Visualization of the Mapping from a Neuronal
Network onto a Neuromorphic Hardware
System

Intership report from
Benjamin Hepp
supervised by
Daniel Bruederle

April 5, 2010

Contents

1

Introduction

1.1 Motivationo
1.2 Hardware Mapping and Limitations
1.3 The Grahpics Library OpenGL
1.4 The GraphModel
1.5 Software Architecture

Contribution to the Visualization Software
2.1 Drawing of the Layer 1 Routing

Howto: Using the Software

3.1 Keyboard Layout and Mouse Control
3.2 Using the terminal 0L
3.3 Animation of Spiking Data

Outlook

10
11
12

14

1 Introduction

In the course of my internship for my minor subject computer science I
extended a visualization software for the mapping of a biological neuronal
network onto a neuromorphic hardware.

1.1 Motivation

The research group Elecronic Vision at the Kirchhoff Institute for Physics
of the University of Heidelberg has developed an analog neuromorphic hard-
ware [8][9]. Within the European research collaboration FACETS [1] this
hardware is used for neuroscientific experiments. The main advantage of
such an approch compared to a software simulation is a significant increase
in speed due to the complete parallelization of the neuronal functionality.
The neuronal networks that are to be investigated can be described with the
generic Python [6] library PyNN [5]. This library is also used for software
simulators and thus it is an easy step to transfer an experiment from a soft-
ware simulator to the hardware emulator. The biological neuronal network
described with PyNN has to be mapped onto the hardware. This mapping
is rather complicated and thus it is of interest to be able to visualize the
mapping between biological network and hardware routing in a clear way.
This can help to find systematic errors or flaws in the mapping algorithms
but it is also useful for presentation and teaching.

1.2 Hardware Mapping and Limitations

There are different stages of the neuromorphic hardware developed by the
Electronic Vision group. There already exists a visualization software for
the stage 1 [8] and stage 2 [9] hardware. My task was the improvement and
extension of the visualization of the stage 2 hardware. The stage 2 hardware
building blocks are so called HICANN chips which consist of two times 256
neurons and about 100000 synaptic connections each. These HICANN chips
can be connected and eventually there will be about 400 HICANN chips
placed on a single wafer. Of course, as there is a final number of hardware
connection lines, the connectivity of the hardware neurons has limitations.
Also many parameters of the neurons and synapses are specified in groups and
not individually. It is the task of the mapping software to find an appropriate
mapping between the biological network and the hardware [11].

1.3 The Grahpics Library OpenGL

The visualization of the mapping is achieved with the graphics library OpenGL
[4]. This is a hardware and operating system independent library for 2D and
3D graphics. There are drivers for every modern graphic card that implement
the OpenGL library and make use of hardware acceleration. Other platform
specific tasks such as window management and mouse and keyboard control
are performed by the GL utility library freeglut.

1.4 The GraphModel

To perform the mapping of the biological neuronal network onto the hard-
ware the TU Dresden has developed a graph model [11] that describes the
biological neuronal network and the corresponding hardware configuration
and is used by rather advanced mapping algorithms. The graph model is
used to access the information that is necessary for the visualization.

1.5 Software Architecture

The visualization software is split into two parts:

e glControl

e GraphVisu2

glControl takes care of all things except the drawing and reading of the
graph model. This includes mouse and keyboard control, window manage-
ment, menu creation and control, timing for the animation, terminal func-
tionality.

GraphVisu2 reads information from the graph model and transfers a part
of it into local data structures. It also performs all the drawing of the bio-
logical network and the hardware including the layer 1 routing.

Instead of describing how the whole software works I refer to the reports
of Tobias Harion [10] and Radoslav Rusanov [7] and only describe how the
visualization of the layer 1 routing is achieved.

2 Contribution to the Visualization Software

This section describes the new features that were implemented by the author
during his internship.

Figure 1: Screenshot of the 2D projection of the hardware

The new features that the author introduced to the software include a
2D-projection of the hardware (see figure 1), the visualization of the layer
1 routing on the hardware (see figure 2, 3 and 4) and the animation of the
network activity in the biological neuronal network as well as on the hardware
visualization (see figure 6, 7, 8 and 9). Also some cleanup and numerous
bug-fixes and small improvements to the code have been made during the
intership.

2.1 Drawing of the Layer 1 Routing

To draw the layer 1 routing for a selected neuron or hardware dendrite there
are three seperated tasks to perform:

1. Explore the graph model to retrieve information about the layer 1 rout-
ing and build up a routing tree for the selected hardware dendrite

2. Create a list of lines, rectangles and diamonds that represent the layer
1 routing on the hardware

3. Actually draw the lines, rectangles and diamonds

The last task has to be repeated whenever the screen is drawn. The
first and second tasks only have to be done once for every neuron as the list
of lines, rectangles and diamonds is going to be cached. Also the first and
second task are done on the fly only when they are actually needed (e.g. due
to selection of a neuron or because a neuron spikes during an animation).

