
Internship-Report

Characterization of a PLL circuit used on a
65 nm analog Neuromorphic Hardware

System

Aron Leibfried

May 14, 2018

Contents

1 Introduction 2

2 Phase Locked Loop (PLL) 3
2.1 General Information . 3
2.2 The PLL on DLS 3 . 4

3 The PLL-Config Container 6

4 PLL-Measurements 8
4.1 Measurements of the Capacitive Memory Ramp 8
4.2 Measurements with the PPU . 9
4.3 Determine the “hang up” frequency . 9
4.4 Problems with the PPU . 10
4.5 Automated measurement series . 11
4.6 Frequency and the corresponding error . 12
4.7 DCO-Frequency . 13

5 Discussion 14

References 14

1

1 Introduction

The HICANN-DLS 3 chip (High Input Count Analog Neural Network with Digital Learn-
ing System) is a neuromorphic chip. The goal of a neuromophic chip is to emulate neural
networks as found in the human brain. The aim of the HICANN-DLS 3 is to implement
this on analog hardware. It consists of 32 neurons with a corresponding Array of 32x32
synapses. The synapses have individual 6 bit weights, which can be changed. These
plasticity processes are the foundation of learning models.

Learning models can be realized with the PPU (Plasticity Processing Unit), which
allows implementing flexible learning rules by accessing all of the on-chip memory. It is
based on the PowerPC architecture and has a vector unit. It represents a co-processor
to the analog circuits.

To clock the PPU with an adjustable frequency a PLL (Phase Locked Loop) is used.
The PLL provides the main clock of the digital system components and can be configured
via JTAG.

This internship is about the PLL. One goal of this internship is to write a PLL-Config
to easily configure the PLL via python. Another goal is to research the characteristics
of the PLL. This includes classifing the occuring jitter.

For the experimental part the v3-Baseboard “Jack London” was used together with
“Chip 8: Green Bamboo”.

2

2 Phase Locked Loop (PLL)

2.1 General Information

A PLL (Phase Locked Loop) is an electronic circuit, which is used to get an adjustable
clock signal. It compares the incoming frequency fin with the frequency of an internal
oscillator. This is realized by a control system. The aim is to get an output signal fout,
whose phase is related to the input phase. A simple PLL can be seen in figure 1 and
consists of four different parts.

The Phase Comparator or Phase Frequency Detector (PFD) compares the phase of
fin with the phase of the DCO (Digitally Controlled Oscillator) and outputs an error
signal, which is proportional to the phase difference. The Loop Filter delivers the control
signal for the DCO, to keep the phase difference on a small level. This can be done by a
PID controller. The DCO (Digitally Controlled Oscillator) generates the output signal
fout according to the settings from the Loop Filter. The Divider is connected between
the DCO and the Phase Comparator, to divide the frequency of the DCO by a factor
N ∈ N. So it is ideally: fout = N · fin.

Phase
Comparator

Loop
Filter

Divider

fin foutΦ

Digitally
Controlled
Oscillator

DCO

N

Figure 1: A simple PLL circuit with a Phase Comparator to compare the two incoming
frequencies. It is connected to the Loop Filter, which controls the Digitally
Controlled Oscillator. It outputs a constant frequency. A Divider lowers the
frequency, which is compared to the reference clock.

3

2.2 The PLL on DLS 3

The used clock generator on HICANN-DLS 3 is called hs clockgen and was designed by
the Technische Universität Dresden [2]. A so called ADPLL (All-Digital Phase-Locked
Loop) is used as PLL. It can be seen in figure 2. It contains two independent ADPLL’s
with 3 different output frequencies. It has also a total of four independent clock outputs.
Another feature is the BIST (Frequency built-in self test) to test the different frequencies.

hs_clkgen

ref_clk_i
reset_sync

freq_bist

clk_out_0_o
DCO

P0

P1

N

PFD filter P2
clk_dco

M0

M1

clk_core0

clk_core1

ADPLL1

DCO

P0

P1

N

PFD filter P2
clk_dco

M0

M1

clk_core0

clk_core1

ADPLL0

clk_out_1_o
clk_out_2_o
clk_out_3_o

CG
CG

CG
CG

clk_meas_o

Figure 2: Schematic of the hs clockgen used in the HICANN-DLS 3 Chip. It contains
two ADPLL’s and a total of four configurable output pins. Also a Frequency
built-in self test is implemented. Figure from [2].

