-
back functions and C++ member functions.

3 Course of the intern-
ship

The internship was done for the Soft-
warepraktikum credit in the semester break
in February3 and a good part of March of
2009 with only short breaks for a blocked
lecture and a short excursion.

The most park of the work was done at the
research group’s office at the opening hours
on a small laptop computer4 which had to
stay in place. There was an advertising gift
like set of red-blue anaglyph glasses made of
cardboard.

As the GraphModel classes depend on
a whole range of in-house developed soft-
ware and in particular the build system
is building the complete shared library
‘pyhal c interface s1v2.so’ the glVisu code
could only be compiled in-house. For testing
PyNN had to be run.

Ahead of the internship the papers [2] [3]
were provided partially in pre-release ver-
sion. Mostly in the first two weeks a ref-
erence book at the university library [6] was
worked through off-time.

The group requires portable, and prefer-
ably open source software, and for that rea-
son OpenGL with its wide spread support
was chosen, with the benefit of its client
/ server model allowing using the software
over ssh. The library GLUT, although more
, had additionally the advantage of being
cross-platform. In addition to that, an upper
bound was set by the requirement of the soft-

3Coincidentally the moment 1234567890 in the
UNIX epoch was almost spent working on this
project.

4System: HP Compaq 6910p, CPU: Intel Core 2
Duo CPU T7300 @ 2.00GHz, RAM: 1978 MiB,
GPU: Intel Corporation Mobile GM965/GL960 In-
tegrated Graphics Controller (rev 0c), Resolution:
1440x900

3

ware being able to run on older hardware,
which was the reason the full OpenGL 3.0
function set could certainly not be used and
one reason no parts of OpenGL 2.1 were
used but instead the limited fixed-function
pipeline of OpenGL 1.X.

The C++ Standard Library was used for
containers (STL) and string manipulation.

Tasks for development on glVisu were a
more flexible colour selection with a high
contrast mode and white background, mak-
ing the hardware neurons selectable, dis-
playing ‘parameters’ of them and doing the
visualisation of the interconnections. Fur-
thermore concepts for the visualisation of
‘stage 2’ and the interactive editing of the
model should be developed. As the work
progressed more tasks were introduced.

While the projected time for the actual
work as well as the report was 4 weeks, this
was more or less doubled.

A lot of time was spent as a first part on
cleaning up and structuring the code base for
the existing initial visualisation to make it
more accessible and most of all easier to im-
plement the given tasks, like the essentially
quite easy dynamic replacement of colours.
As it was promised work done on the pro-
gram would be of actual use in the devel-
opment and use of the neuromorphic hard-
ware, time was spent on making it easy to
further build on it and correcting as needed.
Close to everything was revised in the pro-
cess, leaving little untouched. The resulting
source files have about 3300 sloc from previ-
ously about 1800 sloc

As no documentation between, preferen-
tially graphic for easy access and reference,
could be provided on the relevant parts of
layout of the chip and its relation to the
hardware model – possibly something the
visualisation was supposed to be of use to,
but questionable giving the lack of knowl-

edge by the person doing it and given that
of the 4 components of homogeneous coordi-
nates only 2 are used – but only a couple of
short conversations about the topic, the task
of drawing the ‘stage 1’ emerged to be quite
unsatisfactory. This, combined with the ren-
dering speed problem and the development
state (paradoxically the work was supposed
to help with this), was the reason no work
was done on ‘stage 2’.

Because of this work was spent on a 2D
display of the hardware and improving the
source package in general for further devel-
opment.

The tools KCacheGrind and callgrind from
valgrind were used to some extend to
profile the drawing process. The results
were mixed owing to the abundant and in-
tertwined function calling necessary in the
OpenGL 1.x API on one hand and on the
other hand the dramatic slowdown when
running on the valgrind virtual machine
and the difficulty of setting up a meaning-
ful test. However, unfortunately there was
a lot of compulsion for speed so quite a lot
of time was spent on, regrettably, premature
optimization.

The source code was documented in large
part with comments in the Doxygen syntax
and so can be compiled into a software ref-
erence documentation. While this was pre-
viously the case, this needed work giving the
amount of change.

For further improvement of the applica-
tion a couple of things were investigated.

Looking into the cross-platform applica-
tion framework Qt for a native C++ re-
placement of GLUT for improved and eas-
ier usabilty, and better multi-view handling,
seemed promising and resulted in more sep-
aration of the displaying process.

Improvement of the stereoscopic display
was researched.

