Project Report -

Statistical analysis of neuronal network
experiments with NeuroTools
Implementing the Projections class for the
hardware variant of pyNN

Andreas Bauer

March 2008

Contents

1 Introduction 2
2 Using NeuroTools 3
2.1 Mainclasses 3
2.2 SpikeTrain class 4
2.2.1 Mean firingrate 4

2.2.2 Fano factor, coefficient of variation 4

2.2.3 Visualization, 5

2.3 SpikeList class 5
2.3.1 ISI 5

2.3.2 Mean firingrate oL 5

2.3.3 Pairwise correlation L. 6

2.3.4 Fano factor, coefficient of variation 6

2.3.5 Output formats 6

24 Example 7

3 Projections 8
3.1 pyNN . o 8
3.2 Projection class 8
3.3 Connector class e 9
3.3.1 Available connectors 9

3.4 Example 10
3.5 Restructuring the code of pyNN.hardware.stagel 10

4 FACETS milestone 7.1 experiment 12
5 Conclusion 14

Chapter 1

Introduction

The Electronic Vision(s) Group at Kirchhoff-Institut f’ur Physik (KIP) - Hei-
delberg has developed a neuromorphic hardware to emulate neuronal networks.
This neuromorphic hardware can be programmed by the modelling language
pyNN. pyNN is a Python-based modelling language for neuro-scientific exper-
iments. It is a common interface to different software simulators. The neuro-
morphic hardware developed in the group can be interfaced by pyNN too.

As the result of an experiment lists of spike times are generated. The for-
mat of these output files is common among all simulators when interfaced by
pyNN. The package NeuroTools provides classes and functions to process and
analyse these data. I researched the current status of NeuroTools and analysed
which functionality is provided at the present state. I also debugged existing
methods and implemented some additional methods. In the following report I
will describe the structure and features of the NeuroTools spikes module.

pyNN provides a low-level API dealing with individual neurons. To han-
dle experiments with many neurons, a high-level API is also provided dealing
with an entire population of neurons. These populations of neurons can be con-
nected by the projection class. Different connection methods are provided. I
implemented the Projections class for the hardware variant of pyNN.

Finally these two results of my work are used in a revision of the FACETS
milestone 7.1 experiment. The structure of this experiment already existed.
I modified the analysis functions to use NeuroTools. An implementation of
the Projection class in the hardware variant of pyNN is needed to run the
experiment on the neuromorphic hardware.

Chapter 2

Using NeuroTools

NeuroTools is a common software repository containing tools useful in process-
ing and analysing neuronal experiments. One major part is the spikes module.
This module contains functions and classes to do statistical analysis of simula-
tion results. NeuroTools provides a lot more functions to model, manage and
run neuronal experiments. However I will only cope with the spikes module
here.

All pyNN simulator variants provide the spike time lists in the same file
format. These files contain a simple list of the spike time and the id-number of
the firing neuron. An example of such a file is shown in listing 2.1. Thespikes
module of NeuroTools provides functions to load and analyse these files. In the
following I will describe some of the features provided by this module.

Listing 2.1: Sample spike time list
dimensions =48
first_id =1
last_id = 193

dt = 0.1
51.6 1
51.6 6
51.6 7
52.6 5
52.6 36
53.3 20
55.3 39

2.1 Main classes

The spikes module provides two classes in order to handle spike time lists. These
are the SpikeTrain and the SpikeList class. The SpikeTrain class handles the
spike train list for a single neuron. The SpikeList class is a container of multiple
SpikeTrain objects.

A spike list can be loaded from a file by calling the following function:

loadSpikeList (filename , id_list , dt = None, t_start=None,
t_stop=None)

The parameter filename contains the file to be loaded and the parameter id_list
contains a list of neuron ids to be loaded from the file. The additional parameters
dt, t_start, t_stop contains the simulation step width and start and stop time.

2.2 SpikeTrain class

An object of the class SpikeTrain is created by calling the constructor

spiketrain = SpikeTrain (self , spike_times, dt=None, t_start=
None, t_stop=None)

The parameter spike_times must be a (numpy) array or list containing the spike
times. The additional parameters dt, t_start, t_stop contain the simulation time
step width and the start and stop time of the spike train.

The spike time list is stored in the spike_times field of the class SpikeTrain.
This field stores the absolute time of the spike events. To get the inter spike
intervals (ISI) instead, the method isi() is provided. This method returns an
array containing the ISIs.