To the ADPLL’s is a reference clock with frequency fref from the FPGA connected. There
are several dividers in each ADPLL (see figure 2) to configure the different frequencies,
which can be calculated by

fdco = P0 ·N · fref, (1)

fclk dco = fdco/P2, (2)

fclk core0 = fdco/(P1 ·M0), (3)

fclk core1 = fdco/(P1 ·M1). (4)

The different possible settings are collected in table 1.

value N P0 P1 P2 M0 M1

max 31 4 4 4 31 31

min 1 2 2 2 1 1

Table 1: Possible settings for the ADPLL used on HICANN-DLS 3.

As reference frequency it is used: fref = 50 MHz

According to [2] it is recommended to keep fdco between 1000 MHz and 2000 MHz, so it
is best to set fdco = 1500 MHz, which corresponds to N ·P0 = 30. This was also verified
in section 4.7.

4

Each of the four output pins can be enabled and connected to the different outputs of
the different ADPPL’s. Also a bypass is possible to get fref at the output. This will
create a stable environment for digital tests, because one uses the fref = 50 MHz from
the FPGA for the whole chip. This mode should not be used for experiments which
use the analog part of the chip. Some digital test results (e.g. SRAM) might not be
transferable to higher clock frequencies.

As seen in section 4, the digital support circuitry of the chip is driven by fclk out 0. The
so called CapMem-Ramp is created with a capacitor and a counter, which is also clocked
with the PLL. A current starts flowing to the capacitor while the counter starts. One
can measure the actual voltage over the capacitor. When the counter value is reached,
the capacitor gets discharged and the counter resetted. When the counter reaches his
counter value a second time, the capacitor will be charged again. So the CapMem-Ramp
frequency is proportional to the frequency at this output. Also the PPU is clocked with
this frequency.

As mentioned above, there is also a built-in self test (BIST) contained in the hs clockgen.
This allows testing the clock generator by counting the cycles of the selected output clock
fclk out within a specified number of reference clock cycles fref. The specified number is
set by a selectable pre-scaler value p as 2p+2. This leads to the expected counter value

counter value =
fclk out

fref
· 2p+2. (5)

With configuring the PLL with the expected counter value, the test starts and the cycles
are counted. Then both values are compared within a configurable tolerance range (check
range). The included pass/fail checking unit outputs whether the test failed or was a
success.

The PLL can be configured via JTAG. There are 10 configuration registers, each with
32 bits. The instruction register width is 4 bits. It’s important to mention that the
register numbers and the according JTAG instruction numbers are shifted by a factor
of 3. I.e. register 0 can be configured with the JTAG instruction register 3 [1].

In the default hardware settings fclk core1 from the ADPLL0 is connected to the clk out 0
pin (See figure 2), which drives the digital circuitry. This means after every chip reset,
the chip will run with this frequency.

This default setting causes problems, as seen in section 4.2. The problem can be solved
by using the PLL-config container as described in section 3.

Because most of the experiments, which were made on this chip, ran with the ADPLL0
and their clk core1 output, in section 4 just this configuration will be studied. Other
possible configurations are not covered by this internship-report.

5

3 The PLL-Config Container

To change the different parameters of the PLL, a python-based PLL-config container
is used to easily configure the PLL. After the creation of an instance of this class, the
different parameters can be changed and exported to the PLL.

To configure the PLL, the export data command have to be called after the parame-
ters inside the class have been changed. To get the hardware configuration a import data

command is possible. By printing the class, one will get the actual configuration of the
PLL. By using the frequencies function, one will get information about the different
frequencies of the different ADPLL’s.

