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Abstract

Significant progress has been made in quantum technologies over the past decade.
Despite this success, a central question remains: to what extent quantum resources
are being exploited. This question is crucial not only for benchmarking quantum
systems but also to unlock their full potential. This thesis analyses the role of quan-
tum resources spanning quantum optimization algorithms to quantum many-body
systems. First, we show how squeezing establishes a natural connection between the
Quantum Approximate Optimization Algorithm and quantum metrology, revealing
the role of quantum correlations and providing a benchmarking method for quantum-
optimization devices. Further, we study multipartite entanglement in quantum opti-
mization and demonstrate its presence on quantum hardware. However, entanglement
alone is insufficient for a quantum advantage, as stabilizer states—though highly en-
tangled—are classically simulable. We therefore study the role of nonstabilizerness in
quantum optimization. Building on such resources, we further examine how they man-
ifest in disordered systems. We show the emergence of non-Markovianity in disorder-
averaged dynamics. Moreover, we examine complexity-resources across chaotic to
integrable regimes in random-matrix models, highlighting the need for a multifaceted
approach in quantum simulation. These investigations provide a deeper understand-
ing of quantum technologies, from optimization to simulation, and lay the foundation
for future developments toward quantum advantage.
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Zusammenfassung

In den letzten zehn Jahren wurden bei den Quantentechnologien erhebliche Fortschritte
erzielt. Trotz dieses Erfolges bleibt eine zentrale Frage bestehen: In welchem Umfang
werden die Quantenressourcen genutzt? Diese Frage ist nicht nur fiir das Bench-
marking von Quantensystemen von entscheidender Bedeutung, sondern auch fiir die
ErschlieBung ihres vollen Potenzials. In dieser Arbeit wird die Rolle von Quanten-
ressourcen analysiert, die von Quantenoptimierungsalgorithmen bis hin zu Quanten-
Vielteilchensystemen reichen. Zunéchst zeigen wir, wie Squeezing eine natiirliche
Verbindung zwischen dem Quantum Approximate Optimization Algorithm und der
Quantenmetrologie herstellt, indem wir die Rolle von Quantenkorrelationen aufdecken
und eine Benchmarking-Methode fiir Quantenoptimierungsgeréte bereitstellen. Dartiber
hinaus untersuchen wir die mehrteilige Verschrankung in der Quantenoptimierung und
demonstrieren ihr Vorhandensein auf Quantenhardware. Verschrankung allein reicht
jedoch nicht aus, um einen Quantenvorteil zu erzielen, da Stabilisatorzustande — ob-
wohl sie stark verschrankt sind —klassisch simulierbar sind. Wir untersuchen daher
die Rolle der Nicht-Stabilisierung in der Quantenoptimierung. Aufbauend auf diesen
Ressourcen untersuchen wir, wie sie sich in ungeordneten Systemen manifestieren.
Wir zeigen das Auftreten von Nicht-Markowianitdt in unordnungsgemittelter Dy-
namik. Dariiber hinaus untersuchen wir Komplexitatsressourcen in chaotischen bis
hin zu integrierbaren Regimen in Zufallsmatrixmodellen und unterstreichen damit die
Notwendigkeit eines vielschichtigen Ansatzes in der Quantensimulation. Diese Un-
tersuchungen ermoglichen ein tieferes Verstandnis der Quantentechnologien, von der
Optimierung bis zur Simulation, und legen den Grundstein fiir zukiinftige Entwick-
lungen in Richtung Quantenvorteil.
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Sommario

Negli ultimi dieci anni sono stati compiuti notevoli progressi nelle tecnologie quan-
tistiche. Nonostante questi successi, rimane una domanda centrale: in che misura le
risorse quantistiche vengono effettivamente sfruttate? Tale quesito e cruciale non solo
per il benchmarking dei sistemi quantistici, ma anche per sbloccarne appieno il poten-
ziale. Questa tesi analizza il ruolo delle risorse quantistiche in contesti che spaziano
dagli algoritmi di ottimizzazione quantistica ai sistemi a molti corpi. In primo luogo,
mostriamo come lo squeezing stabilisca una connessione naturale tra l'algoritmo di
ottimizzazione approssimata quantistica (QAOA) e la metrologia quantistica, rive-
lando il ruolo delle correlazioni quantistiche e fornendo al contempo un metodo di
benchmarking per i dispositivi di ottimizzazione quantistica. Successivamente, studi-
amo l’entanglement multipartito nell’ottimizzazione quantistica e ne dimostriamo la
presenza nell’hardware quantistico. Tuttavia, ’entanglement da solo non & sufficiente
a garantire un vantaggio quantistico: gli stati stabilizzatori, infatti, pur essendo alta-
mente entangled, sono simulabili in modo classico. Analizziamo quindi il ruolo della
non-stabilizzabilizzazione nell’ottimizzazione quantistica. Partendo da queste risorse,
ci spingiamo oltre a esaminarne le manifestazioni nei sistemi disordinati. Mostriamo
I’emergere della non-markovianita nelle dinamiche mediate sul disordine e analizziamo
le risorse di complessita attraverso regimi caotici e integrabili in modelli a matrici
aleatorie, mettendo in luce la necessita di un approccio multiforme alla simulazione
quantistica. Queste indagini forniscono una comprensione piu approfondita delle tec-
nologie quantistiche, dall’ottimizzazione alla simulazione, e pongono le basi per futuri
sviluppi verso il pieno raggiungimento del vantaggio quantistico.
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Chapter 1
Introduction

In the last decades, quantum technologies have rapidly evolved, transforming quan-
tum computation and simulation from a theoretical pursuit into an experimental real-
ity [1-8]. This transformation has been propelled by continual progress in qubit coher-
ence, scalable architectures, and the emergence of quantum error correction techniques
across multiple hardware platforms, such as superconducting qubits [9-12], trapped
ions [13-15], neutral atoms [16,17], and photonic systems [18]. This technological mo-
mentum is matched by global enthusiasm: governments and private industries alike
are investing heavily in quantum research, motivated by its potential to revolutionize
fields such as cryptography [19], materials discovery [20], drug design [21], and opti-
mization [22]. At the same time, academic research is broadening the scope of quantum
simulation, aiming to tackle problems that lie beyond the reach of classical compu-
tation. For example, in condensed matter physics, quantum simulators are being ex-
plored to simulate non-equilibrium dynamics and quantum phase transitions [23-26];
in high-energy physics, to study real-time dynamics and non-perturbative effects in
lattice gauge theories [27-33]; in quantum chemistry, to model molecular interactions
and reaction mechanisms [34,35], or in the realms of quantum gravity and quantum
chaos, to understand holographic dualities and information scrambling [36-38]. To-
gether, these developments illustrate not only the versatility of quantum technologies
but also the diverse and growing landscape of quantum applications, from fundamental
physics to real-world impact.

Despite such remarkable progress, skepticism about quantum technologies persists,
driven by challenges such as noisy hardware, limited coherence time, the significant
overhead of error correction, or the lack of broadly applicable quantum algorithms
that can outperform classical methods. At the heart of this skepticism lies a key ques-
tion: Do quantum effects truly drive the observed results, or are they merely artifacts of
noise, offering no clear advantage over classical simulation? In response, the quantum
community has developed rigorous benchmarking techniques [39-41] to address this
ambiguity. Identifying and isolating truly quantum signatures is critical for validat-
ing devices [42,43] and assessing their real-world utility [44,45]. Beyond verification,
active efforts focus on developing new algorithms, error mitigation strategies [46],
and resource theories [47] to better harness and understand quantum resources. This
deeper understanding clarifies the realistic potential of quantum technologies, helps
set achievable milestones, and inspires confidence in the field’s progress toward trans-
formative applications.

To understand which quantum resources are essential and how to harness them

effectively, it helps to revisit the key milestones that have shaped the development of
quantum technology and our understanding of its fundamental phenomena. Quan-
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tum mechanics emerged in the early 20th century as a framework to describe mi-
croscopic phenomena that classical theories could not explain. Pioneering work by
scientists such as Planck, Einstein, Heisenberg, Schrodinger, Dirac, Born, Bohr, von
Neumann [48-59], and provoking key experiments such as Davisson-Germar’s and
later, Jonsson’s double-slit interference experiments [60,61], fundamentally reshaped
physics and enabled transformative technologies like transistors, lasers, and atomic
clocks. Riding on the concepts developed during this first quantum revolution, the
second revolution arrived to transform the quantum theory of fundamental curiosity
into practical engineering and technology. By recognizing the limitations of classical
computers for simulating quantum phenomena, visionaries like Manin and Feynman
proposed the idea of quantum simulators [62,63]. As Feynman famously stated, “Na-
ture isn’t classical, dammit, and if you want to simulate it, you'd better make it
quantum” [64]. Concurrently, quantum information theory introduced protocols such
as the BB84 protocol for cryptography [65], and Shor’s algorithm [66] for factor-
ing large numbers. Experimental platforms have advanced steadily to realize these
theoretical concepts in practice [67-70]. Later, the development of quantum error
correction and fault-tolerance schemes [71,72] shifted the focus from entanglement
to magic states as the central resource for robust quantum computation. Alongside
these developments, the tensor network methods [73,74] have also advanced for the
simulation of many-body quantum systems, complementing the growth of quantum
technologies by enabling classical simulations that can benchmark experimental efforts
in understanding complex quantum phenomena.

In the presence of such a variety of theoretical frameworks, numerical techniques,
and experimental platforms, with their respective strengths and limitations, focusing
on a single approach or perspective is inadequate to show quantum advantage [45,75,
76]. For example, Google’s 2019 quantum supremacy claim [11] demonstrated that
their 53-qubit Sycamore processor could sample from a random quantum circuit in
about 200 seconds—a task believed to take classical supercomputers thousands of
years. However, the problem was artificial and specifically chosen to favor quantum
devices. And yet, subsequent classical algorithms [77-80] were able to show a re-
duced simulation time, challenging the original supremacy claim. Another notable
case is that Farhi et al. introduced the Quantum Approximate Optimization Algo-
rithm (QAOA) as a promising method for problems like MaxCut [81]. Initial results
suggested potential quantum advantage, but subsequent improvements in classical
algorithms challenged these claims [82,83], highlighting the evolving competition be-
tween quantum and classical approaches. These examples serve as a clear reminder
that reaching quantum advantage is not straightforward; it calls for broad exploration
and inventive use of quantum resources.

Throughout this thesis, we investigate the multifaceted nature of quantum re-
sources [47] both theoretically and experimentally with a central goal to understand
how they are harnessed in contexts ranging from quantum optimization to many-
body physics. Quantum resources provide a rigorous framework for distinguishing
between what is considered easy and what is considered hard (expensive), based on
the identification of free and resourceful operations within a given resource theory.
This unified perspective enables us to identify which features of a quantum state or
process can be exploited to gain an advantage over classical alternatives. In this quest,
the classical paradigm serves as a free resource; by identifying what is tractable within
classical computation or simulation, we can define appropriate resource theories and




corresponding measures that highlight the power of quantum systems. For instance,
classical systems can easily represent product states, but struggle with superposition,
leading to the formulation of entanglement as a quantum resource [84]. Similarly,
stabilizer states can be efficiently simulated classically, whereas non-stabilizer states
cannot, thereby motivating the resource theory of nonstabilizerness [85]. Thus, quan-
tum resources can be viewed as a unifying framework to understand quantumness
that helps to assess the current capabilities of quantum systems and their potential
to surpass classical approaches, which is discussed in Chapter 2.

Within quantum computation, quantum optimization [22] stands out as particu-
larly crucial. Combinatorial optimization problems [86] are widespread across science
and industry, so any quantum improvement over state-of-the-art classical algorithms
can have a profound impact. This makes quantum optimization one of the most
promising pathways for realizing the practical value of quantum technologies. We dis-
cuss in detail the complexity of optimization problems and how quantum algorithms
may tackle such issues in Chapter 3. Given the limited capability of current quantum
devices [87], and the remarkable ability of existing classical computers, hybrid algo-
rithms are emerging as a potential test-ground for quantum advantage, for example,
the Quantum Approximate Optimization Algorithm (QAOA) [81]. However, despite
its successful applications, QAOA depends heavily on classical optimization routines.
This raises an important question: to what extent do such hybrid algorithms truly har-
ness quantum resources? Although one may think that practical performance is all
that matters, understanding the role of quantum resources is crucial for achieving gen-
uine quantum advantage, especially in predicting its capability on large-scale problems
that exceed currently accessible benchmarks. Without leveraging the aspects of quan-
tum mechanics that make the computation classically intractable, the algorithm may
ultimately fail to deliver a true quantum advantage. In a more quantum information
way, it is about asking a fundamental question: when a quantum algorithm outper-
forms its classical counterpart, what quantum resource underpins that advantage? Is
it entanglement, nonstabilizerness, or some other feature of quantumness? And more
importantly, does our current quantum hardware possess the capacity to harness these
resources? If not, how can such a quantum effect be introduced into the hardware?
This is some of the underlying quests of this thesis for Part II (Chapter 4-7), where
we explore resources in quantum optimization.

In Chapter 4, we establish a connection between quantum optimization and quan-
tum metrology via squeezing to understand the role of quantum correlations in QAOA.
We also introduce a hardware benchmarking technique based on spin-squeezing. To
probe the necessity of multipartite entanglement—known to be essential for quan-
tum computational speed-up [88]—we examine genuine multipartite entanglement in
quantum annealing and uncover its correlation with success probability in Chapter 5.
We further validate the presence of such entanglement experimentally on IBM’s 156-
qubit quantum computer in Chapter 6. Recognizing that entanglement alone does
not capture all aspects of quantum advantage, we turn our attention to nonstabiliz-
erness in Chapter 7, studying its role in both QAOA and quantum annealing and its
relationship to algorithmic fidelity.

In the realm of quantum technologies, quantum simulation [89,90] forms another
fundamental block. Its goal is to simulate highly complex physical systems, provid-
ing a powerful alternative to classical approaches. This is particularly relevant in
regimes where traditional classical methods, such as tensor networks [91] or Monte
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Carlo simulations [92], become inapplicable. This can also be thought of as the native
and most natural application of quantum computers, where we aim to use a quantum
computer to mimic the rules that describe physical microscopic quantum systems [75].
Analog quantum simulators have already yielded significant insights into many-body
physics [16, 24, 93], showcasing the potential of quantum devices to explore other-
wise intractable models. One of the aims of quantum simulation is to push these
boundaries further, tackling increasingly complex problems. In this case, our goal
is to assess the extent to which quantum resources are being utilized in quantum
simulation of complex systems, particularly in the presence of disorder. In Part III
(Chapter 8-9), we investigate how quantum resources manifest in disordered systems,
probing whether such scenarios truly demand quantum computational power or if we
are merely applying a quantum solution to problems that may not fundamentally
require it.

In Chapter 8, we examine the effect of disorder in quantum dynamics, a ubiquitous
feature arising from imperfections in fabrication, control, or the environment of the
quantum device. We develop an analytical framework that enables the exact calcu-
lation of disorder-averaged dynamics for a broad class of quantum systems governed
by periodic Hamiltonians. In Chapter 9, we explore whether different complexity
markers, such as entanglement entropy, fractal dimension, and stabilizer Rényi en-
tropy, respond uniformly when transitioning between chaotic and integrable regimes,
or if there exist intermediate phases where these markers diverge, labeling the same
quantum state as resourceful in one context and free in another.

The chapters in this thesis were developed as independent projects, each addressing
specific questions within the field of quantum technologies. Despite this, a unifying
theme emerges when viewed through the lens of quantum resources. By identifying
conceptual similarities—such as the role of entanglement, nonstabilizerness, and other
resource measures in optimization, as well as in disordered systems—we bring together
diverse results under a common framework. These connections are visually represented
in the cover illustration (Fig. 1.1), with further details provided in the caption.




Figure 1.1. Cover illustration: Visual representation of the thesis: (a) A superconducting
quantum computer (image taken from [94]) with (b) qubit layouts representing Chapter 6, where the
quantum circuit is being run (motivated from Fig. 6.16, [95]), to understand the resource requirements
of the hardware part of quantum optimization, either (c¢) via squeezing (see Chapter 4) or magic
(see Chapter 7) generated in the process of QAOA, or (d) multipartite entanglement in quantum
annealing (see Chapter 5) (image taken from [96]). (e) A recurring theme throughout the thesis
is the exploration of how various quantum resources contribute to optimization success (right side)
and relate to the complexity of chaotic systems (left side) [95]. (f) An artist’s impression of the
spacetime around a black hole, showing the strong curvature due to the high gravitational mass [95].
(g) The Sachdev-Ye-Kitaev model at low-temperature known to share similar chaotic behavior as
a black hole [95,97], is shown as a cartoon model of randomly interacting particles (Chapter 9),
which can also represent the spin-glass model (Chapter 7) (image taken from [98]). (h) Among all
these particles, consider a single particle under disorder, and in Chapter 8, we observe how a closed
disorder system behaves like an open system. (i) All such analyses on resources, benchmarking,
and complexity in quantum technology, from quantum optimization to quantum many-body physics,
are rooted in the quantum informational notion of quantum resources (Chapter 2) (figure motivated
from [99]).
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Chapter 2
Quantum resources

unification of quantumness

Quantum mechanics provides a framework to describe physical phenomena that
often defy classical explanations. Concepts such as entanglement have no classical
analogs and only become meaningful in the quantum regime. In this light, it becomes
both natural and necessary to ask: what exactly makes quantum systems different and
possibly resourceful? Identifying and characterizing the aspects of physical systems
that enable such distinction leads to the notion of quantum resources. This perspec-
tive not only deepens our understanding of quantum phenomena but also guides the
development of applications by framing them within the unifying structure of quan-
tum resource theories. This process can sometimes reveal insights beyond what could
have been gained by studying the phenomena individually and allows us to exploit
such properties as resources in quantum technological applications.

For example, quantum entanglement was once a topic of philosophical debate dur-
ing the first quantum revolution. However, once recognized as a valuable resource, it
became the essential driving force behind numerous quantum information tasks, e.g.,
quantum simulation, quantum computation, quantum metrology, quantum communi-
cation, quantum cryptography, etc., in the second quantum revolution.

Given the success of the resource theory of entanglement, it is natural to explore
other physical phenomena that can also be recognized as valuable resources. Beyond
well-understood bipartite entanglement, this thesis will consider multipartite entangle-
ment, quantum magic or nonstabilizerness (in the context of quantum computation),
quantum Fisher information, and non-Markovianity, all of which will be discussed in
detail in this chapter. The classic review by Chitambar and Gour [47] serves as our
primary reference.

21 General structure of resource theory

Basic economic principles suggest that an object gains value when it is not readily
accessible [47]. For instance, diamonds are deemed valuable precisely because they are
rare in nature. In this way, value is inherently a relative concept. A resource theory
builds on this idea by identifying which operations are considered free or restrained
in a given context and then examining what can be achieved under those constraints.
Any object that cannot be created using only free operations is then classified as a
resource.

Each quantum resource theory is structured upon two objects: free states and
free operations [47]. Free states are those quantum states that can be ‘easily’ created
within the defined framework, and free operations represent quantum manipulations
that can be effortlessly carried out. Thus, it does not encompass all quantum mechan-
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ically allowed physical processes, and only certain states can be prepared freely. Any
states that are not free are then called a ‘resource’ state. In this way, by identifying
the free states and free operations, resource theory also classifies every quantum state
as either free or a resource. To compare with a real-life example, see Fig. 2.1.

Quantum resource theory

Definition 1. The pair R = (F, OF), consisting of free states (F) and a set of
completely positive and trace-preserving (CPTP) operations” (Ox), known as
free operation, is called a quantum resource theory (QRT) if the free operations
map any free state to another free state,

Aipe F—=peF, VAeOf. (2.1)

%See Sec. 2.8.1 for the definition of CPTP operations.

Definition 1 is considered the golden rule of QRT. However, in practice, one has
to understand the details that are hidden behind such an intuitive definition. For
example, the state p and p may belong to two different systems. In general, Oz
maps two physical system A and B, with corresponding Hilbert spaces H 4 and Hp,
ie., Or(A = B) = O(Ha — Hp) C Q(A — B), where Q denotes the set of all
quantum channels from A to B. From the def. 1, one can ensure that (1) Ox(A — A)
contains the identity map id*, i.e., doing nothing is free, and (2) if ®(A — B) € O,
and A(B — C) € Og, then Ao ®(A — C) € Oy, i.e., the free operations can be
performed in composition as many times as one wants without any cost. Thus, there
is no way free operations can create a resource state.

In a QRT, the set F(H) C S(H) are thus free states, and S(H) \ F(H) are called
resource states or static resources, where S(H) are the set of valid density matrices
on H. Similarly, as Oz is called free operation, and the rest of the CPTP maps are
called dynamical resources.

Figure 2.1. Island of Freedom, and
Canal of Cost. A man can walk freely
within his domain, operating without

man without boat € F :: Free state constraint. But beyond his island lies
walking € Oy :: Free operation potential he cannot reach unaided. To

cross the water, he must acquire a re-
travelling by boat & 0 source: a boat, and perform a resource-

bound operation: rowing. Here, the re-
source theory R =(man without boat,
walking).

In the experimental scenario, free operations are considered more fundamental,
despite the equal footing of both free states and free operations in the definition
of a QRT. Because, for an experimentalist, even the free states are not provided
for granted, and hence they must be able to prepare the initial free states using
free operations. Mathematically also, the free states are an induced mapping of free
operations, i.e., F(H) := Ox(C — H). However, in the theoretical sense, multiple
free operations can be considered given the same free states, and thus, in a QRT, one
needs the pair to define a concrete theory. Although the definition of a QRT does not
include the definition of a resource state, it is indirectly implied through it. There are

10



2.2 Types of resource theories

several ways to have a resourceful operation. For example, a free operation together
with a resource state (o) can become a resourceful operation (dynamical resource) on
a free state, i.e., given o ¢ F(B), there may exists free operation ® € Op(AB), such
that ®(p ® o) = A(p), where A ¢ Ox(A), although p € F. One well-known example
is quantum teleportation (A) with entangled state (o) [100].

Often in quantum applications, one expects to amplify the quantum effects by
considering a bigger system size. However, the isomorphism C? ® C? = C* does not
translate into the same set of free states or operations. For example, a system of
2 qubits, although it has the same Hilbert space dimension (i.e., 4) as 1 ququart,
can have a different QRT compared to a 1 ququart. On the other hand, within the
tensor-product structure, one can relabel the Hilbert space, i.e., the density matrices
acting on H 4 ® Hp represent the same physical states as the density matrices acting
on Hg ® Ha. As most operations in quantum mechanics can be represented by the
tensor-product structure, it is crucial to understand when a QRT can also follow this

structure.
Tensor-product structure

Definition 2. A QRT R = (F, Ox) admits a tensor-product structure if

1. Ox is ‘completely free’; i.e., it remains free when acted on just one part of
any joint system: ® € Ox(A — B) = id“ ® ® € Ox(CA — CB), where
id¢ is the identity map on C.

2. Appending free states is a free operation: ®,(p) :==p®oc € O Vpe F.

3. Discarding a system is a free operation: Oz(H — R) is not empty.

Corollary 1. The tensor-product structure has several important consequences:
e (1)=1f®, 9" € Op, then @ &' = (id®@ ¢') o (P ®id) € OF.
(3) = Trace of a system is a free map.
e (1) + (3) = Partial trace Tr ® id is free.
(2) + partial trace = If p,0,p ® o0 € F, then p can be converted to ¢ by free
operation, and vice-versa.

o Inter-convertibility + (1) = If p,o € F, then p ® o € F. This implies F(A) ®
F(B) C F(AB).

o Partial trace is free = If pAZ € F, then p4, p? € F.

Most physically motivated QRTs follow a tensor-product structure, such as entan-
glement, coherence, etc. However, Bell non-locality may not admit such a structure,
for example, even if p,o € F, p® 0 may not [101].

2.2 Types of resource theories

In addition to the definition of QRTS, these theories may also possess extra mathemat-
ical structures. Theories that share a similar structure can utilize common mathemadti-
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cal tools and physical insights. We briefly mention some of these here for completeness,
as the thesis explores some examples of them in more detail later.

Convex resource theories. A QRT is called conver, if the free operation OF is
convex, i.e.,

VO A€ Or=pP+(1—pAecOr, pel0,1]. (2.2)

This also implies that the set of free states is convex. Example- QRT of entanglement,
coherence, asymmetry. However, sometimes convex resource theories can be defined
through states, i.e., if the free states are convex.

Non-convex resource theories. An example is the QRT of non-Gaussianity in
continuous variable quantum systems, where the sets of Gaussian states and Gaussian
operations are not convex [102].

2.3 Quantifying through resource measures

Besides the significant effort involved in generating resource states or implementing
resource operations, it is equally important to verify whether the quantum system
exhibits the desired quantum features. A key challenge often lies in quantifying the
available resources, which is crucial for drawing meaningful conclusions about the
system. In this context, QRT offers various methods for constructing such measures.
We will discuss some of these approaches in this section, as they provide the foundation
for the measures used in our research analysis.

2.31 Axiomatic approach

We first discuss some necessary and desirable properties that the resource measures
should satisfy. A true measure should be able to quantify the resource of a density
operator irrespective of its Hilbert space dimension in terms of a non-negative real
value, and thus, the measure f : S(H) — Rso. However, such system-size indepen-
dence can be relaxed, and often one can work on a fixed dimension and rescale it to
compare different dimensions, such as the density of some measure. The two essential
requirements are:

Vanishing for free states. Free states has ‘no resource’
peF = f(p)=0. (2.3)

The converse is called faithfulness, i.e., f(p) = 0 implies p is free. Although it is
appealing to be considered in the axiom, a certain resource state ¢ ¢ F may have
no operational advantage over a free state, and one would like to attribute f(o) =0,
thus not considered as essential. For example, distillable entanglement vanishes for
all bound entangled states [103].

Monotonicity. f cannot increase under free operation:

12
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[(p) 2 J(®(p), VpeS(H), @€ Or. (2.4)

This is a direct implication of Def. 1. Besides the free operation, sometimes one would
like to consider that quantum measurement also does not increase the measures in
some QRTs. For example, in QRTs of entanglement and magic, quantum measurement
in the form of quantum-classical (QC) maps ®(-) = >, ®;(-) ® |i) (i| is physically
allowed. Such a function f is called

convex linear < f (szaz ® |4) > sz (o: ® i) (i]), Voo = ZPZUZ®|

(2.5)
The von Neumann entropy [Eq. (2.35)] has the property. Given the f is convex linear,
then monotonicity [Eq.(2.4)] would further implies,

p) = Zpif(ai ® [i) (il) , (2.6)

i.e., non-increasing on average under any flagged-outcome quantum measurement (pro-
jective measurement). Now, if appending and discarding classical flags is also a free
operation (e.g., tensor product structure) in the QRT, then f(p;) = f(p; ®1i) (i|), and
then Eq. (2.6) would become

p) = sz‘f(gi)7 Vp = Z‘Pi(ﬂ) ® [3) (il - (2.7)

By rewriting the same equation, one finds [104],

0¥
Strong monotonicity : ) > Z Tr[® ( (p)) : (2.8)
bi

Such strong monotonicity conditions imply f is non-increasing even after post-selection

or multiple flagged outcomes.

Convexity. f is convex under mixing states,
f(z pipi) < Zpif(pi) ; (2.9)

i.e., by mixing states, one cannot increase the amount of resource. Note, this makes
sense, as mixing in this sense means losing information. However, such property is
not essential, but rather convenient when computing some functions within QRTSs.

Sub-additivity. f is sub-additive

flp@o) < f(p)+ flo) Vp,o, (2.10)

i.e., two states together cannot have more resources than the sum of their resources.
Although this feels intuitive to include as an essential condition, some measures may
not follow this, for example, non-locality [101]. When the equality holds, f is called
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Chapter 2. Quantum resources

additive. Such a property simplifies calculation and provides reasoning, for example,
having N states has the same resources as having 1 state. In Chapter 7, it helps us to
infer results as stabilizer Rényi entropy has this property (sec. 7.5.1). Although most
measures do not have additivity, by regularization, one can construct functions that
are additive on multiple copies of the same state,

(p) = lim = f(p"™), (2.11)

n—oo M
provided the limit exists. One sufficient condition for a limit’s existence is a weaker
form of sub-additivity: f(p®m*™) < f(p®™) + f(p®), Vp,m,n [105]. If f is
resource monotone, f° is also.

Asymptotic continuity. f is asymptotically continuous if [106]

7(p) — F(0)] < Kelog[dm(H)] +c(e), €= gllp—olls Yoo € SH), (212

where K is some constant, and c¢(¢) — 0 as ¢ — 0. The trace norm is defined as
||M|]; = TrvMTM. Physically, it implies that if one state is perturbatively close
to another state, then one would naturally anticipate their resource content to be
similarly close to each other. Of course, the difference will increase as the system size
increases, hence log [dim(H)]. For example, von Neumann entropy Sy is an asymptot-
ically continuous function, as ensured by the Fannes-Audenaert inequality [107,108],

|Son(p) — Sun(0)| < elog [dim(H) — 1] + h(e), (2.13)

where h(z) = —zlogz — (1 — z)log (1 — z), also known as binary entropy function.
Such a property is often useful when proving bounds on the measures using pertur-
bation theory.

2.3.2 General distance-based constructions

One can define resource measures by quantifying ‘how far’ the state is from the set
of free states. Here, instead of using standard metric measures for distance, one may
use monotonicity as a defining quality. A distance function d : S(H ® H) — Ry is
called

contractive under all CPTP maps ® < d(p, o) > d(®(p), P(0)), Vp,o0€ S(H).
(2.14)
Then, one has to minimize the distance from all free states to get a reliable measure !,

Ralp) = _inf d(p.0). (2.15)

It is obvious, that Ry = 0,Vp € F, and monotonicity is also satisfied as

Ru(®(p)) = inf d(®(p), 7) < inf d(B(p), D(0)) < il d(p,0) = Ralp).  (216)

TEF oEF

INote that we do not use min, rather we use inf, because it is possible that the minimum may not
be found within the set. However, when the set F(H) is closed, each infimum is attained by some
free state o.
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2.3 Quantifying through resource measures

The first inequality implies that measuring the distance from a state ®(o) cannot yield
a smaller value than measuring the distance from a free state 7 € F, and the second
inequality uses d as contractive under ® [Eq.(2.14)]. Thus, it becomes clear how one
can use a contractive distance function to define the resource measure. Quantum
Fisher Information (QFI) is an example of such a contractive measure (sec. 2.6.3).

2.3.3 Entropic measures

Most entropic measures are some generalization of the relative Rényi entropies from
classical information theory [109]. The quantum relative Rényi entropy is defined

by [110]
1

D, (pllo) = T—a log [Tr(p%c* )], O0<a<1. (2.17)

Often, we deal with only the limiting case,
Dy(p|lo) = —log [Tr(Il,0)], where II, projects onto supp(p), (2.18)
lim Dy (pllo) = Sra(pllo) := =Tr[p(log o —log p)], (2.19)

where Sya(p||o) is the quantum relative entropy [111]. The well-known Rényi entropy
can be obtained by taking o = ly:

1
— o

Salp) = —=Dalpllln) = 7——log [Tr(p")]. (2.20)

At a =1, we can recover von Neumann entanglement entropy,
Sen(p) = —Di(pl[ly) = —Tr[plog p] . (2.21)
One crucial property of D,(p||o) is that they are contractive under CPTP maps, i.e.,
Da(pllo) = Da(®(p), ®(0)), € 0,1]. (2.22)

This is also known as a data processing inequality [110]. Now, using this contractive
property, we can define resource measures for any QRT,

Ralp) := inﬁDa(pHU), for a € [0,1]. (2.23)
(S
Similarly, the relative entropy of a resource is defined as

Rra(p) = inf Sia(pllo). (2.24)

Interestingly, R, is asymptotically continuous [Eq. (2.12)] when the maximally mixed
state is free in the QRT [112].

2.3.4 Geometric measures

Relative entropy measures, while useful as resource monotones, are not proper metrics
since they do not satisfy the triangle inequality. In some cases, one may be interested
in using a measure with geometric interpretation, i.e., far from free states means more
resources. It is indeed a special scenario under general distance-based constructions
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Chapter 2. Quantum resources

(Sec. 2.3.2), which are contractive under CPTP. One such example is trace distance
of resource,

. 1
Reri(p) = inf Dri(p, o) = inf S{lp —olli. (2.25)

Operationally, the trace distance quantifies how distinguishable two states are: for a
system prepared in either state py or p; with probabilities py and p;, the minimum
error in identifying the correct state decreases as the distinguishability between the
states increases, and the probability is given by 3(1—||popo—p1p1||1) (Holevo-Helstrom
theorem) [113,114].

Similarly, using the Bures metric, Dg(p, ) = v/21/1 — F(p, o), one can also define
the Bures distance of resource measure as its infimum,

Ri(p) = (,hel]f:DB(p’ o). (2.26)

Here, F(p,0) is the Uhlmann fidelity between two states, defined as (Try/\/po/p)?,
and for the pure states F(|Y), |¢)) = [{(1]|#)[*.

As both the trace-distance and Bures metric are true metrics, these are called
geometric measures. However, one can directly minimize the fidelity F(p,0)? as a
geometric measure, which historically happened in entanglement [115,116], and then
generalized as the geometric measure. In an arbitrary QRT,

R = inf (1 - F(10) (0], 0)%) = 7Ra(0)" (2.27)

If F(H) is a convex set with pure states being extreme points, then the infimum is
always attained by a pure state, o = |¢) (¢|. In the entanglement theory, it is also the
case that minimization over product states is enough (see Sec. 2.6.4). In Sec 2.6.4,
we use such a geometric measure [Eq. (2.66)] to measure multipartite entanglement.
Although Rg does not have an operational meaning like trace distance, it is still
valuable for deriving bounds, such as

1—+/1-Ralp) <Rre(p) < VRalp), (2.28)

using the following inequality: 1 — F(p,0) < Dr.(p,0) < /1 — F(p,0)? [117].

2.4 Entanglement daS a resource

In classical physics, it is easy to correlate distant systems by sharing information and
acting on it locally. For example, Alice flips a coin and sends the result to Bob. If
it is a head, he turns on a red light; if tails, a blue one. Repeating this many times
creates a shared pattern based on a probability distribution. This approach is called
Local Classical Systems, Operations, and Classical Communication (LCSOCC).

Quantum mechanics allows for more powerful correlations. One key framework
is Local Operations and Classical Communication (LOCC), where local systems are
quantum rather than classical. So, every LOCC involves a local measurement opera-
tion, followed by a broadcast of the measurement outcome, which can be written as
Kraus-operator notation (see Sec. 2.8.1):
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2.4 Entanglement as a resource

, N
AC) = D0 (@ ME) () (@) (2.29)
k
where M,fz acts on A; for a N-partite state space H = @Y H*%. The QRT of
entanglement can be defined using such LOCC as free operation [84,118]. Any states
obtained by LOCC would impose a tensor product structure (LO) and probabilistic
mixture (CC) of the following form

P=D PPk @k ® - @ P (2.30)
k=1

where pf,fC is an arbitrary state for party A;. Any state having such a form is called a
separable state, which forms the set of free states called SEP, and LOCC keeps SEP
invariant. As every convex combination of separable states is also separable, the QRT
is convex. Any state not belonging to SEP is called entangled. Thus, operationally,
entanglement can be defined as a resource in this QRT (see Fig. 2.2).

Quantum Entanglement

Definition 3. Entanglement is a characteristic of a composite physical system
that cannot be created or enhanced through local (quantum) operations and
classical communication (LOCC).

entangled

Figure 2.2. The set of quantum states contains the
subset of separable states SEP. The LOCC operations
map states within the set of separable states (SEP) to
other states that also remain within SEP. Entangled
states lie outside this set, for example, the Bell state,
the GHZ state, etc. LOCC can bring an entangled state
(outside) to a separable state (inside). However, it can-
not, generate entanglement.

Deciding whether a state is in SEP or not is difficult; in fact, the problem is
NP-hard [119] (see sec. 3.2.1 for complexity classes). Instead, traditionally, research
has been pushed along identifying separability criteria, which are necessary but not
sufficient conditions for a state to be separable [120]. It might seem that fully under-
standing the set of free operations would resolve the problem. However, determining
whether a given map A belongs to the class of LOCC operations remains an open
question. Note that the structure described by Eq. (2.29) for LOCC is not the only
structure for the separability condition. For example, there exist separable maps that
cannot be realized via LOCC, and such maps were initially introduced to illustrate
the phenomenon known as nonlocality without entanglement [121]. Hence, to obtain
interesting QRTS, one needs to consider free operations more powerful than LOCC.
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Chapter 2. Quantum resources

2.5 Bipartite entanglement

Bipartite systems serve as a fundamental framework for studying entanglement. His-
torically, the EPR paradox [122] and the subsequent discovery of Bell inequalities [123]
are also primarily concerned with such systems. Moreover, quantum technological ap-
plications such as dense coding [124], quantum key distribution [125], and quantum
teleportation [100] rely heavily on bipartite entanglement as a key resource for en-
abling secure and efficient quantum communication.

Consider a bipartite system AB, admitting a tensor product structure
Hap =HasQ@Hpg, (2.31)

where each subsystem is a qudit. For a pure state,

Zcm @ 1i)p. 1) € S(HA).1j)5 € S(Hp). (2.32)

The coefficient matrix ¢;; can be simplified with a singular value decomposition (SVD),
yielding a common Schmidt basis,

=> Nk), @ k) (2.33)

where \; are singular values, also known as Schmidt values in the context of quantum
information, where SVD is also called the Schmidt decomposition of a state. More-
over, as the Schmidt values are the probability amplitude of the state, they fulfill the
normalization condition, i.e., Y, A7 = 1.

Separable states have only one non-zero Schmidt value, hence \g = 1, i.e., [¢)) =
[9) 4, ® |0) 5. Such states can be obtained using LOCC, and belong to the set of free
states SEP(H). Moreover, they do not contain any local correlation, and hence, one
can claim that there is no loss of information when a separable state is restricted to
one of the subsystems.

For an arbitrary state, one may not have the full information by looking at a
subsystem. Thus, we can differentiate between a separable state and a non-separable
state by quantifying the information content of the restricted subsystem state. For
example, consider measuring O only on subsystem A: O4 15 on ),

W10 @15 |0) = D" Mkl Oalkhy = Tr( 3 Aelk) 4 (k4 0a) . (234)

J/

TV
=PA

Thus, the restriction to a subsystem makes the pure state |¢)) a mixed state ps. The
mixedness of p 4, can be measured by its entropy, known as von Neumann entanglement
entropy,

Sen(pa) Zpk log pi. - (2.35)

Interestingly, one can see that the entanglement entropy depends on A\, — probability
amplitude shared between two subsystems, and thus indeed it contains the information
of the indissociability of two subsystems, i.e., how correlated two systems are, and how
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2.6 Multipartite entanglement

one can lose information if dissociated. Note that the operation p — pa, i.e., acting
only on one part of the joint system, and then discarding the subsystem, is still a free
operation (see Definition. 2.1), thus it does not change the resource contents. For a
product state, as A\, = 1, Syn = 0 for any bipartitions.

The Bell states are the four maximally entangled two-qubit states and form an or-
thonormal basis for the two-qubit Hilbert space:

1
V2

1

%) = 7

(100) £ [11)),  [¥F) = —=(|01) £ [10)). (2.36)
Each Bell state has equal absolute value of Schmidt coefficients (%, %), indicating

maximal entanglement.

Von Neumann entanglement entropy follows some of the additional properties
mentioned in Sec. 2.3.1. For example, subadditivity. For a system with two subsystems
A and B,

Sun(pap) < Syn(pa) + Sun(pn) (2.37)

We utilize the fact that the quantum relative entropy [Eq. (2.19)] is non-negative for
states. Consider o p = pa ® ppg, then:

Srel(paBllpa @ pB) = Tr[pap (log pap —log(pa ® pp))]
= Tr[paplogpap] — Trlpap(log pa @ Ip + 14 ®log pp)]
= —SyN(pap) + Sun(pa) + Syn(pB) -

Now, using Sy > 0, we can obtain Eq. (2.37).

2.6 Multipartite entanglement

The concept of bipartite entanglement extends naturally to multipartite systems. For
instance, in a system composed of three subsystems, Hapc = Ha® Hp ® Hce, a state
is said to be (fully) separable if it can be written as a product of individual states:
[Va) ® [¥p) @ |te). Any state that does not take this form is considered entangled.
At first glance, this might appear to be a straightforward generalization. However, it
raises an important question: Is there a fundamental difference between entanglement
in multipartite systems and the well-understood bipartite case? The answer is yes that
multipartite entanglement exhibits qualitatively richer and more complex behavior
than bipartite entanglement [96]. Even three qubits show fundamentally new types
of entanglement beyond Bell states [126].

2.61 Example of multipartite entangled states: GHZ, W, Dicke

To understand the possible entangled states with multiple qubits, we will follow a
diagrammatic approach for the sake of visualization. Let’s consider the 2V computa-
tional basis states as the corners of the hypercube (see Fig. 2.3). In this way, every
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Chapter 2. Quantum resources

edge is traversed by a Hamming distance” of 1. For the 2-qubit case (square), any su-
perposition of two states forming an edge of the square is separable, but equal-weight
superpositions of states represented by two corners on a diagonal give maximally en-
tangled Bell states [Eq. (2.36)]. A Similar picture is easily generalized to the case of
three qubits. Here we can see that superpositions of two states at Hamming distance
one, belonging to the same edge of the cube are separable, and superpositions of states
at a Hamming distance of two display bipartite entanglement.

b C) 1011 1111
a) ) 101 111 1010 1110
10 11
1
0110
1
00 01 I
0000 0100
GHZ, =Bell = GHZ;=(e.#) GHZ,=(.¢)
(¢.9) ~ (k%) W;=(e.0.0) W,=(e.0,0.0)
W3 :(V7V7V) D4 :(*9*3*3*9*9)‘()

Figure 2.3. Distinguished pure states for systems of (a) two, (b) three, and (c) four qubits can be
represented geometrically. In the case of two qubits, the Bell states correspond to pairs of opposite
corners along a diagonal of a square. For three qubits, the Greenberger—Horne—Zeilinger (GHZ) state,
|GHZ3) = |000) + |111), is represented by two opposite corners along a main diagonal of a cube.
Similarly, for four qubits, the GHZ state |GHZ4) = |0000) 4 |1111) corresponds to two opposite
corners of a hypercube. The states W3 and W3, which are locally equivalent, are represented by two
parallel triangles in the three-qubit case (b), while in the four-qubit case (c), the locally equivalent Wy
and T, states correspond to two parallel tetrahedra. Additionally, the state labeled D, represents a
four-qubit Dicke state (Taken from [96]).

Now consider the following state, which can be decomposed into an entangled state
and a product state.

1
V2

States that cannot be decomposed in this manner are said to possess genuine mul-
tipartite entanglement. One can rightfully guess that a superposition of two states
corresponding to maximally distant corners (Hamming distance equals the number
of qubits) may be highly entangled. This is indeed the case, and they are called
Greenberger—Horne—Zeilinger (GHZ) states [127]:

[Yapic) = —=(1000) + [110)) = [©}5) ® [0c) - (2.38)

1

V2

2The Hamming distance between two binary strings of equal length is the number of positions at
which the corresponding bits differ. It measures how many substitutions are needed to change one
string into the other.

IGHZ)n = —(|0)®N + [1)®V). (2.39)

20



2.6 Multipartite entanglement

The three-qubit GHZ state was created in 1999 [128].

Another genuinely multipartite entangled state is the W state, formed by triangles
for the 3-qubit case, or tetrahedra for the 4-qubit case (see Fig. 2.3), where each basis
state has only one qubit in state 1 :

|Ws3) = LS(|001> + [010) + |100)) , (2.40)
W) = %(|0001> +10010) + [0100) + [1000)) . (2.41)

One can also observe that the superposition of permutationally invariant states can
form entangled states, which are known as Dicke states. For example,

1
V6

More generically,

|Dy) = (]1001) + |1010) + |1100) + [0101) + [0110) 4 |0011)). (2.42)

Dr = <Z)_1/Zzi:a (y1>®‘f ® |o>®<”—’f>). (2.43)

Perseverance (fragility) of the entangled states

Given a different kind of multipartite entangled states, one may wonder if there is
something different between them. One can perform a perseverance (fragility) analysis
in the sense that, by tracing out any subsystem, we can determine whether it remains
entangled (not fragile) or becomes a separable state (fragile) [See Fig. 2.4]. GHZ states
are fragile, as they become separable after tracing out, which also means that all the
entanglement is of a global nature. Interestingly, this property holds if and only if the
state is already in Schmidt decomposable form [129]. On the other hand, the W state
is more robust than the GHZ state, because after tracing out, an entangled mixed
state remains, and it cannot be written as a superposition of less than three separable
states [130]. Such fragility does not say if one state is more entangled than the other;
instead, it shows that they are entangled in different ways. For instance, W and GHZ
states cannot be transformed into each other by LOCC [130].

