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ABSTRACT - For MNIST Classification of 12x12pixel binarized
MNIST-Numbers 0,1,2,3,4 and 7, the full Spikey has been ana-
lyzed. Activation Functions have been measured, hardware pa-
rameters were crosschecked and the new image set (100:20, train-
ing images:test images) was tested against hardware problems. At
last, the hidden layer of a hierarchical structure was implemented
and the test set classified.

1 Introduction

1.1 Motivation

The interest in artificial neural networks increased in the past years. They
can learn to fulfill complex tasks, like the reduction from lots of input to
very few conclusions. This allows a broad field of possible applications from
medicine over robotics to data classification. One specific network and appli-
cation are Restricted Boltzmann Machines (RBM) to classify patterns. [§]
Even though ANNs show promising results, software realization of huge net-
works is expensive, because computers are not made for strongly parallelized
processes. Inspired by this, neuromorphic hardware aims to solve this prob-
lem, because it increases the speed up to the order of 10® to 10%. [3, 6]

This report describes how biologically motivated LIF neurons on the neu-
romorphic hardware Spikey are able to classify the MNIST dataset with
a hierarchical feed-forward structure. This was already implemented and
tested in [7], though it only used half of the Chip’s resources. The task is to
characterize the full chip and test for improvement of the classfication task.
Hypothetically an increase in better neurons should increase the classifica-
tion success.

At first an overview over the neuron model, sampling and RBMs is given.
Then the Spikey environment is analyzed to test for potential problems. At
last the structure is implemented and classifies a subset of handwritten digits.

1.2 Neuron Model

For information flow in biological neurons the cell membrane plays a crucial
role with its active and passive ion channels. The Leaky-Integrate-And-Fire



model (LIF) builts a simplified picture of the membrane as a capacitor Cy,.
Its time dependent potential V' describes the neuron’s behavior. (6]

dV
Cm% _gl(v - V;"est)

+Zgj(t)(v — Ex) (1)
+) gV - E)

The first term accounts for passive ion channels, where ¢, is the leak
conductance and FE) the resting or leak potential. If no other input exists,
the neuron will exponentially decay towards this resting point with the time
constant 7, = C—rlﬂ For information to flow neurons have to be connected.
Those links are synapses that can either be inhibitory, hence depress neuronal
activity, or excitatory. In both cases an absolute maximum FEj, E; is given,
called reversal potential and the connection strength of each synapse is given
by the conductances g;, gy. This synapse model is called COBA -Model
("conductance based").

In reality neurons transfer information with so called action potentials
(AP), which describes a spike in the membrane potential, followed by a re-
generating period where it cannot release an AP again. It is refractory.

If V(tspike) Z ‘/thresh = V(t) = ‘/;eset for t € [tspikea tspike + Tref] (2)

The LIF neuron implements spikes with a threshold V4. If the membrane
potential surpasses the threshold, V' is set back to a reset potential Ve for
a fixed time 7., the refractory period. Afterwards it is free to react freely
to any input it receives.

The AP is transferred to connected neurons and changes depending on the
synapse’s nature the postsynaptic potential (PSP). The form and amplitude
of a PSP can vary in biology. In this COBA model, we work with expo-
nential PSP kernels (3), which are implemented through the time dependent
conductances g, from (1).
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In this case 6 is the Heaviside-Function, and defines the starting point of
the PSP. The strength or amplitude is given by the synaptic weight w. The
PSP decays with the time constant 7.
For further use we translate equation 1 into the much shortened version:

Teﬁ‘(t)% = Ve () — V (¢) (4)



with some substitutions:
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Those LIF Neurons are implemented on the Spikey Chip. Fig. 1 shows
a schematic of the basic structures. The Neuron (C) follows equation 1 and
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Figure 1: Schematic of a LIF Neuron on Spikey (from [3])

2. The spike is released as a logic pulse that is converted into a voltage
ramp by the Line Driver (A). Amongst rise time, fall time and amplitude,
the Liner Driver also determines whether the connected row of synapses are
excitatory or inhibitory. The Synapse (B) turns the voltage ramp into an
weighted exponential that is fed into the connected neuron. The weight has
a 4 bit resolution and can be adjusted individually. Other parameters are
global. Those include threshold, resting, reset and reversal potential and the
refractory period. Latter is controlled by a current I, € [0,2.5]. Small I,
correspond to large Tyef.