As mentioned above, the configuration is written to the PLL via JTAG. Until now it
is just possible to write on the JTAG via Impact (See ImpactJTAGDriver). In the
future it will be possible to contact this with a FPGA-driver. The Driver can be
changed by setting the driver value to the preferred driver. By default it is set to
the ImpactJTAGDriver.

Name min max default hardware value ADPLL0-config value

loop filter int 1 31 2 2

loop filter prop 1 31 8 8

loop div N 1 31 10 10

core div M0 1 31 4 2

core div M1 1 31 2 1

pre div P0 2 4 2 2

pre div P1 2 4 3 3

pre div P2 2 4 2 2

tune 0 4095 512 512

dco power switch 0 63 63 63

open loop 0 1 0 0

enforce lock 0 1 0 1

pfd select 0 1 0 0

lock window 0 1 0 0

filter shift 0 3 0 3

disable lock 0 1 0 0

Table 2: The tunable parameters of the ADPLL in the hs clockgen with min/max pos-
sible values and the standard settings on hardware and in the container.

Table 2 includes the parameters for the ADPLL. In the PLL-config container one have
to add pll0 or pll1 to change the ADPLL0 or ADPLL1 configuration. The table also
contains the different standard values of the ADPLL’s (hardware and class settings).
For the ADPLL1 the container holds the same configuration as the hardware, but for
the ADPLL0 they are different. This is because of a problem with the standard values
on hardware, explained in section 4.2. So if an instance of the PLL-config container
is created and they data gets exported to the PLL, the settings on the ADPLL0 will

6

change to the default settings held by by the PLL-config container! This will cause a
fix, because the ADPLL0 is connected to the clk out 0 output by default.

Name Description

enable clock clk Enables the output of the pin: 0 for disable, 1 for enable

enable bypass clk Sets pin to bypass mode (FPGA-Clock) by setting it to 1

select adpll clk Select which ADPLL should be conntected

select clock clk Selects the ADPLL output: 0 for clk core0, 1 for clk core1
and 2 or 3 for clk dco

Table 3: Configuration parameters of the hs clockgen output pins.

It is also possible to change the configuration of the different output pins clk out k with
k in [0:3]. Each pin has four parameters, collected in table 3. To change the according
pin, one have to add k, with k as the pin you want to change. The standard settings of
the output pins can be found in table 4.

Output-Pin Enabled Bypass ADPLL Clock

0 yes (1) no (0) 0 clk core1

1 yes (1) no (0) 0 clk core0

2 yes (1) no (0) 0 clk dco

3 yes (1) no (0) 1 clk core1

Table 4: Hardware settings of the output pins.

To execute the built-in self test the function self test can be used. It uses the values
collected in table 5. It is not recommended to change the check value parameter, as
the function calculates the expected value according to equation 5.

Name Std Min Max Task

pre scaler p 8 0 15 pre-scaler p, explained in 2.2

select source 0 0 3 Choose the output pin which should be tested

check range 2 0 15 Tolerance range to accept the results

check value - 0 220 − 1 Expected Counter Value

Table 5: BIST-Function parameters.

It’s important to note that self test uses the export data function at the beginning.
So it is important to note that previously changed parameters on the PLL are changed
according to the configuration in the PLL-config class.

If the test failed the function will return False, otherwise True. The function will
print the used ADPLL and the according output with its frequency if print info is
set to True. The counter values are also compared and the result is also printed when
print info is set to True.

7

4 PLL-Measurements

Now different measurements are performed, to get more information about the function-
ality of the PLL. If not other specified, the standard PLL-config values from table 2 are
used.

4.1 Measurements of the Capacitive Memory Ramp

We measure the frequency of the CapMem-Rampout (fCAP) (see section 2.2) for different
settings of the PLL. fCAP is directly related to fclk core1. fdco gets observed to find a
good frequency range. For this measurement M0 = M1 = 31 and P1 = P2 = 4 are
fixed values.

We measure for different values of N for a given P0 = 2:

N 1 2 3 4 5 6 7 8 9 10

fCAP [Hz] 212.5 10.7 17.5 23.3 29.1 35.0 40.8 46.6 52.4 58.3

N 20 21 30 31

fCAP [Hz] 116.5 122.3 174.8 180.6

Table 6: Measurement of fCAP for P0 = 2 and different N .