To explore the graph model and build up a routing tree for a hardware
dendrite there is a simple tree structure defined in Graph Visu2.h:

o struct simple_gmnode_tree_node represents a node of the routing tree.
It contains a pointer to a GraphModel::GMNode and a list of children
nodes

o struct simple_gmnode_tree simply contains the root node of the tree

The routing tree is built up by calling the recursive method exploreCon-
nections() of GraphVisu. Already explored GraphModel::GMNode objects
are marked by adding a prefix to their name. These prefixes have to be re-
moved later by calling the method cleanup TreeNode() of GraphVisu for all
routing tree nodes.

After the routing tree is build up, the method calcConnectionLines()
of GraphVisu is called to create the lines, rectangles and diamonds that
represent the layer 1 routing. To save these graphic objects there are three
structures defined in GraphVisu2.h:

e struct glLine represents a colored line

e struct glQuad represents a colored quad which can be either a rectangle
or a diamond

e struct hardware_routing contains a vector of glLine objects and a vector
of glQuad objects

Figure 2: Screenshot of the layer 1 routing showing the biological network
and the hardware

The class GraphVisu has a vector containing one hardware_routing object
for each neuron.

After the graphic objects have been created they can be drawn by calling
the method drawConnectionTree() of GraphVisu.

3 Howto: Using the Software

When started, the visualization software shows the biological neuronal net-
work and the corresponding hardware on the screen. Initially a neuron is
selected and drawn in a different color. A line connects this neuron with the

o | S i | Wi SR

W

N,
 ———— S

T

ﬁ//—

\ |

Figure 3: Screenshot of the layer 1 routing showing an overview of the hard-
ware

Figure 4: Screenshot of the layer 1 routing showing a small part of the
hardware

corresponding dendrite on the hardware and the layer 1 routing of this den-
drite is also shown. It is possible to select different neurons by either clicking
on the biological neuron or by clicking on the hardware dendrite on the fo-
cused HICANN (due to drawing performance only the HICANN containing
the currently selected dendrite is focused).

Navigation through space is possible using the e and d key for moving
forward or backward respectivly. The s and f key are used to strafe left or
right respectivly. It is also possible to move up or down by pressing the t or g
key respectivly. One can zoom into the current view by pressing q and zoom
out by pressing a. The movement and zoom speed can be changed using the
terminal (see the section on using the terminal).

The view can also be panned by clicking and holding the left mouse button
and moving the mouse. After the view has been changed, the mouse button
can be released.

3.1 Keyboard Layout and Mouse Control

The left mouse button is used to select objects on the screen and to navigate
through the menu which can be activated by clicking the right mouse button.

10

’ Key ‘ Description ‘

— Progress simulation for one timestep
— Rewind simulation for one timestep
T Increase simulation timestep by a factor of 2
1 Decrease simulation timestep by a factor of 2
¢ Start simulation
C Stop simulation

<SPACE> | Toggle animation
\Y Save viewport
A Reload viewport

<TAB> Print viewport information
J Use original neuron positions
u Distribute neurons on a cube
p Distribute neurons on a plane
] Distribute neurons on a sphere
k Display synapses
h Display hardware graph
i Display mapping
q Zoom in
a Zoom out
e Move forward
d Move backward
S Strafe left
f Strafe right
t Move upward
g Move downward
~or " Open terminal
<ESC> or Q | Quit

3.2 Using the terminal

The terminal can be used to enter more advanced commands (see figure 5).
Following is a list of available commands:

11

’ Command and parameters ‘

Description

quit

Quit program

help

Print help text

<un>set anaglyph

Activate/Deactivate anaglyph mode

<un>set hwmodel

Show /Hide hardware graph

<un>set bio_conn

Show /Hide synapses

<un>set params

Show /Hide parameters

set 2d

Switch to 2D projection

set 3d

Switch to 3D mode

set simfile <filename>

Load simulation data from file <filename>

set simtime <time>

Set current simulation time to <time>

set neuronid <id>

Select neuron with number <id>

set timeinterval <interval>

Set simulation timestep to <interval>

set speed <speed>

Set zoom speed to <speed> (default is 0.3)

set strafespeed <speed>

Set strafe speed to <speed> (default is 0.3)

set liftspeed <speed>

Set lift speed to <speed> (default is 1.5)

set mousexspeed <speed>

Set x speed of panning to <speed> (default is 0.4)

set mouseyspeed <speed>

Set y speed of panning to <speed> (default is 0.4)