All together the Chip consists of two halves with 192 neurons and 256
line drivers.[3, 6]

1.3 Neural Sampling

Under certain conditions we can sample from binary nonzero probability
distributions with a network of the previously described neurons, especially
from a Boltzmann (BM) distribution p(z):

1

p(z) = —exp[-B(z)] (6)



where the random state z € {0;1}" is created from a network with N binary
random variables. To norm the distribution (6), we divide it with its parti-
tion function Z = ) _exp[—E(z)].

The distribution assigns an energy function to every random state. It de-
scribes the connectivity between the random variables, the weight w € RY*V
and adds a bias (energy offset) B € RY to each variable.

1#] 7

Now, we connect the random variable z; with the neuron’s membrane poten-
tial by assuming the potential corresponds to the log-odds of variable. For
the Boltzmann case, that leads to:

N
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From this follows the conditional probability p(z, = 1|z\), that the neuron
is in the on-state. The function is a sigmoid.

1
1 + exp(—ug)

o(ur) == p(zx = lz\) = (9)
Equation 9 is called the activation function. [1, 5, 6]

This sampling method, called abstract neuron sampling, can approximate
any non-zero (77) distribution with enough time steps well. [1] The on-state
is defined as the period, where the neuron is refractory. If the true probability
distribution is unknown, one can approximate it by sampling. One possible
method is the Markov Chain Monte Carlo (MCMC) method that draws the
next sample state at time step T-+1 from the current state at time step T.
It can be shown, that LIF neurons sample from the given distribution under
certain circumstances. 2, 6|

At first the LIF neuron itself is deterministic. For sampling stochastic
neurons are essential. Therefore we connect the LIF neuron to inhibitory
and excitatory background noise sources, in this case poisson noise. If the
background is a high frequency source with small weights the neuron will go
into the High Conductance State (HCS). It follows that gyt & Gior, hence
the time dependency of gt as well as 7. in equation 4 vanishes. Also T.g
becomes approximately 0. This leaves as an analytically solvable equation.
If a spike other than the background occurs the PSP is proportional to the
difference of two exponentials.



Second it was shown that the activation function of a LIF neuron in the
HCS follows a sigmoid curve, hence we can translate the membrane potential
Uy, but need to translate the LIF domain into a probabilty domain with a
scaling factor a.

ur, — u)

) (10)

Additionaly the potential is shifted by u_g. u_g is the value where a(u_g) =0.5.
In this model it was assumed, that 7.¢ ~ 0, hence the membrane potential
follows the effective potential nearly immediately. If this assumption is not
valid, asymmetries in the activation function are observed.

Third, weights and biases of the BM have to be translated into the LIF
domain, too. We obtain the bias via the same shift rule as the membrane
potential. For the weight we compare the PSPs. In both sampling cases,
abstract and LIF, they have to have the same effect even though their shapes
differ. Therefore the integral over both PSPs are equal and we can transform
one into another.
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1.4 Classification with RBMs

A possible implementation to solve classification problems are restricted
Boltzmann Machines (RBM). They rely on a hierarchical structure, that
contain a visible layer, one ore more hidden layers and possibly a label layer,
each with a specific number of neurons. The visible layer represents the
classification input and the label layer identifies which pattern is recognised.
The data processing occurs in the hidden layers. The Boltzmann Machine is
restricted because there are only inter-layer but no intra-layer connections.
Also the weight connections between two layers are symmetric.