If the value of N get doubled, the according fCAP should also be doubled. As we can
see in table 6, this happens for 3 ≤ N ≤ 31. For N = 1 we get the maximum CapMem-
Rampout frequency 212.5 Hz (See table 7). The value for N = 2 also doesn’t fit into the
expectations.

We measure for different values of N for a given P0 = 4:

N 2 10 15 16 18 19 20 25 30

fCAP [Hz] 23.3 116.5 174.8 186.4 209.7 212.5 212.5 212.5 212.5

Table 7: Measurement of fCAP for P0 = 4 and different N .

We can see in table 7, that the CapMem-Rampout frequency has its maximum at
212.5 Hz. For N ≤ 18 we get the results we expected. But for 19 ≤ N we get a
maximum value of fCAP.

As seen above, fdco works stable for 4 ≤ P0 ·N ≤ 72. So we get the frequency range of
the PLL

4 · fref = 200 MHz ≤ fdco ≤ 3600 MHz = 72 · fref. (6)

The same results can be measured on different chips. Two additional chips were tested:
“Chip 7: Green Cheese” and “Chip 3: Indigo Hammer”.

8

4.2 Measurements with the PPU

To get better results and to automate the measurement the PPU is used. Most of the
instructions executed by the PPU will take one clock cycle. We used a PPU application
to toggle one of the Input/Output (GPIO) pins by setting the output pin to high and
low for a specified period of time. Including the time to execute a jump instruction,
the PPU can toggle the pin with a period of three clock cycles. Inserting a configurable
number of NOP’s we can scale the toggle frequency fPPU by

mPPU = 3 + 2 ·NNOP, (7)

fclk core1 = mPPU · fPPU. (8)

With mPPU = 15 the trace of the PPU, with an unconfigured PLL connected, is measured
with an oscilloscope. A frequency of fPPU = 11.11 MHz is expected. The signal looks
gated with a clock signal of around 50 KHz as seen in figure 3. During a “clock-high-
signal” the expected frequency can be investigated as seen in figure 4 on the left side.
Between the “clock-high-signal” can happen different things. It can be a “clock-low-
signal” or it stays high with some peaks to the ground, as seen in figure 4 on the right.

This can be easily fixed by keeping all settings as they are and setting enforce lock to 1.
With this setting the PLL never stops and a frequency of 11.11 MHz can be measured.
The difference can be clearly seen by comparing figure 3 with figure 5 and figure 4 with
figure 6.

0.04 0.06 0.08 0.10 0.12 0.14
Time [ms]

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Vo
lts

 [V
]

PPU Output after a power cycle

Figure 3: PLL hardware settings.

0.07900 0.07925 0.07950 0.07975 0.08000 0.08025 0.08050 0.08075 0.08100
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

Vo
lts

 [V
]

PPU Output after a power cycle (Zoom)

Figure 4: PLL hardware settings.

Because of this expectation, you should never set enforce lock to 0. By default the
PLL-container sets this parameter to 1, to fix the problems explained above.

4.3 Determine the “hang up” frequency

With an value of mPPU = 7 some tests with different PLL-settings are done. The PLL-
config values of table 2 are used and the parameter N gets varied to make a conclusion
about the PLL. The data is collected in table 8.

9

0.04 0.06 0.08 0.10 0.12 0.14
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5
Vo

lts
 [V

]
PPU Output with enforce_lock = 1

Figure 5: PLL hardware settings with
enforce lock = 1.

0.07900 0.07925 0.07950 0.07975 0.08000 0.08025 0.08050 0.08075 0.08100
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

Vo
lts

 [V
]

PPU Output with enforce_lock = 1 (Zoomed)

Figure 6: PLL hardware settings with
enforce lock = 1.