4

First and foremost for faster rendering,
but also for more rich visual presentation the
features that separate OpenGL 3.0 and 2.1
from 1.X like Vertex Buffer Objects were
looked into. More advanced animation tech-
niques like keyframe animation were consid-
ered.

For better and easier image generation the
possibility of rendering in higher resolution
and output with a library like libpng.

The work on glVisu was incorporated in
the dissertation of Daniel Brüderle [7, sec-
tion 3.2.6 / pp. 68-71] in the form of a couple
of screenshots.

The looping functionality of the simula-
tion was done in very short time, and given
the groundwork very easily, a short time af-
ter the end of the internship to be used in a
televised interview.

4 Contributions

4.1 Improvements
Beyond the tasks to be completed a couple
of other things were done to lay the ground-
work or be of help in the development.

To improve speed additional structs
were introduced as suggested in [5] for the
relevant data from the hardware graph,
hw neuron, hw core, hw syndriver (which
is an either internal or external input with
either positive or negative synaptical weight
for all neurons of a core), which keep refer-
ences to their corresponding nodes for less
frequently used information, in addition to
bio neuron and bio synapse which were al-
ready in existence.

The workings of these structures were
changed in the way the they reference each
other. Instead of keeping the index into
an array, this indirection was avoided to

gain speed and let later manual editing by
the user become feasible without , by di-
rectly linking the nodes together. For this
more difficult process a map was used in the
new transferGraphs() member function,
using the pointer as a key to semi-finished
synapses. If parallel editing of the original
graph and the copy turns out to be imprac-
tical, this transferal could be repeated, but
this is certainly bad for much larger graphs.

The code was cleaned up and partly
rewritten. A first step was automatic for-
matting and rearrangement. The code
makes use of namespaces, enums. Of the
Standard Library string, ostringstream,
istringstream, list, vector, set, map,
pair, and the respective iterators were
used, with for example the capacity reserved
in advance. C-style strings were avoided as
much as possible.

Instead of permanent casting the OpenGL
types were used where sensible. It was aimed
for const correctness.

The parsing of commands was somewhat
simplified. The shortcuts were made to use
keycodes where character literals could acci-
dentally replaced or mistaken.

The layout algorithms, which were previ-
ously assuming a specific neuron count, were
corrected and reverting to the positions from
the model was made possible.

A command was introduced to put the
center of masses and bounding boxes of the
bio neurons and the hardware in respect to
each other independently of their positions
in their own private frame of reference. And
another command to set the position of the
origins of the bio model and the hardware
model in the scene, putting the matrix stack
to good use.

The stereoscopic mode was revised and
made more flexible given more and a colour
theme introduced with a constrained like

5

palette so as to have three dimensional parts
of the image always in both independent im-
ages.

The hardware neurons were made able to
be selected in consecutive order, like previ-
ously the bio neurons, but with both enu-
merations repeated at the ends.

Information in the graph model regard-
ing the synapses, hardware neurons, synapse
drivers, in addition to the bio neurons is
now given in the on-screen display and eas-
ier extensible. Giving the groups of infor-
mation translucent background boxes was
tested, but is not in the final version.

A very helpful new feature is saving the
position and viewing direction to be able to
restore them later using shortcuts.

To help with orientation and the position-
ing using the commands, coordinate axes are
drawn colour-coded RGB for the x (red), y
(green), z (blue) coordinates of the right-
handed coordinate system. Also for orien-
tation crosshairs were added.

The position in space and line of direction
can now be set with the console and out-
putted to the console. Mind that the output
values are the rounded off accumulations of
multiple steps with in floating point arith-
metic, so feeding back the values will result
in slightly different position and orientation.

The simulation mode was improved with
an integration time setting by which can be
controlled how long a spiking neuron is dis-
played as such. The outbound connections
can be shown. Furthermore the simulation
can be paused, for example for inspection.
The animation can now be looped, ended at
the last event or continue running like previ-
ously. The last option was kept combined
with the ability to enter simulation mode
without a valid simulation file in order to
get an idea of the frame rate.

Boost.Python installs a signal handler
that prevents termination while running the
unmanaged C++ code. For that reason a
requirement was to install a custom handler
for the SIGINT signal. After the interruption
the old handler is restored.

As a measure to prevent unintentional ter-
mination, the shortcut was changed to use a
key combination. Conversely it leaving the
full-screen mode was made to be more in line
with expectations.