In order to accomplish classification tasks, the RBMS are trained. For ex-
ample the visible and label layer are clamped, so the hidden layer can adjust
its connections to what it is supposed to see. |5, 4]

On Spikey we work with a hierarchical feed-forward structure, that con-
tains one label (144 neurons), one hidden (50 neurons) and a label (6 neurons)
layer. The task is to classify a subset of handwritten digits from the MNIST
Dataset that are reduced to black and white 12x12 pixel images. Each visible
neuron represents a pixel that is either on or off. The six label neurons stand
for the six numbers 0, 1, 2, 3, 4 and 7.

Both layers are implemented in software while the hidden layer is imple-
mented on hardware. So even though the weight connections between the
layers were taken from a trained RBM (Luziwei Leng, Kirchhoff Institute for
Physics, Heidelberg University) without bias, there is no feed back connec-



tion. Therefore, the used structure is not a RBM.
Since the visible neurons are clamped, we can understand them either as
regular spike train input (on) or not spiking at all (off). The weight sum of
all visible units to one hidden unit k can be effectively understood as a bias
input. It directly translates to a spiking probability for the hidden neuron
via the activation function o), = p(z, = 1|z\x) of k.
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This also allows for one single hardware neuron to simulate all 50 hidden
units. In a hardware run all spike trains are recorded and then used as input
for a label layer simulations. In the end the most often spiking label neuron
decides which number is classified. From these results the Classification Rate
K is calculated. It quantifies the success of the task, hence the ratio of correct
results against the full image set.

2 Characterisation of the Full Spikey

The following section follows closely and is compared to [7]. The setup differs
in the use of both spikey halves compared to the use of one half in [7]. Also
the training to testing image ratio is 100:20 instead of 20:20 per number. For
more information on software and hardware setups in the experiments look
into [7].

2.1 Hardware Constraints

The use of hardware brings along some issues that have to be analyzed. The
analog circuit introduces delays in spike transmissions, so called synaptic
delays. The theory however is based on immediate dialog between neurons.
Further the refractory mechanism of each single neuron is not necessarily
stable and T, varies form spike to spike, neuron to neuron and trial to trial.
Last, we deal with asymmetric activation functions because the HCS is not
reached.



Synaptic Delay: Synaptic Delays are measured through inhibitory cou-
pling of the neuron with itself while it is permanently firing (Vipresh < Viest)-
If the transmission was immediate, we would observe an instant pull towards
the reverse potential Ei,,. The delay allows the membrane potential to drive
towards its resting potential before the spike arrives. The time difference
between the spike peak and the second peak is the synaptic delay, assuming
Tref 18 Very small.

In [7] the neuron to neuron average was Ty, = 1.482+0.34ms for the left Spikey
half. A subset of 22 neurons of the full Spikey averages in 7y, = 2.22+0.41ms.
The synaptic delay is a synapse line driver dependent issue and in the sam-
ple of both halves, two line drivers are in use, one for each half. Averaging
over neurons of the first half results in 7y, = 1.99 4+ 0.22ms which is bet-
ter. Another reasons might be the temperature difference of both tests as
the first measurement was conducted in summer and the second in winter.
We conclude, the results are consistent considering the experimental setup is
different.

Refractory Period: In order to obtain the refractory period the function
V' = Vieset + @ % Ot — Tyer) * (t — Tref) (12)

was fitted spike by spike on the membrane trace of a regularly spiking neuron.
© is the Heaviside-Step Function.

For 14, = 0.003A the sample subset of 50 neurons fluctuates with a relative
uncertainty of 6%. This fits well to the the result (7.56 4+ 9.5)% in [7].

In general, though, the refractory period was shorter (smaller than 2ms)
compared to Ty = 3.8 £ 1.3 in [7].

Asymmetric Activation Function: The effective time constant 7.g¢ de-
pends on the noise input rate and the membrane time constant 7,,,. Latter is
bounded by the maximal possible conductance on the chip. Another factor
that leads to asymmetry is the voltage difference between reset and threshold
potential. On hardware the voltage difference cannot become infinitely small
due to parameter fluctuations. Therefore, the neuron needs some rising time
T before it can fire again.
V;eset - V

T =r7yxIn T (13)
V' is the free membrane potential, approximately Vie. 7' summarises all
factors that lead to an asymmetric activation function.