N 1 2 3 4 6 8

fPPU [MHz] - 7 - 11 12 - 15 18 - 20 27 - 29 38.0 - 38.1

ftheo [MHz] 4.76 9.52 14.29 19.05 28.57 38.10

N 9 10 12 14 15

fPPU [MHz] 42.6 - 43.1 47.5 - 47.9 57.1 - 57.3 66 - 67 -

ftheo [MHz] 42.86 47.62 57.14 66.67 71.43

Table 8: Measurement of fPPU with mPPU = 7 for different values of N . If there is no
entry for fPPU the chip “hanged up”.

As seen in section 4.1 the PLL is’t stable for N = 1. That’s the reason why the chip
“hang up” with this settings. The other values fit with the expactation, but for low N the
error is pretty high. For N ≥ 15 the chip also crashes. This corresponds to fclk core1 =
500 MHz. We can conclude that the chip will “hang up” if fclk core1 ≥ 500 MHz.

4.4 Problems with the PPU

With the “High” and “Low” output of the PPU one would expect a rectangle signal as
seen in figure 6. But for some settings we get a different signal, compare to figure 7 and
figure 8. This measurement is done with mPPU = 3, but some things also happen with
a higher value of mPPU.

With a high frequency, for example fclk core1 = 250 MHz, the signal doesn’t look like
a rectangle signal how it should be (see figure 7). The signal looks more like a random
signal. Maybe the frequency is to high for the PPU or the measurment technique with
the oscilloscope isn’t the best way to do this with such high frequencies. This can be
fixed with a higher mPPU value.

For low frequencies, for example fclk core1 = 4.2 MHz, the signal looks like a rectangle
signal (see figure 8). The problem is a “bad” peak in the middle of the “High”-Signal.

10

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lts

 [V
]

High Frequency - fclk_core1 = 250MHz

Figure 7: PPU-Output with mPPU = 3:
N = 15, M1 = 2, P0 = 2
and P1 = 3.

0.000 0.001 0.002 0.003 0.004 0.005
Time [ms]

0.0

0.5

1.0

1.5

2.0

Vo
lts

 [V
]

Low Frequency - fclk_core1 = 4.2MHz

Figure 8: PPU-Output with mPPU = 3:
N = 5, M1 = 30, P0 = 2
and P1 = 4.

This peak doesn’t make sense and with even lower frequencies more ‘bad” peaks appear.
This problem cannot be fixed with a higher mPPU value, so it can be a problem with
power supply or a problem with the PPU itself. Maybe this “bad” peaks and the “bad”
peaks from figure 4 are related to each other.

4.5 Automated measurement series

To automate the measurement and to classify the jitter of the PLL, a measurement
series was done. As seen in section 4.3, it is possible to “hang up” the chip. A power
cycle would be necessary to run it again. To be sure that the chip is running on a safe
operating point, the PLL-values were restricted. Because of the previous measurements
the area was chosen with 4 ≤ P0 · N ≤ 72, 1 ≤ P0·N

P1·M1 ≤ 9 and N ≥ 2. In total 2528
single measurements were made.

To classify the jitter of the PLL it would be best to measure with no NOP’s. That’s
because the deviation of the timing gets lower with more operations, because the mean
is taken. But to classify the jitter with mPPU = 3 is also a problem, see section 4.4. As
a compromise mPPU = 15 is used.

An oscilloscope can be accessed via ethernet connection, to collect the trace data. It
would be possible to store every signal and to evaluate them all after the measurement.
But every trace takes more than 100 MB, so more than 200 GB would be needed. Also
the evaluation would take a long time. It is more efficient to evaluate every signal directly
in the measurement series.

For every trace are the times of the rising slopes determined and stored. They can be
used to determine the frequency and with this information also the jitter can be classified
by statistical methods.

11

4.6 Frequency and the corresponding error

0 100 200 300 400 500
PLL-Output fclk_core1 [MHz] (Calculated)

0

100

200

300

400

500
PP

U-
Ou

tp
ut

 F
re

qu
en

cy
 [M

Hz
] (

15
 T

ic
k

co
rr

ec
te

d) PPU-Output with 15 Ticks - Frequency

Figure 9: fclk core1 against the corrected fPPU gives a slope of one.