W-state GHZ-state
Figure 2.4. A schematic comparison of W
(al) (b1) and GHZ states is illustrated using strings
and knots, where you can envision the
fragility of the state. For the W state (al,
a2), tracing out one subsystem leaves the re-
maining two subsystems still entangled. In
contrast, for the GHZ state, which can be
represented by three objects connected by a
(a2) _ (b2) - . ) .
; » single thread or by three rings, removing any
one ring unlinks the others (b1, b2) [Adapted
from [96]].
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Chapter 2. Quantum resources

As more qubits are added, classification becomes increasingly difficult and relies
on detailed knowledge of the states, making it hard to link to observable features.
Instead, here we use a hierarchy of separability criteria that offers less structural
detail but is more practical and scalable.

2.6.2 Partitions of many-body systems

Consider a quantum system composed of N-parties,

|77Z}> :Zch ..... iN |1>1®®|Z>N7 (244)

where the state belongs to the Hilbert space H = ®4_, Hy. Such a multipartite system
is quite different from the bipartite case. As there are multiple subsystem choices, and
entanglement explicitly relies on the subsystem, we require a systematic formalism to
treat all possible partitions on equal footing. To understand the multipartite entan-
glement [131], the main question we ask is whether it is possible to cluster the N
parties into n groups, for n < N, such that |¢) is a product state with respect to the
partition,

n-separable: [) = |d1) ® |d2) @ ... |dy) . (2.45)

If this is possible, then we can call 1)) as n-separable. If it is N-separable, then it is
a product state with respect to all subsystems, and hence we call such a state fully
separable. On the other extreme, if the state is not even biseparable, then it is genuine
N-partite entangled. However, some states are in neither of the above classes; instead,
they are expressed as some superposition of various classes of entangled or separable
states. In that case, we ask if a state |¢) is producible by k-party entangled states,
which let us define k-producible states. For instance, if we can write

k-producible: [i)) = |p1)®|p2)®- - ®|dm), V |¢;) containing maximally k-parties,

(2.46)
we can call it k-producible, and it has to fulfill that k- m > N?. In this way, k-
producible implies it is enough to generate specific k-party entanglement to prepare
|1)). In the same way, we can say the converse statement that a state has k-party
entanglement, if it is not producible by (k — 1)-party entanglement, as it requires at
least k-party entanglement. Formally, we can define,

k-party entangled: k-producible, but not (k — 1)-producible. (2.47)

For example, if a 6-qudit system can be written like

) =[)g, @) g, ® V)R, (2.48)
{1,2,3,4,5,6} {123} {4} {5,6}

it is called 3-producible, where the partition P = { Ry, Ry, R3} is with Ry = {1,2,3},
Ry = {4}, R3 = {5,6}. If the [¢)); cannot be represented by further partition, then
we can say [1) is 3-party entangled. Thus, the notion of multipartite entanglement
stands on the idea of k-producible states.

3Note, this provides a way to relate m-separability and k-producibility.
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2.6 Multipartite entanglement

Note that defining n-separability does not reveal some structures of the entangle-
ment. For example, for large N, n-separability cannot distinguish whether the two
partitions are of equal size or just one partition has one qubit and the other par-
tition has a large, genuinely multipartite entangled state. Moreover, to tell about
n-separability, one needs to know what N is. On the other hand, the notion of k-
producibility, by design, can say ‘how many parties are entangled’. Moreover, deciding
whether a state is k-producible does not require knowledge of N, for example, if & < N
subsystems, one can still conclude if the system has k-party entanglement.

2.6.3 Multipartite entanglement through Fisher information

Entanglement plays a vital role in phase estimation, and hence in quantum metrol-
ogy [132], where the task is to estimate a parameter shift 6 as precisely as possible.
If one uses a probe state of N classically correlated particles, it is possible to obtain
a parameter uncertainty of Af ~ 1/ V'N, whereas if an N-particle entangled state is
used, the uncertainty can be further reduced to 1/N. Thus, parameter uncertainty
can be related to the number of particles being genuinely entangled.

Phase estimation. In a general phase estimation scenario, a probe state p is per-
turbed under O,

p D py = e 0 et (2.49)

where the operator O is known, and # is unknown, and the goal is to estimate 6 by
studying the relation between py and O. An estimator Oes;({pi}m) is used depend-
ing on the results obtained from m-independent repeated measurements: {u;}, =
{i1, . fm }, With mean (O ), and variance A%0.y = (02,) — (fest)?. This variance
quantifies the precision of the estimator and provides a figure of merit for its quality.
In case of an unbiased estimator, one can recover the true phase, (fest) = 6, and
in this case, the minimal standard deviation is bounded by something called Fisher

information, according to the Cramér—Rao inequality [133,134]
Cramér—Rao inequality: A% > 1/F(6), (2.50)
where F(0) is called Fisher information as we defined below.

Fisher information (classical). The expectation value () is dependent on the
probability distribution obtained after repeated measurement,

(Best) = > P(12]60)0est (1) (2.51)

Assuming an unbiased estimator, the quality of the estimation depends on the quality
of the measurement scheme itself, which is related to the probability distribution
p(p]@). The Fisher information [135,136] precisely defines a function that measures
the sensitivity of p(u|6) to changes of the parameter:

F(8) = A%35 I p(ul6)] = 3" p(ul6) (00 np(ul6)) (252
=—5(u|0) a
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Here s(p|6) is the score of the distribution and measures the change in the likelihood
function with respect to 6. As its mean is zero, the variance defines the simplest
non-trivial measure of the properties of the score.

Quantum Fisher information. In the quantum case, the probability distribution
is made of outcomes of positive operator-valued measurements (POVM), denoted as
{I1;}, such that

S I, =1, p(ulo) = Tr(p(0)IL,). (2.53)

By removing the explicit dependence on POVM, i.e., by optimizing over all possible
POVMs, one obtains quantum Fisher information (QFI) as

Fq(pe) = %%F (). (2.54)

In this case, we can obtain [137,138]
quantum Cramér—-Rao bound: A? > 1/F() > 1/mFy(py) - (2.55)

where m is the number of independent repetitions. However, this way of defining QFI
associates the classical outcomes of quantum experiments with precision. One can
see the explicit connection to py through the original definition of QFI, defined as a
geometrical measure of statistical distinguishability in the space of states [137,138].

We first define the symmetric logarithmic derivative (SLD) L(#) implicitly through

1

0u0(6) = 5 (9(6), L(O)} = 5 (p(O)L(6) + L(B)o(6), (2.56)

which is connected to the probability distribution as
Oup(ul6) = ReTr(p(O)T1, L(9)) (2.57)

Now we can use the definition of classical Fisher information [Eq. (2.52)],

FO) =) op(10))* _ 3 (ReTr(p(0)I1,L(0)))?

L p(ulf) Tr((O)11,)
2
v Tr (VAT /T (60) /7)) .
=2 T (p(O)TT,) |
(Schwartz inequality) < Tr(p(6)L(6)?). (2.59)
One can show that there is a POVM for which the above bound is attained,
Falp(6)] = Tr(p(0)L(0)*). (2.60)
By inserting the particular form of p(6) of Eq. (2.49), we obtain,
Pup — Pv
QFT : Flp,0] =2 o Pu = PO, (2.61)
py TRV
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2.6 Multipartite entanglement

where {|p)} basis diagonalizes p. For a pure state, it simplifies to the variance,

Follv) (], 0] = 4> [(ulOf)* = 4((¢| O% [¢) — (¢ O [¢)*) . (2.62)
poth

Relation between k-party entanglement and F;. The relation between QFI
and k-partite entanglement can be understood by computing the maximum QFT of a
k-producible state, where one can consider the operator O as some linear operator of
Pauli matrices, for example,

L 1
Oiin = = ng o= 5 Z Oélaf(cl) + 5101(,” + ”ylagl) ) (2.63)
!

For k-producible states and an arbitrary linear operator Olin, the QFT is bounded
by [139, 140]
Fg“ criterion: Fg[pi_prod, Oin) < sk* + 172, (2.64)

where s = L%J and residue r = N — sk. Hence, a violation of the bound implies
(k + 1)-partite entanglement. Thus, utilizing the inequality, one can estimate that at
least k-partite entanglement is present in the state (see Fig. 2.5).

20 1
154 (k + 1)-partite entangled Figure 2.5. F5™ criterion. The
solid line denotes the bound, which
5 provides the bound for k + 1-partite
LS’ 10 entanglement. Larger k-party entan-

glement requires higher QFI density.
Note that to obtain the same k-partite
5 - k-producible entanglement, a larger N would re-
quire a higher Fg.

2.6.4 Generalized geometric measure of entanglement

The Generalized Geometric Measure of entanglement (GGM) of entanglement gener-
alizes the notion of geometric measure of entanglement and quantifies genuine multi-
partite entanglement [115,116,141-143]. Intuitively, the GGM measures the shortest
distance between a quantum state and the set of product states [see Fig. 2.6(a)]. For-
mally, we can define a hierarchy of geometric measures Gy with 2 < k < N of a
N-party pure quantum state |¢)) as the minimum distance between [¢)) and the set
Sj; of k-separable states |1) = [1)1) ® |1)9) ® - - - ® |1)y,), given by

G (19)) = min (1= [(e}v) ") = 1= max |(rfu)”. (2:65)

|T)ESK
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(a)

2-separable

N-separable

® |3, |5 |96 | o e | |2 1 - max (A%

A

Figure 2.6. (a) Pictorial representation of the GGM: The GGM of a state is the minimum distance
from all separable states, which coincides with the minimum distance from the 2-partite product
states. (b) For pure states, instead of needing to minimize the distance of a given pure state to all
2-separable states, a much more efficient way exists to compute the GGM. Namely, it can be obtained
from the maximum Schmidt coefficient across all possible bipartitions of the system. Sketched is a
system described as a tensor product of local Hilbert spaces H;, bi-partitioned into sets A and B.

This distance measure resembles the Fubini-Study [144] and the Bures metrics [145].
The original geometric measure of entanglement G measures the distance between
|1) and fully separable states. At the other extreme, Gi_s is zero if [1)) can be written
as a product state across any single bipartition of the Hilbert space. Even if that is the
case, bipartite entanglement can still be found in other bipartitions. Since S, C S; for
all k& [Fig. 2.6(a)], the GGM measures the distance between [¢) and the union of all
forms of k-separable states ranging from fully separable to biseparable states. The G,
thus captures the amount of genuine multipartite entanglement present in the system.

One may think that the inclusion of all kinds of biseparable states makes the
measure hard to compute. However, one can show that for pure states the GGM
takes the simple form [see Fig. 2.6(b)]

Go(|)) =1 - max () [* = 1 — max(\L5)”. (2.66)

[7) 4.3E€S2

Here, [¢) belongs to the Hilbert space Ha, ® Ha, ® -+ ® Ha,. The bipartition
A : B satisfies AUB = {1,2,--- N}, and AN B = () [142,143]. In other words,
maximizing | 4.5(m|¢)| across the biparition A : B is equivalent to finding the maximum
Schmidt coefficient, A%, for that bipartition. Finally, to compute the GGM, one has
to find the global maximum of the Schmidt coefficient over all bipartitions A : B
of the system®. Although in general the number of partitions grows exponentially
with the system size, one can often use symmetry or bounds to estimate the GGM
effectively. Moreover, in the context of analyzing the ground state of local many-body
Hamiltonians, it is often observed that the main contribution to GGM comes from

4In the absence of simplifications such as symmetries, we need to calculate over the following
number of bipartitions— (]Y) + -+ (&) =2N=1 _1 for odd N and (JY) + -+ (ﬁj\il) + (ﬁ) =
2 2 2

oN—1 —1+%(ﬁ) for even N.
2
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2.7 Nonstabilizerness

the bipartitions of the system into contiguous blocks. Hence, focusing on a smaller
number of blocks would be sufficient to obtain the exact value of GGM in these cases,
and one can expect a similar approach to work in some cases of quantum optimization
as well. One can show that the theoretical maximum value of GGM is obtained when,
for a given bipartition, all the Schmidt coefficients become equal \/ig, and thus we
have G**(|¢))) = 1 —1/d, where d is the local Hilbert space dimension, also known as
qudit dimension. We can understand this intuitively as follows. Consider an arbitrary
bipartition A : B where |A| = m and |B| = N —m. For this bipartition, there can
be at most d™ non-zero Schmidt coefficients, denoted as {\ 5, A4.5, ..., \g" }. To
maximize the GGM, we need to arrange these Schmidt coefficients so that 1 — (A\Y.5)?

is as large as possible. This is achieved when all A% are equal, i.e., \¥ , = \/%Tn for all

k. Therefore, among all possible bipartitions, the maximum of 1 — (Al ;3)? is obtained
in the case where m = 1, and the maximally possible GGM value is Gy = 1 — %l.
Extending the GGM to mixed states is non-trivial, though it can still be calculated

by exploiting symmetries [141,146, 147].

2.7 Nonstabilizerness

One of the main questions in quantum information theory is to understand to what
extent quantum computers can offer advantages over classical computers. Entangle-
ment is considered one of the underlying resources that can provide such advantages,
as an entangled state of N qudits typically requires storing on the order of O(d")
complex amplitudes for its classical representation. Thus, one expects a quantum
algorithm utilizing entanglement to be complex enough not to have a fast counterpart
in the classical algorithm. However, this is not always the case. Stabilizer states
can exhibit large entanglement yet remain efficiently simulable classically via Clifford
circuits, as guaranteed by the Gottesman—Knill theorem [148-151]. The existence of
such states calls for a different resource-theoretic formalism where free operations are
quantum-computational processes that can be efficiently simulated using a classical
computer. In other words, although entanglement is considered one of the primary
necessities for quantum advantages, it is certainly not enough to acquire something
beyond classical simulation.

2.71 Classical simulation of quantum computation

In order to distinguish the power of quantum computation from classical computation,
the notion of classical simulation of quantum computation provides a good handle. An
efficient classical simulation of quantum computation can be precisely defined [88,152].

Consider a uniform family of quantum circuits Uy acting on the N-qubit input
state [0) = |0)®", and then followed by a measurement of one qubit in the compu-
tational basis. This has two possible outcome o € {0, 1}, and the probability of its
outcome being « is

m(a) = (0| Uk [e) (a] @ IlUyx |0). (2.67)

Strong simulation. If it is possible to evaluate 7(0) up to M digits in poly(N, M)
time on a classical computer, we say that the above quantum computation can be
efficiently simulated classically in the strong sense.
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Weak simulation. If it is possible to sample once from a probability distribution
which is not necessarily exactly {m(«)}, but sufficiently close to it, in poly(N) time
on a classical computer, it is called weak simulation.

Most of the understanding on simulation of quantum computations is related to
strong classical simulation, e.g., the Gottesman-Knill theorem [149, 150], matchgate
circuits [152], etc. Also, most of the quantum circuits become hard when asked for
strong simulation, more precisely #P-hard® problem, a set much bigger than the class
of decision problems solvable by a quantum computer in polynomial time (BQP). On
the other hand, weak simulation provides a more appropriate way to understand the
difference between classical and quantum computation.

2.7.2 Stabilizer formalism and Clifford group

Some circuits do not provide any speedups, and such systems are studied in litera-
ture [153,154], mainly via the help of stabilizer formalism. In fact, one of the ways to
understand the Gottesman-Knill theorem is indeed through this formalism.

Stabilizer formalism

The basic idea is to fix a state [¢)) with the set of operators Oy, O, ..., Oy such that
o |¢) is 41 eigenvector for all O, i.e., O; [¢) = +1|¢), VO,
e [¢) is unique up to a complex phase.

These conditions allow for a full characterization of the state by only specifying the
list of operators. Such operators O; forms a set Ay C Un(d), called stabilizing set,
and any such state |} is a stabilizer state. Here, we consider the state as an N-qudit
state with local dimension d.

From here, one can introduce generalized Clifford group as the normalizer of the
set of operators, O; € Ay° as follows [155]

generalized Clifford group: Cy(Ay) = {U | UOU' € Ay, VO € Ay}. (2.68)

Such a structure ensures that a stabilizer state i) remains a stabilizer state after the
action of any Clifford unitary, O |¢), O € Cy.

A classic example of such stabilization is given by the Pauli group (see Fig. 2.7 for
single-qubit Clifford gates), i.e., Ay = Py. The generalized Pauli matrices generate

SA function f : {0,1}* — N is called #P-hard if, for every function g € #P, there exists a
polynomial-time Turing reduction from g to f. That is, f is at least as hard as any problem in #P.
6The centralizer of a subset A C G, denoted C(A), is the set of all elements in G that commute
with every element of A.
Ca(A)={ge€G|ga=agforallac A}

The normalizer of a subset A C G, denoted Ng(A), is the set of all elements in G that conjugate
A to itself.
Na(A) ={g€ G |gAg~" = A}

Whereas centralizer assures commutativity, normalizer assures stability under conjugation, and they
follow a subset structure as:
Ca(A) € No(A) € G
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2.7 Nonstabilizerness

the Pauli group, also known as the Heisenberg-Weyl group, which defines quantum
kinematics and the states of the quantum register, and it is a subgroup of the uni-
tary group U(N). The generalized Pauli (Heisenberg-Weyl) operators are defined as
products of X and Z [85,156],

Ty = w"X"Z%; v;€{0,1,2....d— 1}, (2.69)

where Z and X are defined as the phase and shift operators,
d—1 d—1
Z=3 JIl, X=) li+ Dl w=emt (2.70)
§=0 5=0

Note that there are d® Paulis, which can be labelled by (v, vq,v3), where v; € Z has
a physical interpretation as the position of the basis states |7).

Figure 2.7. The octahedron in the Bloch sphere
defines the states accessible via single-qubit Clif-
ford gates (Taken from Pennylane demonstra-
tion [157]).

1)

We consider a system of N qudits with Hilbert space H = ®§V:1’Hi, where H;
correspond to local Hilbert space for each qudits. The N-qudit Pauli group Py en-
compasses all the possible Pauli strings with overall phases +1 or +¢. The N-qudit
Pauli group Py is defined as the set of {77}

T‘-/’ =T @ -+ Ty VRS [O, 27?]. (2.71)

The well-known Clifford group is the largest subgroup of the unitary group that acts on
the Pauli/Heisenberg-Weyl group by conjugation and normalizes it; thus, the Clifford
group (Cy) is also called the normalizer of the Heisenberg-Weyl group (Py):

Cn(Pn) = {U such that UPUT € Py for all P € PN} ) (2.72)

The Clifford group can be generated by

1 1
1
o Hadamard gate % (1 _1> ,

e 7/2 phase gate ((1) S),
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1000
0100
o CNOT gate 000 1
0010

The pure stabilizer states are defined as the states formed by the action of Clifford
unitaries on |0),

Pure stabilizer states: {S;} = {U |0) such that U € Cy}, (2.73)

and the convex hull of this set defined the full set of stabilizer states:

Stabilizer states: STAB(H) = {a € L(H) such that o = ZpiSi , Zpl- =1.

(2.74)
A circuit made of only Clifford unitaries is called a Clifford circuit, and is efficiently
classically simulable via the Gottesman—Knill theorem [149].

Gottesman—Knill theorem

Theorem 1. Every uniform family of Clifford circuits, applied to the input
state |0) and followed by measurement on one qubit in the computational basis,
can be efficiently simulated classically in the strong sense.

We define stabilizer operations to be any combination of computational basis prepa-
ration, Clifford rotations, and computational basis measurements. Using stabilizer
formalism, one can prove the above theorem. However, it is not necessary to go
through the formalism in order to understand why the Clifford group is easier to
simulate [158].

The Gottesman-Knill theorem is L complete”. Only a few classical computing
structures allow for the simulation of arbitrary Clifford circuits. For example, a clas-
sical circuit model comprising only NOT and CNOT gates should be enough. The
strong simulation then asks if the state of the first qubit can be learned with certainty.
Interestingly, such a problem can be mapped, under a logarithmic-space reduction,
to a problem of simulating a classical poly-size CNOT-NOT circuit [151], which has
complexity class of @L (parity-L) (see more in Sec. 3.2).

2.7.3 Discrete Wigner functions

The discrete Wigner representation for odd dimensions enjoys a special property that
all stabilizer operations can be represented non-negatively, i.e., it provides a classical
probability model for the stabilizer theory [85]. Such a connection motivates one to
study Wigner functions, which offer an alternative way to understand stabilizer states.

The Wigner function [159] provides a representation of the wavefunction in terms
of a probability distribution in phase space. The discrete Wigner function is a direct

"The complexity class @L consists of decision problems that can be solved by a nondeterministic
log-space Turing machine, where the correct answer is “yes” if and only if the number of accepting
computation paths is odd. A problem is @L-complete if it belongs to $L and every problem in &L
can be reduced to it via a log-space reduction. Such problems are the hardest in &L under log-space
reductions.
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2.7 Nonstabilizerness

analog of it, but is only defined for quantum systems with finite, odd Hilbert space
dimension [160]. Given a phase-space point V = (o\", oSy @ - & @™ o{M) of
N-qudits, we define the corresponding phase space operators using Pauli operators,

1
Ao= o5 ZTV, Ay =Ty AT} (2.75)
1%

From here we arrive at the definition of the discrete Wigner function of a state p as

~ 1
Wigner function: W,(V) = d—NTr[AVp]. (2.76)

The main connection between Wigner representation and stabilizer formalism is
through discrete Hudson’s theorem [160].

Discrete Hudson’s theorem

Theorem 2. A pure state |S) has a positive representation if and only if it is
a stabilizer state,

YV, Wisys(V) >0 < 3U € Cy,such that |S) =U|0), (2.77)

Moreover, Clifford unitaries act as permutations of phase space,

Wyt (V) = W,(V"), YV, (2.78)

2.74 Non-Clifford resources

Given that we know stabilizer states are easy to simulate, one may expect that a state
that is not a stabilizer state will be interesting and necessary for quantum computing.

1
Indeed, one needs some non-Clifford gates, for example, a T-gate (O 6i9/4) to make

a universal quantum computation.

Why are T-gates (non-Clifford) required for fault-tolerant universal quan-
tum computing?

In fault-tolerant quantum computation, transversal gates® are commonly employed [161].
However, the set of gates that can be implemented transversally may differ between
stabilizer codes. For instance, the 7-qubit Steane code [162] does not allow for
transversal implementation of the T gate. Notably, no non-trivial quantum error-
correcting code permits the transversal implementation of a universal gate set, which
is a limitation formalized by the Eastin-Knill Theorem [163].

8 A transversal gate is a fault-tolerant quantum gate implemented by applying independent gates
to corresponding physical qubits across different code blocks. It is called transversal because the
operation acts across these blocks rather than within a single block, thereby preventing errors from
spreading between qubits in the same code block.
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Eastin-Knill Theorem

Theorem 3. For any quantum error correcting code with distance at least 2,
the set of logical gates that can be implemented transversally generates a set of
operations that (up to a global phase) is discrete, and is therefore not universal.

In other words, no quantum error-correcting code can have a continuous symmetry
that acts transversely on physical qubits, and we can see that the T-gate implements
the smaller rotational gates.

Moreover, as stabilizer states are efficiently simulable classically, and as Clifford
operations keep the stabilizer states stabilizer, one can construct a resource theory of
nonstabilizerness by considering stabilizer states as free states, and Clifford operations
as free operations [85]. A resource state is thus easily defined as a state that is not
a stabilizer state, which we call a nonstabilizer state or a magic state’. One can
show that T-gate is indeed optimal for generating magic resources among the class of
diagonal unitary operators, both for the qubit and qutrit cases [165].

To define a resource measure of magic (let’s say M), we need to fulfill the two
conditions we discussed in Sec. 2.3.1:

* |¢) € STAB & M([y))) =0,
« M([¢)) = MUIy)), V) eH, UeCly.

2.7.5 Stabilizer Rényi entropy

The Stabilizer Rényi entropy (SRE) captures how a state is distributed when expressed
in the basis of Pauli operators P € Py, where Py represents the Pauli group for n-
qudits. The squared (normalized) expectation value | (1| P|¢)|?/dY forms a probability
distribution'” over all P € Py, as they are positive and sum to 1:

> W‘dﬂ = Tr[(|v) (¥])*] = 1. (2.79)
PePy

Note that the second equality comes from the fact that any state can be represented
in the Pauli basis,

1
p= N cp P

P Tr(pp)

1

= p? = N ZCPCQPQ

P?Q

1 1

= Tr(p*) = d—NZC?D = d_NZ ([Pl

P P

Stabilizer states, which are common eigenstates of a maximal set of mutually
commuting Pauli operators (dV-many), have (|Pl)) = £1 for d¥ Paulis, out of
a total of d*¥ many Paulis. That means stabilizer state is a highly concentrated

9The term magic probably came from magic-state distillation, a purification protocol which allows
a qubit to increase the polarization only along certain ‘magic’ directions [164].
Yprobability of finding P in the representation of the state |+/) in Pauli basis.
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2.7 Nonstabilizerness

probability distribution, and thus is easily simulable [148,149, 151,158, 166, 167]. In
contrast, a Haar-random state has approximately equal weight on all P’s [168]. Thus,
a natural way to quantify the nonstabilizerness of a state |1) is by assessing the spread

of this distribution.
Stabilizer Rényi entropy

Definition 4. The ¢-th order stabilizer Rényi entropy of a state |¢) is de-
fined as the Rényi entropy on the probability distribution formed by the Pauli
expectation value [169]:

o) = & Y. | MPW IR (2.80)

M,
PePyn

The SRE is zero for the stabilizer state, as exactly d¥ expectation values are +1.
As the Clifford group stabilizes the Pauli group, any action of unitary U € Cy keeps
the Pauli group intact, UTPU = +Q, where Q € Py. Thus, SRE is conserved under
Clifford operations. Moreover, it is additive,

P, 24|{p| P 2q
log, Z K 1W>d|{v(|i<;| 2| )| _

M,y(|) ©[9)) = My(19)) + My(|9)) -

PiePL ,PEP?

Monotonicity holds only for ¢ > 2 [170], while it can be violated when ¢ < 2 [171].
Importantly, values of ¢ > 1 and ¢ < 1 highlight different properties of stabilizer Rényi
entropies (SREs) and correspond to distinct quantum computational applications.
Specifically, ¢ < 1 SREs are connected to the number of stabilizer state superpositions
required to represent a given quantum state, which determines the resource cost for
Clifford-based simulation algorithms and fault-tolerant state preparation. In contrast,
q > 1 SREs quantify the distance to the nearest stabilizer state, serving as a measure
of the cost in Pauli-based fidelity certification [172].

SRE is related to many quantum information protocols, for example, it relates to
phases of error-corrected circuits [173], quantifies the entanglement spectrum [174],
bounds fidelity estimation [175-177], characterizes the robustness of shadow tomogra-
phy [178], and characterizes pseudorandom states [179,180]. It also provides a lower
bound on T-gates [169], and experimentally computable [173].

2.7.6 Sum negativity and mana

The discrete Wigner function offers a robust resource measure. Early work on bound
magic states [181] used this framework to show that negativity in a state’s Wigner
representation is a necessary condition for magic state distillation. However, this
negativity was not initially explored as a quantitative measure of resource.

Intuitively, one expects that a state exhibiting only slight negativity should possess
less magic than a state with large negative values in its Wigner function. This intuition
is formalized in later work [85], which demonstrates that the sum of the negative
entries in the Wigner function defines a valid magic monotone, capturing the degree
of non-classicality relevant for quantum computation.
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Sum negativity

Definition 5. The sum negativity of a state p is the sum of the negative ele-
ments of its Wigner function:

sn(p) = ) Z|W )| —1). (2.81)

VIW,(V)<0

Due to the discrete Hudson’s theorem, free states have a magic zero, and, as
Clifford unitaries keep the Wigner function unchanged (Eq. (2.78), monotonicity is
also satisfied. However, the composition law of sum-negativity follows,

1
sn(p™") = S1(2-sn(p) + 1) + 1], (2.82)
i.e., a linear increase in the number of resource states implies an exponential increase

in the amount of resource according to the measure. One can make such dependence
linear, essentially putting a log in front of similar quantities, which defines another

measure called mana:

Definition 6. The mana of a quantum state p is

Mana(p) = log [ > [W,(V)| | =log(2-sn(p) +1). (2.83)

As log is a monotonic function, Mana also follows the necessary properties of a
magic monotone. It is also additive, i.e., Mana(p ® o) = Mana(p) + Mana(o).

2.8 Non-Markovianity

In the classical setting, a Markovian process is a type of stochastic (random) process
that satisfies the Markov property, i.e., the future state of the process depends only on
the present state, and not on the sequence of past states. More mathematically, three
random variables XY Z with joint probability distribution pxyz form a Markov chain
(X =Y — Z), if the conditional mutual information between X and Z is independent
of Y,

Markov chain: [(X : Z|Y)=I1(X:Y|Z)-I(X:Y)=0. (2.84)

Here, I(A: B) = H(A)— H(A|B), where H(A) is the Shannon entropy. Equivalently,
the conditional probability distribution pzx—.(2) := pzx(2, z)/px(x) satisfy

Pz|x= x ZPZD/ y pY|X x(y) (2-85)

When such past-future independence fails, i.e., some history is retained, the process
is referred to as non-Markovian. The relevance of quantum non-Markovianity, or the
characterization of memory effects, becomes particularly important in open quantum
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2.8 Non-Markovianity

systems. A quantum system is called open when it has interaction with its environ-
ment [182]. As time evolves, it builds up correlations, such as entanglement, and
destroys them through decoherence and dissipation, which are detrimental to quan-
tum devices. Thus, it is essential to determine whether any past information is lost
over time or not, as quantified by witnesses of non-Markovianity. However, a univer-
sal definition of non-Markovianity has remained elusive; hence, we will discuss some
different witnesses, which, together, can provide a hint about non-Markovianity.

2.81 Quantum channels

Open system dynamics is represented by quantum dynamical maps, also known as
quantum channels, which we discuss in this section before exploring non-Markovianity
witnesses. Linear maps, e.g.- ®, A, represent a physical evolution map from density
matrices to density matrices. A linear map ®; H(A) — H(B) is called:

positive :  ®(p) >0, Vp; (2.86)
k — positive: ® ®id° >0, dimHe =k; (2.87)
completely — positive : k — positive Vk . (2.88)

Additionally, a physical evolution must preserve the trace, and such completely-
positive trace-preserving (CPTP) maps are called quantum channels, denoted as Q.

There are three well-known representations of quantum channels, which we use to
express quantum processes throughout the thesis on several occasions..

1. System-Environment representation. The evolution of an open quantum
system A with environment F, is modeled by the unitary evolution of the joint system
UAE . Given an uncorrelated initial state of environment |0) (0|”, the dynamics of the
system are represented by the reduced density matrix:

P s B(ph) = Tryy [UAE (pA @ |0) <01E> UTAE] , (2.89)

where E’ does not need to be the same system as E. Every completely positive
trace-preserving (CPTP) map admits a unitary representation; that is, any physical
evolution can be viewed as a unitary process acting on a larger system that includes
the environment. CPTP maps effectively describe this evolution by tracing out the
environment, whose degrees of freedom are not directly accessible.

2. Kraus operator. & can be represented by set of matrices {K;} satisfying
> K;K ; =14 in the following form-

pt = () =) Kjp'K]. (2.90)
J

3. Choi matrix. For any CP map, ® maps half of a maximally entangled vector
|¢+>AA = Z;lil |j>A |j>A of HA ® H”' to another system B, and it can produce the
bipartite operator known as Choi matrix of ®,

JPP = id* @ ®(¢T). (2.91)
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Conversely, any bipartite positive semi-definite operator J4Z corresponds to a CP
map & given by

®;(p) = Tra [J*P(p" @ IP)], (2.92)

where p! denotes the matrix transpose with respect to some basis of A. If this basis
can be chosen as same as used for |¢+>AA , then ®;, = @, and thus defines Choi-
Jamiotkowski Isomorphism between the CP maps (®) (A — B) and Choi matrices
J4n

Unital map. A special class of CP maps that act invariantly on the identity, i.e.,
¢ (I) = 1, are called unital maps, which will be helpful to understand as it has a close
connection to the CPTP map. For every map &, its dual is the adjoint map fixed by
the Hilbert-Schmidt inner product,

Tr (X®'(Y)) = Tr(®(X)Y), VX € B(A),Y € B(B). (2.93)
Thus, one can verify that
® is trace preserving < &' is unital . (2.94)

Proof. 1t is worth understanding how two-way implication works.

o & is trace preserving = Tr(®(p)) = Tr(p). Now, substituting X = p,Y =1 at
Eq. (2.93), Tr(p®'(I)) = Tr(®(p)I) = Tr(p) = ®1(I) = L.

o & is unital = Tr(X ®(I)) = Tr(®(X)):: Trace-preserving .
I

Note that we do not use any particular representation of the ®, yet we can prove the
above statement.

2.8.2 Witnesses of non-Markovianity

The memory effect of a non-Markovian process is sometimes characterized by the back-
flow of information from the environment to the system, leading to revivals of informa-
tion [183,184][see Fig. 2.8(b)], although the precise relation between such revivals and
backflow is a matter of ongoing investigations [185]. Alternatively, non-Markovianity
can be described in terms of the divisibility property, positive or completely-positive,
of the associated dynamical maps, where non-divisibility is linked to non-Markovian
behavior [186-190]. Non-Markovian behavior is also sometimes related to nonexpo-
nential decays and dissipationless oscillations [191]. Non-Markovianity can also serve
as a tool to probe quantum complexity [192]. To characterize the non-Markovianity,
we use the following witnesses.

Trace distance (BLP criterion). As an open system evolves, it typically develops
correlations with its environment and undergoes an irreversible loss of information,
particularly when the system is weakly coupled to the environment. Under the strong
coupling limit, the information might periodically be revived from the environment,
which is known as the backflow of information. As the trace-norm is CP-contractive
under a CPTP map, we can consider the trace distance as a measure to define the

36



2.8 Non-Markovianity

(a) Markovian (b) Non-Markovian

environment environment
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Figure 2.8. Temporal flow of information in open Quantum Systems: (a) In the Markovian regime,
the system experiences one-way dissipation, i.e., information flows irreversibly from the system to
the environment. (b) In contrast, the non-Markovian regime exhibits backflow, where the environ-
ment can return information to the system, impacting its evolution. The trace distance D(p1, po;t)
(BLP criterion), which captures changes in distinguishability over time, reduces monotonically in
Markovian dynamics, whereas it can increase again in non-Markovian dynamics. Similarly, the en-
tanglement between system and ancilla En(psa) (RHP criterion) only decreases in Markovian, but
it can be revived in non-Markovian dynamics, showing the signature of memory effects arising from
the backflow of information.

distance between the density of matrices, which can define the distinguishability. The
trace distance between two different initial states p;(0) and p,(0), defined as

1
D(p1, pa;t) = §Hp1 — pal1 - (2.95)

Here, ||M]|; is the trace norm Tr[v MTM]. A map ® is said to be Markovian if it
follows the data-processing inequality [Eq. (2.22)] for trace distance, i.e., tends to
reduce the distinguishability between any two states continuously.

D(p1, p2) = D(®(p1), ®(p2)), Vi. (2.96)

Thus, according to the Breuer-Laine-Piilo (BLP) criterion, breakdown of the
monotonicity of trace distance between any two orthogonal initial states implying a
temporal growth of distinguishability can be considered a hallmark of non-Markovianity [183].
Note that this criterion is only sufficient, but not necessary, since it might fail to
witness non-Markovianity for some non-unital channels [193,194] and unital chan-
nels [190].

Logarithmic negativity (RHP criterion). Entanglement is considered one of the
pivotal resources in quantum computing [195]. One of the entanglement measures,
known as logarithmic negativity [196,197], can also be used to identify non-Markovian
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evolutions following the Rivas-Huelga-Plenio (RHP) criterion [188]. Consider an
initial maximally entangled state between the system and an ancilla. For the example
of a system given by a qubit, this state can be written as

1
@) = —=(I11) + [H)) = psa(0) = |®) (D] . (2.97)
V2
Evolving the system in time with a quantum evolution operator, psa(t) = (& ®

D)psa(0), and partially transposing the joint density matrix, one can calculate the
logarithmic negativity as
T
En(psa) = 1ogy ||psallr - (2.98)

Here, ()75 denotes the partial transposition with respect to the system S. As Marko-
vian dynamics will always destroy quantum correlations between ancilla and sys-
tem, a temporal increase in logarithmic negativity witnesses non-Markovianity [188,
197]. Note that nonmarkovianity witnessed by the BLP criterion (which checks P-
indivisibility) also implies it will be detected in the RHP criterion (related to CP-
indivisibility), but not the other way around.

Purity. The purity of a state is defined as Tr[p?(¢)]. For finite-dimensional Hilbert
spaces, the purity is monotonically decreasing during dynamics generated by a Lind-
bladian if and only if the Lindbladian is unital, i.e., £;[I] = 0 [198]. Note that
a Lindbladian form (where decay rates are absorbed in jump operators, thus re-
quiring positive decay rates) guarantees a completely-positive-trace-preserving map
(CPTP) [183,190]. If the dynamics induced by any unital Lindblad-like generator'!
leads to an increasing purity, then the associated map is non-CPTP in the time inter-
val. Thus, the increase in purity can witness non-Markovianity for unital maps [199].

We want to highlight that although purity-increasing maps can be unital, they
cannot be represented in the exact Lindbladian form, as the CPTP conditions need
to be conserved there. Thus, such non-Markovian features do not contradict the ‘if
and only if’ conditions for unital Lindbladians mentioned above. For example, such a
scenario can appear in the presence of a negative decay rate in a Lindblad-like master
equation.

To summarize, if the map is unital, an increasing purity is a good non-Markovianity
witness, but if the map is non-unital, one has to employ different measures [194] to
reveal the non-Markovianity originating from the non-unital aspect of the dynamics.
Regardless of the purity’s ability to reveal non-Markovianity, it remains an important
figure of merit, e.g., in optimal control: a control pulse can be identified as robust
against imperfections when the purity of a disorder-averaged state revives near the
completion of the pulse [200,201].

Non-Markovian states have been identified as valuable resources for various quan-
tum information tasks such as quantum state redistribution [202], secure communica-
tion [203], and state deconstruction [204]. These applications motivate the treatment
of non-Markovianity as a quantum resource [205,206].

1By Lindblad-like, we mean the form where the decay rate is not absorbed in the jump operators.
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2.9 Summary

This chapter introduces the concept of quantum resources, which serves as the cen-
tral theme of this thesis. We begin by outlining the desirable properties of resource
measures, including axiomatic approaches, as well as practical formulations such as
entropic and geometric measures. We then explore the resource theory of entangle-
ment, with a particular emphasis on multipartite entanglement and its quantification
using tools like quantum Fisher information and the geometric measure of entangle-
ment—topics that play a key role in Chapters 4, 5, and 6. The chapter also covers the
notion of nonstabilizerness and its quantifiers, including Stabilizer Rényi entropy and
mana, which are relevant for Chapters 7 and 9. Finally, we discuss non-Markovianity
as a crucial resource in open quantum systems and review non-Markovianity witnesses,
providing supporting background for Chapter 8.
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Chapter 3
Quantum optimization

quantum solutions for optimization problems

Quantum computing is increasingly regarded as a transformative technology for
both scientific research and industrial applications. This view is supported by sus-
tained efforts within the scientific community and by substantial investments from
governments and industry stakeholders. Among the most promising applications of
quantum computing is quantum optimization, a new computational paradigm that
has drawn significant attention due to its potential impact across a wide range of
fields.

Optimization problems arise naturally in many areas, including logistics, finance,
energy systems, drug discovery, etc. These problems often become extremely difficult
to solve as their size and complexity grow. While classical algorithms have advanced
considerably, they continue to face limitations when dealing with large-scale or highly
constrained problems. Therefore, any improvement, whether from classical heuristics,
machine learning techniques, or quantum approaches, can be highly valuable.

The key motivation behind quantum optimization lies in the fundamentally dif-
ferent way quantum computers process information. Quantum algorithms can make
use of quantum phenomena such as superposition and entanglement, allowing them
to explore solution spaces in ways that are not possible for classical systems. This
has led to the belief that quantum devices could offer new routes to solving problems
that are currently intractable, or at least deliver improvements in speed or accuracy.

Although large-scale, fault-tolerant quantum computers are still under develop-
ment, significant attention is being directed toward identifying near-term advantages.
Both academic researchers and industry practitioners are actively evaluating whether
quantum optimization methods can show benefits across several important metrics:
the quality of the solutions, the time required to reach them, the overall cost of com-
putation, and the general applicability of the approach to different problem types.
These questions are central to understanding when and where quantum computing
can provide a meaningful advantage over classical methods.

In this chapter, we begin by introducing the computational complexity associ-
ated with optimization problems to understand where the challenging problems lie
(Sec. 3.2). We then present quantum optimization algorithms that are employed later
in this thesis, including Quantum Annealing (QA) and the Quantum Approximate
Optimization Algorithm (QAOA) in Sec. 3.3. In Sec. 3.6, we provide an overview of
how quantum algorithms can be implemented on actual quantum computing hard-
ware. The review by Abbas et al. [22] is our primary reference for this chapter.
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31 Classical optimization

Optimization problems involve identifying the optimal solution from a potentially vast
set of candidates, often under complex constraints. Mathematically, these problems
are framed as the minimization or maximization of an objective function f(Z),

min f(Z) or, max f(Z), (3.1)
{z} {7}
where the search domain {Z} can be discrete or continuous, constrained or uncon-
strained.

Here are some examples to understand how it is often structured.

o In portfolio optimization, the goal is to determine the optimal allocation of
capital across a set of assets to maximize expected return while minimizing risk.

o Job scheduling problem in Operations Research aims to minimize total comple-
tion time given multiple jobs are scheduled across machines.

e In drug discovery, determining the lowest-energy 3D structure of a molecule is
the goal.

o In power-grid optimization, the goal is to balance supply and demand to mini-
mize loss and maintain stability.

o In many-body physics, finding the ground state can also be considered an opti-
mization problem, for example, when using the variational principle to obtain
the best solution.

The main challenge of such problems is to find a solution or a set of solutions
efficiently. However, for some combinatorial optimization problems, the required effort
(one can think of it as resources, but in a classical sense) using a known classical
algorithm may scale exponentially with problem size, in a worst-case scenario. One
may expect that a quantum computer can provide some quadratic speedup, though
it may remain an exponential runtime. However, in classical optimization, one is
not always worried about the worst-case scenario, and when considering a concrete
problem instance, the story can be different. Many classical algorithms and heuristics
can obtain almost optimal solutions in a reasonable time, even for large problems, for
example, the travelling salesperson problem (TSP) [207-209]. The problem does not
necessarily lie in the number of variables to optimize, as one may sometimes claim,
because there are hard problems with fewer than 100 variables as well [210, 211].
The key mantra one should keep in mind is that although quantum optimization
algorithms will not necessarily improve performance for all instances of a problem,
they can exploit some quantumness that can potentially improve performance for some
problem instances, if used wisely, and thus improve overall capabilities in optimization.

3.2 Computational complexity classes

The difficulty of quantum optimization largely depends on the nature of the opti-
mization problems it addresses. Therefore, it is helpful to categorize problems into
different complexity classes based on the computational resources they require, such as
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time and memory. In theoretical computer science, these complexity classes serve as a
framework for analyzing problem difficulty and provide a systematic way to approach
and compare different problem types. While complexity theory primarily evaluates
classical computational difficulty, it also offers insights into areas where quantum al-
gorithms might outperform classical ones in terms of resource efficiency.

However, demonstrating a clear advantage of quantum computing over classical
methods is not straightforward. Complexity theory focuses on worst-case scenar-
ios, which do not always reflect the practical performance of algorithms. Real-world
instances are often much easier than the hardest theoretical cases [212,213]. Conse-
quently, even if quantum algorithms do not outperform classical ones in worst-case
scenarios, they may still offer significant benefits on average-case instances.

This distinction between worst-case and average-case performance suggests that
the notion of quantum advantage should extend beyond traditional complexity-theoretic
comparisons. In this context, we will explore various complexity classes, examine the
types of problems they encompass, and highlight corresponding quantum algorithms.
This overview will help identify problem domains where quantum approaches hold the
potential for meaningful advantages.

3.21 Exact solutions

A decision problem involves deciding whether there exists a particular solution to the

problem or not.
Decision problem

Definition 7. A decision problem is a binary function f, : {0,1}" — {0,1}
where f,(z) =1 if and only if = € L, which is a set of “yes” instances.