2.2.1 Mean firing rate

On of the most basic statistical values of a spike train is the mean firing rate.
This value can be calculated by calling

SpikeTrain . mean_rate(self , t_start=None, t_stop=None)

If the optional parameters t_start and t_stop are provided, the mean fire rate is
only calculated between this time frame.

2.2.2 Fano factor, coefficient of variation

Another statistical value of interest is the fano-factor. The fano factor is defined
by equation 2.1. If the ISIs are Poisson distributed, the fano-factor is equal to
one. Regularly spiking neurons have a fano-factor of zero.

0,2

f= st 21
Hisi ()
The method

SpikeTrain . fano_factor_isi(self)

implements the calculation of the fano-factor for a spike train.

Similar to the fano-factor is the coefficient of variation. This value is defined
by equation 2.2 !
Oisi
cv=—— 2.2
Hisi ()
This statistical value can be calculated for a spike train by the
SpikeTrain . cv_isi(self)

method.

2.2.3 Visualization

A spike train can be visualized by the

SpikeTrain .raster_plot (self, t_start=None, t_stop=None, color=
’b’)

method. The plotting range can be defined by the t_start and ¢_stop parameters,
the plot color can be set by the color parameter.

2.3 SpikeList class

This class contains an array of SpikeTrain objects. This class provides methods
calculating statistical values concerning a whole list of spike trains, as well as
methods returning an array containing the desired statistical values per neuron.

2.3.1 1ISI
One example of such a method is
SpikeList . isi(self , nbins=100, display=False)

which returns an array containing the list of ISIs for each firing neuron. If the
optional parameter display is true, a histogram of all ISIs is plotted using nbins
bins.

2.3.2 Mean firing rate
The methods

SpikeList . mean_rate(self , t_start=None, t_stop=None)
and
SpikeList . mean_rate_std (self , t_start=None, t_stop=None)

calculate the mean firing rate and standard deviation over all firing neurons.
SpikeList . mean_rates(self , t_start=None, t_stop=None)

in contrast returns an array containing the mean firing rate of each firing neuron.

n contrast to the fano-factor, the standard deviation ¢ is not squared

2.3.3 Pairwise correlation

A more interesting statistical value of a spike list is the pairwise correlation.
This value is calculated by the following method:

SpikeList . pw_corr_pearson (self ,edge, bins,
number_of_neuron_pairs)

Random pairs of spike trains are drawn from the spike list and the correlation
for each pair is calculated. The parameter number_of-neuron_pairs controls how
many pairs are drawn. The spike times are put into bins before doing this
calculation. Returned are the mean and standard correlation over all pairs.
The parameter edge specifies the time range to analyse.

2.3.4 Fano factor, coefficient of variation

The methods

SpikeList . cv_isi(self, nbins=100, display=False)
and
SpikeList . fano_factors_isi(self)

return a list containing the cv_isi or fano-factor of each firing neuron. The cv_isi
method has an optional parameter display which displays a histogram if set to
true.

2.3.5 Output formats

To obtain the spike list in different formats, the following methods are pro-
vided. Currently only as_list_id_time, as_list_id_list_time, as_spikematriz and
as_pyNN_SpikeArray are implemented.

SpikeList .as_ids_times (self , relative=False, quantized=False)

SpikeList . as_list_id_time (self , relative=False, quantized=
False)

This method returns an array containing tuples of the id and spike time.

SpikeList . as_list_id_list_-time (self, relative=False, quantized
=False)

This method instead returns a tuple containing a list with the neuron ids and a list
containing the corresponding spike times.

SpikeList . as_id_list_times (self , relative=False, quantized=
False)

SpikeList . as_time_list_ids (self , relative=False, quantized=
False)

SpikeList .as_2byN_array (self , relative=False, quantized=False)

SpikeList . as_spikematrix (self)

This method returns a matrix containing the firing rate for each neuron and time bin.

SpikeList .as_.pyNN_SpikeArray(self)

The last method returns the spike list as a pyNN SpikeSource Array.

2.4 Example

import NeuroTools.spikes as spikes

list = spikes.loadSpikeList(” file.dat” ;,10,t_start=0,t_stop

=500)

rate_mean = list.mean_rate ()

rate_std = list.mean_rate_std ()

cor_coef_mean, cor_coef_std = list.pw_corr_pearson ((0,simtime)
.1, 100)

fano_mean = numpy.mean(list.fano_factors_isi())

fano_std = numpy.std(list.fano_factors_isi())

Chapter 3

Projections

3.1 pyNN

Today, a number of different software simulators for neuronal networks exist.
Each simulator has its own native interface. pyNN is a high level modelling
language for neuronal network experiments, which aims compatibility with many
different simulators. An experiment described in pyNN can be easily ported to
another simulator. In the ideal case, you only need to modify one line of code.
pyNN is written and implemented in Python. It is basically a bunch of Python
classes and functions.