With the data of the measurement series the PPU-Frequency fPPU can be determined
by dividing one by the measured times and taking the mean. With this information also
the standard deviation for one measurement can be calculated with statistical methods.
By correcting fPPU with a factor of mPPU = 15 this should give a line when plotted
against fclk core1. The results can be seen in figure 9.

By calculating the coefficient of variation σ
µ of the frequency fPPU and plotting it,

which is done in figure 10, you can see that many points have a very small coefficient
σ
µ . But there are also points with an error higher by two orders of magnitude. If you
plot some characteristic PLL-Settings, you can see that small values of M1 are causing
a high jitter. That’s because the M1-divider cuts slopes to lower the frequency by its
amount. By cutting many slopes, the jitter of a single peak doesn’t matter to much and
so the total jitter lowers. But with M1 = 1 no slopes are cutted. So we can measure
the ”whole” jitter of fdco (We also have to take P1 into account). A better research in
this is done in section 4.7.

12

0 100 200 300 400 500
PLL-Output fclk_core1 [MHz] (Calculated)

10-3

10-2

10-1

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n
σ
/µ

PPU-Output with 15 Ticks - σ/µ
Measured Values
Settings: M1 =1

Settings: M1 =2

Settings: M1 =3

Figure 10: Coefficient of variation σ
µ of the frequency fPPU.

4.7 DCO-Frequency

Now we want to classify the jitter for different values of fdco. The dividers P1 and M1
reduce this jitter, because they cut many slopes (Compare to section 4.6). Because of
the chosen PLL-values it is also not possible to search fixed P1 and M1 values and vary
P0 and N for fdco. For every measurement the standard deviation t̄ of the period time
t is determined. The period t is just the mean of the measured values (section 4.5). The
real error ∆t can be calculated by error propagation. We can calculate ∆t by

∆t =
√
P1 ·

√
M1 · t̄. (9)

The data can be seen in figure 11. The marked area is the originally recommended range
from [2]. You can see that the jitter is pretty low in this area how it should be. For
lower frequencies than 800 MHz the jitter rises and gets pretty big. This is especially
when N = 2 (N = 1 wasn’t measured, see section 4.3). For higher frequencies the jitter
also rises, but it isn’t too high. It should be possible to use the PLL with an fdco till
3500 MHz.

13

0 500 1000 1500 2000 2500 3000 3500 4000
PLL DCO-Frequency fdco [MHz] (Calculated)

10-2

10-1

100

101

Er
ro

r o
f ∆

t [
ns

] (
Ca

lc
ul

at
ed

)

Uncertainty ∆t of the rising slope
Measured Values
Settings: N=2

Recommended Area

Figure 11: The jitter ∆t for different values of fdco.

5 Discussion

The PLL-config container works fine as expected. The only issue is that you have to
use Impact as driver. So the chip must be connected via a “proprietary programming
cable” to the Server. Sometimes this method is locking the cable and you have to fix
this problem with the Impact-Shell.

The PLL however works fine with the standard settings of the container. The only
issues are the reset parameters when you restart the chip. This should change for the next
generation of HICANN. It’s recommended to configure the PLL with the PLL-Config
when you restart the chip.

By using the recommended area of fdco (1000 MHz - 2000 MHz), the jitter can be low-
ered. Also the dividers P1 and M1 shouldn’t be too high. In case of power consumption
a low value of fdco would be preferable. So it should be best to set fdco = 1000 MHz,
which is also the default PLL-config container value for the ADPLL0.

References

[1] Andreas Hartel and Johannes Schemmel. Specification of the HICANN-DLS ASIC.
2018.

[2] Sebastian Höppner and Stefan Scholze. TUD HPSN Clock Generator Specification
for HICANN DLS. 2016.

14

	Introduction
	Phase Locked Loop (PLL)
	General Information
	The PLL on DLS 3

	The PLL-Config Container
	PLL-Measurements
	Measurements of the Capacitive Memory Ramp
	Measurements with the PPU
	Determine the ``hang up'' frequency
	Problems with the PPU
	Automated measurement series
	Frequency and the corresponding error
	DCO-Frequency

	Discussion
	References