7
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Figure 2: Influence of hardware problems to classification task: A Synaptic delays, B Unstable refractory
mechanism, C HCS condition not fulfilled, D Reduced weight resolution. The brown line and shaded area
mark the average Spikey value and its deviation.

T can be calculated by subtracting the refractory period from the inter-spike
intervals of the previous measurement. The sample of 50 neurons averaged
to T' = 1.7 + 1.2 ms (ignoring one outlier with 23.4ms). This fits to the
result 7= 1.9 £+ 2.8 ms from [7].

2.2 Robustness of the hierarchical structure

Knowing the problems we encounter on hardware, it is important to study
the robustness of the hierarchical structure to them. Therefore, software sim-
ulations for each case were done (Fig. 2). Furthermore the weight resolution
influence on classification was tested since only a 4bit resolution is available.

All results were averaged over 20 runs. The setup and hardware regions
were taken from [7], but the training and testing images differ, hence the
trained RBM has different weight connections.

Synaptic Delay: A synaptic delay range from 0.1ms to 27, was studied
where the delays were normally distributed amongst the network neurons.
The relative uncertainty was 30%.

Figure 2A shows that the structure is merely affected by synaptic delays.



Refractory Period: This simulation studies the effect of spike to spike
variation of 7..f. Therefore the refractory period was sampled from a gaussian
distribution with uncertainties between 1% and 50% to the mean 7,.¢ = 15ms.
This simulation 2B also shows a certain robustness against classification fail-
ure.

Asymmetric Activation Function: To obtain asymmetric activation func-
tion, the poisson noise was reduced to 100H z, the difference Vipresh — Vieset
was set to 1V and the membrane time constant varied from 1ms to 150ms.
Figure 2C indicates that asymmetry does reduce the classification rate, but
it still allows decent success within the Spikey region.

Weight Resolution: In this simulation the software weights from the
trained RBM were binned according to the resolution. A range of 1bit to
10bit resolution was tested. Clearly, the classification rate drops for reso-
lutions smaller than 4 bit (Fig. 2D). Therefore, the hardware should still
produce reasonable results.

Spikey: In the end a simulation under full Spikey condition was started
The samples from Sect. 2.1 showed that the hardware regions in the plots
are still a good estimate for the full Spikey. The refractory period analysis,
though, needs some further investigations to fully support this conclusion.
Nevertheless, the results in the next section will show, that simulation and
emulation are in good agreement.

The Classification Rate under Spikey conditions averaged over 20 runs is:

0.878 = 0.006 training images
all = { & Hhas (14)

0.829 £ 0.020 testing images

3 Classification on Hardware

3.1 Activation Functions

Equation (11) allows to translate the visible layer into regular spiking bias
input. To set the input correctly we need the activation function of the 50
hidden neurons from the chip.

To measure the activation function, two independent runs are necessery. At
first, a regular spike train and poisson noise stimulates the neuron. With in-
creasing weight connection of the bias input, in total 16 steps, the probability
for the neuron to spike rises, hence the total firing rate increases. Second the
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Figure 3: Measured Activation Function Categories: A Good, B Acceptable, C Unusable, D Undefinable

threshold potential is set to Vipresh = OmV/, so the neuron cannot spike at all.
The free membrane potential evolves freely towards an average value, but
increases with the connection strength. In the end the firing rate is plotted
against the free membrane potential. Two bias rates, 150Hz and 250Hz were
tested.

The activation functions of all 384 Spikey neurons were evaluated, but
the results show large variations (Fig. 3). The neurons can be put into four
categories. The good ones follow the sigmoid curve, even though most of
them are asymmetric. The second group consists of neurons, that show the
same tendency as the good ones but a few bias settings fall out of place. The
last two groups make up the largest part and contain neurons that are not
usable (Tab. 1).