The Python API can be divided in a high-level and a low-level part. The
low-level part provides functions to create and connect individual neurons as
well as to start the experiment. In contrast the high-level API handles entire
populations of neurons. The low-level part is implemented in individual func-
tions, the high-level part in two classes named Population and Projection. The
Population class contains many neurons with similar properties. The Projection
class is used to connect these Populations. The hardware variant of these two
classes uses only low-level py NN functions in its implementation and by this is
portable. In the following, I will describe the implementation of the Projection
class:

3.2 Projection class

The Projection class connects the neurons of a population with the neurons of
another one. The Projection class itself does some book keeping and provides
methods to modify, dump and save the connections made. The main work of
connecting the populations is however outsourced into individual classes derived
from the Connector class implementing the desired connecting method.

A projection is created by calling the constructor:

_-init__(self, presynaptic_population, postsynaptic_population
, method="allToAll’, method_parameters=None, source=None,

target=None, synapse_dynamics=None, label=None, rng=None)

The pre- and post-synaptic populations are given by the pre-synaptic_population
and post-synaptic_population parameters. The parameters method and
method_parameters specify the desired connecting method. The method can
either provided as a string or as a Connector object. In the second case
the method_parameters parameter is ignored. The parameters source and tar-
get specify the attributes of the pre-/post-synaptic cell signal action potential
and are currently not used in the hardware implementation. The parameter
synapse_dynamics is also currently not implemented for the hardware variant.
label sets a text description for the projection, and rng provides a random num-
ber generator used to connect the neurons where needed. An example for using
a Projection is given in listing 3.1:

3.3 Connector class

The objects of the Connector class do the real connecting work. To do this,
they need to implement the following method:

connect (self , projection)

This method calls the low level pyNN.connect function and fills some data struc-
tures of the associated Projection object given by the projection parameter.

Listing 3.1: Example for Projections

connector = pynn. AllToAllConnector ()

con_IE = pynn.Projection (i-inh ,pl,method=connector)
or

con_IE = pynn.Projection (i-inh ,pl,method="allToAll ")

3.3.1 Available connectors

Currently the pyNN API defines a bunch of different connecting methods. All
connectors have the parameters weights and delays providing the weight and
delay of the connections. They can either be set to a fixed value, or to a
random number generator. In the second case, the values for the individual
connections are drawn from the random number generator. The parameter
allow_self_connections controls whether an individual neuron should be allowed
to be connected with itself.

AllToAllConnector This connector connects each neuron of the pre-synaptic
population with each neuron of the post-synaptic population.

OneToOneConnector The OneToOneConnector connects the corresponding
neurons of two networks. So both network need to have the same size.

FixedProbabilityConnector This connector connects each neuron of the pre-
synaptic network with a certain probability to an other neuron in the
post-synaptic network

[V I CE

10

11

12

13

14

15

16

DistanceDependentProbabilityConnector Like the FixedProbabilityCon-
nector this connector connects the neurons with a certain probability,
however the probability depends on the distance between the neurons.
The d_expression parameter contains a string with an Python expression
calculating the connection probability depending on the distance d. To
define the distance between two neurons, the position of the neurons can
be set explicitly or is derived from the position of the neuron in the array
containing the neurons in the Population class.

FixedNumberPreConnector This connector connects each neuron from the
post-synaptic population with a fixed number of pre-synaptic neurons.
The connections itself are randomly selected.

FixedNumberPostConnector Like the FizedNumberPreConnector this con-
nector connects each neuron of the pre-synaptic population with a fixed
number of post-synaptic neurons from the post-synaptic population.

FromListConnector This Connector takes the connections from a list.

FromFileConnector This connector reads the connections from a file. Such
a file can be created by calling the Projection.saveConnections method
from an existing projection.

