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ldea of compensation

Smaller calorimeter response to non-em components
of hadron showers than to em components

Reason: invisible energy = no contribution to calorimeter signal

Main source: energy used to release nucleons from nuclei +
myons + neutrinos (escape the detector)

Consequences of non-compensation:
Non-linearity of hadronic calorimeter response
Degradation of the energy resolution

Effects on the line shape of the hadronic calorimeter

=> Need to compensate for the invisible energy



Important definitions

average calorimeter signal

Calorimet =
alorimeler response energy of the particle

Linear calorimeter:
average signal proportional to particle energy

—> response = constant as a function of energy (benchmark
particles = mips)

What does X/mip < | mean?

on average, smaller signal for particles “X" of a given energy than
for mips of the same energy

Sampling fraction =
energy deposited by mips in the active calorimeter layer

total energy deposited in the calorimeter



The e/h value

e/h value = degree of non-compensation in calorimeters

Definition (as derived from e/t - measurements):
e 1-fm(E)
h T/ (E) = fum(E)

With different shower particles that contribute to em
and non-em components:
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Compensation < e/h = |

Undercompensation <> e/h > |

Overcompensation <> e/h < |



The e/h value (2)

In homogeneous calorimeters:

Always undercompensation, e/h > |, since f + f, + f < | due to
the invisible energy

In sampling calorimeters:
Tuning of parameters until e/h = | is achieved.

Once active and passive materials have been chosen = values of
foo, o f,, are fixed

rel/mip = |
=> Only tuning of e/mip, p/mip and n/mip possible

Usually: undercompensation, e/h > | => reduction



The first compensating calorimeter

First uranium A
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Experimental insights from first
experiments

Non-linearities:

Undercompensating calorimeters:
Increase of hadronic response with increasing energy

Overcompensating calorimeters:
Decrease of hadronic response with increasing energy

Material choices:

For a certain passive material: For compensation, need the right
active material in the right proportion.

3 different methods to achieve compensation:
Reduction of the em response
Boosting the non-em response

Off-line compensation



Reducing the em response

Choose high-Z absorber material, e.g. lead, uranium -
e/mip = 0.6-0.7

=> |deally compensate 30-40% of invisible energy

Reason for suppression of em response in sampling
calorimeters with high-Z absorber material:

Dominating contribution of photoelectric effect to cross section

Contribution of created photoelectron to calorimeter signal
<=> interaction takes place very close to the boundary layer

=> Photoelectron can escape into the active material => signal



Reducing the em response (2)

Further suppression of
e/mip:

shielding the active
layers with thin sheets
of passive low-Z
material (e.g. iron foil)

e/mip = function of
thickness of these foils

ZEUS experiment:
uranium plates wrapped
in stainless steel
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Boosting the non-em response

Mechanism: nuclear fission
Fission processes in non-em part of the shower development

=> extra energy = nuclear yS and soft evaporation neutrons

=> Use depleted uranium 238U
Compensate to some extent for invisible energy (=1/3)
Nuclear fission neutrons increase f_.

=> n/mip value required for compensation is smaller
than in the absence of fission neutrons.



Boosting the non-em response (2)

Manipulating the response to neutrons = active
material has to contain hydrogen

Loss of kinetic energy of soft neutrons through elastic scattering
with the hydrogen nuclei

Recoil protons = direct contribution to calorimeter signal.

Very efficient process = large contribution of neutrons to signal
though possible saturation effect

Rule: The smaller the sampling fraction for charged
particles, the larger the relative contribution of
neutrons to the calorimeter signal.

Tuning of n/mip by choosing the appropriate sampling
fraction for mips



Boosting the non-em response (3)
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Boosting the non-em response (4)

Sampling fraction mip (%)
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Sampling fractions in different
materials

Uranium/plastic scintillator calorimeters:

Sampling fraction for compensation: 10%

Lead calorimeter Pb/PMMA:

Sampling fraction for compensation: 3%

Differences to uranium:

no fission processes = no neutron induced fission Yys and less
neutrons = smaller value of f,

larger e/mip value due to Z dependence of e/mip

Low-Z absorber materials (copper, iron):
Even smaller sampling fraction for compensation

Saturation: If saturation was absent, compensation
would be achieved for much larger sampling fractions.



Off-line compensation

Determine energy sharing between em and non-em
components of hadron showers on an event-to-event

basis

Apply weight factor e/h to the portion of the signal
generated by the non-em components

2 methods:

Different spatial developments of em and non-em showers,
especially in high-Z absorber materials = disentangle
contributions of the 2 types of components

em showers = electrons and positrons = relativistic;
non-em shower component = spallation protons, recoil protons

(not relativistic) 5
=> Comparison of Cerenkov and scintillation light produced in

optical calorimeters



Thanks for your attention
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e/h value in dependence of sampling
fraction

Sampling fraction mip (%)
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FIG. 3.33. The n/mip response ratio, split up into its components, for 2**U/PMMA calorime-
ters, as a function of R4, the ratio of the thicknesses of the passive and active calorimeter
layers (a). The e/h ratio as a function of Rg, assuming that 0%, 20% or 100% of the ~s
released in thermal neutron capture contribute to the calorimeter signals (b). The top axis of
both graphs indicates the sampling fraction for mips. From [Wig 88].