Note that a decision problem only cares about the existence of a particular solution,
and not the actual solution itself. In a practical scenario, finding an actual solution
is often necessary, which leads to relational problems.

Relational problem

Definition 8. Given a relation R C {0,1}" x {0,1}" between input z and
output y, the relational problem is about finding a y, that satisfies the relation,
ie., (r,y) € R.

For example, consider the MaxCut problem, where the goal is to bipartition the
nodes of the graph in such a way that the maximum number of edges is traversed
between the two sets (see Fig. 4.1). In such problems, the decision problem asks
whether there exists a cut of size greater than a given threshold d, while the relational
problem seeks the exact configuration, that is, which nodes belong to each partition,
assuming the cut size is d. In this context, we can represent the input as r = d, and
the output as y, denoting the corresponding partition configuration. It is important
to note that the decision problem already encapsulates the computational complexity
of the relational problem. This is because one can, in principle, solve the relational
version by iteratively applying the decision problem; for instance, by successively
removing edges and checking whether the maximum cut size remains unchanged.
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Given such problem classes of decision and relational problems, one can define
several complexity classes in terms of solvability.

FEasy problems when asked for exact solution

Definition 9. Concerns about whether it needs polynomial resources to obtain
the exact solution.

Under deterministic computation

» Efficiently solvable by a deterministic machine in polynomial time —

1. P: for decision problem,
2. FP: for relational/functional problem,
3. PO: for the set of optimization problems, PO C FP.

o Efficiently solvable by a deterministic machine in polynomial space

-PSPACE, but no restriction on time. Thus, PSPACE is larger than
P-time.

Under probabilistic computation

Efficiently solvable in polynomial time, with an error probability < 1/3

o BPP: when solved in a classical probabilistic machine (bounded-error
probabilistic polynomial time), thus P C BPP.

« BQP: when solved in a quantum computer. BPP C BQP, i.e., there ex-
ists problem in BQP, which are not in BPP, example: Recursive Fourier
Sampling [214].

BQP class already provides a set of problems where quantum advantage can
be achieved, as it contains problems outside BPP. However, there are more useful
problems for optimization, which are outside P, and hence hard to solve due to the

D deterministic computation probabilistic computation C] quantum computation C] approximate optimization

Decision problems Optimization problems

(@) (b) PSPACE (C)f NPO \
NP-hard PP / APX \
/ PTAS \

FPTAS

NP-complete

QL

Figure 3.1. The inclusions of various complexity classes concerned with decision problems (b)
and optimization problems (c). The well-known complexity classes concerning only deterministic
computation are shown in (a).
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unavailability of polynomial-time algorithms. These problems are also a test bed for
quantum algorithms to be successful, such as Shor’s algorithm [66].

Hard problems when asked for exact solution

Definition 10. In classical machines.

o Although finding a solution is difficult, checking if it is a solution can be
done in polynomial time in classical machines

1. NP: for decision problem (nondeterministic polynomial time),
2. FNP: for relational/ functional problem,
3. NPO: for optimizational problem, NPO C FNP.

o« NP-complete: If all other problems in NP can be efficiently reduced
to it with a polynomial overhead in time. E.g.,- Travelling salesperson
problem, graph coloring [215].

o« NP-hard: If it is at least as hard as the hardest problems in NP, but
not necessarily inside NP (see Fig. 3.1a).

Thus, NP-complete C NP and NP-complete C NP-hard.

In quantum machines.

o« QMA: (quantum Merlin-Arthur) where the ‘yes’ instance can be verified
efficiently and with high probability in a quantum computer (see Fig. 3.1b
for its inclusion).

Average-case scenarios. Although one does not expect the quantum computer to
solve NP-hard problems in the worst case, in the average-case settings, it can gain
some advantage over a classical solver. In this context, two important concepts should
be mentioned.

(a) Overlap Gap Property (OGP): Every two solutions that are close (within
an additive error) to optimality are either close to each other or far from each other,
thus exhibiting a fundamental topological discontinuity of the set of distances of near-
optimal solutions [216]. Such behavior introduces average-case hardness in classical
algorithms, though it is still possible to gain superpolynomial speedups in quantum
computers.

(b) Computational statistical gaps: The underlying statistical problem is
information-theoretically possible, although no efficient algorithm exists, rendering
the problem essentially unsolvable for large instances [217].

Another interesting complexity class is #P', which emerges in the context of
Gaussian Boson Sampling, and is interestingly related to stabilizer theory. It is con-

!The complexity class #P consists of functions f : {0,1}* — N for which there exists a non-
deterministic polynomial-time Turing machine M such that for all inputs « € {0,1}*, the value
f(z) equals the number of accepting computation paths of M on input z. Formally,f(z) =
#accepting paths of M (z) Equivalently, #P captures the complexity of counting the number of
solutions to decision problems in NP.
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cerned with counting the number of acceptable computation paths of an NP machine
on input x. Its decision analogue is PP, and it is known that QMA C PP [218].

3.2.2 Approximate solutions

If finding exact solutions efficiently were considered the marker of success, the field of
computing would not have been motivating enough. In reality, finding an approximate
solution close to the optimal one is often sufficient. Such consideration leads to the
study of approximability, i.e., how hard it is to approximate solutions to various
problems. Although it may seem that allowing approximate solutions would reduce
the complexity of a problem, it is not that straightforward. Hence, it is essential to
understand the hardness of approximation.

A longstanding result called the PCP—-theorem informally says that, for many
problems, computing an approximate solution with arbitrary precision is as hard as
computing the exact solution. The approximate ratio, a ratio between the approxi-
mate solution and the optimal solution, quantifies the success of such an approximate
solution. For many NP-hard problems, there exist some known inapproximability
bounds. A famous example is the MaxCut problem by the Goemans and Williamson
algorithm, which achieves ~ 0.87856 [219], and there cannot exist a polynomial-time
algorithm that can achieve better than this [220] under the assumption of the Unique
Games Conjecture”. In such cases, if quantum computers can go beyond it, that would
imply that quantum computers can solve NP-hard problems or that the Unique
Games Conjecture is false.

when asked for approximate solution

Definition 11. Depending on the approximability in terms of the approxima-
tion ratio,

o APX: approximable if there are polynomial-time approximation algo-
rithms with approximation ratios bounded by some constant c. Example.-
MaxCut, MAX-3-SAT.

o« PTAS: polynomial-time approzimation scheme if it is guaranteed to find
a solution in polynomial-time within an arbitrary 1 + ¢ factor of the op-
timum, € > 0, thus the runtime is in polynomial time in system size.
Example.- Euclidean Travelling Salesperson problem.

o« FPTAS: fully-polynomial time approzimation scheme if runtime is poly-
nomial is both the problem size and 1/e. Example.- Knapsack problem.

Thus, PO C FPTAS C PTAS C APX C NPO ([see Fig. 3.1(c)].

Understanding the complexity of approximability has consequences in many-body
physics as well. For example, quantum PCP—conjecture [222-224] states that deter-
mining the ground state of a k-local hamiltonian is QM A-complete [225]. Even if
one allows approximability, it can be QM A-hard.

2The conjecture postulates that problem of determining the approximate value of a certain type
of game, known as a unique game, has NP-hard computational complexity [221].
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The hardness of approximation suggests that quantum algorithms may outperform
classical methods when there is a gap between known inapproximability bounds on
classical algorithms and provable approximation factors.

3.3 Quantum optimization algorithms

Optimization problems are of different kinds, depending on the types of variables,
objective functions, constraints, and allowed approximations. The choice of problem
formulations also defines the solution strategy. Hence, some algorithms may only
work on specific problem formulation classes. Quantum optimization algorithms are
designed to solve optimization problems using a quantum hardware device, e.g.,- an
analog or digital quantum computer. Thus, in such algorithms, it is crucial to encode
the problem in quantum bits (or dits), such that it is possible to exploit quantum
mechanical phenomena to obtain (possibly) better solution than its classical counter-
parts. Grover search [226] and the Quantum Adiabatic Algorithm (QAA) [227] are the
prominent examples of exact quantum optimization algorithms, which are expected
to require Fault-Tolerant Quantum Computing (FTQC) [150] due to the resulting
circuit sizes. In the era of noisy quantum computers [87], one may expect to exploit
quantum subroutines to accelerate known classical approximation algorithms. For in-
stance, Semi-Definite Programming (SDP) relaxations [228], or more general variants
of binary optimization problems, may profit from Quantum SDP solvers [229,230].
Similarly, the so-called Variational Quantum Algorithms (VQAs) [231] work well in
the noisy hardware, though there is no provable advantage.

In this thesis, we consider a particular type of problem known as unconstrained
discrete optimization problems. There also exists a large class of other optimization
problems, for example, constrained discrete optimization, continuous optimization
(includes convex and non-convex optimization), mixed-integer programming, and dy-
namic programming (see [22] for a review).

3.3.1 Quadratic Unconstrained Binary Optimization (QUBO)

Quadratic unconstrained binary optimization (QUBO) is a foundational example of
unconstrained discrete optimization [232-234], where the cost function is expressed as

. T
, 3.2
B 32

where x denotes the discrete decision variables, () € R™*" is the cost matrix, and n € N
is the number of decision variables. One can also consider higher-order polynomial
objective functions known as PUBO (polynomial unconstrained binary optimization).
Some ubiquitous problems, such as the maximum-cut (MaxCut) problem [see Fig. 4.1],
are naturally formulated in this QUBO.

Complexity of QUBO problem

QUBO problems are NP-hard. Also APX-hard, i.e., there cannot exist a
PTAS for QUBO unless P=NP [235].

A QUBO problem can be translated to an Ising-type Hamiltonian [232], where
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finding an optimal solution is the same as finding the ground state of the Hamiltonian.
Such a connection is fundamental to many quantum optimization algorithms. The
variables = € {0, 1} is substituted with spin variables z = 1 — 2z, where z € {—1, +1}.
By replacing the spin-variables z by the operator, Pauli-Z matrices, resulting in a diag-
onal Hamiltonian H € R*"*?" and the problem looks similar to the Ising model [232].
Now, we will discuss two algorithms in detail: quantum annealing [227,236] and quan-
tum approximate optimization algorithm [81,237].

3.3.2 Quantum annealing

Probably the first quantum computing approach introduced for solving QUBO-type
problems was quantum annealing [227,238,239]. It is a quantum adiabatic algorithm
method that specializes in finding the ground state of an Ising model by continuously
evolving (annealing) from the known ground state of an easy Hamiltonian to the
problem Hamiltonian. It is an exact optimization algorithm, reminiscent of homotopy
methods of numerical mathematics®.

The known solution is chosen as the eigenstate of the so-called mixing Hamiltonian,
H a, which should have an easy-to-prepare ground state |1), and also has a non-zero
overlap with the ground state of the problem Hamiltonian He. Moreover, it should be
non-commuting with the problem Hamiltonian, such that they do not have common
eigenstates, and allow exploration of several eigenstates (hence, it is called mizing
Hamiltonian). A common choice is

ﬁM:ZXu WhereXi:n-@(g (1))®...., (3.4)
i=1 X ,

sth

)& = \/%7 er{OJ}" |z), i.e., n-qubit equal superposition state

having ground state |+
that has non-zero overlap with every computational basis state. Starting from |¢y) =
|+>®n, quantum annealing slowly evolves the state according to the instantaneous
Hamiltonian:

H(t) = A(t)Hy + B(t)Hyy. (3.5)

This Hamiltonian & (t) is slowly evolved from Hyr at t = 0 to the cost Hamiltonian
He at t = T, whose ground state encodes the solution to the target problem (see
Fig. 3.2), following the time-dependent Schrédinger equation:

d|ty)
Tt

Le., B(t) is slowly reduced from B(0) =1 to B(T') = 0, and A(t) is slowly increased
from A(0) = 0 to A(T) = 1 (for simplicity, we choose A(t) = ¢/T and B(t) =

= H(t) [¢r) . (3.6)

3If one wishes to solve f(x) = 0, then construct a system g(x) = 0, whose solutions are known.
For example, consider the homotopy:

H(x,t):=(1—-1t)g(x)+tf(x)=0. (3.3)

By continuation, trace the paths starting from the known solutions of g(x) = 0 to the desired solutions
of f(x). Such homotopy continuation methods are symbolic-numeric, where homotopy methods treat
polynomials as algebraic objects and continuation methods use polynomials as functions [240].
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(1—t/T') throughout). According to the adiabatic theorem, if the time evolution is slow
enough, the quantum state always remains in the ground state of the instantaneous
Hamiltonian and reaches the solution state at the end of the sweep [236,241].

t=0 Figure 3.2. Scheme of quantum
annealing: starting from the ground
=T state of the mixer Hamiltonian at
t = 0, and with evolution, the cost
landscape approaches He, and then
through quantum tunneling it can
cross the energy barrier to reach the
landscape of Hc final state in the absolute minima,
which is otherwise harder to obtain

through a classical path.

energy

In practice, quantum annealing requires a very long sweep to successfully reach the
solution state, i.e., the corresponding circuits are deep and error-prone. To execute
quantum annealing on noisy digital devices with limited coherence time, one can
discretize the continuous evolution as a sequence of gates, resulting in a Trotterized
quantum annealing (TQA). A first-order Trotter-Suzuki decomposition transforms
the continuous sweep, up to O(At?), into

e—mtlfl(t) ~ e—iﬂﬁMe—ifyﬁc (3'7)
where § = (1 —t/T)At, and v = (t/T)At. Discretizing the entire quantum annealing
schedule into p time steps requires At = T'/p. The resulting discretized annealing

schedule is s s
Vs = _Ata Bs = (1 - _)Atv (38)
p p

where the time-factor of ¢ /T is replaced by the layer-number s/p. Crucially, unlike in
quantum annealing, here At and the total time T" can be modified independently by
changing p, which hands us an additional control knob for TQA.

The performance of annealing depends on the total sweep time T, and if T is large
enough, with a suitable annealing schedule, the Adiabatic Theorem guarantees that
the state |¢;) always remains in the ground state of H(t). To understand this in more
detail, we estimate how close the time-evolved state is to the instantaneous ground
state of H(t). Let’s denote the kth eigenstate of H(t) as |k(t)) with eigenvalue e (t),

H(t)Ik(1)) = er(t) k(1)) (3.9)

Here, denote |0(t)) as the ground state, and other eigenstates are orthogonal to it.
The above equation already gives us,

(4(2) %Ik(t» = GOI——= k), j # k. (3.10)

49



Chapter 3. Quantum optimization

Now, when the instantaneous state is written as a superposition of energy eigenstates,

() =D )W i), At=T/p. (3.11)
i

Then one can show that [242], the probability amplitude of being in the ground state
is

co(t) ~1+0(1/T?), (3.12)

and the error (i.e., contamination from higher excited states) is
Ciaolt) 2 [41(0) = TOOHOLL ()] + O(1/72), (3.13)

where ¢;(t) = fg ds €;(s), and

|——10(2)) , (3.14)

where Aj(t) = €;(t) — eo(t). Thus, the adiabaticity condition is written as

A~

! (j(t)|dt|0(t))‘ =5<1=T~0(1/A%). (3.15)

A;(t)?

During annealing, the system can undergo phase transitions. In the spin-glass
phases, the energy gap closes exponentially with system size, demanding an exponen-
tially long runtime [243-245], which is often not possible, and hence we are limited to
at most polynomial speedups.

In practical scenarios, quantum annealing is repeatedly run for a finite time [246],
or potentially, diabatic annealing [247]. Thus, in its practical implementation, it
often becomes a heuristic algorithm. In gate-based quantum computing, typical long

annealing times imply notably long quantum circuits, which become challenging for
NISQ devices.

3.3.3 Variational quantum algorithms

Due to the intrinsic noise and errors present in Noisy Intermediate-Scale Quantum
(NISQ) devices, the behavior of the system often deviates from the idealized theoreti-
cal model. As a result, the parameter tuning that we aim to perform in an ideal setting
does not translate directly to what is actually achieved on the hardware. In such cases,
the so-called Variational Quantum Algorithms (VQAs) [231] have attracted a lot of
attention. Such algorithms exploit the quantum hardware for the resource-intensive
job of evaluating expectation values. Specifically, as Fig. 3.3 depicts, provided some
problem data D, a parametrized circuit U (1) is empirically evolved in the quantum
computer, and then from measurement in some basis {O} corresponding function
C(¥) is evaluated. Thereafter, classical optimization of the variational parameters is
executed over the experimentally-measured cost function to obtain updated parame-
ters, which are used as feedback for the circuit.

As finding the optimal parameters in VQA is considered NP-hard [249], the clas-
sical optimization becomes the main bottleneck in VQA. Yet, it can still be useful in
the path of finding good solutions, even potentially offering speedups [250].
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Figure 3.3. Variational algorithms iterate between the evaluation of experimental estimates of the
expectations and classical optimization with updated parameters. (adapted from Ref. [248])

Barren plateaus [251]. The training of a parametrized circuit, i.e., finding the
optimal parameters, is a major challenge, especially if the cost landscape becomes flat,
the gradients concerning the parameters are exponentially small, and the optimization
process cannot proceed. Formally, a cost function C'(+}) exhibits a probabilistic barren
plateau if, for some variational parameters 6; € 1, the variance of the partial derivative
of the cost function vanishes exponentially in the number of qubits:

Varg[0,C(9)] € O(b™™), b> 1. (3.16)

This inequality immediately implies (due to Chebyshev’s inequality) that the proba-
bility that it will find a gradient different than a given constant c is upper bounded,

Pr[|:C(9)] > d] < Cisz[aicw)]. (3.17)

A type of VQA is the Variational Quantum Eigensolver (VQE) [252], which ap-
proximates the ground states of Hamiltonians and was initially proposed for quantum
chemistry problems. Here, the job of a quantum computer is to evaluate (¥(0)|H| ¥ (9))
for a given parameter value of 1. The variational principle guarantees that this ex-
pectation value is lower bounded by the ground state energy of H, and the equality
is reached if and only if the ground state is reached:

(WIHI) = > (W) (e | H e, (e [0)

€1,€2 Espec(I:I)

= > WU > > Bl )P = E. (3.18)

e€spec(H) e€spec(H)

3.3.4 Quantum Approximate Optimization Algorithm (QAOA)

A special class of VQE is the Quantum Approximate Optimization Algorithm (QAOA)
[81], which has been successfully applied to several types of optimization problems in
the last decade. QAOA is motivated by both quantum annealing and VQE. The
standard QAOA applies p layers of unitaries

Uk(ﬁ,'y) = exp(—zﬂkﬁM> exp(—iyk]:lc>,where k=1,..,p, (3.19)
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Chapter 3. Quantum optimization

to the ground state of a mixer Hamiltonian Hy,, eg., —> . X; with X; being a
Pauli operator) to create the trial state [(3,7)) (see Fig. 3.4). To obtain the op-
timal values of B8 = (f4,...,08,) and v = (71,...,7), which minimize the energy
(W(8, 'y)|]:[c|1p(ﬁ, 7)), a classical optimizer is employed. The energy is measured on
the quantum processor to find the best solution.

Performance guarantee. QAOA appears as a promising candidate despite being a
heuristic algorithm, because it comes with worst-case performance bounds for certain
problems and algorithmic settings. For example, the MaxCut problem on a 3-regular
graph, there is a lower-bound on the approximation ratio of 0.692 for p = 1 [81],
0.7559 for p = 2, and 0.7924 for p = 3 [253]. Moreover, for d-regular graphs, nu-
merically QAOA outperforms many known Semi-Definite Programming (SDP)-based
relaxations when p > 11 [254,255].

Variational parameters
(?lﬁ) = (YIl "'r}’pv Blv '"lﬂp)
It 1 Measure Figure 3.4. Structure of QAOA

|0) [+) = H _@_ ansatz. Every layer consists of the
10) . 4) ® | ® ® ® @ Qs 'g cost Hamiltonian (H¢) and the mixer
I = F & =% 2 Hamiltonian (Hps) with correspond-
S : = 5 I & : S :_,-’-. ing variational parameters {3, v } for
|0)|+)- | _m_ k=1,....p.
\_*_J \ﬁ_l 5
Layer 1 Layer p g.D
e

Similar to any hybrid optimization algorithm, QAOA is also bottlenecked by the
training of variational parameters. Hence, considerable research has been done on
different training strategies for QAOA, e.g. -

1. initialize with random parameters and optimize them by evaluating the cost
function multiple times (conventional approach).

2. bound-search the parameter space of (E ,7) to certain regimes, depending on the
symmetry of Ho and Hy, (e.g., time-reversal symmetry, Z, symmetry) [237].

3. using Physics-inspired initialization, e.g.,-

(a) Trotterized quantum annealing inspired parameters [256].

(b) linearly interpolate the curve formed by optimized parameters at depth p
to extract a set of initial parameters for level p 4+ 1 [237,257].

(¢) machine learning based approaches [258,259].

4. evaluating the cost-function classically using tensor networks or Clifford pertur-
bation theory from empirically sampled solutions obtained in hardware, which is
computationally easier than sampling the expectation value from the complete
quantum state [260,261].

5. using the concentration of parameters, where the optimal parameters become
problem-instance independent, and reuse the parameters for multiple different
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problem-instances by training on one of them [262-264]. Such a transfer of
parameters can work for the problem of the same size and sometimes also for
larger sizes. It is often helpful because one can train a small system classically
and then apply it to a larger system where classical optimization is not possible.
It also enables reasonable solutions to a problem quickly.

Recently, the Qiskit community has released a repository called gaoa training
pipeline [265], which is a set of tools designed to generate optimal parameters for
QAOA Ansatz circuits using classical means. In Chapter 6, we use the package to
obtain optimal parameters for QAOA up to 76 qubits efficiently.

Variants of QAOA. Several variants of QAOA, depending on different mixers and
initial states, have been proposed to achieve certain goals, see [266] for a review.

1. The Quantum Alternating Operator Ansatz encodes constraints into the mixer
to preserve the constraints and to restrict the algorithm to feasible states [267].

2. Using a classical algorithm to obtain an approximate solution, and then using it
to warm-start QAOA to further improve upon the obtained solution [268,269].

3. Recursive QAOA uses the quantum computer to produce a sequence of reduced
problems by fixing the strongest one, and at each step, QAOA estimates the
correlation between variables. The process is iterated until the reduced problem
becomes small enough for classical solvers [270].

4. ADAPT-QAOA [271] starts with a pool of candidate mixers. At each iteration,
it selects the mixers from the pool that give the greatest gradient improvement
to the cost function, instead of fixing the mixers beforehand.

Motivated by QAOA, the Mean Field Approximate Optimization Algorithm [272] is
developed, where the QAOA circuit is approximated through mean-field approxima-
tions without any quantum effects.

3.4 Basics of quantum computation

In the upcoming sections, we will explore how to work with real quantum computers.
To prepare for that, it is important to first introduce some fundamental concepts,
terminology, and standard gate sets. Quantum computers aim to exploit the uniquely
quantum mechanical properties of matter to process information in ways that classical
computers cannot. Superposition enables quantum bits (qubits) to represent multiple
states simultaneously, while entanglement allows for non-classical correlations that can
be harnessed for computational advantages. A variety of physical platforms, including
trapped ions [273], superconducting circuits [274], Rydberg atoms [275], and photonic
systems [276], have been developed to realize quantum processors.
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Chapter 3. Quantum optimization

3.41 Quantum bits and gates

In classical computing, the fundamental bits of information are 0 and 1. Similarly, in
quantum computation, the unit of information is encoded in two objects* They reside
in the Hilbert space, where superposition is allowed. The two logical states, also known
as qubits, defined in the two-dimensional Hilbert space H can be written as basis
matrices of a 2-dimensional system. One popular choice is considering the eigenstates
of the Pauli-Z matrix as a qubit basis, which are also known as the computational

e 0) = (é) D= ((1)) . (3.20)

This allows us to write a generic state of a single qubit in the continuous space of its
superposition,
W) =al0) +6[1), a,feC, |af+[3] =1 (3.21)

Such superposition principle implies that the probability amplitude defines the state,
not the probability, which means (|0) +|1))/v/2 and (]0) —|1))/+/2 are different state,
despite them having same probability of occurring |[0) and |1). In matrix notation,
it is easy to see that they are orthogonal to each other, which is quite different from
the classical world. Thus, the superposition of states allows us to define three sets of
operators, whose eigenstates form one of the possible bases in the Hilbert space of a
single qubit, with eigenvalues +1. Pauli matrices define the operators-

Z:(é _01>,X:((1) é),yz<? _0’) (3.22)

We can represent a single-qubit state on the sphere, known as the Bloch sphere,
where the coordinates denote the expectation value of o = X, Y, Z, (see Fig. 3.5)-

7 , 0
|4) = cos 3 0) + €™ sin 3 1), 6€][0,7], ¢ €[0,2m). (3.23)
(x,y,z) = (sin 6 cos ¢, sin f sin ¢, cos ). (3.24)

Figure 3.5. Bloch sphere: representation of the
qubit state on sphere. At the opposite poles of the
sphere along the axes, we find the eigenstates of
the corresponding Pauli operator. Note that the
o orthogonal states |0) and |1) are § = 7w away from

3y [0)+il1) ) .
»Y A other, contrary to the geometrical understanding
of w/2. This is an artifact of SU(2) symmetry of
spins instead of SO(2), and hence in Eq. (3.23),

there is /2 instead of 6.

Points lying on the surface of the sphere represent pure states, while mixed states

41t is not limited to two units only. A qudit generalizes the concept of a qubit (d = 2) to a
quantum unit of information that exists in a d-dimensional Hilbert space.
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3.4 Basics of quantum computation

lie inside the sphere. Computational basis states (corresponding to the eigenvectors
of Pauli-Z) lie at the poles: |0) <> (0,0,1) and |1) <> (0,0,—1). The eigenstates of X
are denoted by

1

\/5(!0> +0), =)

1

\/5(|0> - 1)

+) (3.25)

Similar to the logic-gates (OR, AND, etc) in classical computations, one can con-
struct quantum gates in quantum computations that manipulate the state of qubits
through mathematically defined, reversible transformations. These gates are repre-
sented by unitary matrices, which preserve the total probability (or norm) of the
quantum system, a key feature of quantum mechanics. Quantum gates act on one
or more qubits and are the building blocks of quantum circuits. The Pauli matrices,
specifically Pauli-X, Y, and Z, are examples of single-qubit quantum gates.

Beyond the Pauli matrices, there are also other unitaries that are used as gate-
sets for digital quantum computing, which allow the manipulation of qubits to modify
their state. Any quantum algorithm can be reduced to a sequence of gates, called a
quantum circuit, applied to a register of qubits.

Together with the identity operator, Pauli matrices form the basis of two-dimensional
Hermitian matrices. Moreover, the Pauli matrices can also be used to generate a ro-
tation of an arbitrary angle around the axes of the Bloch sphere:

Rotation gates: R, (V) = e, ge {X,Y, Z} (3.26)

Other single-qubit gates often used in quantum algorithms are :

- 1 /1 1 A 10 A 1 0
Hadamard H = NG (1 _1) , Phase S = <0 z) , T'= (O e”/4) . (3.27)

They correspond to different quantum operations: the Hadamard-gate (]:I ) creates a
superposition state, the phase-gate (S) creates a phase in one of the superpositions,
and the T'(7/8)-gates are used as non-Clifford resources.

If we expand this framework to a system composed of n-qubits, the Hilbert space
of the system can be defined by the tensor product of the individual Hilbert spaces of

each qubit:
i=1

In such scenarios, there could be gates that act on more than one qubit simultaneously.
In fact, two-qubit gates are necessary to create quantum correlation, for example, a
CNOT gate. This gate conditionally inverts the state of the second (target) qubit
depending on the state of the first (control). For example, if the control qubit is set
to 0, the state of the target qubit is left unchanged; if the control qubit is set to 1,
then the target qubit is flipped. Depending on the physical system used for their
construction, it can be achieved by various types of gates, such as the controlled-Z
(CZ) or the iSWAP gate.
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1000 100 0 1000
0100 010 0] . 00 i 0
CNOT= |0 00 11°C%2=10 0 1 o |SWAP=]y ; o o 328
0010 000 —1 0001

Notably, the CNOT gate is considered a fully entangling gate as it can transform a
separable state into a maximally entangled one, resulting in the generation of one of
the Bell states. For example, by acting on the Hadamard gate on the left qubit and
then using the CNOT gate, we can obtain one of the Bell states,

1 CNOTy, 1

V2 V2

A circuit is defined through a set of gates applied in a given sequence:

100) 2% —(|00) + |10)) (|00 + [11)). (3.29)

) = (H Um%(@)) o) (3.30)

where [1)g) is an initial states (often it is [0)®™), and Uzkjk(gk) denotes the unitary
gate acting on qubits 7 and j;, with parameters 6;, where k is the index of the gate.

3.4.2 Quantum measurements

Quantum measurement differs fundamentally from classical measurement in that it
collapses a superposition of states into a single outcome, with probabilities governed
by the system’s wavefunction. Despite the probabilistic nature of quantum measure-
ments, deterministic algorithms can still be implemented on a quantum computer.
By executing the same algorithm multiple times and analyzing the resulting outcome
distribution, one can extract reliable, deterministic results. Consequently, quantum
computing often requires repeated execution of identical circuits to capture the full
range of possible measurement outcomes. The accuracy and confidence in the results
improve with the number of measurements performed.

Quantum measurement plays a central role in numerous quantum algorithms, such
as quantum teleportation, error correction, and measurement-based quantum compu-
tation. In these protocols, measurement outcomes guide the choice of subsequent oper-
ations, allowing for the manipulation and transfer of quantum information. However,
since measurements can introduce decoherence, reducing measurement-related errors
is essential in designing reliable quantum algorithms. Additionally, post-processing
methods are often required to interpret measurement results and correct for noise or
inaccuracies.

To show the measurement process in quantum computing, we define a set of mea-
surement operators {Mm}, which act on the states being measured. The index m
refers to the possible measurement outcomes. If |¢)) is the state of the quantum sys-
tem immediately before the measurement, the probability of obtaining the result m
is:

p(m) = (| M, M, |9), (3.31)
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3.4 Basics of quantum computation

and since the operator M,, is not unitary, the state after the measurement needs to
be normalized:

M, |4
[Y") = - T‘ A> (3.32)
(W[ M Mo |10)
The measurement operators satisfy the completeness relation:
S MiM, =1 = ) p(m)=1. (3.33)

Let us now examine a straightforward example: the measurement of a qubit in
the computational basis. This scenario involves two possible outcomes, represented
by the measurement operators:

Ny = [0)(0], ¥y = [1)(1. (3.34)

Assuming the qubit is in a general state |¢)) = «|0) + 3|1), the probability of obtaining
outcome 0 is:

p(0) = (G[MMo|) = ($[Moly) = |af?. (3.35)
Similarly, the probability of measuring outcome 1 is given by:
p(1) = |B/*. (3.36)

Measuring observables

In quantum computing, information about a circuit is extracted by measuring ob-
servables, i.e., quantities associated with Hermitian operators, often constructed from
Pauli matrices. Theoretically, the expectation value of an observable O is obtained
as:

(0) = (¥|O). (3.37)
In an experiment, the first measurement is executed by evaluating the probability of
0 or 1 along the z-basis (projection to the Z), and then it can be used to obtain the
expectation value. For instance, the expectation value of the Pauli-Z operator for a
single-qubit state is:

(2) = (Wl ZIy) = p(0) = p(1). (3.38)

Similarly, one can determine the expectation values of X and Y by first rotating the
state into the respective bases and then measuring the computational basis. Hence,
to measure the observable O, one needs to find a unitary U such that O = UTZU.
Then, projective measurement of the state is the same as measuring the expectation
value (Z) as the states are represented in the computational basis.

WOy = (| UTZU [4) = (/| Z [¢') = p(0) = p(1). (3.39)

For example, in Tab. 3.1, we show how to measure different O, using corresponding
unitary rotations U.

This methodology naturally extends to multi-qubit systems. For example, to com-
pute the expectation value of a product operator such as Z,ZJ on a two-qubit state,
one multiplies the outcomes of the individual measurements on qubits ¢ and j. For
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Measurement operator (O) | Unitary transformation (U)
Z 1
X H
Y HS'
1 I®I
1® 7 SWAP

Table 3.1. Unitary transformation (U) for measuring observables (O).

example,

(Y| Z1Z2|1) = p1(0)p2(0) — p1(1)p2(0) — p1(0)p2(1) + pr(1)p2(1), (3.40)

where p; denotes the probability corresponding to site i.

Tomography

As previously discussed, one can measure specific operators to infer about the features
of the quantum state. One can similarly reconstruct the full state. Another hurdles
come in noisy or mixed settings that are described by a density matrix (or density
operator), which generalizes the concept of a wavefunction. Given a statistical en-
semble of n pure states |¢;) € H with associated probabilities p;, the density matrix
is defined as:

p= ZPZWWWJ (3.41)

The density operator is a Hermitian, positive semi-definite matrix with unit trace.
When n = 1, the system is in a pure state. Otherwise, the state is mixed. One can
distinguish between the two by evaluating:

Tr(p?) = (3.42)

1 for pure states,
<1 for mixed states.

A general mixed state of a single qubit can be decomposed in terms of the Pauli
matrices:

3
1 N . A A oA
P=3 <H+ E Ti0i> , 0=(X,Y,2). (3.43)

Here, the vector r = ((X), (Y), (Z)) represent the Bloch vector. If |r| = 1, the state
lies on the surface of the Bloch sphere and is pure. If |r| < 1, it corresponds to a
mixed state residing inside the sphere. By estimating the expectation values of the
Pauli operators, one can reconstruct the full density matrix of a qubit. This process
is known as quantum state tomography [277).

3.5 Superconducting quantum computer

The fundamental ingredients for quantum computers are qubits, two-level quantum
systems, robust control of gates, and the ability to measure the final output. However,
to retain the quantum properties, it is also important to isolate the system while
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3.5 Superconducting quantum computer

allowing accessibility to manipulate qubits in terms of gates as well as measurements.
Regardless of the physical system used for the physical realization of a qubit, a qubit
Hamiltonian is generally given by the following form:

H=c(t)Z+c(t) X +¢,()Y, (3.44)

where XY, Z are Pauli matrices, and ¢, ¢y, ¢, are their respective tunable coefficients.
For example, when considered a Harmonic oscillator kind of Hamiltonian, the first two
levels can form the computational basis states, i.e., |0) and |1), and are separated by
an energy difference hw,, where w, is the oscillator frequency. In this case, ¢, = hw,.
This term produces rotations around the z-axis of the Bloch sphere, representing phase
gates. On the other hand, by manipulating the coefficients c,(t), c,(t), a qubit can
oscillate between the two states, performing arbitrary single-qubit rotations. Different
physical systems can be used to implement a qubit, such as photons, electrons, ions,
or neutral atoms. Rather than exploring all quantum platforms in detail, we focus on
superconducting qubits, utilized in IBM’s quantum devices, where our experiments
are conducted. In this section, we provide a brief introduction to the topic, primarily
following Krantz et al. [274] as the primary reference.

The superconducting qubits are implemented using electrical circuits, typically
arranged in two-dimensional layouts, while the third dimension is reserved for inter-
facing with control and readout hardware. To understand how a superconducting
qubit circuit works, it is useful to first understand how a linear LC resonant circuit
works [Fig. 3.6(a)]. Due to the presence of both the capacitor (C) and inductor (L),
the energy oscillates between the electric energy of C (think of it as kinetic energy
of electrons) and the magnetic energy of L (potential energy of the oscillator). From
here, one can see that the instantaneous energy is defined from the current and voltage
of the capacitor or inductor,

B(t) = / VI (3.45)

B(t) = / vy (3.46)

Now using the relations, V = L% and I = C Cfi—‘t/, we can write the energy terms for

the capacitor and inductor in terms of the node flux:

1 . 1
T = —Cd? = P2 4
c 2(] . Up 5T (3.47)

From here, we can define the Lagrangian as T — Uy, and can derive the Hamiltonian
using Legendre transformation as [274],

1 1 1
H=-CV?+4 =LI* with w=——. 3.48
2 2 VIC (3.48)

We can further introduce the reduced charge n = @Q)/2e and reduced flux ¢ = 27 /d,
to obtain the Hamiltonian in terms of Ec = ¢?/(2C) and Ep, = (®¢/27)?/L, in the
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quantized form as
2 o Lo 5
H =4FE:n* + §EL¢ . (3.49)

Here, &, = h/(2¢) is the superconducting magnetic flux quantum, and the number
operator 7 is the excess number of Cooper pairs. In this quantum scenario, (¢, n] = i,
and one can get Harmonic oscillator [Fig. 3.6(b)],

- 1
H = hw,(a'a + 5), wy = \/SELEc/R, (3.50)
where a'(a) are the usual creation (annihilation) operator.
Figure 3.6. (a) Circuit

(a) i ¢ (c) ¢ for a parallel LC-oscillator.
The superconducting phase

L c "\; L c | on the island is denoted as
r T G ° ¢, referencing the ground as
zero. (b) Energy poten-

(b) = (d) = tial 'for t.he quantum har-

5 5 monic oscillator, where en-

\ / Transmon ergy levels are equidistantly

—~ 4 = 4 spaced hw, apart. (c) Joseph-

3 3 3 3 son qubit circuit, where the

I |2) > nonlinear inductance Lj; is

g 2 hw,. g 2 o shunted by a capacitance, Cs.

5 1 1) S ) g é (d) The Josephson inductance

0) %5 makes the potential anhar-

0 QHO 0 Y2 monic, forming a computa-

-m w2 0 w2 ow -r w2 0 w2 ow tional subspace of |0) and |1)
Superconducting phase, ¢ Superconducting phase, @ (Taken from Ref. [274]).

However, in this case, the level spacing of all the energy levels is equal, and hence
there could be transitions to other higher levels by using the same frequency of w,.
To mitigate this problem of unwanted dynamics involving non-computational states,
we need to introduce non-linearity (anharmonicity) into the system, which can be
achieved by using a Josephson junction that serves as a nonlinear inductor. The
energy corresponding to it can be derived using two relations,

h do

I =1sn¢y, V=——F, 3.51
sin ¢ 2e dt ( )

resulting in a modified Hamiltonian, making the energy spectrum non-degenerate
[Fig. 3.6(d)]—-
H = 4Ech* — Ejcos ¢. (3.52)

Here, Ec = €%/(2(Cs+C})) is the total capacitance, including both shunt capacitance
Cs and the self-capacitance of the junction C;, and E; = I.9q/27 is the Josephson
energy, I. being the critical current of the junction. The system dynamics is governed
by the E;/E¢ ratio. As the community has realized that charge noise is more challeng-
ing to mitigate than flux noise, it is often chosen as F; > Es. Additionally, current
experimental technology enables greater flexibility in engineering the E; component.
To achieve this limit, one approach is to make Ex small by shunting the junction with
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3.6 Quantum stack for running on a quantum computer

a large capacitor Cy > C [see Fig. 3.6(c)], which is known as the transmon qubit®.
In this limit, one can express the state in terms of the superconducting phase ¢, and
the ¢ does not fluctuate much. In such scenario, we can expand the cos ¢ in power
series,

Ejcos¢ = %EﬂbQ — iEJ(b‘l + O(¢%). (3.53)

Now, the qubit frequency becomes w, = (v/8E;Ec — E¢)/h. The excitation to higher
states can be suppressed either by a large enough anharmonicity or by using robust
control techniques, and thus, one can achieve a two-level system

= %Z (3.54)
In practice, several architectures for superconducting quantum computers exist, such
as frequency-tunable qubits [279], fixed-frequency qubits with static couplings [280],
and fixed-frequency qubits with tunable coupling elements [281, 282].

3.6 Quantum stack for running on a quantum computer

Executing quantum optimization on noisy devices requires specialized tools and best

practices to achieve good results from the hardware. We focus on gate-based cloud
computing platforms, where quantum algorithms theorists can directly test their algo-
rithms on hardware. In abstract design, Fig. 3.7 describes the common stages of the
quantum stack, which also helps us to understand where scalability and performance
bottlenecks arise.

At the highest level of the quantum computing stack lies a conceptual represen-
tation of the algorithm, such as abstract, hardware-agnostic, and built from math-
ematical formulations and logical structures tailored to solving a specific problem.
As this algorithm progresses through the stack, a transpilation process transforms it
into a hardware-compatible circuit by translating abstract operations into executable
instructions for the chosen quantum platform. During this phase, additional circuit
elements may be added or adjusted to support error mitigation. Next, a pulse-level
compiler further refines these instructions into precise electromagnetic pulses designed
to manipulate quantum states and carry out the intended computation. This transfor-
mation from abstract logic to physical execution highlights how the algorithm evolves
across layers of the stack, with each stage providing opportunities to optimize perfor-
mance on noisy quantum hardware.

3.6.1 Adjusting quantum problems and algorithms

From a pen-and-paper abstract circuit to hardware-aware quantum problems or problem-
dependent circuit structures— these are crucial in mitigating the effects of noise at
the lower level of the quantum stack. For example, a problem with more qubits and
low connectivity could have a lower noise effect compared to a model with densely

®The name transmon comes from ‘transmission-line shunted plasma oscillation qubit’ [278]. The
suffix -mon refers to its similarity to the Cooper pair box (often called a quantronium) and its oscil-
latory behavior, reminiscent of other artificial atoms like the fluxmon or phasemon. The trans- prefix
highlights the addition of a large shunting capacitance that suppresses charge noise, transforming
the charge qubit into a more stable, weakly anharmonic oscillator.
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(a) Quantum algorithm

[+) (gm*e —hH Hf’f"BJHXB Figure 3.7. Abstract levels of
(b) Transpilation quantum stack from quantum algo-
rithm to quantum processing unit
E B0 (QPU). (a) Quantum algorithm
2(0) N e
in high-level quantum circuit, (b)

¢) Error mitigation
(c) & Circuit transpiled to native-gate

AU (00, 01,0) m (%5, 07, 05) m (012, 015, 01a) | sets of the QPU, (¢) Error mit-

{U (03,04, 05 U(8y, 010,011 U(015, 016, 617) }‘ igation methods, (d) QPU is in-
(d) Pulse level structed with physical pulses cor-
responding to the native-gate in-
structions, (e) finally, the circuit
is compiled into QPU-executable
waveforms, (f) which are run on the
(e) Payload compilation QPU (taken from Fig.4 of [248]).

(f) Quantum processing unit

connected variables. Alternatively, one can project a fully-connected QUBO problem
onto the sparse connectivity of a quantum computer [283].

To efficiently utilize the quantum resources in the hardware, it is often helpful to
select the algorithms wisely. For example,

o Warm-start can reduce the number of QAOA layers [268, 269].

e Including the constraints of the optimization problem in the mixer instead of
the cost function [267].

 Counter-diabatic terms can improve the quality of the solution [284].
« Using circuit-cutting to reduce the depth and fight against coherence time [285].

Nevertheless, it is crucial from a hardware perspective to choose the methods that
limit the final circuit depth and gate counts, without reducing the solution quality.

3.6.2 Transpilation

A transpiler plays a crucial role in quantum computing by converting a quantum
circuit into another version that adheres to the constraints and capabilities of the
target quantum hardware. This transformation typically results in a lower-level circuit
expressed in domain-specific languages for continuous-variable platforms. Because
every quantum device has unique physical and architectural characteristics, transpilers
must be adapted to each hardware platform to ensure optimal performance.

To generate circuits that can be executed effectively on a given device, the tran-
spilation process must consider several constraints, including the hardware’s native
gate set and the qubit connectivity. For the NISQ devices, additional factors, such
as gate error rates, qubit decoherence times (e.g., Ty and T3)°, and cross-talk play
a significant role. Thus, the effectiveness of the transpiler has a substantial impact

6T, or relaxation time, is the average time it takes for a qubit to decay from the excited state
|1) to the ground state |0). 75, or dephasing time, measures how long a qubit maintains phase
coherence between the states |0) and [1). T3 is always less than or equal to T3, and both are critical
for determining how long quantum information can be stored and manipulated reliably.
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3.6 Quantum stack for running on a quantum computer

on both the total gate count and the overall execution fidelity of the algorithm on
hardware.

# Tips: Check your gate counts and circuit depth after transpilation
print("Gate Counts:", qc.count_ops())
print("Circuit Depth:", qc.depth())

Generally, the transpilation process involves three main steps:

1. Qubit selection

This step is influenced by both the hardware’s characteristics and the specific re-
quirements of the algorithm. When not all qubits on the chip are needed, it is ad-
vantageous to select the most reliable ones based on a suitable performance metric.
Metrics might include gate fidelity [286], cross-talk levels [287], or layer fidelity [288],
depending on the circuit’s structure. For circuits dominated by two-qubit operations,
choosing qubits with high two-qubit gate fidelity is appropriate [286]. Conversely, if
the algorithm requires many mid-circuit measurements, measurement fidelity should
influence the selection [289]. In some quantum optimization problems, individual de-
cision variables are mapped to specific qubits, and the mapping itself can affect the
circuit depth [290].