3.3 Animation of Spiking Data

To view the animation of spiking data a simulation file has to be loaded us-
ing the terminal (see previous section). The file has to be in a two column
format (both columns are seperated by a single space). Each row represents
a single spike event. The first column specifies the time of the spike event
and the second column specifies the index of the spiking neuron. After the
simulation file has been loaded, the simulation can be started by either using
the keyboard shortcut or the menu. While the simulation is running a time-
bar is shown on the bottom of the screen and the current simulation time is
printed in the bottom left corner of the screen. The simulation can be paused
and continued using the <SPACE> key. When paused the simulation can be
progressed or rewinded by single timesteps using the — or «— key respectivly.
The timestep itself can be increased or decreased by a factor of 2 using the
1 or | key respectivly. During the simulation spiking neurons are drawn in
a different color than other neurons and fade back to the non-active color
in a biologicaly relevant time in the order of 10ms. Also the routing on the
hardware graph is drawn for all spiking neurons and also fades away after

12

Figure 5: Screenshot of the terminal in use

13

Simulation time; 1118.65 ms

Figure 6: Screenshot of the spiking animation with column 1 being active

some time.

4 Qutlook

In its current state the software can be used for demonstration and teaching
purposes and also to track some flaws in the mapping algorithms. Never-
theless the software [3] can still be improved and extended. Following is a
small list of features and improvements which might be worth implementing
at some point:

e Visualization of the layer 2 routing

14

Simulation time; 1170.65 ms

Figure 7: Screenshot of the spiking animation with column 1 activating col-
umn 3

15

Figure 8: Screenshot of the spiking animation with column 3 begin active

16

Figure 9: Screenshot of the spiking animation with column 2 begin active
and no hardware

17

e Enable the retrieval of further information about individual routing
elements

e Improve performance, e.g. by ommitting details that are not important
for the visualization or fix a viewport during animation and only redraw
the routing and biological neurons for each frame

e Improve user interface, e.g. Allow selection of any dendrite on the
hardware, not only on the focused HICANN

e Implement a timer that makes the animation speed independent of the
number of spiking neurons in each timestep

e Implement a batch mode that allows recording and saving of the visu-
alization within the make-flow

The software [3] has been integrated into git [2] and is available ei-
ther from https://gitviz.kip.uni-heidelberg.de or from the author
(benjamin.hepp@gmail.com) or from Daniel Bruederle (bruederle®@kip.
uni-heidelberg.de).

A couple of short movies showing the running software are also avail-
able from the author (benjamin.hepp@gmail.com) or from Daniel Bruederle
(bruederle@kip.uni-heidelberg.de).

References

[1] FACETS, Fast Analog Computing with Emergent Transient States —
project website, http://www.facets-project.org, 2009.

[2] git, Git- Fast Version Control System — website, http://git-scm.com,
2010.

[3] KIP, gitviz repository, https://gitviz.kip.uni-heidelberg.de,
2010.

[4] OpenGL, Website, http://wuw.opengl.org.

[5] PyNN, A Python package for simulator-independent specification of neu-
ronal network models — website, http://www.neuralensemble.org/
PyNN, 2008.

18

[6]

[7]

Python, The Python Programming Language — website, http://www.
python.org, 2009.

Radoslav Rusanov, 3D-Visualisierung einer wafer-scale mneuro-
morphen Hardware und des darauf abgebildeten biologischen mneu-
ronalen Netzwerkes, http://www.kip.uni-heidelberg.de/cms/
fileadmin/groups/vision/Downloads/Internship_Reports/
report_rusanov.pdf, 2010.

J. Schemmel, D. Briiderle, K. Meier, and B. Ostendorf, Modeling synap-
tic plasticity within networks of highly accelerated 169F neurons, Pro-

ceedings of the 2007 IEEE International Symposium on Circuits and
Systems (ISCAS’07), IEEE Press, 2007.

J. Schemmel, J. Fieres, and K. Meier, Wafer-scale integration of analog

neural networks, Proceedings of the 2008 International Joint Conference
on Neural Networks (IJCNN), 2008.

Tobias Harion, 3D-Visualisierung einer Abbildung wvon neu-
ronalen — Netzwerkmodellen — auf eine neuromorphe Hardware,
http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/
vision/Downloads/Internship_Reports/report_harion.pdf,
2008.

Karsten Wendt, Matthias Ehrlich, and René Schiiffny, A graph theoret-
ical approach for a multistep mapping software for the facets project,
CEA’08: Proceedings of the 2nd WSEAS International Conference
on Computer Engineering and Applications (Stevens Point, Wiscon-
sin, USA), World Scientific and Engineering Academy and Society
(WSEAS), 2008, pp. 189-194.

19