It was tested to use only decimal frac-
tions that are exact in binary representation
with only more significant mantissa bits set,
preferably few, for better graphics quality.

4.2 Changed

The responsibility of the classes was changed
with GraphVisu as an entry point, handling
of the data and drawing of the models, and
glControl for user interface, management
of OpenGL and control flow. See Section 5.3
for obvious improvements.

By using the freeglut extension to GLUT
glutExitMainLoop and the option GLUT
ACTION CONTINUE EXECUTION the API user
can now simply use a blocking call to
glControl::show() instead of knowing the
intrinsics of a threading workaround.

The menu was newly arranged and further
completed. Various menu entries for display-
ing options of the model were added, for ex-
ample to show the hardware only. It was
made more compact by having a single tog-
gle entry instead of two normal ones, which
was also done for the keystrokes. Instead of
simulating key presses, the keystroke han-
dler now invokes the menu functions which
allows for easy reassignment of the keys but
could be further improved by more common
functions.

6

The shortcuts for plane, sphere and cube
positioning were permuted so as to be more
mnemonic.

4.3 Drawing of the hardware
While previously only the hardware neu-
rons and the labels of the cores were in the
scene, now more components are shown: the
synapse drivers, the array of their output
weights and various connections like the con-
nection of hardware neurons to other hard-
ware neurons via the synapse drivers and the
array.

The hardware neurons were given more
fitting little cubes using glutSolidCube,
while for the synapse driver a simi-
lar function solidWedge(length,height,
, width) with correct normals was pro-
grammed. The core is now surrounded by
a rectangle and the core names slanted for
viewing in top-down view.

The difficult part is the weight matrix, be-
cause of the more than squared amount of
weights. For that reason they are but lit-
tle squares that have a linear interpolated
colour depending on their value from low val-
ues to high values and sign, with a special
colour for zero.

Synapse drivers getting their input not
from their core are coloured differently, the
same holding true for mapped hardware neu-
rons.

The hardware was more or less drawn in
a more logical than physical way. Com-
pletely unattached from that fact a problem
was that the weights couldn’t be read from
the graph model as they are not included in
the stage 1 graph model. For that reason
a realistic configuration was not depictable.
Rather random values were generated with
p(0) = 3

4 and the weight linearly decreasing
down to zero for increasing weights by in-

verse transform sampling, which was tested.
The synapse drivers that are configurable
with numbers smaller than 192 were given
a 40% chance to be FEEDBACK or FEEDBACK2
instead of EXTERNAL.

4.4 Selection
Previously out of the object in the scene the
user could only select the bio neurons. Now
in addition to focussing on bio neurons, the
user can click as well on bio synapses, hard-
ware neurons, mapping connections between
the two graphs, and synapse drivers. When
connections are selected information is also
given on the binding partners.

In addition to the focus mode, a select
mode was incorporated, which can be ac-
tivated through the console. In this mode
focus is not changed, but sets of objects can
be selected, which can be read out later from
data members of GraphVisu with a name of
the form selected*, as a way to pass infor-
mation on to the controller. The invoker can
also read out the last selected item type, the
last selected item per type. The same holds
for the items. This was done to make the vi-
sualisation more useful to the mapping pro-
cess, by not only showing the result without
outcome, as progress to modification within
the visualisation instance was limited to the
improvement of the graph transferral and
data structures (see 4.1). It could be used
for batch processing as well.

The detection is done by using OpenGL
support for picking with the same basic prin-
ciple that it was done previously. With the
help of gluPickMatrix() a projection ma-
trix is calculated, that restricts the view
volume in such a way that its projection
on the screen surface is within the sur-
roundings of the mouse cursor. By set-
ting a special rendering mode by invocation

7

of glRenderMode(GL SELECT) all the primi-
tives of all the objects that are then rendered
get an assigned key value, that is chosen to
be distinct for each object, in a buffer that
has previously to be specified. The key value
is then mapped back to the object with the
help of a table. Since multiple types of ob-
ject are now selectable, each type got its own
table that is populated anew for each draw-
ing cycle with the help of a numDrawn vari-
able and the keys given to the API have an
offset calculated from the total number of
the elements of each type. As this packs the
table entries tightly, care must be taken not
to draw elements multiple times. There is
a way to built a hierarchy, but it was not
used as it appeared to be a waste of space.
Another approach would have been to use
parts of pointers for identification. Use of
the special rendering mode can be avoided
by colour-coding the objects and then read-
ing the pixel values from the frame buffer,
but this makes the selection of underlying
objects, which was planned, quite harder.