## (ubit selection

import networkx as nx

import numpy as np

from typing import Tuple, Dict, List, Any

from networkx.algorithms.isomorphism import GraphMatcher

def make_subgraph(num_qubits: int) -> nx.Graph:
"""Example: Constructs linear structure."""
edges = [(i, i + 1) for i in range(2 * num_qubits - 1)]
return nx.from_edgelist (edges)

def evaluate_mapping(graph: nx.Graph, mapping: Dict[int, int], backend:
— Any) -> Tuple[float, List[int]]:
Computes circuit fidelity based on gate errors and returns the list of
— measured physical qubits.
reverse_map = {v: k for k, v in mapping.items()}
fidelity = 1.0
for edge in graph.edges():
physical_edge = (reverse_mapledge[0]], reverse_mapl[edge[1]])
try:
gate_error = backend.properties().gate_error("ecr",
< physical_edge)
except:
gate_error = backend.properties().gate_error("ecr",
— physical_edgel::-1])
fidelity *= (1 - gate_error)
# All logical qubits are measured now
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def

measured_qubits = list(mapping.values())
return fidelity, measured_qubits

find_best_qubits(

num_qubits: int,

backend: Any,

minimum_fidelity: float,
readout_threshold: float = 0.99

) -> Tuplelint]:

nimnn

Returns the best mapping tuple that satisfies fidelity and readout
< threshold.

If no mapping meets criteria, returns an empty tuple and prints a
— message.

logical_graph = make_subgraph_for_two_copies(num_qubits)
hardware_graph = nx.from_edgelist(backend.coupling_map.get_edges())
matcher = GraphMatcher (hardware_graph, logical_graph)

used_qubits = set()

for mapping in sorted(matcher.subgraph_isomorphisms_iter(), key=lambda
— m: hash(frozenset(m.items()))):
ordered_mapping = tuple(mappingl[i] for i in range(2 * num_qubits))
if set(ordered_mapping) & used_qubits:
continue

fidelity, measured_qubits = evaluate_mapping(logical_graph,
-~ mapping, backend)

readout_fidelities = [
1 - backend.properties() .readout_error(q) for q in
< measured_qubits

]

avg_readout = np.mean(readout_fidelities)

if fidelity >= minimum_fidelity and avg_readout >=
— readout_threshold:

print ("map_used:", ordered_mapping)

return ordered_mapping

used_qubits.update(ordered_mapping)

print("No valid mapping found above fidelity and readout thresholds.")
return ()
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2. Gate decomposition

In this phase, high-level operations are broken down into sequences of native gates sup-
ported by the hardware [291-293]. Achieving this requires a universal gate set [294],
and the choice of decomposition strategy depends on the desired trade-off between
circuit accuracy and depth. Some techniques are exact, while others allow for ap-
proximations that reduce gate count and depth at the cost of some fidelity. For
instance, exponentials of Pauli operators can be implemented using Pauli-Z rotations
along with local two-qubit gates and single-qubit Clifford gates [295]. In noisy en-
vironments, approximate compilation methods may be preferred to keep the circuit
shallower [296,297].

# transpile from the qc to backend using basis_gates
transpile(qc,
basis_gates= backend.basis_gates,
initial_layout=[idx for idx in range(O,n_qc,1)]),
[idx for idx in range(O,n_qc,1)],
inplace=True)

3. Qubit routing

Limited connectivity between qubits requires routing strategies to enable interac-
tions between non-adjacent qubits. This typically involves inserting SWAP gates to
bring qubits into proximity. General-purpose routing algorithms exist for arbitrary
circuits [298-300]. However, some quantum algorithms, such as QAOA, produce struc-
tured circuits with blocks of commuting two-qubit gates. Leveraging this structure
allows for more efficient routing and shallower circuits [290, 301-303]. Still, when
the problem graph is denser than the hardware’s coupling map, a larger number of
SWAP gates may be needed, increasing depth [301]. Consequently, quantum algo-
rithms that map to sparse graphs tend to perform better on devices with limited
connectivity [286,304], highlighting the importance of identifying classically complex
problems that remain sparse.

Some modern hardware platforms support dynamic circuits, which include mid-
circuit measurements and conditional logic executed within the coherence time of
the qubits [305]. These capabilities can be leveraged to address connectivity issues
more efficiently [306]. For example, a QAOA circuit that would traditionally require
SWAP operations to respect the layout of a grid-like coupling map can be replaced
with a constant-depth implementation that uses auxiliary qubits at a quadratic over-
head [307]. This area is still under active research, with the intention of reducing both
circuit depth and width.

It is also important to note that hardware limitations vary across quantum tech-
nologies. For example, trapped-ion systems often feature all-to-all qubit connectivity,
which allows them to execute dense circuits without increasing depth [308]. However,
these systems currently scale to fewer qubits than superconducting platforms, limiting
the size of problems they can handle.
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3.6.3 Error suppression and mitigation

Once a quantum circuit has been transpiled, it may be further modified to incorporate
instructions aimed at suppressing or mitigating errors.

Error suppression reduces the effects of noise in quantum circuits without requir-
ing additional measurement shots. A well-known method in this category is Dynamical
Decoupling (DD), which mitigates non-Markovian noise by inserting additional pulses
during idle times in a circuit [309-311]. This can improve circuit performance with
minimal resource overhead. However, when the transpiled circuit is dense, such as in
QAOA circuits employing SWAP networks [286], the limited idle time may restrict
the use of DD. In contrast, circuits with longer idle periods, such as those native to
hardware with heavy-hex connectivity, can benefit substantially from DD [312].

Dynamical decoupling (DD) is a family of open-loop quantum control techniques
used to suppress dephasing in quantum systems by averaging out environmental noise
through time-dependent control pulses. It originates from refocusing techniques in
NMR (like spin-echoes) and involves applying a carefully timed sequence of unitary
control pulses to reverse or cancel out the effect of unwanted system-environment
interactions.

# using dynamical decoupling

from qiskit.circuit.library import XGate

from qiskit.transpiler import PassManager, InstructionDurations
from qiskit_ibm_runtime.transpiler.passes.scheduling import

< ALAPScheduleAnalysis, PadDynamicalDecoupling

durations = InstructionDurations.from_backend (backend)

dd_sequence = [XGate(), XGate()]

pm = PassManager ([ALAPScheduleAnalysis(durations),
PadDynamicalDecoupling(durations, dd_sequence)])

circ_dd = pm.run(tqc)

Error mitigation methods aim to reduce the impact of noise by applying classical
pre- and post-processing around the quantum circuit execution. These approaches do
not require full-scale quantum error correction, which involves encoding logical qubits
into large arrays of physical ones [313]. While error mitigation does not eliminate
errors, it can enhance computational results at a lower classical cost [314-316]. Com-
mon techniques in this category include Probabilistic Error Cancellation (PEC) [317]
and Zero-Noise Extrapolation (ZNE) [44,315,318,319], both of which are designed to
yield more accurate expectation values.

« PEC involves characterizing the noise channel A associated with layers of Pauli-
twirled gates [317]. Although the inverse channel A~! is non-physical, it can
be approximated using quasi-probability decompositions to yield an unbiased
estimate of a noiseless observable O. The trade-off is a variance increase by a
factor of 72, where v > 1 reflects the strength of the noise in the learned model
and serves as a proxy for the circuit’s execution fidelity. The value of  is closely
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3.6 Quantum stack for running on a quantum computer

related to metrics like Layer Fidelity (LF) and Error Per Layered Gate (EPLG),
which characterize hardware noise in large-scale systems [288]. If the average
noise factor per qubit is 7, then a circuit with n qubits and d layers will incur
a mitigation cost scaling as ¥2*"*¢. PEC becomes impractical for large-scale
circuits due to its exponential variance overhead; for instance, applying PEC to
60 CNOT layers on 127 qubits yielded a v* value of 10'*® in Kim et al. [44].
To address this, Probabilistic Error Amplification (PEA) was introduced [44],
which instead amplifies the learned noise to enable extrapolation, potentially
reducing bias in the final estimate. PEA and PEC are particularly efficient
when circuits consist of a small number of repeating gate layers, as is the case

with SWAP-network-based designs [301].

o ZNE, on the other hand, estimates the zero-noise expectation value by execut-
ing equivalent circuits at different noise levels and extrapolating the results.
Early implementations involved pulse stretching [315], which introduced sig-
nificant calibration overhead, or gate folding, which increased circuit depth.
Newer strategies, such as partial gate folding [320] and pulse-level techniques
like cross-resonance stretching [321], help reduce these drawbacks. Unlike PEC,
ZNFE’s resource requirements do not scale with the problem size, although deep
circuits limit the stretch factors that can be used effectively (see sec. 6.3.1 for
an example).

Zero Noise Extrapolation (ZNE) works by deliberately increasing the noise
in a quantum circuit, typically through methods like gate folding, then execut-
ing the circuit at multiple noise levels and mathematically extrapolating the
results back to the zero-noise limit using polynomial or exponential fits. This
allows us to approximate the expected value of observables as if they were mea-
sured on a perfect quantum computer. ZNE was first formally introduced by
Temme et al. [314], and has since become a widely adopted approach in the
NISQ era. As an example, see Fig. 3.6.3.

ZNE
0.85

P~ Figure 3.8. Example of ZNE. 1x CNOT folds
0.80 1 '~.j‘¥\\ represent the actual data, and then 3x and 5x
'— S imply that the number of CNOTs is increased
071 Tl without changing the unitary to incorporate the
effect of noise coming from the CNOT gates.
Then by extrapolation, we can look at 0x noise,
p—— . or the noiseless case, where it approaches close
-== noisy to the ideal (noiseless) data.
------ hardware ==
].'X 3‘)( 5‘)(
CNOT folds

Counts
I

0.70 4 e

0.65 1

0.60

 Conditional Value at Risk (CVaR). Due to noisy hardware, the estimation of
energy can be biased by the bad samples, and then minimizing it would not
provide a good solution. Instead, if one cares about sampling good solutions,
then one can use alternative cost functions to increase the robustness against
noise or relax the requirements on an ansatz. In CVaR, good samples are sorted
by taking the best a-fraction of samples, where o = 1 corresponds to the full
expectation value and a = 0 corresponds to the single best observed sample. By
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choosing a based on the noise of the device, CVaR can provably bound noise-free
expectation values [322].

Expectation-value-based mitigation methods like PEC and ZNE are especially
valuable during variational parameter optimization [286,315]. However, for quantum
optimization tasks that require generating high-quality samples, e.g., finding a bit-
string = that minimizes a cost function f(z). It is essential to mitigate noise not just
in expectation values but in actual circuit outputs. Therefore, advancing techniques
that can produce noise-resilient samples will be critical to the success of QAOA.

3.7 Hardware benchmarks

Quantum hardware performance is commonly characterized by three primary aspects:
scale, quality, and speed [323].

Scale refers to the total number of available qubits.

Quality encompasses both low-level device metrics, such as qubit coherence times
and gate fidelities, and more comprehensive indicators like Layer Fidelity (LF), Error
per Layered Gate (EPLG) [288], Quantum Volume (QV) [324], and the v and average
7 parameters from Probabilistic Error Cancellation (PEC) [317]. For instance, a QPU
with a QV of 2" can reliably execute an n-qubit circuit with n layers of random SU(4)
gates [324] [see Fig. 4.6], effectively capturing performance contributions from gate
fidelities, qubit connectivity, and the effectiveness of noise suppression and mitigation
techniques.

However, these quality-focused metrics do not reflect the speed at which quan-
tum computations are performed. Speed is a critical factor for optimization tasks,
especially when a quantum device is expected to outperform classical systems by de-
livering high-quality solutions more quickly. Moreover, faster execution allows for
more accurate observable estimates within time constraints and helps pay off the cost
of error mitigation techniques, which typically require additional sampling. To ad-
dress this, the Circuit Layer Operations Per Second (CLOPS) metric was introduced
as a quantum analog to classical FLOPS. CLOPS quantifies a device’s throughput
by measuring how many layers of gates can be executed per unit time, including the
classical overhead involved in updating circuit parameters. This makes CLOPS es-
pecially relevant for variational workloads where runtime is dominated by repeated
circuit executions with parameter updates.

Metrics like QV, EPLG, and CLOPS are designed to provide general-purpose
benchmarks that allow comparisons across different quantum hardware platforms and
to monitor progress over time. For example, on tbm_ kingston, EPLG and CLOPS
are reported as 0.113% and 250000, respectively (see Fig. 3.9). While these figures
offer useful insight, they are ultimately only proxies and may fall short in predicting
real-world performance on specific tasks.

The most informative benchmark for a quantum processor is its performance on
application-relevant tasks, evaluated using the appropriate performance criterion, be
it solution quality, execution time, or sample efficiency. In this context, our research
in Chapter. 4 shows that the ability to generate spin-squeezed states is directly related
to solving fully connected MaxCut instances with QAOA [325]. As many quantum
algorithms are heuristic in nature, we anticipate the growing importance of problem-
specific benchmarking frameworks that more accurately reflect their practical utility.
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Figure 3.9. Benchmarking properties of ibm_ kingston: 2Q error (EPLG), CLOPS, and readout
error are among the most important metrics. Right: One can also decide which qubits to choose by
looking at the quality of the connectivity (CZ error) and readout error.

3.8 Summary

This chapter provides an overview of quantum optimization, a major focus of this
thesis. To identify where quantum advantage may emerge, we begin by reviewing
quantum computational complexity classes. We then introduce key quantum opti-
mization algorithms, including quantum annealing, relevant to Chapter 5, and the
quantum approximate optimization algorithm (QAOA), which plays a central role in
Chapters 4, 6, and 7. In the final section, we discuss tools and techniques for im-
plementing quantum algorithms on noisy quantum devices, which are employed in
Chapter 6.
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Chapter 4
Squeezing and quantum approximate
optimization

where quantum metrology meets quantum optimization

41 Introduction

The Quantum Approximate Optimization Algorithm (QAOA) [326] is a promising
approach for solving combinatorial optimization problems using digital quantum com-
puters [327,328] as discussed in Chapter 3. It uses constructive interference to find
solution states [329], and it has better performance than finite-time adiabatic evo-
lution [330]. However, such a hybrid algorithm heavily uses classical optimization
techniques to obtain suitable parameters, and one may wonder if quantum effects,
such as entanglement, play a role in QAOA.

Here, we show how concepts from quantum metrology shed light on this question
through squeezing and how it connects to the performance of QAOA. Mlustratively,
the connection is established through the insight that (a) the aim of QAOA is to
obtain the ground state as precisely as possible, while (b) quantum metrology lever-
ages entanglement between particles to generate states that permit precision beyond
the capacities of any comparable classical sensor [331-333]. For example, squeezed
states can increase sensitivity for detecting phases [334], magnetic fields [335], and
gravitational waves [336]. The most sensitive states for phase estimation are Dicke
states [332,337], where all qubits are equally entangled. We substantiate this con-
nection through numerically exact calculations and data gathered on IBM Quantum
hardware with up to eight qubits. Our analysis shows how the search for an optimal
solution to the MaxCut problem on a complete graph through QAOA generates Dicke
states, with squeezing [338,339] and multipartite entanglement [139,140]. Based on
this, we propose the amount of squeezing generated as an application-tailored per-
formance benchmark of QAOA, which is able to capture the depth dependency of
QAOA better than quantum volume [324,340,341], and can be used to detect errors.
Our work thus further strengthens the intimate links between quantum metrology
and quantum information processing [132,342-344]. Moreover, we show that warm-
starting the optimization of a weighted MaxCut problem with a squeezed state can
provide enhanced performance. We also discuss the parameter regimes, compared for
different platforms, where a metrological task using a multi-party-entangled squeezed
state generated through QAOA could become advantageous over fast repetitions with
simple unsqueezed states.

In the rest of this chapter, we first provide some background on the MaxCut prob-
lem and spin-squeezing. Then, QAOA is formally connected to the generation of en-
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tangled squeezed states (Sec. 4.4), which was subsequently demonstrated numerically.
Based on squeezing, then, we develop a benchmark tailored for QAOA (Sec. 4.5), and
assess the ability of superconducting qubits to run QAOA on fully connected problems
while simultaneously creating Dicke states and estimating the number of entangled
particles (Sec. 4.6). Finally, we extend this connection for application in metrology
and quantum optimization (Sec. 4.7).

4.2 MaxCut problem in QAOA

Recall from sec. 3.3.1 that universal quantum computers can address hard classical
problems such as quadratic unconstrained binary optimization (QUBO), which is

defined through

min z"Yr  with ¥ € R™". (4.1)

z€{0,1}"
Then, the binary variables x; are mapped to qubits through x; = (1 — 2;)/2 —
(1 — Z;)/2, where Z; is a Pauli spin operator with eigenstates |[0) and |1). The result
is an Ising Hamiltonian He whose ground state is the solution to Eq. (4.1) [345]. The
standard QAOA then applies p layers of the unitaries exp(—iﬁklfl M) exp(—i’yk[:[c>,

with £ = 1, ..., p, to the ground state of a mixer Hamiltonian [:[M, such as —) . X;

where X; is a Pauli operator, to create the trial state |/(83,~)). A classical op-
timizer seeks the 8 = (f1,...,05,) and v = (71,...,7,) that minimize the energy
(W(B,7v)| He |(B, 7)), which is measured in the quantum processor (see Fig. 3.4).

8, W
(2

Figure 4.1. Example of a MaxCut Problem. Left: A five-node graph with the maximum cut
indicated by the red dashed line, which partitions the graph into two disjoint subsets. Right: The
corresponding bipartition, where nodes in each subset represent opposite spin orientations, up or
down, in the qubit encoding. In the QUBO formulation of MaxCut [Eq. (4.2)], this corresponds to
finding an antiferromagnetic ground state of the associated Ising Hamiltonian, where graph edges
represent spin-spin interactions.

MaxCut aims at bipartitioning the set of nodes V' in a graph G(V, E) such that
the sum of the weights w; ; of the edges (i, j) € E traversed by the cut is maximum,
Le.

1
ZGI{TE%?%}” 5 Z wm(l — Z@Zj). (42)
(4,4)eE
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Note that z; = £1 and that means the above equation is maximum only when z;z; =
—1, which occurs when edges become anti-ferromagnetic, see Fig. 4.1 for an example.

Another extreme problem instance is when w;; = 1,V(7,j), i.e., an unweighted
fully connected graph labelled G,,, see Fig. 4.4(a). Dividing V' into two sets of size as
equal as possible creates a maximum cut.

Optimization method. In this chapter, the Qiskit QAOA Runtime pro-
gram [301] is used to simulate QAOA. To optimize the {v, 3}, we use the simultaneous
perturbation stochastic approximation (SPSA) algorithm [346], which simultaneously
optimizes multiple parameters and can handle noisy environments. We do not initial-
ize the optimizer with values for the learning rate and a perturbation. Instead, we
let SPSA calibrate itself in the first 25 iterations. To obtain good solutions, we allow
SPSA a maximum of 500 iterations and gather a total of 2'5 shots per iteration.

4.3 Squeezing

Squeezed states are entangled states with a reduced variance of one observable at
the cost of an increased variance in non-commuting observables. A large body of
experimental work exists addressing the generation of squeezing in various platforms
(343, 347-351]. Squeezing can also detect multipartite entanglement among qubits
[352-356].

4.31 Squeezing in qubit ensemble

In our setting, we are interested in squeezing within an ensemble of n qubits (whose
symmetric subspace can be seen as a qudit with length ¢ = %). Consider a coherent

state, such as the collective superposition |+)®", where |+) = (|0) + [1))/v/2. This

state has a variance of o2, = 2, commonly called the shot-noise, in the collective

css 4
observable L, = $ 3" | Z;. By evolving |4+)¥", e.g., under the non-linear one-axis-

twisting (OAT) operator [338]
o 1 A
=+ Y 22) (43)

the state is stretched over the collective Bloch sphere!. The direction with reduced
variance can be transferred to the z coordinate by rotating the state around the z-axis
with [338,349,357] (see Fig. 4.2)

. 1 < .
L,=- X;. 4.4
2; (4.4)

!The collective Bloch sphere is a generalization of the standard Bloch sphere used to represent
the quantum states of multiple qubits, typically in a system with n two-level systems. It provides
a way to visualize the evolution and properties of these multi-qubit states. One can also think of
it as a qudit Bloch sphere, where instead of 2 poles, one would also have multiple rings on the
sphere to denote the d levels. Given the collective spin observable, L, = %Z?Zl Z;, its eigenvalues
{=%,.-,0,..., 5} would define n + 1 level qudits. For example, the north (south) pole would be

0™ (]1)®Y), and the equator would be superposition of equal number of 0 and 1: Dy, for even
n (see Eq. (4.9)).
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The resulting n particle state is called number squeezed along z when the observed
variance is below o2 if the squeezing parameter

cssy 1€y

CSS

S [dB] = 10log,, (%) (4.5)

is negative [338,339].

Figure 4.2. Spin-squeezing via one-axis twisting Hamiltonian. (a) Pictorial mean-field represen-
tation of the two contributions on the collective Bloch sphere, coming from the nonlinear term IE
and rotation term f/z, which leads in combination to the bifurcated phase space, where the arrow
indicates the existence of an unstable point. (b) If a state is initiated in that unstable fixed point,
under the dynamics (will follow the arrow), its quasi-probability distribution will stretch along the
lines, and in the orthogonal direction, it will be squeezed. Adapted from Ref. [358].

4.3.2 Entanglement from squeezing

Measurements of collective spin observables can reveal entanglement. In particular,
separable states satisfy [356]

(B1) : (L2) + (1% < Z(Z + %) = Z < (12) = Var(L,). (4.6)

The second implication is reached using the identity (L2) = (L2) + (L2) + (L?) =
5(5 +1), and (L,) = 0 for our target states. Any squeezed state defined through

Eq. (4.5) violates the relation above and is thus entangled. Moreover, (L2) + (I:?)
reaches the maximum %(% + 1) in the Dicke state [356], which is the same as having

3 2 (5
Var(L,) = 0.

4.3.3 Multipartite entanglement: quantum Fisher information and
squeezing

Here, we recall some concepts for multipartite entanglement from Sec. 2.6. A pure
state of n-qubits, written as a product |¢) = ®j]‘i1 |1;), is k-partite entangled when at
least one state |1);) contains non-factorizable k-qubits (k-producible) [139,359]. This
definition is the same as the entanglement depth [360], see Fig. 4.3(c). A sufficient
condition for (k+ 1)-partite entanglement stems from the quantum Fisher information
Fg (see Sec. 2.6.3): a state reaching

(E2) : Fglpn, O] > (sk* +1?), (4.7)
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where s = |n/k| denotes the integer division of n by k, and r is the remainder—is at
least (k + 1)-partite entangled [139,140] (see Fig. 4.3(a) for a concrete example).

While Fy is becoming a useful witness for entanglement in quantum many-body
systems [361-366], its origin is as a key figure of merit in quantum metrology, where
Fg quantifies the distinguishability of a state p from p' = e ?9pe®® generated by
the Hermitian operator O with infinitesimal §. Thus, a large F; implies a high
measurement precision for estimating the value of 6 [137,367]. For pure states 1, the
quantum Fisher information becomes simply Fg[¢, O] = 4Var(O),, [368], whereas for
mixed states it provides a lower bound on the variance.

The target state of the QAOA for MaxCut on G,, the Dicke state, is invariant
under a unitary evolution generated by L, but is highly sensitive to rotations around
the - or y-axes of the collective Bloch sphere [349]. Thus, to obtain a large Fy, it
is advantageous to choose O = L, or—even more so—® = ﬁy, as can be observed in

Fig. 4.3(b).

(a) Fo(p, O)/n (b) Simulation
n=4 | n=6 | n=8 | n=12 | ‘[#qubits| F/n [k]| Fm [k] o2 [k
1 l 1 l ® |@x)| [@y| |va(i.)
=2 > > > > =4 ()| 1.21]2]2.83]4] 3.26 |4
L= 25 3 127551 3 =6 (1)| 1.03[2]3.27]4] 3.89 [5
:4 4 3.33 4 4 n=8 (1) 1.33[2[4.12]|5] 4.51 |6
=S\ [ 433 [425] 45 n=4@)| 3 4] 3 [4] 10° |4
=6 11— 6 3 6 n=123)[6.66 8] 7.04] 9] 9.37 |11
T — 1 — (6251 6.7
ST —13 oo (c) 00 09,0
20— — [ — | 75 : L 990
1122 — | — [ — [867 00, T-90i@
— — — | — [ 1017 k=4 k=

Figure 4.3. Multipartite entanglement from quantum Fisher information and number squeezing.
(a) Fy witnessing k-partite entanglement for different n, (b) In the simulations, F, obtained with L,
is larger than L,. The numbers of entangled particles (k) estimated from squeezing (o2, /Var(L,) =
10~5/19) are close to the numbers obtained from Fg [ﬁy] for most cases. In a proper Dicke state
as obtained with n = 4(p = 2), the Var(iz) becomes extremely small, leading to the very large
value of 02, /Var(L,) seen in the fourth row. (c) Illustrative examples of k-partite entanglement as
entanglement depth.

In the hardware, where the system is no longer in a pure state, it is considerably
more challenging to directly access Fy [361,369]. However, for Gaussian states, one
can nevertheless use the empirical relation [349]

(E3) : Fo/n[L,) ~ o2 /Var(L,) = 107S/1° (4.8)
between Fy and squeezing. For the simulation, the estimated k& using this relation
is close to the exact estimation from Fy in most of cases, see Fig. 4.3(b), except for
the depth-three QAOA, where the states are no longer Gaussian [370]. Assuming
that the above relation holds for depth-one QAOA, where the states are expected
to be Gaussian, we obtain the estimates for k-partite entanglement in the hardware
implementation reported in Fig. 4.12(Db).
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Chapter 4. Squeezing and quantum approximate optimization

4.4 Connecting QAOA to Squeezing

In a quantum circuit representation, the steps described above for the generation of
squeezed states coincide with a single-layer QAOA sequence, see Fig. 4.4(c): (i) The
application of Hadamard gates to |0)*" initialize the system in |+)*", the ground state
of the mixer Hamiltonian Hy;. (ii) The evolution under the OAT operator corresponds

to applying the unitary exp(—z'fyl ﬁc> with the cost function He o [2 On the qubit

level, this corresponds to controlled-Z gates generated by ZZZ] between all qubits ¢
and j. (iii) The rotation around the z-axis to reveal the squeezing corresponds to the

unitary exp(—iﬁlﬁM), i.e., an application of the mixer.

Interestingly, the cost function He o f/g is a special instance of the MaxCut
problem (Eq. 4.2). For even n, the set of all maximum cuts corresponds to the
symmetric Dicke state [337] (see Section. 2.6.1 for more details about Dicke state):

Dj = (2)1/2 (e ), (49)

with & = 5. Here, P;(-) denotes a permutation of all states with k particles in [1)
and n — k particles in |0). For odd n, the set of all maximum cuts corresponds to
(D}ja) + Do)/ V2. These states are maximally squeezed along z and are useful for
metrological applications [332]. The QAOA cost function Hamiltonian to minimize in
this problem is Hp = : Zi<j(2i2j —1)=12— %]I. Therefore, QAOA is tasked to find
the maximum cut of a fully connected unweighted graph that maximizes the squeezing.
This relation thus translates analog metrological protocols [349] to a digital quantum
processor. In addition, by formulating the constraints that an arbitrary Dicke state D}
imposes on the spins as a QUBO, we can generate D} for arbitrary k (see Sec. 4.7.1).

4.41 QAOA as generator of squeezing

To illustrate the connection between QAOA and squeezing, we numerically simulate a
system with n = 12 qubits and follow the usual QAOA protocol, using Ho = L? — ’

n-
)

Hy = —Zf/x, and p = 3. We depict the generated collective-spin/ qudit state using the
Wigner quasi-probability distribution as well as the probability distribution over the
spin eigenvalues {m = (L.) + 2} at each step, see Fig. 4.4(d)-(j). Each application of
He stretches the Wigner distribution, making it resemble an ellipse with the major axis
tilted with respect to the equatorial plane of the qudit Bloch sphere. As [f]c, f/z] =0,
this operation does not alter the distribution of <ﬁz> Next, the mixer operator rotates
the Wigner distribution back towards the equator, thereby transferring the squeezing
to the operator L,. After three layers, the final state has an overlap with the symmetric
Dicke state of 96% and the squeezing number reaches S = —9.71 dB. Crucially,
noiseless QAOA with fewer layers produces less squeezing, e.g., see depth-one QAOA
in Sec. 4.4.2.
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Figure 4.4. Metrologically useful squeezing generated by a depth-three QAOA for the MaxCut
problem in a complete graph of 12 nodes. (a) Fully connected unweighted graph with the nodes
and edges colored according to one of the 924 possible maximum cut configurations. (b) Wigner
quasi-probability distribution of the symmetric Dicke state D§?, an idealized example of a squeezed
state, and the target for our QAOA.(c) Circuit representation of QAOA with alternating application
of cost-function and mixer Hamiltonian. The Bloch spheres and histograms from (d) to (j) show the
state after the corresponding gate in the optimized QAOA circuit with (v;, 5;) given by (0.199,0.127),
(0.306,0.087), and (4.592,1.518) for i = 1, 2, and 3, respectively. Negativity in the Wigner distribu-
tion indicates that the states are non-Gaussian [370]. The squeezing (in black), energy expectation
(H¢) (in blue), and overlap probability density |(D§2[)|? with the target Dicke state (in orange)
are shown inside each histogram.

4.4.2 Advantage of using QAOA to generate squeezing

Merely increasing the duration of He does not increase squeezing. Squeez-
ing is generated by L2 [349], which suggests that simply applying Ho o Lg for a
longer duration, Correspondlng to a larger coefficient v in the QAOA, may transform
the coherent state to a squeezed state, after which we can use the mixer H); to reveal
the squeezing along L,. In this way, one layer of QAOA would suffice to create any
squeezing, which would also require fewer CNOT gates than when p > 1. To test
this hypothesis, we run depth-one QAOA using v = 71 + 72 + 3 where the v; are
taken from Fig. 4.4, as they contain the source of “total” squeezing. The result is
a fragmented Wigner distribution on the Bloch sphere without observable squeezing
in any direction, see Fig. 4.5(a). Furthermore, no squeezing is detected along z for
any value of the tomography angle (5, see Fig. 4.5(b). This finding is in agreement
with the known observation that over-squeezing can be detrimental for precision [358]
however, the states here do not wrap around points near poles because L2 and L, are
not applied simultaneously as in Ref. [358].

Advantages of multi-layer QAOA. One may object to the arguments in the pre-
ceding paragraph that the v we chose is sub-optimal. To address that, in Fig. 4.5(c),
we numerically map the energy landscape of depth-one QAOA in the {~, 3} plane.
The results reveal a minimum energy of <-HC>min = —35.47 which corresponds to
[(D§%[w)]* = 98.53%. These results are inferior to those we obtain from the depth-
three QAOA, i.e., (Ho)min = —35.68 and [(DE2[0)|? = 99.08%. Alternating multiple
layers of He and H), is therefore advantageous over a single application of the one-
axis-twisting operator.

To quantify the obtainable improvement as a function of the number of layers
used, we can define a new performance metric A7(%), which compares the energy
reduction over the initial ansatz obtained by p-layers of QAOA with the one achieved
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Figure 4.5. Illustration of the importance of alternating the cost-function and the mixer operator.
(a) A fragmented Wigner distribution on the Bloch sphere is obtained when He is applied with
v =71+ 72 + 73 from Fig. 4.4. (b) For the state in (a) no squeezing is observed at any 8. The inset
shows the probability distribution at 8 = /4, corresponding to § = 8 dB, i.e. over-squeezing. (c)
The energy landscape of the depth-one QAOA reveals that the lowest energy it can reach is —35.47,
which is inferior to —35.68 obtained in depth-three QAOA.

by the ideal target state. In the n = 12 case, the initial coherent state and the target
Dicke state have <f]g> = —33, and —36, respectively. Thus, a depth-one QAOA
(corresponding to the usual squeezing protocol) can reach a maximum A}? = 2.47/3.
In contrast, the depth-three QAOA can reach Al* = 2.68/3, as shown in Fig. 4.4.
Thus, according to this metric, a depth-three QAOA is 0.21/3 = 7% better than a
depth-one QAOA.

4.4.3 Multipartite entanglement in QAOA

The squeezing in collective spin observables can further be related to entanglement,
using the notions introduced in Sec. 4.3.3. We employ three different criteria:

(E1) If § > (L?), the state violates a bound on separable states [356]. Any squeezed

A A

state (Var(L,) < %) at the equator ((L,) = 0) is witnessed as entangled by this

criterion (Sec. 4.3.2). Here, (L2) = 0.32 < % = 3, which is close to the minimal
value of 0 achieved by the Dicke state.

(E2) If the quantum Fisher information for a pure state v, Fyp[¢, O] = 4Var(O), is
larger than (sk? 4 r?), where s = [n/k| denotes the integer division of n by k,
and r is the remainder, at least (k 4 1) particles are entangled [139,140]. Here,
Foi, Ly] = 84.48 and the final state has multipartite entanglement between at
least 9 out of 12 particles (see Fig. 4.12(b) to compare with Fig. 4.3(b)). In
Fig. 4.3(b), we also report Fy for both O = L,, I:y and the resulting k-partite
entanglement witnessed by it for the ideal simulations. In this ideal scenario
of noiseless numerical simulations, the large values of Fy [w,f)w] are directly
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4.4 Connecting QAOA to Squeezing

related to the anti-squeezing of the final state along the equator of the Bloch
sphere.

(E3) Specifically for Gaussian states, one can approximately estimate the number
of entangled particles k assuming the identity Fp/n ~ o2, /Var(L,) [349](see
Sec. 4.3.3 for more discussion), which here yields & = 11. We have to use

this estimate for the hardware results where direct access to Fy is not possible
(Sec. 4.6).

4.4.4 Comparative metrological gain via QAOA in quantum platforms

The law of large numbers suggests that increasing the number of measurements leads
to more accurate phase estimation by reducing statistical variance. It is thus im-
portant to analyze when QAOA-prepared sequeezed states can be convenient for a
metrological task, as compared to simply repeating various shots with an unsqueezed
coherent time. With that motivation, we study the time taken to measure a phase
0 with the coherent spin state (CSS) versus QAOA-generated Dicke states within
different hardware architectures (but without an attempt at comparing the different
architectures to each other, which often have different aims and boundary conditions
that are difficult to compare on an even footing). The coherent state is easily prepared
by a single rotation around the y-axis. It has no entanglement, and m measurements
of the phase § have a variance bound by A%0 > 1/(mN). By contrast, a QAOA-
prepared state with Fg above the k + 1-partite entangled limit takes more time to
prepare than the CSS, but it requires a smaller number of measurements to reach the
same variance since A%0 > 1/(mkN) is lowered by a factor of 1/k [140].

One may then wonder whether, in a practical application, the improved precision
can offset the larger preparation time. Crucially, the optimization cost of QAOA can
be ignored in these considerations since the optimal v and 3 parameters are reusable
across different measurements and experiments. We therefore compute the duration
of a single measurement repetition ¢,epet., which is the sum of the duration of the gates
in the circuit to prepare the state tg,tes and the readout time including the reset of the
measurement apparatus ty, i.€., trepet. = tgates + 1. The gate duration for the coherent
spin state tgasti is the duration of a single-qubit gate, while the QAOA protocol requires
two-qubit gates, whose number can depend on the available universal gate set and the
hardware connectivity.

The QAOA-generated states are advantageous when the time repet. X
mqaoa to achieve a certain precision is smaller than the time tO8S = trce%%t X meosg tO
achieve the same precision with coherent states. If the QAOA-prepared state achieves
Fo = kN, we have for equal precision mqgaoa X k = mcgs, i.e., the QAOA-prepared
states are advantageous if

1QAOCA _ ;QAOA

A+t < K (t55 + ) - (4.10)

gates gates

Superconducting qubits: The duration of a QAOA layer is impacted by the qubit
connectivity. Each QAOA layer on N linearly connected superconducting qubits re-
quires 3(N —2) layers of simultaneously executable CNOT gates, which include SWAP
gates [301]. Under the assumption that QAOA can create k + 1-partite entanglement
in p = log, (k) layers [371], the duration tgﬁgA = 3(N — 2)log,(k)tex with te the du-

ration of a CNOT gate. Here, we neglected the duration of single-qubit gates. With
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k = N, Eq. (4.10) yields
B(N — 2) 1ogy(N)tex + b S Ny, (4.11)
which, for large N and the durations in Tab. 4.1, amounts to
N < g/ (Btex) — 91000/3 (4.12)

Although the linear layout of the hardware poses a limit on when QAOA-generated
states remain useful, this limit is extremely high. Assuming noisy hardware achieves
only a finite k, one has

(N —2)logy N < (k — 1)t/ (3tex) - (4.13)

For k =2, e.g., the QAOA-generated states would remain advantageous up to about
60 qubits arranged in a linear chain, which lies at the size limit of the current hard-
ware. These numbers are conservative estimates that can be significantly increased
by improved noise resilience and higher hardware connectivity.

Trapped-ion qubits: Large multipartite entangled states of trapped-ions can be
generated by a single application of the Mglmer—Sgrensen gate (MS) [372,373] where

interaction strength among all qubit pairs is equal [374]. Therefore, if we neglect the
QAOA
t

) “gates

duration of single-qubit gates only depends on the number of QAOA layers p =

log,(k), and t?ﬁgA = logy(k)tms with t,,s being the duration of a MS gate. Following
Tab. 4.1, QAOA-generated k + 1-partite entangled states are therefore advantageous

when
1ogy (K)tms < (k — D)ty = ki1 < 2fr/fm — 925, (4.14)

Since kY®* =1 is a decreasing function, QAOA-generated states are always advanta-
geous in trapped-ion setups.

Cold-atoms: We now consider cold-atoms in Bose-Einstein condensates, which can,
e.g., manipulate states with a number of the order of 400 atoms [349]. Following
QAOA, we assume that log,(k) layers of the one-axis-twisting Hamiltonian inter-
leaved with z-rotations can generate k + 1-partite entanglement. The squeezed state
is thus created in a time tga%e(zA = log,(k)toar. We neglect the duration of z and
y-rotations. Equation (4.10) implies log,(k)toar < (k — 1)t,, showing that given a
Bose-condensed atom cloud of fixed size it is always favorable to create spin squeezed
states for metrology since toar < tr, see Tab. 4.1.

Platform Single-qubit Entanglement Readout & Reset t,,
Transmons 10 ns [375] 100 ns [340] 100 ps [376]
Trapped ions [377] 15 us 200 pus 300 ps +5 ms [378]
Cold atoms (BEC) 10 ms [349] ls

Table 4.1. Duration of key operations presented as orders of magnitude only. The entan-
gling operation for the transmons, trapped-ions, and cold atoms is the two-qubit CNOT gate, the
Mglmer—Sgrensen gate, and the one-axis twisting Hamiltonian, respectively.
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4.5 QAOA-tailored hardware benchmarks

4.5 QAOA-tailored hardware benchmarks

The performance of quantum computing hardware is often measured by metrics such
as randomized benchmarking [379-381] and quantum process tomograph [382,383],
which focus on gates acting on typically one to two qubits, while Quantum Vol-
ume (QV) (Sec. 4.5.1) is designed to measure the performance of a quantum com-
puter as a whole [324,340,341]. For certain applications, these are complemented by
specifically designed benchmarks, e.g., for quantum chemistry [384], generative mod-
elling [385, 386], variational quantum factoring [387], Fermi-Hubbard models [388],
and spin Hamiltonians [389]. It is of particular interest to identify such application-
tailored benchmarks also for variational algorithms, as these employ highly structured
circuits. This necessity is well illustrated by considering the QV: the circuit complex-
ity of a 2" QV system is equivalent to a p = 2 QAOA running on n linearly connected
qubits.

451 Quantum Volume

A processor with a Quantum Volume of QV = 2" can reliably, as defined by the
generation of heavy output bit-strings, execute circuits that apply n layers of SU(4)
gates on random permutations of n qubits [324]. When transpiled to a line of n qubits,
QV circuits result in n layers of SU(4) gates that have at most | 2| individual SU(4)
gates simultaneously executed on the qubits [340]. In between these SU(4) layers,
there are at most | %] SWAP gates, see Fig. 4.6. Furthermore, each SU(4) and SWAP
gate require at most and exactly three CNOT gates, respectively [390]. Under these
conditions, the total number of CNOT gates is at most

n n
3n bJ +3(n—1) bJ , (4.15)
which approaches 3n? as n becomes large. By comparison, the cost operator of QAOA
circuits of complete graphs transpiled to a line requires exactly %n(n— 1)—n+1CNOT
gates, approaching 3n?/2 for large n. This suggests that a 2" Quantum Volume is a
good performance indicator for a depth p = 2 QAOA on n qubits. Importantly, this
comparison is only possible as long as the QAOA circuit is executed using the same
error mitigation and transpilation methods as those employed to measure QV [341].
However, QV fails to capture the depth dependency p of QAOA. The benchmark that
we develop overcomes this limitation as the QAOA depth should be chosen such that
the measured squeezing is maximum. This also provides the maximum p for which it
makes sense to run QAOA on the benchmarked noisy hardware.

SU(4) SU(4)

|su@ || su@) i SU(4) I SU(4) SU(4) i SU4) |
| su@) I SU(4) I SU(4) % SU(4) I SU(4) % SU@4) |

SU(4) SU(4)

Figure 4.6. Example of a six-qubit quantum volume circuit as presented in Ref. [340], which shows
the layers of SU(4) and SWAP gates.
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4.5.2 Proposed benchmark

As the above section shows, QV fails to properly capture the dependency on p as
QAOA circuits on complete graphs are deeper than their width. Ref. [391] shows
using entropic inequalities, if the circuit is too deep, a classical computer can sample
in polynomial time from a Gibbs state while achieving the same energy as the noisy
quantum computer. That bound is based on the fidelity of layers of gates, which
is, however, often overestimated when built from fidelities of gates benchmarked in
isolation, e.g., due to cross-talk [301].

Since the solution to the MaxCut problem on the fully connected unweighted
graph G, is known, we propose squeezing as a good hardware benchmark for QAOA
to complement other performance metrics. For our proposed benchmark, we first label
the quantum numbers of L.+ % by m € {0,1,...,2¢}, which correspond to cuts of size
c(m) = m(n—m) on G,. We relate squeezing to a QAOA performance metric through
the question:

Given the squeezing S in the trial state, what is the probability P,(n,S) of
sampling a cut with size ¢(m) greater than a given a-fraction of the maximum
cut Size Crge = n2/47

Here, a can be seen as an approximation ratio. By definition, cuts with ¢(m) >
QCmax must satisfy m_(a) < m < my(a) for even n, where m(a) = 5(1 £ v1 — a).
Under a QAOA trial state |¢(8,7)) with a distribution p,, over m, see Fig. 4.7(a),
the probability to sample cuts larger than acy.y is thus

Lm+ ()]

Pun)=">_  Pm (4.16)

m=m_ ()]

We now make the simplifying assumption that the distribution p,, is a Gaussian

—_
o1

—
o

Figure 4.7. Benchmarking QAOA
with squeezing. (a) Probability distri-
bution (p,,, red solid line) and normal-
ized cut size (¢m/Cmax, blue dashed
line) simultaneously plotted against
m = (L,) + % for n = 30. States with
normalized cut-size more than « lie in
m € [[m_(a)], m+(a)]]. These yield
the shaded area under the probability
DPm, Which is the figure of merit P, de-
fined in Eq. (4.16). (b) P, shows how
the probability of sampling high-value
cuts changes with squeezing & and
qubit count n, based on trial Gaussian
distributions.

(6]

Probability p,,,(%)

Normalized cut size
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N(%,0) , where the standard deviation o—the only free variable for fixed n—is, by
definition, in one-to-one correspondence to the squeezing S = 10log;,(40?/n). In
summary, the benchmark (i) relates squeezing to the probability of sampling good
solutions, a QAOA performance metric, (ii) captures the ability of QAOA to create
entangled states (Sec. 4.4.3), and (iii) is as susceptible to hardware noise as other fully
connected QAOA circuits (Sec. 4.5.3).

We illustrate the benchmark by numerically computing P,(n,S) as a function of
n and the squeezing S in the Gaussian distribution p,,(S). Since the ground state
of G, is highly degenerate, we select a high value of «a, e.g., 99.9%. At fixed n,
an increased squeezing (more negative) increases P,, see Fig. 4.7(b), as cuts with a
larger size receive more weight. In addition, P, has discontinuous jumps at ng; , where
z = [M=\/1—a] € Z". In between discontinuities, P, diminishes with increasing n
because o increases o« y/n for fixed S, which reduces the weight attributed to high
value cuts.