The third group are neurons that are either dead for most weight settings,
largely varying over all steps or the full sigmoid falls not in the bias step
range. The fourth group shows no free membrane potential resolution, even
though the firing rates often show a rising tendency with increasing weight.
Interestingly, this is a sole right half phenomen (Tab. 2). This might be due
to read-out problems of the membrane potential. It would be interesting to
further investigate if those neurons still succeed the classification task.

The selection for the 50 hidden neurons mainly correspond to the best
looking activation functions. Because of worsen neuron behaviour if the pool

10



| 150Hz 250Hz | total
good 20 14 34
okay 59 5} 114
total || 79 69 | 148

Table 1: Number of good and okay Neurons for 150Hz and 250Hz. The total includes 32 double counts
- neurons, that showed good behaviour for both rates.

150HZ H left right ‘ total 250HZ H left right ‘ total

good || 15 ) 20 good || 10 3 13
okay | 40 19 59 okay | 43 12 55
type 3 || 137 107 | 246 type 3 || 139 127 | 265
typed | 0 61 61 typed | 0 50 50

Table 2: Number of good and bad Neurons divided in left and right Spikey half.

consists of too many consecutive neurons [7|, a second pick argument was to
prevent it by not having more than three consecutive neurons. However, this
is not easily done, because the "‘good"’ neurons often followed each other,
divided by a bigger pool of "‘bad"’” neurons.

One reason to use the full chip is to increase the amount of usable neurons.
We would estimate to double the number by using both Spikey halves. This
was not the case. Table 2 shows the comparison.

3.2 Hardware Emulation

The structure from Sect. 1.4 was implemented and evaluated. Figure 4
compares an ideal software run, the simulated hardware and the hardware
runs for the new image set. The hardware runs divide into Single Neuron
Runs, where one hardware neuron simulates all 50 hidden neurons, and one
where the 50 hardware neurons make up the hidden layer. One neuron failed
to classify and is marked red. Interestingly, this neuron (ID 61) belongs to
the very promising neurons. It is unknown why the classification failed.
The results for the Single and All Neuron Run are:

Kiingle = 0.83 £ 0.10

(15)
K. = 0.829 £ 0.020

The single run is averaged over all neurons. The hardware run agrees with
the expectation from the hardware simulation perfectly within significant
digits.

In total the results were better than in 7] but it is not obvious if this is due

11
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Figure 4: Comparison of Classification Runs with test image set: ideal software simulation, simulation
of hardware conditions, hardware run with all neurons, hardware runs with single neurons. Except the
last part the results are averaged over 20 runs.

to the new image set or the use of the full spikey.
To investigate this another hardware run was started. It classified the old
image set with the corresponding trained RBM (Luziwei Leng).

Kodimageset = 0.782 = 0.008 (16)

In this case the new neurons did not achieve better results than the neurons
picked in [7]. Therefore, the classification improvement is due to the better
trained RBM.

4 Discussion and Outlook

The hypothesis was that an increase of better neurons improves the classifica-
tion rate. This was not the case, probably because the gain of better neurons
was too small (Tab. 2). This led again to consecutive neurons that yield an-
other issue next to largely varying activation functions (Fig. 3). However the
yet untested fourth group of neurons might allow for a large pool of usable
neurons. Therefore the hypothesis might still be valid.

An unlikely reason are the different hardware values measured Sect. 2.1.
Apart from the fact that only a small sample was taken, the simulation of

12



the hardware and the actual hardware classification rate agree to good. In
fact, they are identical:

Ksim_hardware = 0.829 4+ 0.020

(17)
Khardware an = 0.829 £ 0.020

The new image set shows, though, that with improvement of training, the
classification on hardware improves, too. In future, the reason for the fourth
group of activation function should be investigated. If the reason remains
unknown, they should be at least tested with Single Neuron Runs.

So far only the hidden layer is implemented on Chip. To really use the faster
hardware, all layers should be implemented on chip. Therefore, the next
step is to translate the hidden-label connections into the Spikey domain and
implement the label layer on chip. Next to speeding up the process, the
Classification Rate could be increased with further training steps on the chip
to care for hardware parameter variation.
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