4.5 Colour management
All occurrences of colour usage that were
previously distributed as literals all over the
code base organized with a color scheme
structure with member names that corre-
spond to the logical meaning. At the mo-
ment there are three hard-coded themes
which can be selected using a ColorSchemes
enum, including a higher contrast one with
white background for printing and presen-
tation with a beamer. This management
allows for easy introduction of nice im-
provements like coloured headings of the
parameter boxes that separate them visu-
ally. style scheme is another structure
that, at the moment, bundles the properties
of synapses, including how thick the con-

nections are drawn depending on synpatic
weight.

Previously only either inbound or out-
bound connections could be viewed for a se-
lected neuron. By using OpenGL line stip-
pling simultaneous presentation became rea-
sonable.

4.6 Viewing modes
Since a 2D view of the hardware is simply
more practical a 2D view mode was inte-
grated which can also be used as an overlay
to the conventional 3D mode giving a bom-
bardier perspective. This last, effectively
splitscreen, view is more useful with wide
aspect ratio of for example 16:9. The zoom
factor of the 2D view and the field of view
of the 3D view can be set using the con-
sole. Combined with the commands and the
underlying member functions for placement
this proved to be useful in development. At
the same time it made the display code more
general.

However, because the scene is now ren-
dered twice, it is unpleasantly slow on the
development system.

4.7 Rendering speed
With the provided target hardware the
frame rate is noticeably slow, especially in
the split screen mode. By running the sim-
ulation in continuous mode the update rate
can be seen without changing the view man-
ually (when simulating as an end in itself the
hardware model should be hidden).

The bottleneck is the high vertex count
(589 824) for the triangles (196 608) of the
two cores. In comparison to contemporary
computer games this is quite high given the
simplicity.

8

In addition to the display list, that can be
compiled by the graphics driver into an ef-
ficient format and saves data transfers and
function calls, that was used previously for
the spheres, display lists for the other items
were used. Each was core was given a list,
handled by the core structure, which is up-
dated as needed. Replacing the squares with
dots was tested, resulting in better perfor-
mance but unusable graphics and further-
more painting only non-zero weights.

Leading to the conclusion that that in this
way not many cores can be dsplayed.

5 Proposals

5.1 Miscellaneous
. . .

By switching to Qt, the user interface for
editing of the graphs would be easier to de-
velop.

If not choosing to replace GLUT then the
menus could be improved by rebuilding the
menus after each change of state.

. . .
The bio model should be scalable and ro-

tatable around the vertical axis.
. . .
Entering commands would be a lot more

useful if a command history was retained.
The GNU History library could be used,
making it easy to persist.

. . .
There should definitely be an Easter egg

in the form of replacing the bio neurons with
Utah teapots.

5.2 Rendering speed
While the drawing could further benefit from
additional display lists for drawing of the bio

neurons, especially if there are a lot more of
them or all synapses are displayed, this will
not solve the problem of too many weights
without dramatically better hardware of the
far distant future. But as the weights are not
really that important or helpful if they are
far away, they can simply be left out for cores
that are not in the field of view or distant
ones, or somehow combined into a meaning-
ful form. Animation would be quite hard.

However, it could be that using more re-
cent features of OpenGL can bring improve-
ments. Using Vertex Buffer Objects could be
useful by avoiding branching and save the
initial costs, but the display lists probably
use a similar mechanism anyway and then a
lot of colour values, that are not very infor-
mative, have to be copied.

For better analysis a frames per second
indicator should be included.

By rewriting to use GLSL shaders for
the different components the graphics could
not only improve, but another technique be-
comes possible: using texture memory to
store the values of the weights and then a
fragment shader to read out the right value.
Rather than compiling the texture with re-
stricted resolution and then simply applying
it to the area of the weight array, this could
be made to look similar and even more ap-
pealing to what is now being displayed.

5.3 Software architecture
While there were a couple of reasons the two
existing classes were kept it seems natural
to divide them up massively into a lot more
classes and source files.

Most importantly the hardware model
should be drawn by a hardware version spe-
cific subclass of a more general hardware
drawing class. This would make necessary
changes to the layout algorithm as the graph

9

model changes localized to this class alone.
The stage 2 hardware could be another sub-
class.

There should be a class or template for
encapsulation of the selection mechanism,
making it much less verbose, redundant and
maintainable.

The console should be managed by a class
for its data and parsing, and using a com-
mand line history class. Another class can
then display the state on the screen.