Explaining the discontinuity. According to Eq. (4.16), the states in the do-
main ([m_], |m4|) are included in P,, where m4(n,a) = § £ §+/1 — a. Since [m |
and [m_1| must both be integers, the span of the domain |m4 | — [m_] remains con-
stant over a large n range and changes abruptly when [5+/1 — o € Z changes value.
We denote the values of n at which such changes occur as ngjs,, which correspond to
the discrete jumps along the n-axis in Fig. 4.7(b). For o = 99.9% and n even, we
obtain discontinuities in Pyg g9, at ngis. = 64,128,190, 254.

4.5.3 Error detection by spin-squeezing

Figure 4.8. Squeezing as a function
of the strength of gate noise modeled as
bit-flip errors. A bit-flip error is added
to every CNOT gate by 2-qubit Pauli
channels, P = P; ® P1, where P; =
VPerror X + /1T — perrorl.  The squeez-
ing approaches zero as gate errors in-
crease, showing the validity of squeez-
ing as an application-tailored hardware
benchmark.

12 qubits, p=3

squeezing (dB)

-104, : . : :
0.00 0.01 0.02 0.03 0.04 0.05

perror

As undesired processes destroy fragile quantum superpositions, the degree of squeez-
ing is sensitive to the noise levels of the quantum device. To illustrate this, we run our
depth-three QAOA example of Fig. 4.4 on a noisy simulator. After each CNOT gate,
we include a Pauli bit-flip error with strength peyor. We observe that the squeezing
rapidly decays towards zero as peor increases, resulting in a non-squeezed state, see
Fig. 4.8. This simple simulation demonstrates that gate errors destroy the fragile
correlations needed to create a squeezed state. Conversely, the ability (or inability)
to realize squeezing through QAOA can be used as a tool to estimate the errors in a
circuit experiment.
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4.5.4 Squeezing as a good benchmark for arbitrary QUBO problem

From a hardware perspective, although G, is a specific problem, its QAOA circuit is
representative of the noise of an arbitrary fully-connected QUBO problem since the

gates constituting a generic cost function exp(—i’ykﬁc) can be implemented with

virtual Z-rotations and CNOT gates [392]. Indeed, the difference between the pulse
schedules only amounts to phase changes, indicated by circular arrows in Fig. 4.9(c).
The duration of the QAOA pulse schedule and the absolute amplitude of the pulses are
thus independent of the variables ¥ in the QUBO, see Eq. (4.1), and the variational
parameters v and 8 (compare Fig. 4.9(b) and (c)). Therefore, much like Quantum
Volume, the hardware benchmark based on squeezing captures effects such as limited
qubit connectivity, unitary gate errors, decoherence, and cross-talk. Furthermore,
from a hardware perspective, the squeezing circuit is also the hardest to implement
since QUBOs that are not fully connected, i.e., 3 (4, j) | ¥; ; = 0, require fewer pulses.

(3) @ — 0: B .
@ = 1: - @1 Rz (2qwo,1) -+ S+ Rz (2qwi3)
@ = 3 &RZ (2yw12) 1B DD Rz (2ywo 3) D L
gs V> 9 D Rz (2ywa,3) e DI Rz (2ywo,2)

(d)

0 3091 6182 9274

0 3091 6182 9274 12365 15456
System cycle time dt

Figure 4.9. Cross-resonance pulse schedules of the squeezing circuit and an arbitrary QUBO. (a)
Quantum circuit of a general four-qubit fully connected cost operator e ¢ transpiled to qubits
0, 1, 3, and 5 of ibm__lagos. (b) Pulse schedule of the cost operator used to generate the symmetric
Dicke state, i.e., w; ; = 1 Vi,j. (c) Pulse schedule of a MaxCut instance with edge weights wo1 =
wo2 = w13 = —1 and wp3 = w12 = w23 = 1. The circular arrows show where the phase shifts
differ from the pulse schedule in (b). (d) and (e) MaxCut graph corresponding to the pulse schedule
in (b) and (c), respectively. The duration of a single sample of the arbitrary waveform generators
is dt = 0.222 ns. The light and dark pulses show the in-phase and quadrature of each complex
amplitude pulse applied to control channels U0, U5, and U8 of ibm__lagos.

4.6 Squeezing in superconducting qubits

We now evaluate the benchmark on gate-based superconducting transmon qubits [393]
with the following characteristics.
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4.61 Hardware details

The superconducting qubit data is gathered on the ibmq mumbai system, which has
27 fixed-frequency qubits connected through resonators; its coupling map is shown in
Fig. 4.10. We chose a set of qubits that form a line with the smallest possible CNOT
gate error. Each circuit is measured with 4000 shots. The properties of the device,
such as T} times and CNOT gate error, are shown in Tab. 4.2.

Figure 4.10. Coupling map of
ibmg_mumbai with the qubits
used shown in violet. The four,
six, and eight-qubit data were
measured on the linearly con-
nected  qubits  {19,22, 25,26},
{14,16,19, 22,25, 26}, and
{12,13,14, 16,19, 22, 25,26},
respectively, chosen based on the
CNOT gate fidelity.

CNOT gate
Qubit pair error (%) duration (ns) Qubit Ty (us)
(12, 13) 0.77 548 12 166
(13, 14) 1.26 320 | 13 137
(14, 16) 1.04 348 14 174
(16, 19) 0.77 47| 16 118
(19, 22) 0.66 363 | 19 227
(22, 25) 0.58 484 22 122
(25, 26) 0.50 348 | 25 194

0.80+0.27 451+£155 26 103

Table 4.2. Properties of the relevant CNOT gates as reported by ibmgq _mumbai on the date of the
circuit execution. The average T of the selected qubits is 155 +43 us.

4.6.2 Measurement of squeezing on IBMg hardware

We measure the squeezing on the IBM Quantum system ibmgq _mumbai using Qiskit [394]
for four, six, and eight qubits. Since the chosen qubits have a linear connectivity, we
use a line swap strategy [301,395] to create the all-to-all qubit connectivity required by
the squeezing circuit, shown in Fig. 4.11(a) for p = 1. This circuit is then transpiled
to the cross-resonance-based hardware [396,397] employing a pulse-efficient strategy
instead of a CNOT decomposition [398] using Qiskit Pulse [399]. The optimal value
of the variational parameter 7 is found with a noiseless simulation for each n. We
use readout error mitigation [400,401], which on average improves the best measured
squeezing by —0.7 £ 0.1 dB averaged over all three n € {4,6,8}. At depth one, a
sweep of the tomography angle [3; reveals a squeezing of —4.80, —4.18, and —4.02 dB
whereas noiseless simulations reach —5.14, —5.90, and —6.56 dB for n = 4,6, and
8, respectively. These metrological gains are comparable to prior works in trapped
ions [373,402-406] (see at the end of this section). Given the measured squeezing, we
compute a Pyg oy (n,S) of 61.5%, 49.1%, and 42.6%, respectively. Furthermore, we
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run a depth-two QAOA on the fully connected four-qubit graph to create a state with
a —5.96 dB squeezing, see Fig. 4.11(c), which results in Pyg g9 (4, —5.96) = 68.2%.
These results indicate that the potential to generate squeezing in a four-qubit system
is limited by the variational form at depth one. By contrast, in systems with six and
eight qubits, the squeezing generated in practice is limited by the large number of
CNOT gates at depth one (40 and 77, respectively).
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4.6.3 Entanglement in hardware

Here we use the entanglement criteria from Sec. 4.3.3. The criterion (E1) witnesses the
generated states in both simulation and hardware as entangled, see Fig. 4.12(a). In a
noiseless simulation of a depth-one QAOA of system sizes n = 4,6, 8, criterion (E2)
witnesses at least 4,4,5 qubit entanglement, respectively. In the noisy hardware im-
plementation, estimate (E3) suggests these numbers to still reach 4,3, 3, respectively,

see Fig. 4.12(b).

22
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Figure 4.12. Entanglement from squeezing and quantum Fisher information. (a) The values of
(L?) (E1) obtained in simulation and hardware are close to 0, indicating that the states are in the

vicinity of entangled Dicke states. (b) Number of entangled particles k calculated from Fg[L,] (E2)
in simulation, and estimated for hardware using (E3).
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4.6.4 Comparison of metrological gain

The squeezing generated by QAOA in the superconducting hardware (see Fig. 4.12)
is comparable to prior trapped ion works whose aim was to generate highly entangled
states (see Fig.2 of Reference [332]). Even more, our depth-three QAOA simulations
with 12 qubits indicate that with lower CNOT error rates, superconducting qubit
hardware may reach —9.7 dB of squeezing. The same method could also be ap-
plied in trapped ions, where the QAOA circuit—thanks to the trapped-ion all-to-all
connectivity—is particularly compact (Sec. 4.4.4). In addition, our method has a
number of advantages over variational ansétze developed explicitly for a metrological
phase-estimation scenario [343,407-409]. For example, Marciniak et al. [343], (i) use
a cost function particularly tailored for sensing tasks that optimize the phase sensi-
tivity of their quantum sensor, (ii) use a very general variational ansatz consisting
of entangling and decoding unitaries containing rotation once and one-axis twisting
operations twice in different directions, following the established knowledge in quan-
tum metrology, and (iii) use a linear phase estimator with an unknown parameter a
to estimate the phase from spin-measurement, where a also has to be optimized.

By contrast to (i), our cost function is the energy that also creates an entangled
state. By contrast to (ii), our variational ansatz is grounded in QAOA, i.e., a Trot-
terized version of adiabatic computing with a classical optimization that inherits the
performance guarantee in the limit p — oo. By contrast to (iii), our results can be
applied to enhance phase-sensitivity but are not limited to it. Indeed, the optimiza-
tion does not include any phase estimator, potentially making the approach useful
for other problems while also reducing the number of parameters to optimize. These
three points result in a variational form with fewer parameters to optimize than a
general variational form and thus are, in principle, easier to optimize. Furthermore,
the approach chosen here allows us to benefit from the vast literature on optimizing
QAOA parameters, of which the TQA initialization is just one example.

4.7 Extension

In this section, we extend the connection between QAOA and metrology to create
arbitrary Dicke states and warm-starting QAOA with partially squeezed states for
random MaxCut problems.

471 Creating arbitrary Dicke states

We can create arbitrary Dicke states (Eq. 4.9) by minimizing a QUBO cost function
with QAOA. Let |x,_1...7¢) be a basis state in which qubit 7 is in state z; € {0, 1}.
Each basis state in D} satisfies the equation Z’Z:_Ol x; = k, which is a constraint on
the binary variables x;. We express this constraint as the QUBO problem

n—1 2
i k — il - 4.17
xs?o%%n< D) .17

The solution to this optimization problem is a superposition of all basis states with &
qubits in the excited state, i.e., D}}. We apply the change of variables x; = (2; +1)/2
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Figure 4.13. Metrologically useful arbitrary Dicke states generated by a depth-three QAOA by
minimizing the cost Hamiltonian Eq. (4.19). The top panels show the Wigner quasi-probability
distribution on the Bloch spheres. The bottom panels show the corresponding histograms of the
total spin operator (Z } = m. The orange numbers in each histogram show the overlap probability
density [(D}?[¢)|* with the target Dicke states.

to rewrite (k — >, x;)? as
n n < 1
2 _hnt 2+ (——)§ S 41
k Im—l—4(n+ ) + 5 k izoz +2i<jzzj (4.18)

After promoting each z; variable to a Pauli spin operator Zi, Eq. (4.18) yields a cost
Hamiltonian to minimize

n—1
~ n A 1 A
He- = (— — k) E i+ = YAYAS 4.19
¢ 2 =0 ! 2 1<J ! ( )

When k = n/2, we recover the MaxCut problem on the symmetric graph. For k # n/2,
we have an extra term (n/2—k) S Z; that biases the total spin towards (Z) = k. The
Hamiltonian in Eq. (4.19) can therefore be used to generate the Dicke state D} with
QAOA.

For n=12 qubits, we use the cost Hamiltonian in Eq. (4.19) to simulate the genera-
tion of Dicke states with k = 1,2, 3,4,5. With three QAOA layers, we obtain fidelities
> 80%, see Fig. 4.13. The corresponding QAOA parameters v and 3 are shown in
Tab. 4.3.

Num. spinup k| 7 51 Y2 Ba s Bs

1 0.101 0.903 | 0.317 1.324 | 1.506 -0.155
0.093 1.106 | 0.427 1.409 | 1.457 -0.068
0.149 1.205 | 1.645 1.576 | 0.472 -0.076
0.111 1.220 | 0.441 1.690 | 1.028 0.062
0.231 1.340 | 1.643 1.500 | 1.774 0.004

Ol = W N

Table 4.3. The parameters (7;, ;) of an optimized depth-three QAOA circuit to create k =
1,2,3,4,5 Dicke states that are shown in Fig. 4.13.
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4,72 Warm-starting QAOA with squeezed states

In this section, we explore how far the symmetric MaxCut problem that has a Dicke
state as a ground state can help solve non-trivial MaxCut problems with asymmetric
edge-weights. We show how such squeezed states increase the likelihood of sampling
good cuts on graphs with random edge weights. Each edge w; ; of a graph is sam-
pled from a Gaussian distribution A (u, €) and then rounded to one decimal place to
increase the separation in the cut-values of the graph. We compare standard QAOA
with p layers to a QAOA with ps + p layers in which the first ps layers have fixed
parameters to produce a squeezed state. Both methods, therefore, have 2p parame-
ters that require optimization for each graph instance. For the second approach, in
addition, 2p, parameters are optimized once with the symmetric MaxCut problem as
a target and are reused for different problem instances. For each n € {4,6,8, 10,12},
we sample 100 graph instances from N (j, €) for which we chose 1 = 4 and € = 0.5 and
optimize the cut-value for varying p. The resulting energy, normalized to the mini-
mum energy and averaged over the 100 graph realizations, is used to compare both
methods. To ensure that p layers always produce a result that is at least as good as
the one for p — 1 layers, we bootstrap the optimization parameters. The initial guess
of the parameters for layer p are based on the optimized parameters of layer p—1, i.e.,

o opt opt opt opt opt opt
(517627 """ 7Bp7717727 """ 7’7p)initial - ( 1 M2y aﬁp—1707’yl y Vo oy eeees 77]3—170)'
1.0
[¢) Xo%
OE EoI IOI Ao¥
oo
n=4
0.0
Figure 4.14. Advantages of QAOA initial-
1.0 . . .
¥ % 5 ¥ P ized with squeezed states. The blue trian-
é }0 Io Io Lo gles show standard QAOA initialized from a
0.5 -{ coherent spin state. The orange circles and
green stars show QAOA initialized with a
= 0.0 n=6 spin-squeezed state created with ps = 1 and
é ' 2 QAOA layers, respectively. The z-axis is
- 1.04 A p=0 © p=1 * p;=2 the QAOA depth after the initial state, and
? o oF oE ’X 3 oF the y-axis is the energy normalized to the
E 0.5 4 1 } ideal value. The markers and error bars in-
= { dicate the average and variance of 100 graph
=2 n=8 instances drawn from A (4,0.5) with differ-
E 0.0 ent sizes n = 4 (top) to n = 12 (bottom).
< 1.01 Squeezed initial states boost the average en-
ergy of the QAOA optimized state, as shown
OI OI ox ox ox .
051 by the orange and green markers having an
} energy that is closer to the ideal energy than
n=10 the blue markers. The energy increases only
0.0 modestly as p increases due to the complexity
1.0 of the optimization landscape.
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0.5 { } £
¥ } n=12
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QAOA layers
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QAOA initialized with squeezed states, shown as orange circles and green stars
in Fig. 4.14, significantly improves the average energy when compared to QAOA
initialized from an equal superposition, shown as blue triangles in Fig. 4.14. We
observe a slight improvement in solution quality with increasing p. We attribute this
to the complexity of the optimization landscape, which has many local minima, even
at depth-one, due to the interference of the frequencies generated by the different
edge weights, see Fig. 4.15. In the four-qubit case, the energy for p > 3 layers of
both methods is comparable. As the system size is increased, we observe a greater
advantage for QAOA initialized with a squeezed state. These results indicate that,
when solving a family of problems, it may be advantageous to initialize QAOA with
a state that corresponds to the average problem even when such a problem is trivial
to solve.
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Figure 4.15. Complexity of the optimization landscape for a n = 10 vertices graph with edge
weights [3.1, 3.5, 3.9, 3.6, 4.6, 4.2, 4.8, 3.8, 4.1, 4.8, 5.0, 4.8, 4.0, 3.8, 3.2, 4.1, 4.2, 4.6, 4.3, 3.5, 3.9,
3.8,3.2,3.2,4.7,3.7,4.1, 3.5, 4.1, 4.0, 4.2, 3.6, 4.4, 4.1, 3.5, 4.2, 3.7, 3.4, 4.4, 4.4, 3.6, 4.0, 4.3, 4.9,
4.1] and QAOA depth p = 1. Out of the full landscape, we show the first 0 to 27 portion of the
~ landscape in four subplots v € [0,7/2], [7/2, 7], [r,37/2], [37/2, 2] with different color scales to
increase the contrast between the local minima and maxima. This reveals a large number of local
minima. The small improvement in solution quality with increasing p can therefore be attributed to
the many local minima, created from the interference of the frequencies generated by the different
edge weights.

4.8 Summary

In summary, the generation of squeezed states that are useful for metrology can be
cast as a MaxCut problem, which in turn can be addressed with variational algo-
rithms. Such squeezing also unveils the multipartite entanglement structure, as we
discussed in detail. The procedure that we illustrated in the creation of a 12-qubit
Dicke state can be implemented on universal quantum computing platforms, such as
superconducting qubits or trapped ions, as well as on special-purpose machines such
as BECs trapped in optical tweezers [349]. Interestingly, an enhancement of squeez-
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ing within the multilayer QAOA protocol is not equivalent to simply applying the [E
operator for a longer period, as the mixer Hamiltonian periodically intervenes. Our
results show how variational algorithms may generalize existing protocols and provide
systematic guidance for the creation of highly squeezed states for metrology. By con-
trast to, e.g., Ref [343,407-409], which uses variational quantum algorithms with a
hardware native ansatz to enhance phase sensitivity, the QAOA approach to create
squeezing encapsulates the structure of the target state in the variational form, which
may reduce the number of parameters to optimize. In a similar vein, we show that
custom states beyond Dicke states can be generated by QAOA by casting them as so-
lutions of a combinatorial optimization problem. In addition, we suggested squeezing
as a QAOA-specific hardware benchmark. This benchmark is both portable across
hardware platforms and captures hardware-specific properties such as limited qubit
connectivity and cross-talk. On the other hand, warm-started QAOA using squeezed
states seems to have an advantage as well.
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Chapter 5
Genuine multipartite entanglement in
quantum optimization

entanglement barrier and relation to success probability

51 Introduction

Quantum effects are expected to play a central role in quantum algorithms designed
to address specific computational tasks [195]. However, understanding their precise
contribution to the algorithm’s performance is a subtle question. For instance, a
key question is whether entanglement is necessary or sufficient in pure-state quan-
tum computing [88,410,411]. Among the various applications of quantum computers,
quantum combinatorial optimization stands out as particularly promising [22]. Here,
the algorithm is tasked to find an optimal solution x*, or a near-optimal one, of a
classical optimization problem min f(x) [412]. Interestingly, in quantum optimization
approaches, such as quantum annealing (QA) [236,413], the quantum approximate op-
timization algorithm (QAOA) [326], and variational quantum algorithms (VQA) [231],
the initial state is typically a product state, while the solution state should encode a
classical problem and thus (barring superpositions of degenerate solutions) may not
contain any entanglement. Having both the initial and solution state with little to no
entanglement raises the question of how much entanglement is genuinely required to
make a quantum-optimization algorithm successful [414].

In previous years, most analyses focused exclusively on bipartite entanglement [414—
418], where the entanglement between two non-overlapping partitions of the quantum
state is computed. However, the behavior of bipartite entanglement can vary signif-
icantly depending on the chosen partitions [419,420]. Additionally, a state may be
entangled across all possible bipartitions or may exhibit global or multipartite entan-
glement, making it impossible to describe the total entanglement through contribu-
tions from individual bipartitions [421]. Since quantum optimization is, in essence,
concerned with navigating a many-body system through a quantum spin-glass transi-
tion [422,423], one may expect entanglement shared between multiple parties to play
an important role. In the context of pure-state quantum computing, it is known that
merely increasing bipartite entanglement with system size is insufficient for an ex-
ponential speed-up [88]. In contrast, multipartite entanglement shared among many
parties can be a valuable resource for quantum information processing, such as in
quantum secret sharing [424], multi-party quantum teleportation [425], quantum key
distribution [426], quantum metrology [427], and measurement-based quantum com-
putation [428]. However, its precise role in ensuring successful performance remains
unclear for quantum optimization algorithms [325,414, 429].
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Here, we analyze the role of genuine multipartite entanglement in quantum opti-
mization using the generalized geometric measure (GGM) of entanglement [115,116,
141-143]. The GGM is an attractive measure for multipartite entanglement as it is ex-
perimentally accessible [430]. From detailed numerical benchmarks, we find—similar
to the bipartite entanglement barrier [414,418]—a multipartite entanglement barrier
in quantum annealing. Initially, the circuit builds up multipartite entanglement as
it approaches the minimal gap, where the system enters approximately a GHZ state
between the two lowest-energy states. Subsequently, in successful optimization sched-
ules, this multipartite entanglement is removed as the system approaches the solution
state. We further analytically derive how the GGM in the optimization schedule is
upper-bounded by the distances between the instantaneous eigenstate and both the
initial and final product states, which can also be used as a proxy for bounding mul-
tipartite entanglement in experiments. Through our work, we shed light on the role
and existence of multipartite entanglement in quantum optimization, and its relation
to the success probability of the algorithm.

Our studies are complementary to a vigorous ongoing effort to understand the
role of quantum resources in quantum optimization. E.g., there are works that study
whether quantum optimization still performs well with a cap on entanglement [417,
431-436] or if the success of the algorithm requires other quantum resources [47].

The rest of this chapter is structured as follows. First, we provide a general
overview of how entanglement manifests in quantum optimization, along with a def-
inition of the GGM. From Sec. 5.2.3 onwards, we introduce quantum annealing and
the MaxCut problem used in our simulation. Section 5.3 details the results from Trot-
terized quantum annealing, focusing on success probability, bipartite entanglement,
and the GGM. In Sec. 5.4, we explore the emergence of the entanglement barrier and

its connection to success probability. Finally, we conclude in Sec. 5.5.

5.2 Background

Here, we briefly summarize earlier works that relate bipartite entanglement and the
performance of certain classes of quantum algorithms. Thereafter, we motivate the ne-
cessity of analyzing multipartite entanglement properties in quantum algorithms and
define a computable measure for it, the GGM of multipartite entanglement. Finally,
we describe the quantum optimization algorithm and the problem we investigate.

5.21 Entanglement in quantum optimization

Various efforts have already demonstrated how bipartite entanglement manifests in
quantum optimization algorithms. The presence of von Neumann entanglement en-
tropy has been observed numerically during quantum annealing sweeps in the ex-
act cover problem [415]. Furthermore, entanglement witnesses in experiments have
detected non-zero entanglement during quantum annealing [437]. Reference [414]
explores a potential connection between bipartite entanglement and the success prob-
ability of adiabatic quantum optimization. It shows that high entanglement during
the optimization does not necessarily mean a high success probability. On the con-
trary, in clean systems, significant final entanglement after slow sweeps suggests a
superposition state rather than a separable ground state and thus implies a reduced
probability of successfully finding the classical ground state. Therefore, measuring bi-
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partite entanglement alone is insufficient to gauge the efficiency of adiabatic quantum
optimization.

The subtle role of bipartite entanglement is also observed in the variational quan-
tum eigensolver (VQE), where distributing the entangling gates according to the
problem’s topology increases success rates and reduces runtime [438]. Moreover, the
ADAPT variant of QAOA uses a non-standard mixer, which allows a larger amount
of entanglement in the earlier part of the circuit and accelerates convergence in the
later stages [439]. To further understand the role of bipartite entanglement, one can
simulate a quantum algorithm with matrix-product states with finite bond dimen-
sion (), since x bounds the maximum bipartite entanglement. Using this approach,
reference [417] shows that the state fidelity in QAOA can be limited by x. In par-
ticular, QAOA needs a bond dimension that scales exponentially with the system
size N to create high-fidelity states [418]. However, increasing the bond dimension
beyond a certain threshold does not appear to improve the fidelity [435]. Also, ref-
erence [325] demonstrates numerically, as well as on IBM Quantum hardware, how
QAOA can generate high entangled states with multipartite entanglement witnessed
through squeezing inequalities and the quantum Fisher information.

5.2.2 Generalized geometric measure of entanglement

Recall from sec. 2.6.4 that the GGM of entanglement generalizes the notion of ge-
ometric measure of entanglement and quantifies genuine multipartite entanglement.
Here we recapitulate the definition for the sake of convenience. For pure states, the
GGM takes the simple form

Go(lv)) =1— max_ |as(rl)l* =1 — max(\G5)". (5.1)
I7) 4.5ES2 A:B

Here, |¢)) belongs to the Hilbert space Ha, @ Ha, ® -+ - @ Ha,. The bipartition A : B

satisfies AUB = {1,2,--- , N}, and ANB = () [142,143]. In other words, maximizing

|a.5(7|1)| across the biparition A : B is equivalent to finding the maximum Schmidt

coefficient, A%, for that bipartition. For qubits, the theoretical maximum value of

GGM is 1/2.

Reference [440] investigates the GGM in Grover’s algorithm. Here, the GGM
initially increases and reaches a maximum in the first half of the optimal number
of iterations and then decreases towards the end of the algorithm. In the Bernstein—
Vazirani algorithm, the presence of geometric entanglement in the initial state prevents
it from reaching an optimal performance (the key resource for the Bernstein—Vazirani
algorithm is coherence rather than entanglement, and maximally entangled states
cannot be maximally coherent) [436]. One can thus expect that the presence of an
exaggerated amount of multipartite entanglement can have a detrimental effect, and
understanding the nature of such entanglement may help us design more efficient
quantum algorithms.

5.2.3 Trotterized quantum annealing

We have already discussed quantum annealing in detail in Sec. 3.3.2. Here, we use
first-order Trotter—Suzuki decomposition of the continuous sweep, up to O(At?), into

¢TI pmiBHN p=ivHe (5.2)
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where = (1 —t/T)At, and v = (t/T)At. Discretizing the entire quantum annealing
schedule into p time steps requires At = T'/p. The resulting discretized annealing
schedule is

S S
= 2At Bo=(1- At 5.3
Vo= ( p) (5.3)

where the time-factor of ¢t /7 is replaced by the layer-number s/p. Crucially, unlike in
quantum annealing, here At and the total time 7" can be modified independently by
changing p, which hands us an additional control knob for Trotterized annealing.

5.2.4 Maximum-Cut problem

As a paradigmatic example, we focus on the Maximum Cut problem (MaxCut). Max-
Cut aims at partitioning the set of N nodes V' in a graph G(V, F), such that the sum
of the weights w; ; of the edges (i, j) € E traversed by the cut is maximum. By intro-
ducing Ising variables z; € {—1,1} to describe which side of the cut node i falls on,
this task is mathematically equivalent to maximizing the cost function (see Fig. 4.1
as an example)

1
max — Z w; (1 — 225). (5.4)

ze{—1,1}N 2 (eE

Since z; can also be seen as the eigenvalues of the Pauli Z; operator acting on a qubit 7,
the maximization is equivalent to finding the ground state of the Ising model [345,441]

- 1
He = N > JiZiZ;. (5.5)

i<j

Here, J;; encode the edge weights of G with J;; = 0 if (4,7) ¢ E.

Due to the Z, symmetry of Hc, there are two equivalent degenerate solutions. A
ground-state search may thus result in varying superpositions of the two solutions,
whose entanglement content can depend significantly on the details of the annealing
sweep. To ensure that the entanglement we observe is solely a signature of the per-
formance of the quantum algorithm, we remove this degeneracy by adding a small
perturbation fZ, to Hc to break the symmetry. We choose f = 0.05 for all problems.
The modified Hamiltonian is thus

1
He=fZy+ — SVAVAS (5.6)
S

which will be the problem on which we study genuine multipartite entanglement.

5.2.5 Degeneracy breaking and pairing of states

To break the Zs symmetry in MaxCut, we add an offset term as described in Eq. (5.6).
Here, we show how the degeneracy in the spectrum of H¢ is lifted with increasing
offset. We choose 0.05 as an offset to lift the degeneracy while preserving the eigenlevel
structure.

At this level of bias, although the Z,-symmetric states are no longer degenerate,
they are still energetically close and thus have a pairing effect during the annealing
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Figure 5.1. Effect of offset f on de-
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sweep. For example, let us consider the graph instance (Fig. 5.3) which we study
in detail later. We study the overlap probability of the instantaneous state with the
four lowest energy states |e;), ¢ € {0,1,2,3} of Hc during the sweep. Until the sweep
reaches the GGM peak, as we will see in Fig. 5.5(a), the population of the ground
and the first excited states is almost equal, see Fig. 5.2. The same holds for the third
and fourth excited states. This hints at a pairing of |ey) with |e;) and of |es) with
les). Moreover, again due to the Z, symmetry, |ey) and |e;) are bit-wise orthogonal
basis states (and the same for |es) and |eg)). An equal superposition of such states
creates a GHZ-like state with a high GGM. For example, with the graph considered
hterf lep) =110101001) and |e;) = |01010110) form the state |GHZg) = \/LE(|60> + le1))
state.

Figure 5.2. Population of the four
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5.3 Genuine multipartite entanglement for a fixed in-
stance of MaxCut

In this section, we illustrate how, for an instance of the MaxCut problem, the success
probability, the von Neumann entanglement entropy, and the generalized geometric
measure of multipartite entanglement behave during an optimization schedule. Un-
less stated otherwise, we choose the MaxCut problem on six-regular graphs on eight
vertices, with edge weights J;; randomly chosen from a Gaussian distribution with
mean i = 6 and standard deviation ¢ = 3. Figure 5.3 shows the resulting six-regular
eight-node graph instance used. The solution of this MaxCut instance is defined by
the separation into vertex sets (1,3,5,6) and (0,2,4,7).

For illustration purposes, in this section, we choose the above graph instance, and
in the next section, we choose from many instances to study the average behavior.
We solve the problem with Trotterized quantum annealing and an increasing number
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Figure 5.3. Details of the MaxCut problem for
the fixed graph instance used in Sec . 5.3. Weights
Ji; are indicated on the edges. The MaxCut solu-
tion is denoted by red and blue node colors.

of Trotter steps, or circuit layers, ranging from p = 100 to p = 10000. We select
At = 0.19, which allows us to achieve a good minimum energy across all layer counts
(see Fig. 5.4). The total time is pAt, which amounts to, e.g., "= 950 for p = 5000.

At for TQA. In Trotterized quantum annealing (TQA), the quality of the
annealing, which is related to the success probability, depends on the total number of
Trotter layers p and the chosen time step At, see Eq. (5.3). In principle, At should
be chosen to maximize the success probability. However, to study the impact of the
sweep time (i.e., the number of layers multiplied by the step size At) on the behavior
of the GGM, we choose a value of At that keeps the energy of the final state small
for all considered numbers of layers (p = 100, 1000,5000). Our simulations show
that there is no At value that simultaneously minimizes the energy of all layers p,
see Fig. 5.4. As a compromise, we choose At = 0.19 for Fig. 5.5, for which the
final energy is close to the absolute ground state for all p considered. In Fig. 5.9,
when we average over 100 instances, we will use At = 0.2 for all instances instead of
optimizing At for each instance.

ol ii?ggg y VAVMWM Figure 5.4. Energy of the final

- 0 state of Trotterized quantum an-

e - I;D nealing as a function of At for dif-

L% —101 _91.95 E i v ferent Trotter layers p for the Max-
1

&

Cut problem of Fig. 5.3, compared
721'“’%_15 0.20 0.25 to the ground-state energy obtained
from exact diagonalization (ED).

0.0 0.2 0.4 0.6 0.8 1.0

At

5.31 Success probability for different sweep speeds

As the number of Trotter steps increases, the evolution becomes more adiabatic, and
thus the success probability is expected to improve with larger p. We define the
success probability as the degree of overlap between the final state [¢)(p))pqa and the
true ground state |eg) of Ho. To understand the evolution of the state at each Trotter
step, we evaluate the instantaneous probability of finding the ground state |eg) and
first excited state |e;) of the final cost Hamiltonian at each layer s. Expressing the
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5.3 Genuine multipartite entanglement for a fixed instance of MaxCut

instantaneous state in the eigenbasis of Hc,

P(s))TQa = ZCi(s) lei) (5.7)
the instantaneous probability of being in the ground and first excited states are |cy(s)|?
and |c;(s)|?, respectively. Here, the basis states {|e;)} are ordered by increasing energy.
The probability of reaching the final ground state, |co(s = p)|?, defines the success
probability of the algorithm.

For all p € [1000, 10000], the instantaneous ground-state probability |co|? increases
with layer index s and reaches the highest value at the end of the sweep s = p, see solid
lines in Fig. 5.5(b). As the number of layers p increases, so does the success probability,
i.e., slower sweeps are more successful. The first excited state probability |c;|* (dashed
lines) increases until s/p & 0.32, after which it decreases if p is sufficiently large. This
results in a peak, whose location is around the minimal energy gap between the first
excited and the ground state of the instantancous Hamiltonian [see Fig. 5.5(d)]. The
peak becomes sharper as the sweep speed is reduced, i.e., as p increases.

For the smallest considered number of layers (p = 100, i.e., T' = 19), an oscillation
appears after crossing the minimum energy gap between the instantaneous ground
and the first excited states. In such fast sweeps, the adiabatic conditions break down,
causing the instantaneous state to become a superposition of multiple eigenstates. The
dynamical phases between these lead to oscillations. One can also see these as the
formation of defects, as described by the Kibble-Zurek mechanism (KZM) [442-444].
As the adiabatic condition becomes valid for slower sweep speeds, the defects and
oscillations disappear.

5.3.2 von Neumann entanglement entropy for bipartite entangle-
ment

Our modified MaxCut problem, given by Eq. (5.6), has by design a non-degenerate
solution state. Therefore, we expect the ideal quantum anneal to reach this desired
product state solution with vanishing entanglement. However, any realistic sweep
within finite time has some degree of non-adiabaticity, thereby populating higher en-
ergy states, which generates undesired final-state entanglement [414]. For comparison
purposes to the GGM, we quantify the bipartite entanglement across the half-half
bipartition of the system, i.e., (0,1,2,3) : (4,5,6,7), using the von Neumann entan-
glement entropy S,y = —Tr[palogy(pa)]. Note that S,n depends on the chosen
bipartition, whereas the GGM is optimized over all bipartitions.

As shown in Fig. 5.5(c), we observe a maximum in S,y around the gap closing,
reaching almost half of its theoretical maximum of 4log,(2) for the given subsystem
size at s/p ~ 0.3. Similar to reference [414], slow sweeps (large p) reduce the entropy
after this point as the quantum fluctuations produced by H,; become weaker, while
fast sweeps (small p) are unable to remove the entropy, resulting in a loss of success
probability.

5.3.3 Generalized geometric measure for multipartite entanglement

For the fastest sweep considered, p = 100, the GGM oscillates in accord with the
oscillations of the overlaps with the ground and excited states, see Fig. 5.5(a,b). The
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Figure 5.5. Results shown
as a function of normalized
layer number s/p for a sin-
gle MaxCut instance, for var-
ious total TQA layers p. (a)
For low p, the GGM saturates
at high s/p, while for high p,
a peak appears near s/p =
0.34 followed by a dip. Fast
sweeps (p = 100) show oscil-
lations due to non-adiabatic
transitions.  (b) Overlap of
[¥(s)) with the ground and
first excited state of H¢, with
le1]? peaking near max GGM.
(¢) The mid-graph von Neu-
mann entropy peaks for all
p but saturates lower as p
increases. (d) Instantaneous
energy gaps; key features in
(a)—(c) align with low-lying
gap closings.
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GGM peak near s/p = 0.34 becomes more visible with slower sweeps, which resembles
the observed peak in |ci]?. As the GGM follows qualitatively the same structure as
the von Neumann entropy on the fixed bipartition, one may wonder if the optimal
bipartition for the GGM is static or if the half-half bipartition captures the GGM on
average. For the particular problem instance we considered, we found that the optimal
bipartition remains constant for 0.3 < s/p < 0.8 and is A = (2),B = (0,1,3,4,5,6,7),
which differs from the half-half bipartition (see Fig. 5.6).

Optimal bipartitions corresponding to the GGM

To find the value of the GGM, we need to look for the bipartition that yields the
maximum Schmidt coefficient. A question that may naturally arise is whether such a
bipartition is unique or changes with the annealing sweep. At the start of the anneal,
at s/p = 0, we have A2 = 1 in all bipartitions. This implies a vanishing GGM,

max
see Fig. 5.6. As the annealing schedule proceeds, A2 of different partitions starts

max
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Figure 5.6. Largest Schmidt coefficients along the annealing sweep, at selected times for the
partitions (A) : (B) yielding the four largest values, for the MaxCut problem of Fig. 5.3. The table
gives the corresponding sets of qubits in A. The maximum Schmidt values decrease from the initial
states until s/p = 0.3, implying an increasing GGM. Later, the Schmidt values increase while the
optimal bipartitions remain unchanged until s/p = 0.8. Subsequently, the GGM remains constant
while the optimal bipartition changes to finally reach A = (1, 3,5, 6).

to differ; for example, at s/p = 0.2, partition A = (3),8 = (0,1,2,4,5,6,7) and
partition A = (2),B = (0,1,3,4,5,6,7) have different values of A2 . The individual
Schmidt values decrease during the sweep until they reach the lowest A2, correspond-
ing to the GGM barrier at around s/p = 0.3. After this point, the GGM decreases,
and the partition producing the A2, — A = (2),B = (0,1,3,4,5,6,7) — does not
change until s/p = 0.8. Towards the end of the anneal, in the range s/p > 0.8, the
maximum Schmidt values and the GGM do not change considerably. However, the
optimal bipartition varies until it finally reaches A : B = (1,3,5,6) : (0,2,4,7). This
bipartition has the maximum Schmidt values (maximal bipartite entanglement). In
summary, it is interesting to see that from s/p = 0.1 to 0.3, the GGM changes, but
the corresponding partition does not. Thereafter, and until the end of the anneal, the

GGM remains constant, but the underlying partition changes.

Effect of graph’s connectivity

One might naturally question whether a graph’s connectivity affects the value of the
GGM, for instance, if a more connected graph would display greater entanglement.
Perhaps surprisingly, even a two-regular graph, with just two edges per node, can
exhibit nearly the same amount of GGM as a six-regular graph, see Fig. 5.7. The same
is true for the von Neumann entanglement entropy. Thus, it is crucial to understand
in what sense bipartite and multipartite entanglement differ.

In general, bipartite entanglement for fixed bipartitions does not need to follow the
behavior of the GGM, as we now show through some counterexamples. As discussed
in Sec. 5.2.2, multipartite entanglement exists only when there is a non-zero bipartite
entanglement for all possible bipartitions. This implies that a state can have a large
bipartite entanglement for a particular bipartition and yet can have a significantly
smaller GGM, even zero. To exemplify the strong dependence of the von Neumann

max

entropy on the bipartition, we consider S)* as S,y maximized over (L N]\/fz J) equal-sized
(half-half) bipartitions,

SoN” = AN 2| Bl=N /2 Sovl Al (5.8)
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For the 6-regular graph studied above, we observe that the GGM peaks later
than S) 3", and the same happens in the example of a connected two-regular graph,
see Fig. 5.7. This implies that in both cases, the bipartition corresponding to the
GGM is not the same as the maximal bipartition of SJ¥*. An even more substantial
difference between half-half von Neumann entanglement entropy and GGM can be
found in the example of a disconnected two-regular graph, see the “2-reg, two ring” in
Fig. 5.7. In this extreme example, while the maximum bipartite entanglement entropy
is large throughout the entire annealing schedule, the optimal bipartition of the GGM
corresponds to the disconnected subgraphs, resulting in an identically vanishing GGM.

Figure 5.7. The von Neumann en-
tanglement entropy of a half-half bi-
partition and the GGM can peak at
different times during an annealing

2-reg, two-ring 2-reg, connected

3 - _
0.1001 —— Ga, 2-reg, two ring —== Sun, 2-reg, two ring sWe_ep A tWO regular graph may ex
—— G, 2-reg, connected _o===~_ === SN, 2-reg, connected hlblt Slmllar entanglement Strength as
_| —— Gy, Greg e S === S, Greg . .

~20.075 > Gres s N ore ) a six-regular graph. In disconnected
Eoo’o : graphs, a fixed bipartition may show

~—0.05 . . .
& large bipartite entanglement while the

0.025 multipartite entanglement (GGM) can

vanish.

0.000,
0.

5.3.4 Relation between state occupation probability and GGM

In Fig. 5.5(a,b), the GGM and the occupation probability of the first excited state |c;|?
are quite comparable throughout the sweep, especially for larger p. This similarity
becomes even more apparent by plotting Gy and |c;|* together in Fig. 5.8. This
quantitative comparison shows that the GGM and |c;|? do neither strictly coincide
with each other nor do one strictly bound the other. Instead, G5 is strictly bounded
from above by the overlap probability with the initial state and the exact solution
state, as we now prove.

Calculating the GGM of a given state |¢)) is equivalent to finding the two-party
product state |r) , ; with minimal distance from |¢), see Eq. (5.1). As the anneal-
ing sweep terminates with the cost Hamiltonian, whose eigenstates |e;), defined in
Eq. (5.7) are product states, it seems reasonable to estimate the GGM by using these
as a basis. The true GGM has to be smaller than the distance to any of these, i.e.,

Gz ([9()) < 1= [eily(s)?, Vi (5.9)
lei(s)]2
Towards the end of a slow sweep, the expansion of Eq. (5.7) will have the largest

weight in the ground-state of the cost Hamiltonian |ep). We thus estimate the GGM
by the upper bound

G2 ([(s)) < 1= leo(s)[*. (5.10)

Similarly, during the early stages of the sweep, the wave function will have a
considerable weight in the initial product state |+>®N. It is thus reasonable to expect
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5.4 Genuine multipartite entanglement barrier in Random Max-Cut ensemble

the distance to this state to provide a good upper bound in the initial part of the
anneal,

Ga ([9(s)) < 1= |((H" ()P =1~ de (). (5.11)

Moreover, the GGM for qubits has a theoretical maximum of 1/2. Putting all
three bounds together, the GGM is upper bounded by

Ga (e < min {1~ (o)1~ d: (). 5 | (5.12)

Numerical experiments exemplify this bound, see Fig. 5.8. Considering the sim-
plicity of the bound, the qualitative agreement is very satisfactory. In particular, the
bound is saturated by 1— |cg|? towards the end of a successful anneal, as |cy|? becomes
the most significant probability among all |¢;|?s. Later, in Sec. 5.4.3, we further use
Eq. (5.10), to relate the success probability, i.e., the final |cg|?, to the final GGM.
Importantly, the values entering Eq. (5.12) are easily obtained experimentally by pro-
jecting the state onto the computational basis or a locally rotated basis. It can thus
be used as a physically-informed proxy for bounding multipartite entanglement.

As remarked above, in addition, there seems to be a qualitative similarity between
the first excited state overlap probability |c;(s)]? and the GGM Gy (v), see Fig. 5.8.
Towards the very end of the sweep for p = 1000, 10000, this similarity can be ex-
plained as only the states |eg) and |e;) remain prominent, i.e., |co|? + |c1|? ~ 1, and
the upper bound of the GGM saturates, thus giving Gy = 1 — |¢y|? ~ |¢1|>. However,
their similarity in the middle of the sweep cannot be explained solely by this reason-
ing. Nonetheless, we speculate that such a non-zero |c;|? has a role in keeping the
instantaneous state entangled, as—assuming |c1|* < |co|*>—it heralds the presence of
an entangled superposition state.