3.4 Example

import pyNN.hardware.stagel as pynn
#import pyNN.nest2 as pynn

pl = pynn.Population ((10,), pynn.IF_facets_hardwarel,
cellparams=neuronParams)

i_exc = pynn.Population (50 ,pynn. SpikeSourcePoisson,cellparams=
inputParameters)
i_inh = pynn.Population (10,pynn. SpikeSourcePoisson,cellparams=

inputParameters)

connector = pynn.AllToAllConnector (weights=w_inhx5)

con_IE = pynn.Projection (i-inh ,pl,method=connector)
connector = pynn. AllToAllConnector (weights=w_exc*10)
con.EE = pynn.Projection(i-exc ,pl,method=connector)

pl.record ()
pynn.run(duration)
3.5 Restructuring the code of pyNN.hardware.stagel

To improve the code maintainability, the code in the __init__.py module was
divided into separate files. The implementation of the low-level API of pyNN

10

remained in __init__.py. The definition of the supported cell classes was moved
to cells.py. The implementation of the high-level API was moved to the files
population.py and projection.py. These extra files are imported in __init__.py
to remain compatibility with the pyNN API standard. The low-level imple-
mentation was not moved into an extra file, because of its high use of global
variables.

11

Chapter 4

FACETS milestone 7.1
experiment

The aim of the FACETS milestone 7.1 experiment is to do the same experiment
in the NEST2 simulator and on the neuromorphic hardware platform. By such
an experiment the similarity of the dynamics can be analysed and improved
qualitative and quantitative.

I changed the data analysis functions to use the features supplied by Neuro-
Tools. To get the experiment running on the hardware platform, the Projections
class needed to be implemented. Figure 4.1 shows the experimental setup. It
consists of an excitatory and an inhibitory population. These populations are
connected with itself and with each other. Additionally these two populations
are connected to a group of spike sources. As the number of neurons and pos-
sible connections between these neurons is limited on the hardware platform,
only totally 192 neurons were used in this experiment.

Excitatory ce
population "
NE
pe,
Poisson “ie ei
population |,
NP pi
Inhibitory i
population
NI

Figure 4.1: Architecture of the FACETS milestone 7.1 experiment

12

Figure 4.2: Simulation results:(left hand side: NEST?2, right hand side: hard-
ware)

firing rate: mean firing rate: mean
10.0

2.0 80 3.6
8.0 70 3.2
70 60 28
g 60 50 g 24
T 5ol w0 B ig
4.0
"
2.0 0.8
10) o of 0.4
0T 02 03 04 05 06 07 08 09 10 ° 01 02 03 04 05 06 07 08 08 1o °°
gi gi
fano factor of individual firing neurons: mean 100 fano factor of individual firing neurons: mean i
1:_'37 90 90
8.0 e 80
" 10
g 60 g 50
£ 50 e 40
4.0 0 30
3.0 a0 20
20 K
rof S ¥ P P PO N A A | P
0 01 02 03 04 05 0.6 0.7 0.8 09 1.0

01 02 03 04 05 06 07 08 09 10
9gi gi

The results of the simulation are shown in figure 4.2. The results obtained
with the hardware variant clearly differ from those achieved with the NEST2
software simulator. However my work is only a proof of functionality of Neuro-
Tools an the Projections class implementation I wrote. The experimental results
are not meant to be interpreted yet. The hardware still needs to be calibrated
and tuned further, before the experimental results can be interpreted.

Other reasons for the differences between the software and hardware simula-
tion are the small number of neurons which can be recorded from the hardware,
cause of a bug of the chip. Also the parameter programming in the hardware
is not optimized at the present state. When these two problems are resolved, a
much better result should be achieved by the hardware variant, more close to
the results obtained with NEST2.

13

Chapter 5

Conclusion

I analysed the features of the NeuroTools spikes module and improved the pro-
vided functions. Finally I changed the analyse functions of the FACETS mile-
stone experiment 7.1 to use NeuroTools. To achieve this I needed to complete
the implementation of the pyNN API for the neuromorphic hardware.

However the implementation of the spikes module can be improved. During
the initialisation process the spike arrays are copied and resorted often. Also
some analyse functions are doing unnecessary copying and reformatting of the
data before doing the calculations. Possible future work might be performance
improvements of the NeuroTools spikes module.

During my internship I learned a lot about neuron models and neuronal
experiments on computers. I used pyNN to do own little simulation runs in the
NEST2 simulator as well as on the neuromorphic hardware. I got a good insight
into the work of the Electronic Vision(s) Group. I had a lot of fun during my
project.

14

Bibliography

[Kumar]

[M7-1]

[NeuroTools]
[pyNN]

A. Kumar, S. Schrader, A. Aertsen, and S. Rotter. The High-
Conductance State of Cortical Networks, February 2007

D. Bruederle, J. Kremkow, and A. Grubel. Milestone M7-1
Evaluate the implementation of biologically realistic networks
within the event-based routing framework of the Stage 1 sys-
tem using benchmark experiments

http://neuralensemble.org/trac/NeuroTools

http://neuralensemble.org/trac/PyNN

15