There should be a single concise class to
read spike trains, that even could be easily
reused.

The and keystroke and menu handlers and
their callbacks should be put into a separate
file respectively.

Instead of retaining switching depending
on a lot of flags, special subclasses that draw
a part could be used in some cases to save
some of the accompanying costs and make
the drawing code more readable.

There should be a better setup to compile
the code.

6 Known issues
Kno

10

Appendix A

Updated user manual

1 Invocation
Terminate using the window controls of the
platform, the menu, shortcuts, the console,
or from the Terminal with Ctrl + c .

1.1 PyNN
The visualisation is displayed when pass-
ing the visualization keyword argument
to the simulation function PyNN.run.

1.2 C++
Usage of the visualisation can look like the
following. The models have to be properly
initialised.

1 BioModel bioModel ;
2 HWModel hwModel ;
3 // . . . i n i t i a l i s e models . . .
4 GraphVisu∗ gv = new

GraphVisu(&bioModel , &hwModel) ;
5 gv−>contro l −>show () ;

Before the blocking call of show() prop-
erties of the display can be changed on the
GraphVisu class instance. A Doxygen API
reference can be compiled from the header
files.

2 Shortcuts
See Table 1.

3 Commands
See Table 2.

Remember the console is opened with
+ ˜ , ˆ .

4 Menu
See Table 3.

11

Key Action
w , a , s , d move forward, left, backward, right
r , f move up, down

Esc exit visualisation
Esc exit full screen mode

+ Q exit visualisation
+ F maximize window

g resize window to 800x600
+ ˜ , ˆ open the console

print information (position and direction of
the camera)

o cycle through the bio neurons
Alt + o cycle through the hardware neurons
k toggle display of synapses
e toggle display of synapses in the animation
h toggle display of hardware
n toggle display of core names
i toggle display of mapping
c start the simulation

+ C end the simulation
Space pause / continue animation

1 , 2 , 3 , 4 , 5 timestep 0.01 (new), 0.1, 1.0, 10, 100 (default
1.0)

u position neurons on a cubic lattice
p position neurons on a square lattice
j position neurons randomly within a sphere

+ J reset positions to the original positions from
the bio model

+ V save view
v load view
t , + T enable / disable culling
z , + Z toggle cull back / front faces
b , + B switch transparency on / off

Table 1: Shortcuts available. New functionality in italics.

12

Command Action

close the console
quit exit the visualisation
help print (not really helpful) help to stdout
set neuronid <n> select a specific bio neuron
set mode select / set mode focus change mode to select/deselect bio neurons,

bio synapses, hardware neurons with the
mouse into a list with visual feedback, or to
show information and mapping

set anaglyph / unset anaglpyh turn on/off anaglyph effect for
set hwmodel / unset hwmodel show/hide hardware
set bio conn / unset bio conn draw synaptic connections in the bio model
set param / unset param Show/hide the names and parameters from

the graph model of selected items
set simfile <name> use the file with the provided name for the

simulation
set simtime <t> set the simulation time to the instant pro-

vided
set timeinterval <interval> set the step size of the simulation (default

1.0)
set integration <time> set for how long after a spike event a neuron

is displayed as active (default 10.0)
set borigin <x> <y> <z> set the origin of the bio neuron locations to

the specified coordinate
set horigin <x> <y> <z> set the origin of the hardware to the specified

coordinate
set origins set the ’center of mass’ of hardware and bio

model to lie on the y axis, with the hardware
below y = −5 and the biomodel on top of
y = +5

set pos <x> <y> <z>
<heading> <pitch>

set the camera location to the given posi-
tion (heading and pitch in degrees) (default
(−15.5, 1..0, −7.0, 135.0, −22.5)

set pos <x> <y> <z>
<target-x> <target-y>
<target-z>

set the camera location to the given position,
looking at the target position

set 3d set the view to 3D (default)
set 2d set the view to 2D, looking down along the y

axis

13

set 3d2d set the view to 3D with a 2D bombardier per-
spective looking down along the y axis dis-
played on the right side

set fov <fov> set the field of view in degrees for 3d display
(default 50)

set zoom <factor> set zoom level for 2D display (default 0.0625)

Table 2: Commands available in the console. New functionality in italics.