—— il @R L= @Rl —— Galle(s) Figure 5.8. The GGM Gy
p—100 = 1000 b 10000 (solid red) is upper bounded by
— — - ; 2 2 1
0.54() I__ ........... (b) i (c) I—\ min {1 — |C0($)| 7]. — |d+(8)| ,5}
Soai{ i L~ T Sl {0 (dash-dotted teal). For slow sweeps
Sos{ |/ [ P (p = 1000,10000), the final state
ool 14 ] /‘i ! I A becomes a superposition of a few
Sl ‘/I / iy .,'I AN eigenstates, leading to Ga =~ |c1]?
0ol P A\~ (blue dashed), as seen in panels (b)
"0 50 1000 500 10000 5000 10000 and (c).
s s s

5.4 Genuine multipartite entanglement barrier in Ran-
dom Max-Cut ensemble

In Sec. 5.3, we have observed that the GGM assumes a peak during a slow quantum-
annealing sweep, see Fig. 5.5(d). We call this a multipartite entanglement barrier
since the inability to build up and then reduce the GGM prevents the algorithm from
preparing the non-entangled solution state. We now investigate whether the observed
barrier is (i) a universal feature not specific to the MaxCut problem instance used
above and (ii) whether it is related to the instantaneous energy gap.
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5.41 For random instances

We analyze 100 random MaxCut instances for eight vertices of 6-regular graphs with
edge weights sampled from a Gaussian distribution N (= 6,0 = 3). We run TQA
with annealing sweep speeds p = 100, 2000, 5000. For p = 100, many instances display
a peak or an oscillation in the GGM. However, there is no peak on average since the
peaks occur at different times for different instances, see Fig. 5.9(a). Notably, the
spread in the GGM at the beginning of the protocol is small. This trend is also
observed for p = 2000 and p = 5000.

For p = 2000, we observe a small hump also in the instance-averaged GGM around
s/p = 1/3, see Fig. 5.9(b). The final state’s GGM is lower as compared to p = 100.
The entanglement peak, or barrier, becomes more strongly apparent at p = 5000,
see Fig. 5.9(c). In this case, the multipartite entanglement remains relatively low
throughout the sweep, and the final GGM is minimal, indicating that the protocol
has reached the solution state with high probability. Nevertheless, there are problem
instances for which the GGM increases until s/p = 1, e.g., see the two red lines in
Fig. 5.9(c), which do not exhibit a multipartite entanglement barrier.

For comparison, we also investigate the GGM in a QAOA protocol with few layers
but classically optimized angles 5 and v in Eq. (5.2), see Sec. 5.4.4 for details. Here,
we do not observe a peak in the GGM but rather a build-up of the GGM with each
additional QAOA layer. This behavior is similar to a short-depth quantum anneal, as
in Fig. 5.9(a), which is reasonable considering the few layers used in QAOA.

05 p =100 p = 2000 p = 5000
(a) (b) ()
0.4
2203
= o~
(g’ 0.2 .
0.1
0.0,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
s/p

Figure 5.9. GGM from numerical benchmarks of 100 MaxCut instances. Panels (a) to (c), cor-
respond to TQA with p = 100, 2000, 5000 layers, respectively, i.e., increasing annealing time. For
p = 100, 2000, although some individual instances have peaks in the GGM (refer to Fig. 5.5 for an
example), the average GGM does not show any peak (panel a) or only a small hump (b). In contrast,
for p = 5000 (c), a peak in the GGM is also visible on average. With increasing p, the fluctuations
in GGM between different instances decrease. Problem instances with no barrier are indicated by
arrows. Again, strong oscillations typical for the defects generated by fast sweeps appear in p = 100.

5.4.2 Relation between GGM barrier and energy gap

In equilibrium, high entanglement can appear at quantum critical points with small
energy gaps [361,415]. However, this connection between low-lying spectrum and
entanglement may not necessarily be expected in the out-of-equilibrium context of
quantum optimization. Here, we investigate (a) whether the point where the energy
gap closes correlates with the position of the GGM peak and (b) whether the size of
the energy gap relates to the amount of GGM generated.
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In Fig. 5.10(a), we plot the time s/p at which the energy gap and the GGM
are minimum and maximum, respectively, for the same 100 problem instances as in
Fig. 5.9. We report the first peak in the GGM to avoid ambiguities in case the GGM
oscillates. The position of the minimum gap has a linear correlation with the position
of the first GGM peak. Quantitatively, Pearson’s correlation coefficient is r = 0.28
for the whole dataset, including the two extreme points. The corresponding t-score
ist = |r|\/(n—2)/(1 —r%) = 2.89, with n = 100 problem instances. This implies
a statistically significant correlation at the 99% confidence level. Excluding the two
outliers increases Pearson’s correlation coefficient to r = 0.525. By contrast, we do not
observe such a strong correlation between the magnitude of the energy gap and the
size of the GGM peak, see Fig. 5.10(b). Indeed, the associated correlation coefficient of
r = —0.16 is only significant at the 80% confidence level. As in this out-of-equilibrium
situation, the near-degeneracy between ground and first excited state is not the sole
reason for entanglement, the absence of a strong correlation between the amount of
entanglement and the energy gap is not unexpected.

5.43 Relation to success probability

Generating and removing entanglement in quantum circuits are complex operations.
For our MaxCut problems with a non-degenerate solution, quantum annealing must
eliminate any existing entanglement to achieve the final product state. This raises
an interesting question: Does the non-zero entanglement generated during quantum
annealing hinder the optimization algorithm’s ability to find the optimal solution?
Specifically, does a higher GGM in the final state limit the probability of success? If
so, given the presence of an entanglement barrier, could a drop in the GGM from its
peak enhance the chances of achieving a better success probability?

Final GGM and success probability

As a corollary to the Sec. 5.3.4, the success probability, i.e., the probability correspond-
ing to the ground-state of the cost Hamiltonian, |co|?, is bounded above by 1 — Giral,
In Fig. 5.11(a), we see that with an increasing number of layers (slower sweep), the
success probability saturates the bound. In contrast, with fewer layers, the success
probability does not saturate the bound, as the final state has support on multiple
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eigenstates, making the bound of Eq. (5.10) using a single amplitude too loose. These
results are similar to the observed relation between bipartite entanglement for a fixed
bipartition and the success probability in Ref. [414].
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Disentanglement and success probability

As a complementary analysis, we also study how the amount of dis-entanglement,
i.e., the reduction of GGM after its peak, AG = G¥** — Gl is related to the
success probability. To this end, we calculate the conditional probability (Peona[P, €])
of obtaining a success probability greater than some P,., given that the sweep has
shown some minimum amount of disentanglement, AG > €

: Pl > P) 0 (AG > ]
Pana [0 > PAG > ] = P[ac > { IR

We study only the cases where a GGM barrier is observed, i.e., GF#* > (Ginal
We choose p = 2000, 5000, computing the TQA of 100 instances for both numbers
of layers. To show reasonable comparison, we need to choose small values of ¢ =
(1076,107%,1072), as the final GGM is itself small in terms of absolute values. We find
a larger AG (increasing €) to result in a larger success probability, see Fig. 5.11(b). In
particular, large values of P, are capped by the given fixed minimum disentanglement,
leading to a downward bend in the curves [Fig. 5.11(b)] and suggesting the necessity
of a large amount of disentanglement for a good success probability.

5.4.4 GGM in Quantum Approximate Optimization Algorithm

In this chapter, we are primarily interested in Trotterized quantum annealing. Nonethe-
less, it is interesting to compare the results with those obtained with a QAOA proto-
col. The standard QAOA applies p layers of the unitaries exp(—if,Hy ) exp(—iye Hc),
with k& = 1,...,p on the initial state |—|—)®N to create a trial state (7, 3)). Then, a
classical optimizer seeks the optimal parameters 8 = (f1,...,5,) and v = (1, ..,%)
that minimize the energy (¢(8,~)| He [¢(8,~)), which is measured by the quantum
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processor. As optimizing over 2p parameters in the classical optimizer is a bottleneck,
we limit our simulation to small depths p.

In its spirit, QAOA is an approximate algorithm. It is designed to provide samples
of a good set of solutions using only short-depth circuits (in contrast to quantum
annealing, where one is typically more interested in slow but near-optimal runs).
Therefore, as a figure of merit to quantify the performance of QAOA, we use the
approximate ratio a = (E)/ Eexact instead of success probability. We run QAOA with
different depths p for the same MaxCut instance we consider in Sec. 5.3.
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For fixed depth p, the GGM increases with each QAOA layer k; however, for
larger p, there is a kink at k& = 3. Nonetheless, the approximation ratio o and the
final GGM increase with QAOA depth p without a clear presence of an entanglement
barrier. This is akin to the observed feature in the GGM when the number of TQA
layers is small, see p = 100 in Fig. 5.9(a). Recall that the multipartite entanglement
barrier appears when the instantaneous overlap probability of the ground state |co|?
and the first excited state |c;|? starts to become distinguishable, see Fig. 5.5(b) and
Fig. 5.2. Thus, a large GGM may not necessarily hinder its performance as long as
it stems from the superposition of the actual ground state |eg) with a few excited
states |e;>o). In that case, there is a high probability that a manageable number of
repetitions of the algorithm will then permit us to measure the optimal state on the
computational basis at least once.

5.5 Summary and outlook

To summarize, multipartite entanglement arises in Trotterized quantum annealing
even when the solution of the classical optimization problem is non-degenerate. While
fewer layers—or a faster sweep—generate more entanglement, increasing the number
of layers causes the GGM to grow, reach a peak, and then decline to zero during the
sweep—a phenomenon one can call a multipartite entanglement barrier. We prove
that the success probability is upper-bounded by 1 — Gl which is saturated when
the final state is close to a product state (such as the desired solution state), as illus-
trated by numerical results from MaxCut instances. Thus, achieving a higher success
probability typically requires lower final-state entanglement. Such a relation can be
leveraged to benchmark quantum hardware [325,443,445,446]. From the phenomena
of the entanglement barrier, we quantify the relation between disentanglement and
success probability through a conditional probability and find that a stronger drop
in multipartite entanglement after the GGM peak improves the success probability.
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Moreover, as the GGM corresponds to an optimal bipartition with minimal bipartite
entanglement [447], insights about GGM can be used in circuit-cutting protocols to
find an optimal cut such that the multipartite entanglement loss is minimal [448].

Our work has consequences for short-depth protocols such as QAOA and its vari-
ants. The classical parameter optimization loop is time-consuming [301], and navigat-
ing the optimization landscape in variational quantum algorithms is NP-hard [449].
Therefore, recent research investigates methods to obtain QAOA parameters by clas-
sical means. In particular, tensor networks may help to obtain good parameters [260].
Here, it is sufficient to approximate the loss landscape to produce good QAOA pa-
rameters qualitatively. Our work shows that multipartite entanglement can build up
in QAOA. An interesting research question is thus whether tensor-network methods
can provide a qualitative approximation of the loss landscape that is good enough to
produce good QAOA parameters at a classically tractable bond dimension.

Further research could explore how the multipartite entanglement barrier man-
ifests if the Hamiltonian is engineered using the tools from shortcuts to adiabatic-
ity [450]. By exploring possible links to the graph’s spectral properties, one may
hope to understand better why GGM barriers cluster in specific regions [451]. More-
over, understanding the source of such entanglement in terms of physical phenomena,
e.g., the Landau—Zener transition [444] or multiqubit quantum tunneling [452], one
may hope to better predict the possibility or impossibility of reaching the solution
state [243]. Our work focuses on pure states. However, some quantum algorithms
may leverage mixed states [453-456], and it will be interesting to use the GGM to
study the role of multipartite entanglement in such cases [141, 146, 147].
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Chapter 6
Validating quantum effects in quantum
algorithm

Do quantum processing units generate entanglement in QAOA?

6.1 Introduction

In recent years, quantum computation has seen sustained and accelerating progress in
both algorithmic development [457-459] and experimental platforms [288,460-462].
Among the many potential applications, quantum optimization stands out as a par-
ticularly promising area, where even modest improvements over the best-known clas-
sical methods could lead to significant advancements across scientific and industrial
domains. Hybrid quantum-classical algorithms, such as the Quantum Approximate
Optimization Algorithm (QAOA) [81,237], have emerged as viable approaches for har-
nessing the capabilities of noisy intermediate-scale quantum (NISQ) devices. These
algorithms combine quantum circuits with classical optimization routines, leveraging
the strengths of both computational paradigms. Despite notable improvements in
quantum hardware, including increased qubit counts and extended coherence times,
the performance of QAOA is often limited by the efficiency and effectiveness of the
classical optimization component. This raises a critical question: to what extent does
the quantum processing unit (QPU) contribute to the overall performance of the al-
gorithm? In other words, if classical routines primarily perform the heavy lifting, are
there genuinely quantum effects at play that are essential to the algorithm’s success?
Empirically investigating such “quantumness” within QAOA is crucial, as any claims
of quantum advantage hinge upon it. Without meaningful quantum contributions, the
potential for QAOA to surpass classical methods would be fundamentally undermined.

We address this question by measuring entanglement on IBMQ hardware for clas-
sically optimized QAOA. We find that the optimized QAOA on hardware exhibits
entanglement, which is qualitatively comparable to that in a noiseless simulation up
to a certain circuit depth. To detect entanglement, we employ an entanglement mea-
sure inspired by the geometric measure of entanglement of Chapter. 5.

In this chapter, first, in Section 6.2, we describe our measurement protocol in
detail, including how we estimate entanglement from a fixed bipartition using a
hardware-efficient SWAP test, and how Schmidt coefficients can be extracted from
Rényi entropy. Section 6.3 presents benchmarks of our method against exact simula-
tions on small systems, analyzing its robustness under realistic noise models. We then
move to implementation in Section 6.4, where we discuss the practical challenges of
executing the protocol on IBM quantum devices. Finally, in Section 6.5, we apply our
protocol to QAOA circuits across various system sizes up to 76 qubits and analyze
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how entanglement evolves in QAOA. This progression allows us to assess the presence
of entanglement in QAOA circuits experimentally.

6.2 Methods: Obtaining GGM in experiment

Measuring entanglement can offer profound insights into quantum correlations, ex-
tending beyond the conventional benchmarking of individual qubit performance in
noisy intermediate-scale quantum (NISQ) devices [463-466]. Yet, its role in quantum
optimization remains largely unexplored. As hybrid quantum algorithms gain atten-
tion, understanding entanglement becomes essential for two reasons: (1) to quantify
how much genuine quantum resource the algorithm is using, and (2) to assess whether
any observed advantage truly stems from quantum effects beyond classical optimiza-
tion capabilities.

One established method for probing entanglement is the SWAP test [467-470],
which compares copies of a quantum state to measure the purity of the subsystem.
From this, one can compute quantities such as the Rényi entropy or, in ideal sce-
narios, the von Neumann entropy, provided that multiple Schmidt coefficients can
be resolved. However, creating multiple identical copies is challenging on current
small-scale hardware.

6.21 SWAP test to Rényi entropy

Consider a system composed of two subsystem A and B, which can be written as

) = > ciglai) @ [bs) (6.1)

where the states |a;) and |b;) form orthonormal bases of A and B. The reduced density
matrix for subsystem A is defined by tracing over B,

pa = Trp(|¢) (¥), (6.2)

which contains the information about entanglement between A and B. For example,
one can define the nth Rényi entropy,
1

Sy = - log(R,), R, = Tr(p}). (6.3)

Similarly, one can also calculate von Neumann entanglement entropy,
Syn = —Trlpalogpal. (6.4)

Now, the main challenge in the experiment is to obtain R,, without estimating the
state pa, which is costly in terms of tomography. On the other hand, it is clear that
to find the trace of the power of a matrix, knowing the entire matrix is overkill. In
this scenario, the SWAP test provides a way.
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6.2 Methods: Obtaining GGM in experiment

SWAP test. In quantum computation, the SWAP test is a well-known method to
check how much two states differ [471,472]. To demonstrate the method, let’s consider
two states |¢) and |¢). Now, if we follow the circuit in Fig. 6.1, we can see that after
Hadamard and C-SWAP, the state becomes

1
V2

and then the second Hadamard results in

(10, ¢, 9) + 1,9, ¢)), (6.5)

5100 (16,6) + 1, 8)) + 3 1) (19,) ~ 15, 6)). (6.6)

Thus, the probability of ancilla being 0 captures their overlap,
. 11 2
Prob(ancilla = 0) = 5 + §|<1/}|¢>| . (6.7)

Figure 6.1. Circuit for the quantum SWAP test: used
to estimate the overlap between two quantum states.
An ancilla qubit controls a SWAP operation between
the two input states, and the probability of measuring
|0) on the ancilla is related to the fidelity between the
states (from Wikipedia).

The SWAP test, originally used to assess similarity between states, can also esti-
mate subsystem purity—e.g., applying it to subsystem A yields Tr(p%), and with n
copies, one can access Tr(p’). We elaborate on this below.

Figure 6.2. Multi-copy SWAP
test: By preparing multiple copies
of a quantum state and apply-
ing the SWAP test on a sub-

92 QAOA,

2 @ set of qubits (A), one can es-
- ‘A‘[qo F C.SWAP timate the Rényi entropy of or-
, der n, which is proportional to
e ] ) hadamard Tr(p%). This procedure requires
g a) : e, : ' n copies of the state. The esti-
Z a mation is obtained from the prob-
] "l‘[qg) ability of measuring the ancilla
) qubit in the |0) state. The SWAP
e ] . test involves a controlled-swap (or
§ i OAOA: i ' controlled-permutation) operation
5 ra % Problancila=0)= 2 +  Tr(pleory between  corresponding  qubits  in
- ﬂ{ o T {£ the copies, with the ancilla (con-
trol) qubit encoding the interfer-

|0, encg information. °

Let’s consider two copies of the state: [1) = 3. cij [a;) |b) and [¢") = > 2,0 cingr [air) [bye).
The full circuit for measuring R, involves applying a Hadamard gate to an ancilla
qubit, followed by a controlled-SWAP (C-SWAP), and then another Hadamard gate,
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as shown in Fig. 6.2. Let’s consider the simplest case with just two copies:

9) 1) 10) — [} [/} |+
e T3 10+ 30 ey la) 1) ) ) 1)

C—SWAP, — <
]I®JI®H 2 [( ) [9) + ZZC’UCZ”J lay) |b;) |a) |b; >) 10) (6.8)
(W ") ZZcchnJ |ay) |b;) |a:) |b; >) ‘1” .

From here we can see the probability of ancilla being 0 is given by

Prob(ancﬂla = ‘O H ( ‘w ‘w + Z Zcmcz”j ‘az ’b > ‘al> |b >)

ij g
= 5 5 chmcw (W[ (W' |ai) b5) |ai) by7)
iy g
1
= 5 5 Z Z Z Z ChiChouCiCaryr (O |az ) <bl 1b5) <ak’ |a;) <bl’ |bj7)
k'oig o gt 51“ s 61/ ,
1 1
= 5 ‘I— 5 Z C’L’]C’L]/CZ]CZ]
ii'jj’
(6.9)
We can identify the last term as Tr(p?),
pa= Y coicijlar) (] = p% =YY chacuci;eii law) (arlar) (ail
it j kKL i j
(6.10)
= Tr( pA Z czlcmc, Cij = Z c”,c”/c/ Cij -
i1’ 51 i/ 55’

Thus, by measuring the probability of the ancilla being in |0), one can obtain the
information about Tr(p?%) in the experiment.

6.2.2 R, to Schmidt values

To obtain von Neumann entropy, one needs to have the eigenvalues of p, instead of
only the trace of it. Or, one can extract the Schmidt eigenvalues from there. We know
that for a state |¢) € C*® = C* ® C°, we can do Schmidt decomposition to obtain

=S Ml ® o), {lun)} € C {log)} € C” (6.11)

Now, we need to obtain the Schmidt values, i.e., eigenvalues of p4 from the information
of R, = Tr(p%). We can use the Newton—Girard formula to obtain the roots of a
polynomial made of R,, [469,473].
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Newton-Girard formula. It connects power sums ), :L’iC to the elementary sym-
metric polynomials made of those, for example,

€y = 1, €1 = Zﬁi, €y — Z :Uiﬂjj. (612)
7 1<i<j<n

The Newton-Girard formula shows how the roots form the symmetric polynomials,

n

H(aj —x) = Z(—l)kekx”*k . (6.13)

i=1 k=0

To obtain the eigenvalues of p4, we can replace the LHS of Eq. (6.13), by det{(z — pa)},
where x will be the eigenvalues or Schmidt probabilities. Then it is evident that
e; = Tr(pa), and we can understand what is ey, by investigating the structure of

Ry = Tr(p}) = ) ai,

ey = Z rr; = (ZxZ)Q—fo /2:%(1—}%2). (6.14)

1<i<j<n i
——
=1

Similarly, we can see that for n = 3,
R3 = Zx?, €3 = Z LT, (6.15)
i 1<i<j<k<n

and using basic algebra, we can see that,

n n

(Z ) = fo +3 Z riT; +6 Z LT
i i=1 ij=1,i#j 1<i<j<k<n
—_———

=iy ) (i «f) - 7
= 1:R3+3(R2—R3)+663

1 —-3Ry+2R
= ey = 2+ 2Hs (6.16)
6
One can generalize this relation between e, and Ry by defining a matrix,
1 1 0 ...
o R2 1 2 ... . det Ek
Ek == Rg R2 1 € = Ll > (617)

where Fj is defined as the (k x k) matrix of the top-left corner, and we can easily
recover the above relations between e, and Ry. As a final equation,

— (—1)* n—k
det(x] — pa) =) T det(By)a" ", (6.18)
k=0 )
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and the roots of the above polynomials (RHS) are nothing but the Schmidt coefficients.
Now, we can see that to obtain all the Schmidt coefficients (in order to either calculate
von-Neumann entropy or entanglement spectrum), one needs to have multiple copies of
the same state, which becomes complicated in the experiment. However, measurement
of R, is dominated by A\; as A2"[1 + (A2/A2)" +...].

For p largest eigenvalues (A2 > A2 > ... > )\12,) need upto p-copies, and hence O(pN)

qubits with a parallel circuit depth of O [p (ﬁy} to resolve the Schmidt values [469].

X

6.2.3 Schmidt values to GGM

From the complication of obtaining all the Schmidt coefficients, it is obvious that
von-Neumann entropy needs more resources. Instead, either one can estimate the
Rényi entropy, or, due to the ordering of the Schmidt values (coming from roots of
the polynomial), the maximum of it can be used to obtain 1 — A\? . which becomes

the GGM (sec. 2.6.4) on the optimal bipartition. As it requires only two copies of the
state, it is more hardware-friendly.

Recall the definition of GGM from Eq. (2.66),

Ga([v)) = 1 — max(\375)*. (6.19)

Now, the challenge is to maximize over all bipartitions A : B, which is experimentally
expensive because:

1. the number of possible bipartitions increases with system size,

2. with increasing size of partition A, a larger number of C-SWAPs need to be
implemented, which increases depth

3. given the limited connectivity in the devices, the distance between qubits in
partitions to the ancilla can increase, and qubit routing becomes necessary,
which also affects the quality of the result.

All such problems can be set aside if we consider a fixed partition, where the qubits
in the partition are at a minimal distance from the ancilla on the device. Although
this does not confirm genuinely multipartite entanglement, as we have not optimized
over all possible bipartitions, it still reveals meaningful entanglement characteristics
of the system. Moreover, as observed in Fig. 5.6, in quantum optimization algorithms
such as QAOA and quantum annealing, the Schmidt values do not differ significantly
across different bipartitions; hence, empirically, we may not be far away from the
actual GGM*.
To be more concrete, instead of optimizing over all partitions, we define on parti-
tion A as
Ga=1- (3% (6.20)

I'Note, this will be an upper bound on the actual GGM
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6.3 Benchmarking the method

To obtain the entanglement from the circuit in Fig. 6.2, one has to run the circuit
multiple times to get enough count statistics, such that one can trust the probability
to obtain a good result, with less error bar. To test if this way of circuit evaluation
works, we first compare the GG 4 obtained from the circuit with the numerical value
obtained by doing singular-value decomposition.

6.31 Fixed partition

We consider a random brick-wall circuit and generate states with variable depth,
obtaining 100 different circuits with distinct GGM. Note that we choose only those
circuits where the optimal partition is A = [0], so G4 = Gs. In Fig. 6.3, we can observe
that in an ideal noiseless simulation using 10000 shots, we can obtain the same GGM
as numerically obtained, with a small errorbar, which benchmarks our method to be
accurate for a wide range of GGM values. However, if we perform a noisy simulation
using the noise model of the IBM hardware, we can observe a constant upward shift,
which we believe is reminiscent of the noise introduced by the measurement circuit
involving the C-SWAP part. We will see later that if one can account for this bias
error, one can get closer to the ideal values. We also check if one can obtain a better
result using zero-noise extrapolation (see Sec. 3.6.3) on a noisy simulation; however,
as we can see, even after 3X and 5X CNOT insertion, the results do not improve
sufficiently, compared to the cost of doing it in hardware.

num_qubits=3, brickwall random circuit depth=2 . X . .
05 = Figure 6.3. Benchmarking the circuit

+  ZNE_corrected_GGM (1,3,5) e
 ideal GGM pd method of estimating GGM: From a random

noisy_GGM ’ circuit of 3 qubits, we generated states with
o e numerical values of GGM spanning from 0 to

) pd 0.4. We then estimate the GGM using the cir-
i e cuit by measuring the ancilla 10,000 times to
> 5 obtain the y-axis values. The noiseless data
matches well with the numerical GGM, while
'.;;,’5;' the noisy simulation data shows an upward
shift. Zero-noise extrapolation does not con-
sistently correct the deviation across all GGM
values.
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6.3.2 All partitions

In Section 6.2.3, we explained why working with all partitions is complicated and
more errors can be introduced due to their distance from the ancilla. In Fig. 6.4,
we show that through experimental data. Comparing with (0), (1), (2), we can see
that as the distance increases from the ancilla, which is near (0), the calibration error
increases. With a larger number of qubits in the subsystem, the number of C-SWAPs
has to increase, and the error also increases, as can be seen by comparing one-qubit
partition with two-qubit partitions.
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v EEETe T AN T s Figure 6.4. Performance over
ol T e on ' v ; g all bipartitions on quantum hard-
T o smulaton ware. The protocol was imple-
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2 T T L L oy sim tion is far away from (0), and also
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6.3.3 Noise accumulation from C-SWAP

As indicated by both the noisy simulations and hardware results in Fig. 6.4, the C-
SWAP gate can be a significant source of error. This is because, when executed on
hardware using its native gate set, it involves several error-prone two-qubit gates,
which significantly contribute to the overall noise.

Figure 6.5. Transpiled C-SWAP circuit: A simple C-SWAP acting on only one qubit in the partition
for each copy becomes a long circuit with multiple Rzz gates on the hardware.

6.3.4 Can circuit cutting help in measuring entanglement?

The main challenge in using the SWAP circuit is its increased circuit depth after
transpilation. In this scenario, one can consider advanced techniques, such as circuit
cutting [285,474]. It is a technique that was devised to allow longer circuits to run
on quantum hardware by cutting into sub-circuits that are suitable for execution on
hardware, at the cost of additional sampling overhead [475,476]. Then, one has to
measure part of the circuit multiple times with a sampling overhead and post-process
to obtain the target quantum channel [477,478],

U= wh, (6.21)

where U is the target quantum channel, and each F; is executable on hardware. The
coefficients a; come from quasi-probability decomposition (qpd).
Circuit cutting can perform two types of cuts:
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Figure 6.6. Example of circuit
cutting via a gate cut. The full cir-
cuit is divided into two smaller sub-
circuits, A and B, each with fewer
qubits. The overall output is recon-
structed by mid-circuit measure-
ments on each subpart (Adapted
from Qiskit Circuit Cutting [479]).

» Gate (space-like) cut: cut through a multi-qubit gate, to make smaller subcir-
cuits with fewer qubits

o Wire (time-like) cut: cut directly through a qubit wire (essentially a single-qubit
identity gate that has been cut into two pieces) to fight against coherence time

Cutting comes with sampling overhead, which is exponential in the number of cuts.
For example, a CNOT gate cut incurs a sampling overhead of 9X, compared to an
original CNOT.

qo
Qs / - I *T )

l

4

Figure 6.7. Example of a cut-circuit for C-SWAP: We can see the number of Rz 7 gates significantly
reduces, and mid-circuit measurements of quasi-probability decompositions are introduced.

We use circuit cutting on the C-SWAP gate to obtain the cut circuits in a way
that eliminates the need for ancilla, and the circuit depth is significantly reduced (see
Fig. 6.7). However, we need to run 8 more such circuits, with their sampling over-
heads, which makes the method costly. Despite the overhead, we implemented the
circuit-cutting approach but found that it offers no clear advantage over standard C-
SWAP transpilation. This is primarily because circuit cutting requires repeated mea-
surements of both qubit subsets coming from mid-circuit measurements (see Fig. 6.7),
which are highly sensitive to readout errors. To examine this effect, we used a product
state in a test setup and scaled the readout error channel by a factor of . Using noisy
simulations, we then extracted the ancilla measurement probabilities (see Fig. 6.8).
The results show that while the standard (uncut) method is relatively insensitive to
readout errors, the circuit cutting (CC) approach improves only as 1 decreases, high-
lighting its strong dependence on readout fidelity. Since current IBM devices typically
exhibit readout errors that are 3—4 times higher than the Rz; gate error, introduc-
ing additional Rz, gates proves to be a more practical alternative than relying on
readout-intensive techniques like circuit cutting. Therefore, for the remainder of the
chapter, we do not employ circuit-cutting techniques and instead rely on the standard
transpilation of the C-SWAP gate.

6.4 Obtaining entanglement in QAOA from hardware

With these methods in place, we are now equipped to measure the entanglement
generated in QAOA and to explore how it is utilized during the algorithm. We consider
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the hardware-native MaxCut problem? with randomly chosen coefficients on the edges
{—1,+1}, with a small bias field Z to break the degeneracy on the qubit considered
in the bipartition A -

He=fZw+ Y. JZiZy; Jiy € {-1,+1}, f=001. (6.22)

1,jEcoupling map

6.41 Choosing qubit arrangement

As the device has limited connectivity, in this case heavy-hex [Fig. 6.9(b)], keeping
the ancilla close to the qubits in bipartitions .4 would avoid needing to add multiple
SWAPs for connectivity. We choose qubits such that ancilla (red) can be close to and
in between A (blue) and A" (orange) [see Fig. 6.9(b)], which implies in the circuit
the 1st copy of the QAOA is flipped [see Fig. 6.9(a)]. Out of multiple possibilities
of such subgraphs or substructures in the full heavy-hex map, we choose the best
one comparing total gate-fidelity and readout-error of ancilla qubit, as detailed in
Sec. 3.6.2.
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Figure 6.9. Qubit positions are chosen based on Sec. 3.6.2 from the possible set of subgraph
structures where the ancilla qubit is in between the qubits of A and A’ to keep them closer. (a) In
the circuit, the order of the qubits in the 1st copy is flipped, so that A becomes closer to the ancilla.
(b) One example of chosen qubit positions, with the ancilla being in between A and A’

2A hardware-native MaxCut problem is a MaxCut instance specifically designed or mapped to
align with a quantum device’s native qubit connectivity and gate set, minimizing overhead and
enabling more efficient quantum execution.
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6.4.2 Reducing circuit depth using SWAP-strategies

Superconducting qubit devices have limited connectivity and cross-talk, usually re-
sulting in a planar coupling map where two-qubit gates can only be applied between
neighboring qubits. To overcome this limitation, additional SWAP gates are inserted
for qubit routing, that is, to bring distant qubits next to each other so they can ef-
fectively interact. If not transpiled efficiently, the circuit depth and gate count can
increase significantly; however, this can be mitigated by using optimized SWAP strate-
gies [290,301]. The basic idea of this method is shown in Fig. 6.10. Fortunately, as we
are already considering hardware-native problems, we do not need any extra SWAPs
for qubit routing; however, we use a strategy to reorder the gates and reduce the
circuit depth, as shown in Fig. 6.11.

. Rzz(1) Rzz(3) . Rzz(2) So 51 o
qo : I qo0: I I q
q1: - q . q3
Rzz(2) Rzz(3)
q2 : SWAP strategy q2 : q4
q3: * g3 : q0

qq l g4t q2
Rzz(5) Rzz(4) Rzz(5) Rzz(4) Rzz(1)

Figure 6.10. A five-qubit exp(—iyH¢) circuit (left) is transpiled to a linear coupling map using
the swap sets S = {Sp, 51}, where Sy = {SWAP;1,SWAPs 3} and S; = {SWAP; 5, SWAP;3 4}
alternate. In the final transpiled circuit (right), a redundant SWAP ; from the last layer is removed.
The final qubit mapping is shown in green.(Taken from Ref. [301])
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Figure 6.11. A 9-qubit QAOA with depth 2, if transpiled without SWAP strategies has a longer
sparse circuit compared to using SWAP strategies, which provides a shorter dense circuit, advanta-
geous for experimental run.

For more such tools for running quantum optimization algorithms on superconducting
qubits using Qiskit, please refer to the g-optimization-best-practices guide in the Qiskit
community [480].
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6.4.3 Optimization strategies for QAOA

We optimize the QAOA parameters using qaoa-training-pipelines [265]. The idea is
to grid-search over the full parameter space of (51,71) for depth-one QAOA, and in-
terpolate the parameter to higher depth as an initial guess. Then, we optimize the
parameters using COBYLA [481]. For larger system sizes beyond the exact diagonal-
ization capability, we use Matrix Product State (MPS) [74] with low bond-dimension
to evaluate the expectation value of energy.

Algorithm 1 QAOA Training Loop (Pseudocode)

: Input: Cost operator: sp_op, max depth: ppax

. Initialize logs < [], opt_params < []|, o1d_energy < None

1

2

3

4:

5: for p =1 to ppax do
6 Create run_log with p and cost_operator
7

8

9

if p=1 then

. Initialize evaluator <— EfficientDepthOneEvaluator()
10: scan_trainer < DepthOneScanTrainer(evaluator)
11: scan_result < scan_trainer.train(sp_op, num_points=100)
12: opt_params < scan_result [optimized_params]
13: Store scan_result in run_log
14: scipy_trainer < ScipyTrainer(evaluator, method=COBYLA)
15: result ¢ scipy_trainer.train(sp_op, opt_params)
16: else
17: evaluator < MPSEvaluator(bond dim, use vidal form, threshold)
18: scipy_trainer < ScipyTrainer(evaluator, method=COBYLA)
19: recursion_trainer < RecursionTrainer(scipy_ trainer, interpolate)
20: result ¢ recursion_trainer.train(sp_op, opt_params, reps=p)
21:
22: end if
23:
24: opt_params < result[optimized_params]
25: energy < result[energy]
26: Store opt_params, energy, and result in run_log
27:
28: Compute approx_ratio using solve_max_cut(sp_op, energy)
29: Store approx_ratio in run_log
30:
31: Append run_log to logs
32: old_energy < energy
33:
34: end for
35:

36: Save logs to disk as qaoa_training_logs_{num_qubits}_p_{p_max}.pkl
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6.5 Entanglement from IBM device

6.5 Entanglement from IBM device

6.51 Results for 9 qubits QAOA on a line

For all the experimental data, we obtain three sets of data, each with 10000 shots, to
obtain the mean and error bar on the result. Due to the long C-SWAP measurements,
it introduces error, as we have observed in Fig. 6.3. To tackle this issue, we first
measure the initial state |[+)" (p = 0 in figures), which is a product state, and
renormalize the probability counts (the probability of the ancilla being |0)) for all p
with respect to the p = 0 counts. For example,

Py Py

Praw:Papa"')P _>Pren0rm:17_7"'a_
[0 1 d] [ PO P()

. (6.23)
The motivation behind this renormalization is to ensure that the initial product states
are unentangled, as expected at P = 1, and so any deviation can be attributed to the
C-SWAP measurement circuit. More fundamentally, the renormalized probability can
be interpreted as a conditional probability to the condition that the circuit produces
the correct product state with no entanglement for p = 0 (denoted as F).

For a fixed partition and fixed depth

We begin by analyzing smaller systems, such as 9-qubit chains, using a bipartition
of the form [1] : [2,3,4,5,6,7,8,9], see Fig. 6.12(a). As shown in Fig. 6.12(b), the
entanglement grows steadily with QAOA-layer up to p = 10. We compute the quantity
G 4=p) numerically (denoted as exact) and compare it with experimental data from the
ibm kingston quantum device, as well as with noisy simulations based on its hardware
noise model. Up to p = 8, the experimental results closely follow the exact value,
indicating that the device generates entanglement as expected. Beyond that point,
deviations appear likely due to limitations in the device’s coherence time. Additionally,
we observe that the numerically obtained GGM, G, optimized over all bipartitions,
remains close in value to G 4—;j in our results, suggesting that the choice of bipartition
does not significantly affect the outcome in this case. The fact that the difference only
emerges toward the end of the circuit suggests that using a fixed bipartition, such as
[1] : [rest], already provides sufficient information to benchmark the quantumness of
the hardware.

(a) +1 -1 1 1 +1 -1 1 1 A (b) 0 —o— ibm_kingston

0.44 —=— noisy simulation

exact G 4—qy)
0.3 1

O O U ***** exact Gy

0.2 1

0000000 O0 o)

0.0 - T T T T
0 2 4 6 8 10

Figure 6.12. GGM on 9 qubits QAOA: (a) The chosen qubits are in filled circles, qaoa copy-
1 in teal (A) and qaoa copy-2 in olive color (A’), where only one qubit is in the partition. (b)
The experimental data and noisy simulation follow the exact value up to the 8th layer, after which
entanglement starts decreasing, as expected from the finite coherence time of noisy hardware.
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Chapter 6. Validating quantum effects in quantum algorithm

Dependence on depth

For QAOA, increasing depths typically improves the solution quality [81], captured
by the approximation ratio® . To understand whether the entanglement also changes
depending on the different depths considered, we also measured entanglement at these
depths. In Fig. 6.13(a), we can see that with more allowed depth, the final G can
increase to higher entanglement, although the slope of entanglement growth in layers
is slower for larger depth. This behavior of the slope can be understood by examining
how {7, }s change with different depths, as it controls the strength of the cost function,
i.e., the entangling part of the evolution. We can see in Fig. 6.13(b) that the behavior
of ~ is similar to the growth of entanglement. However, the entanglement does not
follow the noiseless value up to arbitrary layers, and it deviates to a lower entanglement
close to larger layers, as expected, see inset of Fig. 6.13(a).

0.5
(a) ooooooo 0.75 1 (b)
d:1,..., 10
0.4 1 A . &~ 0.50
=031 0251 it 10
N 0.2
U - - ibm_kingston 0.751
0.14 ) ) «Q 0.50 1
0C00000C0 0.25 1
0.0 T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
P p
Figure 6.13. Entanglement for different depths. (a) With increasing depth d, the final

entanglement reaches higher values, although with slower growth slopes, similar to the op-
timal 7, parameters of QAOA, shown in (b). The measured entanglement deviates from
the ideal noiseless one at larger depth, as shown in the inset of (a), where AG =
Glexperiment] — GJideal]. The numerically obtained approximation ratios for different depths are:
0.729,0.784, 0.836, 0.867, 0.883, 0.898, 0.908, 0.918, 0.928, 0.934, respectively.

Dependence on partitions

Figure 6.14. Entanglement from
A = [1] is similar or lower than
other chosen partitions for all the
layers for depth d = 1,5, 10.

3The approximation ratio is defined as

Cqaoa — Cuin

Approximation Ratio =
bp Cmax - Cmin ’

where Cqaoa = F + % Z(i,j) w;j, with E representing the QAOA energy and w;; the edge weights.
This ratio measures how close the QAOA solution is to the optimal maximum cut.
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6.6 Summary and outlook

We motivated earlier that instead of calculating G4 for all partitions, choosing
one is probably enough. In experiments, we utilize the ancilla between the two copies
(see purple, orange, red in Fig. 6.14) without compromising the quality of the result
due to their close distance. Though the results for A = [1], [5], [9] qualitatively follow
similar patterns, there are some quantitative differences, with A = [1] exhibiting the
lowest or comparable GG 4 compared to the other partitions, for all depths considered.

6.5.2 Results for 12 and 30 qubit QAOA

As the method works well, we extended it to 12 and 30-qubit QAOA. For the 12-qubit
case, even the small depth can reach comparatively stronger entanglement, and when
we compare with exact values, the deviation is higher than before at larger depths.
We speculate if it can be related to the closed structure (heavy-hex) of the subgraph
[Fig. 6.15(a)].

On the other hand, for 30 qubits (3 heavy-hex), the entanglement for smaller
depth almost overlaps with the entanglement for the larger depth, i.e., they are of
similar slopes [Fig. 6.15(b)]. Note that calculating entanglement in a 30-qubit system
is already beyond the scope of a laptop simulation.
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Figure 6.15. (a) For 12 qubits QAOA, entanglement grows with layer. A smaller depth has a
faster slope of growth. Final G is similar for all depths. The approximation ratios corresponding to
depths d =1,2,3,4,5,6,7,8,9,10 are 0.747,0.824,0.879,0.912,0.926, 0.927,0.931, 0.939, 0.958, 0.970,
respectively. (b) For 30-qubit QAOA, entanglement growth in smaller depth overlaps with the entan-
glement growth in larger depth. The approximation ratios corresponding to depths d = 1,2,3,4,5
are 0.752,0.832,0.876,0.907, 0.925, respectively.

6.5.3 Results for 76 qubit QAOA

For the 156-qubit IBM Heron device, we push the limit of measuring the entangle-
ment of a 76-qubit system, which can be nicely fit with its second copy on the chip
[Fig. 6.16(a)]. In this case, entanglement grows rapidly during the first layer across
all depths d, followed by a gradual increase up to the final layer [Fig. 6.16(b)]. The
similarity in entanglement across different depths resembles the 30-qubit case, though
it is even more pronounced here.

6.6 Summary and outlook

In this chapter, we addressed a fundamental question in the study of hybrid quantum-
classical algorithms: to what extent does the Quantum Approximate Optimization
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Figure 6.16. Measuring entanglement in 76-qubit QAOA. (a) Chosen coupling map for QAOA-
1, ancilla, and QAOA-2 fits to the full device. (b) Entanglement for each depth almost over-
laps with the others as it grows up to the final depths. The approximation ratios here are
0.752,0.836,0.886,0.924,0.947 for d = 1,2, 3,4, 5, respectively.

Algorithm (QAOA) exploit genuinely quantum effects from the quantum processing
unit (QPU)? Using a SWAP-circuit-based method, we estimated a geometric mea-
sure of entanglement (GGM)-like measure, all within the constraints of current noisy
intermediate-scale quantum (NISQ) devices.

We built our approach around a SWAP-test-based method, carefully designed to
extract a GGM-like entanglement measure that could be implemented within the tight
constraints of NISQ devices. We first tested this method on random quantum circuits,
validating our results against exact numerical simulations. We then shifted focus to
QAOA, applying the same technique to circuits with up to 76 qubit QAOA (and the
whole circuit consists of 153 qubits) on IBM’s Heron device. Across different depths
and system sizes, the entanglement we measured closely mirrored what noiseless simu-
lations predicted, for the systems where we could simulate until hardware noise began
to dominate at larger depths. This provided direct experimental evidence that QAOA
is not simply following classical heuristics, but generating genuine quantum entangle-
ment.

Along the way, we discovered practical insights. A fixed bipartition was often
enough to capture the essential structure of entanglement, reducing the overhead of
optimization over multiple partitions. We also saw how entanglement growth cor-
related with the evolution of QAOA parameters and how hardware-aware strategies
like optimized qubit mapping, careful transpilation of C-SWAP gates, and calibration
of measurement outcomes were vital for success. Techniques like circuit cutting and
zero-noise extrapolation offered limited benefit due to dominant readout noise. But
perhaps the most compelling outcome was not just that we could measure entangle-
ment, but that we could do so at scales where classical simulation becomes intractable.
This opens the door to using entanglement not only for evidence for quantumness but
also as a benchmarking tool to guide the design and improvement of future quantum
algorithms and hardware.

Looking forward, the methods we have developed can be extended to other varia-
tional quantum algorithms [231] or quantum machine learning models [482], helping
us understand how and when quantum correlations play a role in performance. The
entanglement may become a cornerstone in certifying quantum advantage as a physi-
cally meaningful and experimentally accessible way to verify that a quantum processor
is doing something no classical computer can.
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Chapter 7
Role of nonstabilizerness in quantum
oplimization

Can quantum optimization outperform stabilizer computations?

71 Introduction

Combinatorial optimization problems are ubiquitous, spanning from science to indus-
try [232,483-487]. Hence, achieving any improvement over state-of-the-art classical al-
gorithms through quantum computing could yield a substantial impact, making quan-
tum optimization a leading candidate for practical uses of quantum technologies [248|.
In particular, the quantum approximate optimization algorithm (QAOA) [81] offers
a promising strategy in the era of noisy quantum devices [87,301, 488-490]. De-
spite many successful applications [237,491-499], it remains unclear to what extent
such algorithms truly leverage non-classical quantum resources [47]. This is essential
to understand as it defines whether quantum optimization can outperform classi-
cal computations or not. In this context, entanglement—a defining feature and a
key resource in quantum information processing [89, 500, 501]—has been extensively
studied, both in the form of bipartite [414,417,435,437-439] and multipartite entan-
glement [325,361,502,503]. However, entanglement alone does not ensure a quantum
advantage. Stabilizer states can exhibit large entanglement yet remain efficiently
simulable classically via Clifford circuits, as guaranteed by the Gottesman—Knill theo-
rem [148-150]. Nonstabilizerness [504]—the degree to which a nonstabilizer state, also
called a magic state, deviates from the set of stabilizer states—is thus a crucial prop-
erty to unlock a potential quantum advantage [160,504-508]. Based on the discrete
Wigner function [509], many measures for this quantum resource have been intro-
duced [181,510-515]; among which Mana [85,181] and the Stabilizer Rényi Entropy
(SRE) [169,171,516] are notable for being efficiently computable and experimentally
accessible. In recent years, the study of nonstabilizerness has seen many applications
from many-body physics [517-523] over random circuits [172,524,525] to conformal
field theory [526-528]. Yet, its role in variational quantum optimization remains
largely unexplored.

In this chapter, we address this gap by analyzing nonstabilizerness in QAOA ap-
plied to combinatorial problems, focusing on both SRE and Mana. We study the per-
formance of QAOA on the paradigmatic Sherrington—Kirkpatrick (SK) model [529],
which combines computational hardness with statistical complexity. Our simulations
reveal the presence of a “magic barrier”—a transient build-up of nonstabilizerness
that occurs during the QAOA run, akin to previously observed entanglement barri-
ers [414,418,503]. We find that while QAOA begins and ends with low-magic (sta-
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Chapter 7. Role of nonstabilizerness in quantum optimization

bilizer) states, it must pass through a regime of increased magic in order to achieve
high fidelity with the target solution. This behavior appears in both qubit and qutrit
versions of the algorithm. We find that magic curves corresponding to different depths
collapse under a simple rescaling, and we identify a similar magic barrier in quantum
annealing. Furthermore, we analyze how the success probability of QAOA correlates
with the final nonstabilizerness, uncovering characteristic trends and structure in the
fidelity-magic plane. Using analytical calculations on ansatz states, made of few-
component superpositions, we explain the observed features and clarify under what
conditions low-magic solutions may or may not correspond to high-fidelity outcomes.

Through this chapter, we illuminate the role and significance of nonstabilizer-
ness in quantum optimization, providing deeper insight into its influence on algo-
rithmic performance and complementing existing studies on entanglement and coher-
ence [418,439,503]. The results also have practical relevance, as measurements of
magic can provide a figure of merit for estimating the performance of variational or
optimization algorithms performed on concrete quantum hardware, such as supercon-
ducting qubits [530], trapped ions [173], and Rydberg atoms [531].

7.2 Quantifying nonstabilizerness for qudits

Here we recall two measures of nonstabilizerness from Sec. 2.7.4: the stabilizer Rényi

entropy (SRE) [169,171] and Mana [85, 181].

7.21 Stabilizer Rényi Entropy

The SRE [169] characterizes how a pure state [¢)) of N qudits spreads over the basis
of Pauli strings Py:

My ([)) = [Z i) ] | (7.1)

PePyN

M,, is non-negative and equals zero if and only if |¢)) is a stabilizer state [171,532].
An important feature of Eq. (7.1) is that it is experimentally computable [173]. The
SRE defined in Eq. (7.1) satisfies all properties (i-iii) necessary to be a valid magic
measure [169] For d > 2, the Pauli operators are no longer Hermitian, and thus their
expectation values can be complex. For this reason, the absolute values are taken in
Eq. (7.1). Throughout this chapter, we use M, as our measure.

7.2.2 Mana

Defining Mana requires knowledge of two other concepts: Heisenberg—Weyl opera-
tors, and discrete Wigner functions, which we have discussed in Sec. 2.7.3. Then, the
negativity of the discrete Wigner function provides another quantifier of nonstabiliz-
erness [160,533]. Specifically, the log-negativity of the Wigner function W, associated
with a quantum state p defines a quantity known as Mana [85]:

Mana = logz W,(V)|. (7.2)
1%
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7.3 QAOA on SK model

For pure states p = [1)(¢], as considered here, the set of states with non-negative
Wigner representation coincides precisely with the set of pure stabilizer states [160],
in which case the Mana vanishes.

7.3 QAOA on SK model

As illustrated in Fig. 7.2(a), QAOA prepares a trial state [¢)(3,4)) by applying d lay-

ers of alternating unitaries, exp —@ﬂp]:I M| exp —mp]:IC , starting from the ground

state of the mixer Hamiltonian Hy; [534], see Sec. 3.3.4 for more details. Originally
developed for qubits, the Quantum Approximate Optimization Algorithm (QAOA)
can be generalized to qudit systems with any local dimension D [497], thereby ex-
panding its range of potential applications [497,499,535,536]. As the initial state is
non-magical ! and the solution state of a classical problem with a unique optimum is
also non-magical, QAOA offers a natural setting to test the buildup and role of magic
during the quantum optimization procedure.

The model of our interest is the Sherrington—Kirkpatrick (SK) model, a variant of
the Ising model with all-to-all interactions randomly drawn from independent Gaus-
sian distributions. Initially introduced as a solvable mean-field model to describe the
spin-glass phase [529,537], it serves as a prototype for real-world optimization prob-
lems, which often involve a diverse set of random variables [538,539]. We use the SK
model generalized to qudits (specifically, we study qubits and qutrits),

ﬁSK = Z Jij(ZiZjT + ZZ-TZJ') + ]f[bias ; (7.3)
i#

where the coefficients J;; are chosen randomly from a normal distribution with unit
variance, and Z; is the generalized phase operator. The Hermitian conjugate term is
necessary to ensure the Hermiticity of the Hamiltonian in the qutrit case. Since we
aim to understand the magic generated solely through QAOA, it is crucial to remove
any degeneracy, as it may contribute additional magic arising from a superposition
of equally valid solution states rather than the algorithm itself. For that purpose, we
add bias magnetic field terms ]:Ibias.

7.31 Degeneracy breaking in SK model

The Hamiltonian term without bias >, Jz‘j(ZZ'Z; + Z1Z,) has symmetry under re-
flection, Z; <+ —Z;, thus creating two degenerate states. The reflection degeneracy
can be lifted by adding a longitudinal field, Hbiasg = h(Z+ ZZT ), which is reduced
to >, 2h; Z; for the qubit case.

However, for qutrits, this term is furthermore symmetric under Z; — ¢Z;, where
¢ € {£1, +w, +w?}, which introduces 4 additional symmetries. For example, Z; 7 ]T x,
(wZ)(wZ;)T = (wZi)(sz]T) = Z,Z;r. Thus, the qutrit Hamiltonian contains 6 de-
generate eigenstates, equivalent to permutation among the local basis of qutrits,

!The |+) = % 21 i) qudit state is a stabilizer state because it is a (+1) eigenstate of a d-
element subgroup of the Pauli group; for example, it is {I, X} for d = 2. Using the additive property,
®N
M([+)77) = NM(|+)) = 0.
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Chapter 7. Role of nonstabilizerness in quantum optimization

which contains 3! = 6 degenerate states. The longitudinal field ﬁbias,? removes the
degeneracy between |0) and {|1),|2)} but retains the degeneracy between |1) and
12), as (Z + ZT) = diag(2,—1,—1). To lift this degeneracy, we add another term
> ihi(Z; — ZN, as i(Z — Z1) = diag(0, —v/3,++v/3). In our numerics, h; and b’ are

chosen randomly from a normal distribution with variance 0.3.

7.3.2 Optimization procedure

We execute all QAOA simulations using a custom implementation. To find the optimal
parameters {3,~}, we employ the Constrained Optimization BY Linear Approxima-
tion (COBYLA) algorithm [481], a gradient-free method that solves the problem by
linearly approximating the cost function. The parameters are initialized using the
Trotterized Quantum Annealing (TQA) strategy [256]. The classical optimizer stops
when the trust-region radius decreases below the specified tolerance of 104, For each
random realization of the SK model, we simulate a QAOA protocol using exact nu-
merics, where we select the best outcome from 20 independent QAOA runs initialized
using Trotterized quantum annealing initialization [256], and average the results over
50 such realizations. The SRE is computed exactly, with computational cost scaling
as D?V due to the exponential growth in the number of Pauli strings, where D is the
qudit dimension and N is the number of qudits.

7.4 Magic barrier

When targeting the non-degenerate ground state of the SK model, QAOA starts—and
ideally ends—in stabilizer states with zero magic. The relevant performance metrics—
such as the relative energy (Eqaoa (P) — Fexact)/ Fexact (in Fig. 7.1 (b1,b2)) reflects that
the QAOA energy reaches values close to the ground state, and the fidelity with the
ground state F(p) = |[(Yexact|¥qaoa(p))]? (in Fig. 7.1 (al,a2)) improve monotonically
with the number of QAOA layers p, though being far from equal to one.
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Figure 7.1. (al) Mean value of the fidelity over 50 different realizations, with relative standard
deviation, for each layer at different depths of the 6-qubit system. The violin plot for the curve
at depth 12, using the full 12-layer wave function, highlights the high fidelity achieved by some
realizations. (bl) Mean value of the relative energy under the same conditions. (a2) and (b2) show
the corresponding results for a 4-qutrit system.
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7.4 Magic barrier

In contrast, the evolution of magic, quantified by SRE and Mana, follows a non-
monotonic behavior: it initially rises rapidly as the first QAOA layers are applied,
reaches a maximum, and then decreases as the algorithm approaches the final state.
We define this structure as the magic barrier, marking the necessity of traversing
highly nonstabilizer states during the QAOA algorithm. Therefore, the quantum
computational resources required during the intermediate steps of QAOA significantly
exceed what would be expected from monotonic growth. This additional “cost” in non-
stabilizerness emerges inherently from the QAOA ansatz structure; thus, it becomes
crucial to account for this elevated resource demand in the design and benchmarking
of fault-tolerant quantum devices.
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Figure 7.2. Magic barrier in QAOA. (a) Quantum Approximate Optimization Algorithm
(QAOA) scheme and a pictorial representation of the magic barrier: initially, magic rises up to
a maximal value, after which it decreases, an effect we call “demagication.” (b) SRE density as a
function of the layer number during a QAOA protocol, for a system of 6 qubits and different depths
(i.e., total number of layers). Inset: Using a simple scaling function, the magic barrier collapses onto
a universal curve. (c,d) Same plot of panel b for a system of 4 qutrits, showing SRE density (c) and
Mana (d) as a function of the layer number. The universal collapses in the insets in (b-d) use the
scaling function M = d=#f[(A =& - d¥) - d"].

A pictorial representation of the magic barrier is shown in Fig. 7.2(a). Remark-
ably, this phenomenon is observed consistently across different systems and for both
SRE and Mana. For instance, Fig. 7.2(b) depicts the evolution of the SRE density
(Msy/N) for a 6-qubit system at varying QAOA depths. A distinct peak emerges at
approximately half the total depth, indicating the point of maximal nonstabilizerness.
A comparable scenario arises in the 4-qutrit system, for both SRE and mana [see
Fig. 7.2(c,d)].

Notably, for a fixed system size, the maximum value of magic encountered remains
approximately constant across different QAOA circuit depths, suggesting that the
magic peak is independent of circuit depth. Moreover, even at its peak, the generated
magic remains below that of a typical state in the corresponding Hilbert space, such as
given by the Haar-random value— My = —logy(5x) for qubit, and —log,(55%5)
for qutrit systems [168,524]. This suggests that for a device to successfully run a
QAOA, it is sufficient if it can build up a limited amount of magic.

741 Scaling of nonstabilizerness

The states generated by QAOA strongly depend on the circuit depth, optimization
parameters, and system size, and yet we observe a qualitatively uniform behavior of
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the magic barrier in Fig. 7.2. In particular, for a fixed N, while the magic curve

varies with the QAOA depth, certain patterns emerge consistently: (1) the barrier

height remains nearly unchanged, and (2) as the depth increases, the curve appears

to stretch horizontally. These observations motivate the search for a scaling collapse

of the magic barrier, which could offer valuable insights into the underlying behavior.
We begin by seeking a simple scaling function f[-] for fixed N,

M ([qaoa, (P)))
N

=d (A& ) v R A=5 (T4)

where p and 7 control the stretching along the y- and z-axes, respectively. The
curves only collapse onto each other when centered around a depth (d)-dependent
parameter, which we achieve through the introduction of ¢ and v. We use these
parameters to rescale the data for different depths and observe whether the curves
align. The collected scaling parameters for different qubit system sizes are reported in
Table 7.1, which includes the values of u, &, v, and n obtained from numerical fits for
N = 4,6,8 qubit systems. Similarly, Table 7.2 shows scaling parameters for qutrits.
Indeed, shown in the insets of Fig. 7.2(b—d), the data for different depths, both for
average SRE density and Mana, collapse onto a single curve.

N ‘ H § v i Table 7.1. Scaling parameters u, &, v, and
4 | —-0.07 0.02 0.76 0.23 n used for data collapse at fixed system size N

' ‘ ‘ ' (qubits), using Eq. (7.4). Values obtained from
g 06037 (1)(2)2 _()09354 822 fitting QAOA magic curves for N = 4,6, 8.

N =4 ‘ 1 £ v n Table 7.2. Scaling parameters p, &, v, and 7 used

_ for data collapse at N = 4 quitrits using Eq. (7.4).
S[l;{fa 096%8 888 :534513 8;12 Values are shown for both SRE and mana.

For qubit systems, we find a scaling exponent u close to zero, suggesting that
the peak value of SRE remains independent of both the QAOA circuit depth and
the number of qubits. Interestingly, for the qubit cases, we find that the scaling
formulation can be simplified by replacing the combined term & - d¥ with a constant
critical point A, leading to the alternative scaling form

M ([qao0a, (P)))
N

—d P fIA=A) A A ER; A= g_ (7.5)

This revised form uses the scaling variable A = p/d and centers the collapse around
a critical point A.. In systems exhibiting universality—such as those undergoing phase
transitions—the central parameter (around which the scaling occurs) becomes a con-
stant, signaling a universal or critical point, similar to A.. The goal is then to deter-
mine whether such a A, can be found consistently across system sizes, as a signature
of universal behavior. Table 7.3 reports the corresponding values of u, A., and n ob-
tained from scaling collapses performed using Eq. (7.5) for N = 4,6, 8 qubit systems.
Remarkably, the extracted values of A, are rather consistent around 0.2 across system
sizes, suggesting the existence of a constant point in the qubit case, even at small
system sizes. This behavior is in contrast to the qutrit case, where no such consis-
tent value of A. is observed. The exponent 7, which governs the width rescaling, lies
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7.5 Final magic and fidelity

within a relatively narrow range for both the 6-qubit and 4-qutrit systems. Moreover,
7 increases with the number of qubits, suggesting a sharper magic barrier in larger
systems.

N ‘ K Ac n Table 7.3. Fitted scaling parameters u, A\., and n
4 | -0.07 027 0.23 using the critical-point form in Eq. (7.5). Results
6 | 0.01 027 0.59 shown for N = 4, 6,8 qubits.

8 | —=0.10 0.29 0.92

7.5 Final magic and fidelity

The ultimate determinant of the success of QAOA lies in the fidelity of the final
state with the target solution. As the QAOA approaches the final layer, successful
instances reach a high overlap with a classical state, implying—in the absence of
degenerate solutions—one can associate high-fidelity QAOA instances with low magic.
This behavior is indeed what we observe in randomly sampled instances for different
system sizes and depths, shown in Fig. 7.3. The opposite, however, is not necessarily
true: a QAOA sweep can end up in a stabilizer state, including any computational
basis state distinct from the solution state, and thus can have small magic while
reaching only low fidelity.

(a) N:4-d:1,2,4,6,8 -
* * N:6-d:1,2,4,6,8,10,12 /rssasea
in N:8-d:8,10,12,14 %

‘! i, ARY Figure 7.3. Relation between fi-

o ™~ < nal magic and fidelity (qubits).
: 2R (a) Magic of the final state as a func-

; tion of final fidelity F for randomly
w sampled instances with varying num-
[Wi) bers of qubits and QAOA depths. (b)

(W) - p=0.05 Zoom-in on the region F > 0.5. The

W) - p=0.1 red shaded area marks the upper limit

W) - p=0.2 of SRE achievable by superpositions of

i - P=0. two computational basis states. The

grey regions correspond to the SRE

of wavefunctions spanning three ba-

sis states with varying amplitudes.

While higher regions could be reach-

able with more complex ansatz states,
the empty area below is forbidden.

1.0

Focusing on instances with F > 0.5 [Fig. 7.3(b)], one observes a void region at the
lower axis. The pattern can be explained as follows. At the end of a rather successful
QAOA, we expect the state to consist of the final solution |¢) with potentially a small
contamination, typically from the first excited state, which is another computational
basis states |¢1) or/and |¢s). In those cases, we can obtain an analytical expression
relating magic and final-fidelity as shown in the following sections.
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Chapter 7. Role of nonstabilizerness in quantum optimization

7.5.1 For superposition of two states (qubit)

Here, we consider an ansatz state
) = VF|do) + V1= Fl¢n), 6 €l0,2n], (7.6)

where the probability amplitude to reach the desired solution is v/F, and where we
allowed for a relative phase €. Using the additivity of M, and permutational invari-
ance, one can show that for any number of qubits:

Ms (J¢n)) = —log, [1 — 4F (1 — F) + 2F*(1 — F)*(7 + cos46)] . (7.7)

The result is symmetric around F = 0.5. The minima (maxima) at § =0 (0 = 7/4)
describe a bounded region in the fidelity—magic plane, within which all instances that
reach the above ansatz are confined, independent of peculiarities of the protocol such
as qubit number or circuit depth.

Proof. Consider a system composed of n qubits. Since the states |¢o) and |¢1)
are in the computational basis, we can define Hamming weight distance, let’s say h.
Assuming h < n, we can write the state [¢r) as |¢1;), ®|d),,_,. Here, |d) = |0)®(n=h)
or |1)®(”_h). By the additive property of SRE, M,,(|¢m)) = M, (|¢yy),) + Mn(|d),,_p)-
My (|d),_,) = 0, so only M,(|¢y;),) contributes to SRE. We can write [¢y;), as
VF|a), +e?/1— Fla),. This is SRE-equivalent to vF[0)®" + /T — F [1)®"
via bit-flip operations X; at the appropriate positions (j) This is equivalent to
using P/ = X;P,-X;. on the earlier states. As the Pauli group is invariant under
such an operation, we can compute the magic for the latter state without any loss of
generality. The formula is n-independent because what counts is the number of states
in superposition, not the dimension of the system or which two basis states constitute
the state. We can write all four terms appearing in the expectation values as,

FAOF R0, (1= F)- AR,

) . 7.8
F(1—F)e? 0P 1), /F(1 —F)e - (1P |0)®", Vi. (7.8)

The first two terms are non-zero only when the involved string P; is built only from
combinations of {I,Z} Pauli operators. In that case, the last two terms are zero.
When P; contains a number k of Z operators, there are (Z) terms contributing to the
sum. These will cumulatively contribute to

n

> (Z) ‘f+ (-1)kFa - }")‘4 =211+ (2F —1)4. (7.9)

k=0
Similarly, the last two terms are non-zero when the P; = Y®F X®7~k  Thys,
n n . '
> (k) FH1 = F)2e?(—i)k + e7 (+i)F|* = 2L F2(1 — F)?2*[cos® 0 + sin* 6] .
k=0

(7.10)

By summing these two contributions and performing some simple algebra, one obtains
the final equation of Eq. (7.7).
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7.5 Final magic and fidelity

7.5.2 For superposition of three states (qubit)

Motivated by the n independence of the previous result, we further refine this ansatz
by considering a superposition of three computational basis states,

[m) = VF o) + € \/pldr) + /1= F —plga), pe[0,1—F], b1y €10,27],
(7.11)

for which we can again calculate My analytically. For different system sizes, we find
an expression consistent for different N with the following:

M, = —log, [1 P14 283 — 1) 20— Dp (2 + Tplp — 1))

+6f%(3+p(7p — 6)) +4f(p— 1) (1 +p(Tp — 6))
+2f2(f +p—1)*cos(4¢) + 4p* f? cos(2¢) cos(2¢ — 46)

+2p*(p — 1)(2f +p — 1) cos(4¢p — 40) | .

(7.12)

Similar to the case of magic computed for a superposition of two computational
basis states, the analytical expression derived here remains valid for states of arbitrary
dimension. The generalization of the Eq. (7.7) and (7.12) to any dimension systems
is shown in Fig. 7.4, where random benchmarks are used for this purpose.

(a) p=0.0 (b) p=0.05 (c)p=01 (d)p=0.2

Mo(|hu)) My ([¢m)) — (0,0 Mo (|tmr)) Mo(|tmr))
— 0 — (n/4,7/4) RS
— 1 — (m7/4)

1.0

Rl
® o &

My

0.5 1

o
S
:

0.0 T T T T T T T T t T T T
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

F F F F

Figure 7.4. SRE vs. fidelity for a superposition of two (a) and three (b,c,d) states at different
values of p. Continuous lines represent analytic bounds given by Eq. (7.7) and (7.12), respectively.
Dots represent numerically computed SRE for random states of the form |¢1) [Eq. (7.7) for (a)]
and |¢mr)[Eq. (7.12) for (b,c,d)]. The points are clearly enclosed within the bounds given by the
continuous lines, certifying the validity of Eq. (7.7) and Eq. (7.12).

7.5.3 Relation to the QAOA fidelity

The shaded regions in Fig. 7.3(b) correspond to M, contained in the ansatz states
|¢imr) for varying F, 6, p, as detailed in Eq. (7.7) and Eq. (7.12). Since ansdtze with a
further increased number of basis states will only lead to higher magic, these analytic
considerations also explain why no instances are found numerically in the empty region
at the bottom of the figure. Moreover, they suggest a reduced likelihood of obtaining
a medium-to-high-fidelity state F ~ (0.6 — 0.9) with low magic, further indicating
that QAOA has to go through a high-magic state to reach a good solution.

7.5.4 For superposition of qutrit states

Motivated by the qubit superposition, we also calculated how SRE behaves for the
superposition of two qutrit states. The pauli group for qutrits is defined as P =
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Chapter 7. Role of nonstabilizerness in quantum optimization

{X"Z7|r,j € (0,1,2)}. So, for a qutrit state [¢)) = V/F |a) + /T — F |b), we get
(V[ Bilp) =F (a| Pila) + (1 = F) (b] P |b) (7.13)
+ e /F(1 = F) (a| B |b) + e /F(1 — F) (b Pi]a) . (7.14)

The first two terms will be different from zero when a = 0, while the second two terms
will be different from zero when a # 0. Thus, we have

e ™M =N |F(a|Z|a)+ (1—F) (0| 27 b) |* (7.15)
j=0,1,2
+ Y e F( = F)lal X2 |b) + e/ F(1— F) (b| X" Z7 |a) |*
r=1,2;=0,1,2
=1+ |w'F + (1 = F)* + | F + (1 — F)uw®* (7.16)
+FA=F)? Y €0 b0 per + €0y o | (7.17)
r=1,2;5=0,1,2

Notice that for a qutrit, a = b@® r and b = a @ r cannot be satisfied at the same time.
This will remove any dependence on the relative phase 6 between the two basis states
(@ indicated sum mod d). Considering a = 0,b = 1 we get

e M =14+ |F+ (1= Fol' + [F+ (1 = F)?[*+3F(1 - F)*. (7.18)

Figure 7.5 (a-b) presents the values of nonstabilizerness vs. fidelity of the optimized
QAOA state for 4-qutrit systems. However, we do not find any similarity of our QAOA
data with such an equation, suggesting that it may be due to the less successful
instance of QAQOA, or it is too naive to expect a superposition of two states in the
qutrit basis without any knowledge of the cost function.
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7.6 Demagication and success of QAOA

One may wonder whether the effect of demagication, i.e., the amount by which SRE
decreases after the barrier, AM = Max — Mffinal g yelated to the success fidelity.
To analyze this question, we calculate the conditional probability (Peonalfin,€]) of
obtaining a fidelity greater than some fi,, provided that the QAOA has shown some
minimum amount of demagication, AM > e:

P(F > fu) N (AM > ¢)]

Peond [F > fu| AM > e] = (7.19)

Plan > |
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7.7 Magic barrier in quantum annealing

For qubits. As we see in Fig. 7.6, a larger demagication (larger €), appears to
result in a higher probability of solving the QAOA with high fidelity. Additionally,
the probability of reaching or surpassing a given fidelity also increases (shifts to the
right) as the depth increases, which is to be expected.

Figure 7.6. Conditional probabil-
ity of achieving high final fidelity

ol N4 d:416’8‘ f > fin given a demagication AM
é 0.8 = N:6 - d:4,6,8,10,12 (difference between peak and final
io 6 = N:8-d:8,10:12,14 magic) exceeding a threshold e, for
S different system sizes and QAOA
A 0.4 depths. (a) e = 0.01. (b) € = 0.3.
i’% 02 The rightward shift in (b) relative
s N to (a) shows that stronger demag-
% 0.0/ (@) €=0.01 . (b) £ =0.3 ication correlates with a higher
0.0 0.2 04 06 08 1.00.0 0.2 04 0.6 0.8 1.0

chance of high fidelity. Darker lines

fin fth .
represent deeper QAOA circuits.

For qutrits. Similarly, for qutrits, Fig. 7.7 (a-b) shows the conditional probability
of achieving a fidelity above a given threshold, provided the QAOA reaches a minimum
amount of demagication.

~1.0
x = N:4-d:6,8,10,12,14
s 08 Fi 7.7. (a) Conditional prob-
3 igure 7.7. (a) Conditional pro
—0.6 ability curve for ¢ = 0.01 and
“/i\“04 (b) for € = 0.3, obtained for four
o qutrits at QAOA depths 6, 8, 10,
202 12, and 14.
ol (@) e=0.01 (b) £ =0.3
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7.7 Magic barrier in quantum annealing

To assess the generality of the magic barrier beyond QAOA, we analyze its emergence
in continuous-time quantum annealing protocols [236,242, 540] (see Sec. 3.3.2). To
simulate the stationary regime of the annealing protocol, we employ tensor network
techniques, specifically matrix product state (MPS) methods [91, 541-543], which
allow us to compute numerically the exact ground state |¢)(\)) of the instantaneous
Hamiltonian H(\ = t/T), at arbitrary points along the interpolation, with small
bond dimension y (we fixed x = 60 in our simulation, at which value the result
is converged). This framework also enables efficient computation of SRE using the
Pauli Matrix Product State (Pauli MPS) formalism [544], with bond dimension up to
xp = 1024. To make the computation tractable, we truncate the fully connected spin-
glass interactions in the cost Hamiltonian to fifth-neighbor couplings. We verified that
this truncation does not qualitatively affect the key features of the observed magic
dynamics.
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0.4
system size (N)

0.3 16 Figure 7.8. Magic barrier in quantum
——32 annealing The SRE density, computed on the
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NP (ideal adiabatic quantum annealing, A € [0, 1]),
< exhibits a magic barrier around A ~ 0.35. The
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The resulting SRE profile, shown in Fig. 7.8, reveals a clear magic barrier: magic
rises during the early stages of the sweep, peaks around intermediate A, and decreases
as the system approaches the classical solution. This behavior closely mirrors the
magic evolution observed in QAOA.

7.8 Evolution of magic during classical optimization loop

To reach a more complete understanding of the role of nonstabilizerness in solving op-
timization problems using variational quantum algorithms, we analyze how it evolves
throughout the optimization process. QAOA heavily relies on classical optimization
to determine optimal parameters, requiring repeated execution of quantum circuits
[Fig. 7.2(a)] that include non-Clifford gates, making them resource-intensive in terms
of quantum magic. By studying how magic evolves during the optimization of circuit
parameters, we extract information about the resources required to achieve conver-
gence. In particular, we consider 50 problem instances, each defined by different
Hamiltonian coefficients, and run 50 QAOA optimizations per instance, initialized
with annealing-inspired parameters (increasing -, decreasing ) [256]. For each in-
stance, we select the run achieving the lowest energy as the best-performing optimiza-
tion.

Figure 7.9 shows energy values and nonstabilizerness measures as a function of
the optimization steps for the best-performing QAOA run of each of the 50 realiza-
tions. Panels (al) and (bl) refer to results for a 6-qubit system using a QAOA with
a circuit depth of 12, while panels (a2) and (b2) report results for a 4-qutrit sys-
tem using a QAOA circuit with depth 14. The success of QAOA is measured here
using the approximation ratio, defined as E;fo, where E is the expectation value
of the Hamiltonian for the optimized state, and Ej represents the minimum energy
obtained through exact diagonalization. During optimization, the energy initially in-
creases, crosses a barrier, and eventually converges close to Ej for nearly all problem
instances. Despite the initial parameterization ensuring a good starting point, the
optimization process allows the algorithm to escape local minima and reach a lower-
energy minimum, closer to the ground state. This energy barrier is accompanied by a
peak in magic, suggesting that crossing a high-nonstabilizerness region is required for
convergence. A similar pattern is observed for the Mana in the 4-qutrit case, shown
in Fig. 7.9(b2).

Although magic, like energy, shows a barrier during optimization, it captures a
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different property: the distance from stabilizer states in the Clifford group. As such,
it is not necessarily expected to follow the energy landscape directly. While the energy
approximation ratio consistently approaches zero across different instances, indicat-
ing convergence toward the ground state [254], the final magic values remain widely
spread. This highlights a key point: although the ground state has zero magic, opti-
mized QAOA states often retain finite magic, showing that energy convergence does
not imply convergence to the exact solution. Moreover, our Hamiltonians are non-
degenerate and thus their ground state are product-states with zero magic. This
suggests that even near the exact solution energy, QAOA may converge to a super-
position of low-lying eigenstates. This occurs when energy level splittings—which
depend on the external field strength—are small, preventing the algorithm from en-
tirely collapsing onto the actual ground state.

al1) 1.6
@n —— Mean value (@2) —— Mean value
14 1.2

1.2
1.0

0.0

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps

Figure 7.9. Energy and magic barrier during classical optimization. The black curves represent the
mean values calculated over 50 realizations. (al), (a2) Energy ratio as a function of the number of
optimization steps during a QAOA run of each problem realization for 6-qubit and 4-qutrit systems,
respectively. (bl) Magic as a function of optimization steps of each QAOA run for the qubit system.
(b2) Magic in the upper plot and Mana in the lower plot as a function of optimization steps for the
qutrit system.

7.9 Summary and outlook

To summarize, magic arises in QAOA even when the target problem has a non-magical
solution. Irrespective of the depth of the QAOA, magic rises to a peak and, in a well-
performing run, falls towards the end of the protocol, incurring an extra resource cost
to overcome, a phenomenon we call the magic barrier. This peak consistently appears
near the middle of the QAOA, and upon rescaling, the average magic collapses onto a
universal curve across different depths, for both qubits and qutrits, and for SRE and
Mana. The fidelity of the final state has a characteristic relation to the final magic,
whose qualitative behavior can be explained analytically through the dependence on
probability amplitude and local phase of a simple ansatz state.
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Chapter 7. Role of nonstabilizerness in quantum optimization

While in current noisy devices non-Clifford gates are not necessarily more expen-
sive than Clifford gates, the situation is different in early fault-tolerant machines,
where non-Clifford operations constitute a significant bottleneck [505, 545-548]. In
such cases, the emergence of a magic barrier in QAOA becomes a crucial factor. This
motivates the question of whether QAOA can be parameterized to reach the solution
state while remaining close to the convex hull of stabilizer states, thus minimizing
magic generation.

A natural next step is to test these findings on a quantum processor such as
one based on superconducting qubits, cold atoms, or trapped ions, which would also
provide a figure of merit for the performance characteristics of a given device. Trapped
ions, e.g., appear well suited for a direct test, as they naturally implement long-range
interactions as occur in the Sherrington—Kirkpatrick model studied here, and they have
recently permitted for measuring nonstabilizerness [173], and for the implementations
of quantum optimization protocols [549, 550]
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Chapter 8
Disorder-averaged qudit dynamics

emergence of non-Markovian dynamics from symmetry and disorder

8.1 Introduction

The effective use of the quantum resources within an engineered quantum device re-
quires precise control. However, even in cases where the device is almost perfectly
isolated from its surroundings, uncontrolled and uncertain parameters can signifi-
cantly restrict the accuracy and efficiency of the quantum device, a challenge shared
across experimental platforms. The effect of the lack of certainty and control on
the system’s evolution is often modeled via disorder, described by random system
parameters [551-557]. In condensed matter, disordered systems are ubiquitous, and
their fundamental and technological importance makes them a longstanding subject
of research [362,558-564]. In quantum-information-processing devices, the disorder
may arise because of imperfect sample production, finite accuracy of control electron-
ics, imprecise gate rotations, or slow drifts of system parameters. In this context,
understanding disordered dynamics may be key for the mitigation of errors, e.g., sup-
pressing charge-noise decoherence in superconducting charge qubits [565], boosting
coherence via non-ergodicity [566], determining optimal readout times, reducing gate
errors [567], tracking drift errors in quantum processors [568], and mitigating sample-
to-sample fluctuations in quantum dots [569]. Disorder also plays a key role in quan-
tum annealing [236,243,570,571], environment enhanced quantum transport [572,573],
and the memory effect of disorder-induced localization can even be used to protect
against errors [574-576].

While looking for a solution to a disordered model, one is often not interested in an
individual disorder realization, either because it is too specific or because the disorder
in the physical system is not sufficiently characterized. In such situations, one can
derive information about the typical behavior of the quantum system by investigat-
ing disorder-averaged ensembles. However, the dynamics of disordered systems are
difficult to compute in general, and reaching a converged average often requires con-
siderable numerical effort to acquire sufficient independent samples. In such scenarios,
it can be useful to have an effective equation for describing the averaged dynamics,
either in the form of a dynamical map or a differential evolution equation. Inter-
estingly, the effective dynamics of the disorder-averaged ensemble can behave as if
it were an open system [577]. For various cases, a master equation has been for-
mulated that governs the disorder-averaged evolution, e.g., in the context of a qubit
under spectral disorder [578], anisotropic decoherence of qubits [579], relaxation of
a qubit under coupling [580], Dirac particles with mass perturbations [201], many-
body boson dynamics [581], simulations of the spin-boson model using a disordered
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ensemble [582], transport properties in imperfect waveguides [583], obtaining robust
control pulses [200], quantum parameter estimation [584], equilibration dynamics of
the Sachdev—Ye-Kitaev model [585], and operator spreading [586]. For the case where
the dynamical map describing the time-evolved ensemble density matrix can be in-
verted, Kropf et al. [578] discuss a formalism to obtain a master equation of Lindblad
form using a matrix-based approach. However, deriving such an exact master equation
is not always possible [587].

Here, we discuss an analytical method to find dynamical maps to describe the
exact disorder-averaged evolution dynamics. Our framework is valid for arbitrary
times and for any unbiased disorder distribution (mean zero), without necessitating
a master equation. The Hamiltonians of the considered systems can be Hermitian
or non-Hermitian, but they have to be periodic modulo a scalar factor, i.e., H? o I
or, more generally, H? «« H?, with p and ¢ integers such that ¢ < p. In particular,
this property covers periodic Hamiltonian matrices with non-trivial base ¢, also called
(q,p)-potent [588,589]. Prominent examples are the tensor-product Hamiltonians of
two-level systems, corresponding to involutary matrices with p = 2 and ¢ = 0, or
multi-level clock operators [590,591], such as p = 3, ¢ = 0. Periodic Hamiltonians are
ubiquitous in quantum technologies, e.g., as generators of single- and multi-qubit [372,
592,593] or qudit gates in quantum computing [594], as stabilizer operators in quantum
error correction [148,595,596], in error modeling of noisy quantum devices [597], in
noisy quantum algorithms [598], etc.

In what follows, we analytically derive the dynamical map giving the disorder-
averaged density matrix for such periodic Hamiltonians at any given time and extract
common structures for three example cases. The effective equations are characterized
by several quantities relevant in quantum information theory, including various wit-
nesses of non-Markovianity [183,188,599]. Although solving for the dynamics of each
individual realization of the chosen example Hamiltonians is relatively simple, they
are non-self-averaging'. Therefore, already for somewhat restricted evolution times,
numerous independent disorder realizations can be needed to obtain converged results;
in one of our example cases, even up to more than 107 realizations. In such scenarios,
having the exact analytic results at one’s disposal provides significant benefits. In
some cases, we can also derive a master equation [182] by inverting the underlying
dynamical map, the result of which matches with Ref. [578]. Thus, our results further
our understanding of how dynamics typically associated with dissipative systems can
emerge in deterministic disorder averages, and it may be useful in extracting exact
behavior in simple but ubiquitous situations.

The structure of the rest of this chapter is as follows: Section 8.2 presents the
analytical approach for deriving the disorder-averaged dynamics, supplemented by
examples as well as several quantities that we use to characterize the dynamics, in-
cluding non-Markovianity witnesses. Next, we delve into three specific cases in detail:
(p = 2,9 = 0), as described, e.g., by single-qubit operators or products of Pauli ma-
trices (Sec. 8.3); (p = 3,q = 0), which we exemplify through non-Hermitian qutrit
operators (Sec. 8.4); and (p = 3,¢q = 1), describing, e.g., spin-1 operators (Sec. 8.5).
Finally, Sec. 8.7 concludes by highlighting the key features of the analytical method
and discussing potential future research directions.

LA self-averaging property in a disordered system is one that can be accurately described by
averaging over a sufficiently large number of samples [600].
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8.2 Disorder-averaged dynamics

To set the stage, in this section, we formally derive the dynamical map? describing
a disorder-averaged ensemble (Sec. 8.2.1). Finding a closed analytical solution is, in
general, infeasible, but from its form, one can recognize a drastic simplification if the
Hamiltonian matrix fulfills a specific structure, namely if it has a period (Sec. 8.2.2).
Before discussing several examples in detail, which we postpone to the next section,
we also introduce several quantities estimating quantum informational content of the
state, including some witnesses of non-Markovianity (Sec. 8.2.3), which we will use in
the later part of the chapter to characterize the disorder-averaged dynamics.

8.21 Disorder-averaged dynamical map: formal solution

Given a Hamiltonian H , irrespective of it being Hermitian or non-Hermitian, and an
initial state p(0), the final state after evolution until a time ¢ is given by

pt) = e M p(0)e ' (8.1)

(note the dagger at the right of p(0), necessary for the correct description of non-
Hermitian dynamics [601]). The system’s dynamics follow the differential equation

0up(t) = —iHp(t) + ip(t)H, (82)

which in the Hermitian case (]:I - H M), turns into the well-known von Neumann
equation: 9;p(t) = —i[H, p(t)].

For a general Hamiltonian H, solving Eq. (8.1) is not effortless. The situation
becomes even more complicated if H = H[h] describes an ensemble of Hamiltonians
with a random variable h over which we have to average, a procedure we denote by E[-].
In particular, one has in general Ele~*] #£ ¢~ElAlt making it challenging to apply
the ensemble average to the evolved state. This chapter aims to get a handle on the
disorder-averaged density matrix for a specific but ubiquitous class of Hamiltonians
useful for quantum information processing.

To calculate the disorder average irrespective of the initial state, it is advantageous
to use the super-operator techniques [182,602] that map between the matrix p and a
vector p. Any left and right multiplications to p can be vectorized as column vectors
by the following rules

Ap o (I®A)jF and pB <« (BT o1)7. (8.3)

By series expanding on both exponentials in Eq. (8.1) and using the super-operator
notation above, we derive (see below for full derivation)

i =S Y (1)t i), (8.4)

n=0 ’ k=0

where ( )* denotes complex conjugation.

2The dynamical map of a quantum system describes how an initial density matrix evolves over
time, mapping it to the system’s state at a later moment.
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Chapter 8. Disorder-averaged qudit dynamics

Derivation. By series expanding the evolved density operator p(t) of Eq. (8.1),

we obtain
p(t) = e p(0)e it (8.5)
=3 E 0y Wty (5.5
k=0 Jj=0
e (i) n! k tyn—k
T ;(n—k)!k!H PO)(=H)™. ®.7)

Now, we can go to the super-operator notation by using Eq. (8.3) to take the initial
state towards the right and extract an evolution term that is independent of the initial
state. Note that, the term ((—HT)"*)T = ((—=H")T)"=F = (=H*)"* and thus we
obtain

a0 =3 SIS () ae mh -t e Do) (5.3
n=0 k=0

=y (_:!t)n > <Z> (—H*)" k@ H*50). (8.9)
n=0 k=0

This equation facilitates the Hamiltonian terms to be separated from the initial
state by taking p(0) outside operator products. Such an expansion of the exponential
in the power series of the density operator has previously been used to derive exact
equations for the dynamics in multiple scenarios, including the evolution of a clas-
sical many-body system [603] as well as an exact generalized master equation for a
quantum-mechanical system [604]. It is a procedure quite analogous to the diagram-
matic cluster expansion used in statistical mechanics [605].

We denote the disorder-averaged density matrix as E[5(t)] = p(t). Assuming no
disorder in the initial state p(0)*, we arrive at an equation where disorder averaging
acts directly on different powers of the Hamiltonian and its complex conjugate,

i - SIS (Ve[ e s = apo). s0)

n=0 ’ k=0

Here, a family of linear quantum dynamical maps {A;};>0 from the set of density
matrices to itself formally describes the dynamics. In Sec. 8.3-8.5 below, we derive
explicit expressions of the disorder-averaged evolution from this equation for the spe-
cific cases when the Hamiltonian is periodic, the property we introduce in the next
section.

Before that, it is illustrative to establish a formal connection between the ensemble-
averaged evolution and that of an open quantum system. In the time-local description
of dynamics in an open quantum system, the family of dynamical maps satisfies a dif-
ferential equation of the form, 0;A[-] = L£; o Ay[-], where L; is the Lindbladian that
generates the dynamics [182]. Alternatively, using the Nakajima—Zwanzig projective
techniques, one can derive an integro-differential master equation involving a memory

3Note that our derivation can be extended for the disordered initial state as well, where the
disorder averaging should be done together with p(0) if it follows the same disorder distribution as
the Hamiltonian or has a correlated disorder.
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8.2 Disorder-averaged dynamics

kernel () [182]. The general conditions on £; or K that ensure the resulting dy-
namical map A; is valid, i.e., completely positive and trace-preserving, is still under
research, with only certain cases fully understood (see, e.g., Refs. [606-616]). As a
result, a general rule for constructing master equations is not always available. How-
ever, when the dynamical map is invertible, it is always possible to construct the
time-local description, i.e., find £; [190]. For example, from Eq. (8.10), we can obtain
the following equations by replacing 5(0) = A;*[5(t)] in the second equality,

Ot = D [ 0)] = i, 0 A7 [70)] = £:[5(0)] (8.11)

where o denotes map composition, and we can identify £; as the Lindbladian. Kropf
et al. [578] obtain similar master equations based on a matrix formalism [190, 587]
when A; ' exists, which forms the foundation for the exact dynamics in their cases.
Here, instead, we focus on obtaining the dynamical map A;, which is enough to exactly
describe the ensemble-averaged dynamics (i.e., p(t)), and our method is independent
of the representation of the Hamiltonian in any particular basis. When A; ! exists, we
also write down the corresponding master equation.

8.2.2 Periodic Hamiltonians

The general formal solution achieved above in Eq. (8.10) does often not help much to
extract the physical properties of the system, as one has to calculate arbitrary powers
of H to obtain p(t), at least when one wants to go beyond a perturbative short-time
expansion. However, for Hamiltonian matrices with a special structure, namely, if
there exists a pair of integers p and ¢ (with p > ¢) for which

HP = hP~1HY, (8.12)

Eq. (8.10) can be solved exactly.

In the literature, matrices with such a property (modulo the prefactor h?~9) are
called periodic with period p — ¢ and base ¢ [588] or (g, p)-potent [589]. Special cases
are periodic matrices with ¢ = 1, called p-potent, and with ¢ = 1,p = 2 (i.e., H? = ﬁ)
called idempotent. If the matrix is non-singular, HY = p'~7 g7 implies the simpler
relation H? = hP1, with p = p’ — ¢/, which can be seen as a special case of Eq. (8.12)
with ¢ = 0. Matrices with ¢ = 0 and p = 2 are called involutary. Physically, the
periodicity of the Hamiltonian implies that the full dynamics are generated by a finite
number of distinct operators. Here, we will use this property to reduce the infinite
sums in Eq. (8.10) to a finite, tractable number of terms.