14

Menu entry Action
Positioning x menu for positioning of the bio neurons
x Original (J) reset neurons to the positions provided by the

graph model (default)
x Cube (j) put the neurons on a cubic lattice
x Plane (p) put the neurons on a square lattice
x Sphere (u) put the neurons randomly on the inside of a

sphere
Performance x menu for performance and testing settings
x Select GL FLAT shading model use the simpler flat shading model
x Select GL SMOOTH shading model use the more complex smooth shading model

(default)
x Enable culling enable the culling of back faces and / or front

faces (default)
x Disable culling disable culling
x Cull back face cull back faces, show front faces (default)
x Cull front face cull front faces, show back faces
x Enable fog enable simple OpenGL fog
x Disable fog disable fog (default)
Full-screen x menu for full-screen display (leave with Esc
x 640x480
x 800x600
x 1024x768 new
x 1280x800
x 1280x1024
x 1440x900
x 1600x1200 new
x Leave full-screen leave full-screen mode
Simulation x menu for the animation of a spike train from

a file
x Start simulation change in to simulation mode
x Pause / Continue toggle running of the simulation
x End simulation leave the simulation mode
x Reset time to zero reset simulation to the beginning
x Continuous simulation keep simulation running at the end of the

spike train
x Load file load the simulation file
x Loop animation continue the simulation at the end of the

spike train beginning at its start
Display options x menu for displaying options of the bio model

and the hardware model

15

Menu entry Action
x Show parameters show on-screen display with information on

the selected items (default)
x Hide parameters hide on-screen display
x Toggle bio graph show/hide bio model (default show)
x Toggle targeted neuron identification emphasize postsynaptic neuron (default on)
x Toggle synapses show/hide synapses (default show)
x Toggle incoming synapses toggle display of synapses from presynaptic

neurons independently of those to postsynap-
tic neurons (default hide)

x Toggle outgoing synapses toggle display of synapses to postsynaptic
neurons independently of those from presy-
naptic neurons (default show)

x Toggle only synapses of focused show/hide synapses from focused neuron or
all synapses (default single)

x Toggle animation of spiking synapses display the synapses (incoming / outgoing
like configured) of a spiking neuron in the
simulation also (default off)

x Toggle hardware graph toggle display of the hardware model (default
on)

x Toggle core names toggle display of the core labels (default on)
x Toggle mapping toggle display of the mapping connections be-

tween bio model and hardware model (de-
fault on)

x Toggle only mapping of focused switch between displaying all mapping con-
nections or those of a focused hardware or
bio neuron (default single)

x Transparency on (b) turn transparency on
x Transparency off (B) turn transparency off (default)
x Maximize window (F) maximize the visualisation window
x Enable anaglyphic 3D render the scene as a 3D anaglyph image
x Disable anaglyphic 3D turn of anaglyphic 3D (default)
Colors x menu to change between colour themes
x Black is beautiful black background
x Higher contrast white background
x Safe colors for anaglyph images use colours that have components in both fil-

tered images
Quit (q) leave the visualisation

Table 3: Menu items available. New functionality in italics.

16

Appendix B

Screenshots

(a) synapse selected and mappings be-
tween two pairs of bio and hardware neu-
rons, repositioned bio model, light theme

(b) 3D2D mode with inbound connections
shown, mapping connection shown in both
views, crosshairs visible

(c) console open, syndriver selected,
crosshairs visible, fog turned on, bio graph
hidden, axes visible, starting location

(d) 2D mode, console showing positioning
command, parameters and bio model hid-
den, light theme

Figure 1: Four images with the same graphs. Colour weight disabled set to translucent
for the screenshots.

17

References

[1] url: http://www.kip.uni-heidelberg.de/vision/.
[2] J. Schemmel, J. Fieres, and K. Meier. “Wafer-Scale Integration of Analog Neural

Networks”. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence). (June 1–8, 2008). Hong Kong: IEEE
Press, 2008, pp. 431–438.

[3] D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel, and K. Meier. “Estab-
lishing a novel modeling tool: a python-based interface for a neuromorphic hardware
system”. In: Frontiers in Neuroinformatics 3 (2009), p. 17.

[4] url: http://facets.kip.uni-heidelberg.de/.
[5] T. Harion. “3D-Visualisierung einer Abbildung von neuronalen Netzwerkmodellen auf

eine neuromorphe Hardware”. In: (2008), p. 33.
[6] Programming guide: the official guide to learning OpenGl, Vers. 1.2. eng. 3. ed.,

[Nachdr.] Reading, Mass.: Addison-Wesley, 2002, XL, 730 S.
[7] D. Brüderle. Neuroscientific Modeling with a Mixed-Signal VLSI Hardware System.

2009.

18