As some instructive examples, in Sec. 8.3 to Sec. 8.5, we will consider single-qubit
Pauli and single-qutrit clock operators (¢ = 0 and p = 2, 3) as well as spin-1 operators
(¢ = 1 and p = 3). For each case, we analytically derive the dynamics of the disorder-
averaged density operator and calculate several quantities to characterize it, including
non-Markovianity witnesses, as described in the next section. Such analysis can be
helpful in determining noise channels [617] and error correction protocols [584]. As
the spin-1 operator can be used as an alternative representation for qutrits [497], we
can also compare how the symmetry (Z; for clock operators, and SU(2) for spin-1)
affects its dynamics. Before we go into the details of the results, we introduce several
quantities, including witnesses of non-Markovianity, that we will use to analyze the
ensuing dynamics.
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Figure 8.1. (a) An initial state p(0) is evolved under an ensemble of disordered Hamiltonians with a
finite period (H? o< HY, ¢ < p). Each instance is generated from a closed-system time evolution, with
disorder h; chosen from an arbitrary disorder distribution P(h). The disorder averaging induces the
effective dynamics of p(t) defined by the dynamical map Ay p(p), which is determined by the period
of the Hamiltonian and the probability distribution P(h) of the disorder. (bl-c2) Time evolution of
the expectation value of an observable [(b1,b2) o, (c1,c2) S.] for dynamics governed by periodic
Hamiltonians [(b1,b2): H? o« I, (cl,c2): H?® o< H] with Gaussian (top) and uniform (bottom)
disorder distributions. The initial state corresponds to |+1) of the corresponding observables. The
evolutions numerically averaged over 10® samples match very well with the analytical expectation
values derived with the disorder-averaged state p. The averaged observables for Gaussian disorder
decay monotonically (bl,cl), whereas for the uniform disorder, their expectation value oscillates,
with twice the period for H® o H (c2) compared to H? oc I (b2). Nonetheless, in all the cases,
the observables reach 1/3 for a long time. Directly using the averaged evolution operator can be
advantageous, as it obviates the need for sufficient sampling over individual realizations to reach full
convergence.

8.2.3 Quantum information theoretic quantities and witnesses of
non-Markovianity

Disorder averaging can generate effective dynamics that reproduce effects typical of
dissipative systems [578,585], see Fig. 8.1. It is interesting to question whether the
effective dynamics are compatible with a Markovian description. To explore this query,
we will analyze several key quantities that serve as important measures in quantum
information, which can also act as witnesses of non-Markovianity [599,618]. Different
and inequivalent notions of non-Markovianity exist. We have discussed such quantities
in Sec. 2.8.2. In this chapter, we will use trace distance (BLP criterion), logarithmic
negativity (RHP criterion), and Purity.

Note that all the above-mentioned witnesses are non-linear functions of p(t). This
property implies that the disorder-averaged witness, calculated from the disorder-
averaged state p, differs from the average witness of individual disorder realizations
p(t), i.e, W[p] # E[W|p]], where W denotes the non-linear witness function (in con-
trast to standard observables that are linear functions of the state). Which averaging
procedure is the more relevant one can depend on the situation at hand. E.g., often
the disorder varies from shot to shot, making p hardly accessible and rendering the
ensemble p a potentially better description of the system. As each independent sample
describes a fully unitary evolution, E[I¥[p]] will return only trivial results. In contrast,
as we will see further below, W|[p| can yield striking differences between the various
disorder distributions considered. The non-Markovian witnesses can thus serve as a
tool to illuminate the characteristics of the emergent quantum dynamics.
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8.3 Case I: H?2 = K21

8.3 Casel: H2 =Rl

In this section, we derive the exact quantum dynamics for one of the simplest possible
classes covered by our framework, H? = h?1, i.e., involutary matrices with p = 2, ¢ = 0.
Particular examples are

1. A single spin S = 1/2 or qubit,
Hy = hit- &, (8.13)

where 7 is a three-dimensional unit vector and ¢ = (o,,0,,0,) is the vector
of Pauli matrices. For concreteness, in what follows, we choose without the
restriction of generality 77 = (1,1,1)/v/3;

2. Many-body tensor products of Pauli matrices
N
Hy = h(Q)(Hi/h); (8.14)
=1

3. Tensor products of o, at different positions, P,, where o, = {I, 0,,0,,0,}. For
example, o, ® [ ® oy,

Such Hamiltonians are ubiquitous in quantum mechanics, ranging from textbook
examples such as Stern—Gerlach experiments on single spins to building blocks of ad-
vanced quantum technologies in cold-atom and quantum-computing platforms (e.g.,
single qubit operations are described by H 1, while two-qubit gates such as the Mglmer—
Serensen gate are described by H, [619]). The parity checking operator for quantum
error detection and corrections belongs to P, [595]. Here, we want to analyze analyt-
ically the effects of disorder on such systems in general.

8.31 Effective evolution and master equations

We only consider mean-zero disorder distributions. As a consequence, E[h?™T1] = 0
with m € N, and we are left with the terms of even n’s of Eq. (8.10). On top of that,
as H2 = h2I, all powers of H are either proportional to I (even) or H (odd). These
constitute the dynamics of p(t) = E[p(t)]

CEO PN EC

where H = H/h is the disorder-free part of the Hamiltonian. Note that Eq. (8. 15)
needs only two operators out of four possible combinations possible from {I'and H}
because both I ® H and H* ® I are associated to odd powers of h, and thus vanish
after disorder averaging for a distribution with mean 0. For completeness, we present
the derivation of the above equation below.

plt) = 0) = AF0),  (8.15)
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Chapter 8. Disorder-averaged qudit dynamics

Derivation. To start with, we note that only terms even in ¢ (i.e., even in h) in
Eq. (8.9) will survive disorder averaging. So, we only need to take care of the even n
terms. Further splitting these terms into even and odd k, we find

[Z (3 )t ot

k=0

" /2n S
_ _pr\2n—2k 2k _pre\2n—2k—1 2%k+1| =
—[E (%)( H*) ®H —1—5 <2l<:—|—1>( H*) ®H p(0)

k=0 k=0

22n 44 0 _ _ 22n
— |p2n 2 TO0N _ p2n-277x -
- [h 1e1( ; ) -t ®H(—2 )} 7(0).
(8.16)

Note that the entire simplification of the terms is due to the periodicity of the Hamil-
tonian. Now, we can perform the average over the disorder,

0[5 e (51 5 e ()]
n=0 n=1

(2n)!
(8.17)
From here, using the moments of the disorder distributions, we will derive the exact
analytical form of the equation Eq. (8.15).

The general form in Eq. (8.15) is independent of the type of disorder distribution,
whose entire effect is encapsulated in the time-dependent function G(t). For the
present case of p = 2,q = 0, we have G(t) = E[e” "] = [ dhp(h)e™ %M i.e., it is given
by the Fourier transform of the probability distribution with time ¢’ = 2¢, and thus
corresponds to the characteristic function® containing the behavior and properties of
the probability distribution. In Tab. 8.1, we give the exact form of G(t) for Gaussian
and homogeneous uniform disorder distributions.

Quantities Gaussian N(0,02) | Uniform Uy
Prob. dist. function: P(h) #ﬂe_%h%ﬂ 3=
Characteristic function: ¢, (t') e~/ %t',’t/
Disorder moments: E[h*"] o (2n — 1! v/ (2n +1)
Time-dependent function: G(t) g2 sin 2bt
Decay rate: y(t) 202t %(% — 2bcot 2bt>

Table 8.1. Relevant quantities describing the exact evolution depending on the disorder distri-
butions: probability distribution function, the characteristic function of the distribution, disorder-
averaged moments, G(t), emergent decay rate governing the master equation (8.26). The last two
quantities are specific to the case p = 2, ¢ = 0, such as the single-qubit Hamiltonian H;.

4The characteristic function is the Fourier transform of a probability distribution, encoding all
its statistical moments.
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8.3 Case I: H?2 = K21

Gaussian disorder: In the special case of a Gaussian distribution (0,02), we
have E[h?"] = 02"(2n — 1)!!, and therefore

—it)2 o (—iot)? 1 [ —a2t2\"
R (519

Inserting this to Eq. (8.17), we obtain

> (50) () =5

1+ e‘202t2] (8.19)

and

[e.e] n
1 [—o?t? 22n 1 26242
- ) =—le @t 1. 2
Zn!(2><2) 2 |° (8:20)
n=1
The final equation for the average time-evolved state in the case of Gaussian disorder
thus becomes

plt) =

(1 + 6*2“%2) Io1+ (1 - 6*2"%2) F* o | 50).  (821)

1
2

Uniform disorder: For a uniform box distribution in the interval [—b, b], we have
E[h*"] = b?"/(2n + 1). Thus,

_ (=ibt)*

Eh?"] = ——Atre . 8.22
(2n)! (7] (2n +1)! ( )
Hence, we obtain
(0.9} .
ibt)2n (220 4§ 1 2bt
Z —1 < + nO) -1 + Ssin ‘ (823)
= (2n+1)! 2 2 20t
In this case, the disorder-averaged time-evolved state is
1) = 2| (14222 rery (1- 9220 geg 7| ) (8.24)
PRV =3 20t 20t PR '

To illustrate the accuracy of our analytical method, we consider the Hamiltonian
H, given above, with H = 7 - #, and calculate the average magnetization Tr[o,j(t)]
using the disorder-averaged state p(t) from the analytical solution. For the considered
initial state [1) = (1,0)7, the analytical calculation gives

Yat2cw). (8.25)

Trlo.j(0)] = 5

In Fig. 8.1(b1,b2), we plot the cases of Gaussian disorder (top) as well as uniform dis-
order (bottom). For a reasonable comparison, we set both the variances of the uniform
and the Gaussian distribution to unity, i.e., ¥/3 = 1 and ¢? = 1. While the ensemble-
averaged magnetization dynamics for the Gaussian disorder decays monotonically
compared to the value corresponding to an infinite-temperature state [Fig. 8.1(b1)],
the dynamics for other distributions can be more complicated, illustrated by the os-
cillations visible in the case of uniform disorder [Fig. 8.1(b2)]. For both types of
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Chapter 8. Disorder-averaged qudit dynamics

distributions, the exact dynamics over the considered time range match very well
with the numerically calculated disorder-averaged magnetization of 10% instances.

Furthermore, from Eq. (8.15), we can derive a dynamical master equation for the
disorder-averaged density matrix following Eq. (8.11). To this end, by inverting the
dynamical map in Eq. (8.15), we obtain a time-local master equation

A,G(t)
T 2G(1)

i p) i — %{(ﬁ)TH , ﬁ(t)}] | (8.26)

p(t) =

Deriving the master equation: From the analytic expression of the time-
evolved state, given above and in Eq. (8.15), we can also obtain a von-Neumann type
evolution equation for the disorder-averaged p(t). We rewrite Eq. (8.15) in terms of
A and B as defined below,

At) :% (H®H+f*®ﬁ),+G(t) (H®H_f*®ﬁ)l P0) (8.27)
A B

1/« .
= A= (4+ G(t)B) .
Following the steps in Eq. (8.11), we first obtain time derivative of j(t),

8tp:'(t) = 8ti(t)

Bj(0). (8.28)

To replace 5(0) = A;'j(t), we evaluate the inverse, which has the form,

1(. B
A=A+ — 2
following from the fact that, ﬁ? = 11 and thus A2 = 2fl, B? = 2B,AB — BA = 0, as
well as from Ag = I whence %(A + B) = L. Thus, finally, we obtain,
LG -
o p(t) = Bp(t) . 8.30

By replacing B = (I®I1— H*® H) and going back from super-operator to matrix
notation, we obtain Eq. (8.26).

From this equation, it becomes apparent that the H coupled to the disordered field
assumes the role of jump operators of a corresponding master equation in Lindblad
form. Moreover, the effective decay rate v(t) = —82’5&%) is given entirely by the tem-
poral rate of change of the time-dependent function G(t), which in turn is determined
by the disorder distribution (see Tab. 8.1 for explicit forms).

For Gaussian disorder, G(t) and ~(t) are always non-negative analytic functions
(see Tab 8.1). In contrast, for uniform disorder, G(t) periodically switches sign, and
v(t) can have negative values [see Fig. 8.2(b)]. Such dynamics can no longer be
P—divisible [620], and hence it is also not C' P—divisible (see more in Ref. [599]), and
thus a negative decay rate can also witness non-Markovianity [190], as we discuss in
more detail in Sec. 8.3.3.
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8.3 Case I: H?2 = K21

8.3.2 Relation to error channels

Quantum states are highly fragile and can easily be disrupted by environmental inter-
actions [621,622], hardware imperfections, or operational gate errors [623]. Adequately
understanding the dominant error channels of a given quantum hardware is essential
for designing fault-tolerant architectures and error-correction codes, making it one
of the critical steps in building reliable quantum computing firmware. To estimate
the effects of such sources on quantum devices, one typically constructs noise models
using quantum channels, e.g., depolarizing, dephasing, amplitude damping, etc. The
present framework can be used to derive analytic descriptions of error channels that
originate from uncontrolled gate operations.
To illustrate the main idea, consider a generic dephasing channel defined by

p—p = (1—pa)p+pao.pos, (8.31)

where with probability p, the state dephases, while with probability (1 — pg) it re-
mains unchanged. Interestingly, Eq. (8.31) coincides with Eq. (8.15) when setting

H = o0, and choosing the dephasing probability p; = 1261 Ag mentioned above,

G(t) is the ensemble-averaged rotation generated by the iiisorder, G(t) = E[e~%M].
Thus, if the system is subject to uncontrolled disorder, one can immediately deter-
mine the associated noise channel and its probability p; by only characterizing the
type of disorder, here exp(—ihto,), and the distribution of the pulse areas ht. This
knowledge of disorder can further be used to determine suitable parameters for coun-
teracting disorder-induced dephasing [581]. Similar considerations also hold for qudit

systems [587,617].

8.3.3 Non-Markovianity from disorder distributions

The analytical form of the disorder-averaged state [Eq. (8.15)] permits us to analyti-
cally compute the witnesses of non-Markovianity introduced in Sec. 8.2.3. They can
be expressed as a function of G(t), starting from any initial state, for example,—

Te(?) = 52+ G20). o) = 10) (01

Dt =2y Ly = 632
Ex(fsa) = loga(1+ |G psamo) = %uom 1)),

In order to see the difference between Gaussian and uniform distribution, we insert
the corresponding form of G(t) as detailed in Eq. (8.32) into the witness functions.
With Gaussian disorder, purity, trace distance, and entanglement negativity de-
crease and saturate to a particular constant (see Fig. 8.2). This behavior is compatible
with a complete Markovianity of the evolution. In contrast, with uniform disorder,
the non-Markovian witnesses show significant oscillations and only at late times settle
to the same long-time value as that obtained for Gaussian disorder. The periodicity
of the oscillation is determined by the periodicity of |G(t)|, i.e., 7;. One can define the
strength of non-Markovianity as the number of times the revival of these witnesses
happens. This number is inversely proportional to the periodicity of |G(¢)| and thus

proportional to the standard deviation of the disorder distribution [624]. Thus, the
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Chapter 8. Disorder-averaged qudit dynamics

revival frequency can be controlled by controlling the standard deviation of the disor-
der, which might be exploited for information-processing tasks [625,626]. Moreover,
with non-Markovian features, the evolution dynamics can be sped up [627], or the
capacity of a quantum channel can be enhanced [628]. Note that, in this case, since
the dynamical map is unital (see Section 8.6), purity can be used as a witness of non-
Markovianity. It functions just as effectively as other witnesses and exhibits similar
behavior.

(a) — T — Dlpi(t), 2(t)]  —— Ex(psa)  Figure 8.2. (a) Non-Markovian wit-
1.0 (BLP criterion) (RHP criterion) '} esses evaluated for the time-evolved
--=- N(0,1) disorder-averaged state for the case

0.81 A\ — U_s.3 p = 2,¢g = 0 (qubit Hamiltonian)
0.6 N\ 7| for Gaussian (dashed line) and uniform

1/vV3 \y (solid line) distribution: Purity (blue),

0.41 \\ trace distance (violet), and entangle-

0.2 “ ment negativity (green). All quanti-

ties are consistent with Markovian be-
havior for Gaussian disorder, but they
show distinct non-Markovian features

0.0

(b) 6 (revivals) for uniform disorder with a
= 4 period of 7/2b. (b) The decay rate
S in the master Eq. (8.26) also detects
et non-Markovianity. For the Gaussian
i 01 disorder, it is always positive, indicat-
& 2] ing Markovianity, while for the uniform
8 _4] disorder, it assumes negative values in

g regions where the non-Markovian wit-

nesses show revivals.

8.3.4 Multi-qubit operators

A multi-qubit operator such as Hy as given in Eq. (8.14) also fulfills #2 o I. Thus, the
same analytical solutions as above hold. For concreteness, we consider the multi-qubit

Hamiltonian
. N
i :h®(— ) aa>. 8.33
E\s : (8:39)

a=x,Y,z

To illustrate the effect of increasing N, we calculate the purity for Gaussian disorder.

As the table in Fig. 8.3(a) details, the purity consists of a time-independent con-
stant and a time-dependent part given by G(¢). With increasing N, the ratio between
the corresponding coefficients decreases, e.g., from 2 for N = 2 to 5/4 for N = 3.
The general ratio is (3V + 1)/(3" — 1), showing that both contributions attain equal
weight at N — oo. As N increases, the purity saturates at a lower value (see Fig. 8.3)
and ultimately reaches 1/2 (see inset of Fig. 8.3). (Due to the special form of Hy, the
dynamics is non-ergodic, and the saturation value remains far from 1/2%, the value
corresponding to a maximally mixed state.)
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n| Purity

1 21003

2 (5 +4G?»/9
3 (14 + 13G*») /27

(a) I

Figure 8.3. (a) Exact formulas for

N3N + 1)/2 + (3 — DG?/2}/3V the purity of the disorder-averaged state
00 (1+G%»/2 under the evolution of Hy for the ini-
. X . . tial state |1)®Y. The ratio between the
(b) H,y Hy Hj H, terms proportional to I® I and H” @ H
1.0 Wi is (3 +1)/(3N — 1), which approaches
= 061 t=15 1 as N increases. (b) Exact dynamics of
51-/0'97 ’ the purity for N = 1,2,3,4 with Gaus-
%0,8— 0.5 4 7 1 sian disorder. As N increases, the final
= purity plateau approaches 1/2.
0.7
=
5 0.6
[a
0.% 0

8.4 Case ll: H3 = Rh3I

Until now, we have focused on Hamiltonians generating gates on single or multiple
qubits. However, there is currently a significant drive towards developing the use
of quantum-information carriers with more than d > 2 levels, so-called qudits [629-
636]. The basic operations for qudit computations [594] are typically defined via the
generalized Pauli operators, also known as Potts or clock operators in a statistical
physics context. These operators present examples of (g, p)-potent Hamiltonians with
p=d,q=0.

Qudit operations can be defined by two generators, the shift operator 7, which
moves the qudit state from [i) to |i — 1), and the phase operator o, which feeds d-
different eigenvalues that are defined by the d—th root of unity, w = €>*/?. In matrix
form, they read

10 0 0 00 ... 01
0 w 0 0 10 ..00
; 0 :
00 0 w1 00 ... 10
and they fulfill the relations
ol=11=1, ol =0, T =77 or =wr0o. (8.35)

Notice that the operators o, 7 are both non-Hermitian. Such non-Hermitian operators
have been considered, e.g., in constructing a model of Feynman’s clock [637] and in
the context of topological insulators [638]. Another example of such operators also
appears in the context of Z,; para-fermions, which have instead non-local commutation
relations and can also be used for quantum computing [639]. Recently, effective non-
Hermitian qudit Hamiltonians have been realized in trapped ions [640,641].

In this chapter, for the analytical calculation’s tractability, we stick to the case of
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qutrits, i.e., d = 3. We consider a generic single qutrit Hamiltonian as a sum of both
shift and phase operators,

~

H=gglo+r)= hH . (8.36)

This Hamiltonian fulfils H3 = h3L. In this case, due to the existence of three indepen-
dent operators {I, H,H 21, we can have at most 9 possible operators contributing to
the evolution of the state p(t). Unlike the H?* o T case, where the terms of odd order
in A vanish, in the present case, all the 9 terms contribute. For simplicity, we focus
on Gaussian disorder, for which we can write the final disorder-averaged state p(t) as

5@)_%[s(mHﬁ*Q@mﬁ*@ﬁz)

() (1,1,1)7 <2H®H—ﬂ*2®ﬁ—ﬁ*®ﬁ2)
—_—
G1(t)
+ () - (1, w?, w) <2FI*®FI—FI*2®H—H®FF>

-~

Ga(t)
+4(t) - (1, w, w7 <2ﬁ*2 ® H?> — H* ®]I—]I®ﬁ>} 5(0),

~~

Gs(t)

(8.37)

. . 3 2,2 3 2,2 3 2 92,9
where for convenience we have defined the vector ¥(t) = (e27",e2¥7 " e2¥ 1),

Note, for a non-Hermitian system, the state p has to be normalized by Tr(p) in
order to obtain normalized probabilities. See the derivation below for a concrete
understanding.

To see how this analytical equation regulates the dynamics, we first look at ¢ = 0,
where 7(0) = (1,1,1). In this limit, only the first two lines of Eq. (8.37) survive and
add up to give I ® I p(0), as expected. Similar to the qubit case, we can also identify
the time-dependent functions Gi(t), Ga(t), G3(t), which govern the full dynamics at
t > 0 and which differ only by the combinations of coefficients {1, w,w?}.

Derivation. For the case H3 = B3I, we can write more generally H*¥ =
hEHF (mod 3) - Ag before, the terms in Eq. (8.10) that are odd in h vanish, and thus
we are left with

2n

S () cmre ntgo)

2n

2n n n—k rr*(2n— mo 3 mo =

:[Z<k>h2 (_1)2 kH 2n—k) ( d3)®Hk ( d3)p(0) ]
k=0

(8.38)

As H? I, the dynamics is generated by {}I,FI JH 2} and its complex conjugates,
thus when written in super-operator formalism like B*® A, where A, B € {I, H, H?},
there are 9 possible terms. Now, we can use w® = 1, to have a closed form of the
combinatorial terms,
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8.4 Case II: H3 = B3I

3

() ()t
() (1) - (1) =g (e B D Sy )
() () (1) (B O )

Using the above simplifications, the disorder-averaged density matrix is

3

oo it 6n ~ ~ ~ ~
pty=>" [< ) fpon) {Wion )1 T+ Wign o 2 & H + Wigy o0 " @ H
0

— | (6n)!
(—Zt)6n+2 6n+2 F 2 T o T 772
+ WE[}L ]{W(6n+2,1)H QI+ Weni2wH ® H+ Wepio.,2I® H }
(=) e o 2 742 o 772\ | &
+ B Wignia ) H @ T+ WigniamI @ H + Wigniaw2yH™ @ H? 1| 5(0)
(6n +4)!
(8.10)
Using (1 — w)%" = (=3)3" in Eq. (8.39), we can further simplify the W (6n, -) terms,
bno + 2(—3)3" Sno — (—3)%"
Wien,1) = AT E— Wenw) = Wienw?) = — 3
—(—3 3In+1 2(—3 3In+1
W(6n+2,1) = W(6n+2,w2) = <3)7 W(Gn—f—?,w) = (3)7
—(—3 3n+2 2(—3 3In+2
Wenta,1) = Wientaw) = (3)7 Wientaw?) = (; (8.41)

Note, the d,0 terms in the coefficients corresponding to the operators I ® I, H*? @
H,H*® H? are responsible for the time-independent terms in Eq. (8.37). The factor
of 2 in front of I® I, H* ® H and H*2 ® H2, and —1 in all the other terms of the
time-dependent part are also due to the above relation in Eq. (8.41). Now, we need
to simplify the time-dependent term along with disorder-averaging E[h#]. In the
case of uniform disorder, the result can be expressed in terms of a hypergeometric
function. For Gaussian disorder, using E[h*"] = ¢%"(2n — 1)!!, one obtains rather
compact expressions such as

o (—it o (—it)5m
Z(( ) h6n Z 6n))' 6n—1)

n=0 n=0
L= (o) SN (—o) & (—Lo22)3n
_gw_gmw—;w, (8.42)

and similarly for the terms with 3n replaced by 3n + 1 and 3n + 2. The resulting
infinite series can be expressed as the sum of three exponentials having permutations
of (1,w,w?) in the exponents,

o0 x3n+j e 1+ w ewr 1 w4jew x

= for 7 =0,1,2 .
Z Gl 3 s B

These relations allow us to express the three time-dependent functions G, G2, Gs in
terms of U = (em,em,eng) and the three vectors (1,1,1)7, (1,w? W), (1,w,w?)T,
leading to the Eq. (8.37) describing the disorder-averaged time evolution of a qutrit.
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Chapter 8. Disorder-averaged qudit dynamics

In Fig. 8.4a, we plot the expectation value of a Hermitian observable, the spin-1
magnetization S, = Diag(1,0,—1) [see Eq. (8.47)] with an initial statevector |¢y) =
(1,0,0)T. Its time evolution can be analytically expressed as

Tr(S.p(t) 12 +2G, — 2°/3Gy (8.44)
Tr(p(t)) 15+ 27" 423Gy + 235G '

which can be compared to the evolution of ¢, in the Hermitian qubit case, see
Eq. (8.25). Again, the evolution averaged over the Gaussian distribution decreases
monotonically. The numerical average over 10* trajectories agrees qualitatively with
the analytical prediction for the average, but even at 107 independent samples, slight
deviations are still visible at the longest times of ¢ ~ 3 considered.

—
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(b) 1.01 dip around t ~ 1, followed by an in-
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Moreover, we calculate the purity of the normalized state [642],

Tr[p?(t
ﬁ =3 (81 —6G, + 623Gy + 5G2 + 4 - 223G

1 6-23G2 — 213G Gy — 4GaGy — 28/3G1G3> (8.45)
, ) 2
/ (15 +es?t 195G, + 2§G3> .

As we can see in Fig. 8.4b, the purity has a dip around ¢ ~ 1, after which it rises
again to finally saturate in a plateau (we have checked that the dip does not derive
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8.5 Case III: H3 = h2H

from the normalization, which monotonically increases in time as an exponential).
This behavior is unlike the qubit case, where the purity of the averaged state mono-
tonically decays. In contrast to the qubit case, the dynamical map generated by the
non-Hermitian qutrit Hamiltonian ensemble is non-unital (see Section 8.6), meaning
that the non-monotonic behavior of the purity in this case is not a good witness for
non-Markovianity. To study a potential non-Markovianity, we also plot the trace dis-
tance in Fig. 8.4c. Its monotonous decay with time is compatible with a Markovian
evolution.

These quantities do, however, illustrate an interesting aspect: Even at 10 inde-
pendent disorder samples, considerable deviations become visible already at around
~ 1.75 — 2. With 107 samples, the purity reaches good convergence during the time
frame considered, while the trace distance continues to display significant deviations.
As this example shows, a vast number of realizations can be needed to match the nu-
merical ensemble average to the analytical predictions, even for relatively short times.
Thus, even in simple systems, it can be a considerable asset to be able to analytically
extract converged results without the need for extensive numerical averaging.

85 Caselll: H3 = h2H

In the examples above, we have considered cases where finite powers of the Hamil-
tonian return to I. As mentioned in Sec. 8.2.2, we can derive similar analytical pre-
dictions also in the case when HP = hiH 7 with ¢ < p. In this section, we illustrate
this possibility for H? = h2H, ie., p = 3 and ¢ = 1. The simplest instance of this
case is given by 3 x 3 matrices describing spin-1 operators, S,, o = z,y,z. They
follow the commutation relations [S,, S| = iheqp,S, [643], and we choose the matrix
representation

L (010 L [0 =i 0 10 0
Sp=-—(101],5,=—(i 0 —i],S.=[00 o0 (8.46)
V2\p 1 0 V2\p i o 00 —1

Interestingly, these spin-1 operators also form a universal basis for qutrit computa-
tion [490, 497, 644]. However, they follow a different symmetry than the qutrit or
Potts operators. In particular, they are Hermitian, and they obey (S,)* = S,. It is,
therefore, interesting to investigate the difference in the time-evolution these operators
generate after disorder averaging.

In similarity to the qubit case, Eq. (8.13), we choose a Hamiltonian describing a
rotation around a specific axis,

H=—(S,+S,+5.)= H>=h’H. 8.47
\/§< y ) (8.47)

Using similar techniques to the previous cases, we can write down the final equation,

t) = H®H+(G’—1){ﬁ*2®ﬂ+ﬂ®ﬁ2}

(8.48)

- - 1 - -
+ (1—G)H*®H+§(3+G—4G’)H*2®H2 7(0),

N | —
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Chapter 8. Disorder-averaged qudit dynamics

where G is identical to the qubit case (Tab. 8.1), and G’ has a similar form as G but
with t — ¢/2.

Derivation. As in the previous cases, terms of odd order in h vanish. Thus,
starting from the Eq. (8.10), we are left with

o] . 2n
(—iht)?" 2n ~ om -
> o | S () ke ). (8.49)
n=0 ) k=0
One can consider the terms n = 0,1,2,... one by one and, by putting the terms

together, can find the following equation:

n—1

]I®JI+Z th H*2®]I—Z th%z 0o H
2k +1
R , n=1 k=0
=1 —92n—1
[ee) . n—1
(—iht)* 2n 2 9 —iht)?" 2
- H H - I H 8.50
e S GALETT S e G FEY S
n= =1 N
—92n—1_9 =1

For the Gaussian disorder case, using Eq. (8.18), disorder averaging yields

242

5 1 . s
]I®I[—|—<e_"2t2/2—1> H*2®]I—§<e_2" —1>H*®H
+ % (3 420 4e_°2t2/2) 2@ H? + (e—"zﬁ/2 - 1) Te 2. (8.51)

For the uniform disorder case, using Eq. (8.22), we obtain

sin bt - 1 /sin 2bt . -
I®1 ~1)H®ol- - (222 1 )H*®H
®© +< bt ) ®© 2< 2bt ) ®©
1 sin 2bt sinbt\ =~ - sin bt -
~(3 —4 H*? @ H? —1|Ie H?. 8.52
+2<+2bt bt) © +<bt >® (8:52)

Thus, we obtain the Eq. (8.48) with two time-dependent functions G(t) and G'(t).

Choosing the initial statevector |1g) = (1,0,0)7, the expectation value of S, and
the purity take the following forms:

(1 +2G'(1)) ,

OJI>—‘

Tr(S:p(t)) =

Tr(p*(t) =

(8.53)
= (9 + G(t) + 8G™(1)) -

Figures 8.1 and 8.5 respectively compare the time-evolution for both quantities for the
Gaussian and uniform distribution. For the Gaussian distribution, both observables
monotonously decay to a plateau. The one of the magnetization, Tr(S,p(t — o)) =
1/3, matches with the long-time plateau obtained in the qubit case, see Eq. (8.25),
although the approach towards it is delayed, as it is governed by G’(t) in the case of
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8.6 Unitality of the dynamical maps

spin-1 instead of G(t) as was the case for qubits. For the uniform distribution, both
the magnetization and purity of the disorder-averaged state oscillate, with a period
that is twice that of the qubit case (see Fig. 8.1 for magnetization, and Fig. 8.2 and 8.5
for purity). In the long-time limit, the oscillation dies out, and the dynamics approach
the plateau obtained in the case of Gaussian disorder. As discussed in Sec. 8.2.3, as
the map in the present case is unital (see Section 8.6), the oscillations of the purity
indicate an emergent non-Markovianity of the averaged time evolution.

— T[]  —— Dlpi(t), pa(t)]
o 1.0
2 -=- N(0,1)
L — U_sy3 Figure 8.5. Time evolution of pu-
§ 0.8 rity and trace distance of the disorder-
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o . . .
=< tion. The time scales governing the
s 0.6 —— . .
s evolution are twice those of the corre-
g = sponding qubit dynamics (Fig. 8.2).
=

049 - 2 B e
V3 V3 V3 V3

8.6 Unitality of the dynamical maps

A dynamical map is called unital when A4[I] = I, i.e., a fully mixed state remains
fully mixed. Here, A; acts on the density matrix, not on its vectorized form. We now
show that the map for the qubit and spin-1 cases is unital, while it is non-unital for
the non-Hermitian qutrit case considered.

Case I: For the qubit case, from Eq. (8.15) we have

AJI) = (HTG@» I+ (1_7%) HIH' =1, (8.54)

where we used the fact that HT = H and H? = I, showing that the dynamical map

for the qubit system is unital. Hence, purity can act as a non-Markovian witness (see
Fig. 8.2 and behaves similarly to trace-distance).

Case II: For the qutrit (Z3) case, from Eq. (8.37) we have

Al = S i ity + O o i i)
Coll) vt e gy Os) s i
+—3 (2HH" — H — H?) + 5 (2H*H™ - H'— H) .

As all the coefficients of G;(t) (in the bracket) remain non-zero, the dynamical map
corresponding to a qutrit is non-unital. Hence, purity can not act as a non-Markovian
witness (see Fig. 8.4 that purity behaves differently from trace-distance).
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Chapter 8. Disorder-averaged qudit dynamics

Case III: For the spin-1 case, from Eq. (8.48) we have

M =T+ (G —1)(H? + H?)
1 o1 . 8.56
+ 5(1 ~G)HH' + 5(3 +G —AGH?H™. (8:56)

Note that H2 + H2 — 2H2H2 = 0 and H2H"? — HAT =0 as H' = H and H* = H.
Thus, we can rewrite the above equation as

~ - 1 ~ -~ 3 o~
AJI) =T — (H? 4 H?) + 5HHT + 5H?HT2 =1, (8.57)

and thus the dynamical map for the spin-1 system is unital. Hence, purity can act as
a non-Markovian witness (see Fig. 8.5 that purity behaves similarly to trace-distance).

8.7 Summary

In this chapter, we have derived an exact equation for the disorder-averaged dynamics
of periodic Hamiltonians, independent of the initial states, applicable for Hermitian
and non-Hermitian systems, and valid for arbitrary evolution times. These equations
rely not on the specific representation of the Hamiltonians but rather only on their
(g, p)-potency class as defined by the relation HP  H?. The effect of the disorder is
then entirely captured in a few analytic functions derived from the disorder moments,
which can be easily exchanged in the final equations according to the disorder at
hand. This analytic approach significantly reduces the numerical overhead typically
associated with disorder averaging. As often occurs in such a scenario [200,201,577—
583], the disorder averaging induces open-system-like dynamics even in inherently
closed systems. In cases where the equation defining the time-evolved state can be
inverted, we have also derived a master equation governing the disorder-averaged
system dynamics. Moreover, even without a formal master equation, we have shown
how non-Markovian characteristics emerge as a function of the disorder distribution
and its strength. These factors determine the periodicity of revivals observed in non-
Markovian witnesses. Such phenomena could be leveraged when using an ensemble
of disordered Hamiltonians to simulate open system dynamics [582,645] as well as for
applications in quantum-information processing [200,201,625-628]. It is an interesting
question to ask what it means to witness non-Markovianity in a closed system without
a genuine bath, and how the associated backflow of information should be interpreted.

The analytic expressions may help form a better understanding of errors in quan-
tum computing by enabling insights into noise modeling or aiding in reverse-engineering
disorder distributions tailored for specific applications. Another application can be
in qudit-based quantum computations, where the effect of the disorder depends not
only on the hardware implementation but also on the specific representation of the
qudit operator. It thus becomes crucial to investigate which combinations of qudit
dimension d, related to ¢, p, and disorder distributions P(h) offer better resilience
against decay caused by averaging over uncontrolled disorder in the qudit gates. Fi-
nally, in the context of optimal control, the optimal gate pulses for noisy hardware
can be modified, knowing the decay rate caused by specific errors [646]. Beyond an
intrinsic interest in analytic solutions to disorder problems, such investigations could
thus guide the development of more robust quantum computing systems.
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Chapter 9
Complexity transitions in chaotic quan-
tum systems

complexity or resources are not one-size-fits-all

91 Introduction

The interplay between interactions and disorder [564] in quantum many-body sys-
tems gives rise to complex systems with extremely rich phenomenology, characterized
by varying degrees of chaoticity and ergodicity [647,648,648-651]. Although ana-
lytical approaches are available in certain limits of ergodic [652-655] and localized
regimes [656—-659], and while quantum simulations [75,90,318,660] have explored var-
ious regimes of disordered interacting systems [661-668], their treatment remains a
significant challenge both for theory and experiment. In order to translate that dif-
ficulty into a measurable quantity, various notions have been proposed [91,669-671].
Notable examples of such “complexity markers” include entanglement entropy [672]
and stabilizer Rényi entropy [169], which have clear implications both for the diffi-
culty of numerically treating [91, 154, 167,542, 673-677] the system under study as
well as for the quantum resources [47] an experiment needs in order to generate the
target state [678,679]. Such markers are also deeply connected to the question of what
actually defines a quantum system as complex [172,176,680-682]. As a disordered
quantum many-body system enters into respectively less ergodic and more localized
regimes, the number of basis states involved is reduced (see Fig. 9.1b), suggesting
intuitively a suppression of quantum complexity. As of yet, it remains, however, an
open question how precisely ergodicity transitions are related to changes in complex-
ity markers, and in particular, whether these define qualitatively different complexity
regimes.

In this chapter, we map out complexity quantifiers (see Fig. 9.1) in prototypical
disordered models that exhibit multiple distinct regimes: the Rosenzweig—Porter (RP)
model [683,684], the Power-Law Random Banded Matrix (PLRBM) model [685], and
the Sachdev—Ye—Kitaev (SYK) [686,687] model coupled to an Ising chain (see Fig. 9.3).
The RP and PLRBM are paradigmatic models of chaotic systems that interpolate be-
tween ergodic and non-ergodic regimes, and they are central to the understanding
of Anderson localization [558,688] and (multi)fractal states [656,689,690]. The SYK
model is a prototypical example of a maximally chaotic quantum many-body sys-
tem [691], which plays a key role in the phenomenological description of non-Fermi
liquid behavior [686,692] and in the study of quantum black holes through the holo-
graphic principle [693,694]. We scrutinize these models using three different markers
of complexity: (i) The fractal dimension [695-699], a key observable for identifying
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localized regions and mobility edges, quantifies how much a state is spread over a
computational basis. (ii) The entanglement entropy across half~half bipartitions esti-
mates a state’s quantumness in terms of its inability to be expressed as a direct prod-
uct state [91]. However, not all entangled states are computationally challenging. An
outstanding example is the class of stabilizer states, which contain highly-entangled
states but can be tackled efficiently classically thanks to the Gottesman—Knill theo-
rem [149,150]. In contrast, non-stabilizer states fall outside this framework and are ex-
ponentially hard to represent on a classical computer. To capture this distinction, we
use as the third measure (iii) the nonstabilizerness [85] (or “magic”) of a state, quanti-
fied through the stabilizer Rényi entropy (SRE) [169]. While the fractal dimension and
entanglement entropy have been instrumental in characterizing non-ergodic quantum
systems already for some time [685,700-702], magic is currently emerging as a power-
ful tool in various contexts, including the study of ergodicity [168,521,524,703-706],
quantum chaos [525,707,708], and as a sensitive probe for identifying quantum phase
transitions [518,526, 528, 709-712].

In our work, we find that all three complexity markers show sharp phase transi-
tions, separating regimes of different levels of complexity. Notably, the phase transi-
tion points are distinct when an extended fractal phase is present, as in the bulk of
the RP spectrum. In contrast, when such a phase is absent, as in the ground state
of the RP model, all considered markers detect the transition points close to each
other, see Fig. 9.1c. Furthermore, an analysis of the SYK,+Ising model reveals that
the SRE exhibits a richer structure than the other markers and, in particular, is sig-
nificantly more sensitive to underlying symmetries of the many-body systems, such
as fermion parity and time reversal. Overall, this comparative analysis suggests that
no single marker can independently describe all relevant regimes of the system, which
may undergo distinct complexity transitions. These results not only yield insights
into the physics of disordered quantum many-body systems but also help identify
the complexity marker best suited to capture the computational hardness across dif-
ferent phases [676,677,682,713,714], guiding the selection of appropriate simulation
methods.

Finally, our studies complement ongoing research on several complexity markers in
ergodic and integrable/localized systems, including Krylov complexity [715-719], log-
arithmic multifractality [640], operator spreading [720], holographic complexity [721],
or quantum-computational complexity [722].

The remainder of the chapter is structured as follows. In Sec. 9.2, we present
the complexity markers used to characterize the various quantum phases explored in
this study. In Secs. 9.3 and 9.4, we apply these markers to analyze random matrix
models, specifically the Rosenzweig—Porter model and the power-law random banded
matrix model. In Sec. 9.5, we investigate the Sachdev—Ye-Kitaev model interpolated
towards the integrable Ising model. Our main findings and possible future research
directions are presented in Sec. 9.8. We also find that the self-averaging properties
of the considered complexity markers (Section 9.6.2) can also detect similar phase
transitions.

9.2 Complexity markers

A plethora of different approaches exists to simulate quantum states, each with vary-
ing regimes of validity and efficiency, making it essential to scrutinize the complex-
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Figure 9.1. Complexity markers across a transition from a chaotic (ergodic) to an integrable
(localized) phase. (a) As the control parameter p drives a random matrix model towards localization,
the eigenvalue distribution evolves from the Wigner-Dyson semicircle to a Gaussian profile. (b)
Comparison of three complexity markers (data for the RP model). A high (low) fractal dimension
D, indicates delocalization (localization) in the computational basis. High (low) magic My implies
support over an extensive set of 4 Pauli strings (concentration on a limited subset). Strong (weak)
entanglement S,y reflects high (low) Schmidt rank and the presence of many (few) computational
basis states in the superposition. While all three markers feature a high-complexity regime, the
transition towards intermediate- or low-complexity regimes can happen at distinct points (,uﬁ 3 #
ufff # p175). Regimes of different complexity thus overlap but do not coincide. (c) The phase
transition points in the RP model, obtained through finite-size scaling analysis, differ across the
three complexity markers (orange: high [O(1)] complexity; green: intermediate; blue: low complexity
[O(1/N))]). Faded regions indicate numerical uncertainty in determining regime boundaries. Notably,
the ground state exhibits a sharp transition directly from high to low complexity, bypassing the
intermediate regime. In contrast, bulk eigenstates display a well-defined intermediate phase, with a
significant variation in transition points across the considered markers.
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ity of quantum states through multiple markers. This section introduces the main
markers we will employ to analyze how the system evolves from an ergodic to an in-
tegrable/localized regime, the fractal dimension, the maximal entanglement entropy,
and the stabilizer Rényi entropy (SRE).

9.21 Fractal dimension

The fractal dimension can be derived from the inverse participation ratio (IPR), and
quantifies the spread of the wavefunction in a given basis, which in our case will
be provided by the computational basis states {|i)},, L being the Hilbert space
dimension. Fractal dimension and IPR are commonly used markers to investigate
many-body localization [651,688,690,695,699], as a state that has support on just a
few elements of the basis will be in the localized phase, while an ergodic wavefunction
will be spread over many states of any generic basis, as shown in Fig. 9.1b. In
computational terms, a highly localized state implies a smaller part of the Hilbert
space needs to be handled, making it easier to simulate classically [723,724].

For a wavefunction [¢)) expressed in terms of the computational basis with coeffi-

cients 1 (i) = (i|¢), the ¢ IPR is defined as

L

L) =) @ ¢>1, (9.1)

=1

where L = 2% is the Hilbert space dimension for a space of N qubits. The fractal
dimension D, is defined from the IPR as [696-698]

hm logL (IQ)

D, = .

q (9.2)

Typically, one considers L > 1 and the limit is dropped, such that the fractal dimen-
sion is given by

logy(1y)

D, = — 21 9.3

T N(1-q) (5:3)

When the wavefunction 1 is confined to a small region of the Hilbert space, the

system is considered to be in the localized phase, marked by D, = 0 in the ther-

modynamic limit. For a fully extended state, in contrast, where the wavefunction

spreads uniformly over all basis states, one obtains D, = 1. States in the ergodic

phase, however, are usually not entirely uniformly distributed. Instead, they can be

approximated by Haar-random states', which do not saturate the fractal dimension

for finite system sizes. For ¢ = 2, the corresponding fractal dimension is given by [725]

1 2
Haar

For N — oo, one recovers Di# — 1. For non-extended states, as are expected
to occur in non-ergodic but delocalized phases, just a fraction of the volume will be
occupied, and we will have D, < 1. If D, is a constant across all values of ¢, the state

LA Haar random state refers to a quantum state that is sampled uniformly at random from the
set of all possible pure quantum states in a given Hilbert space, according to the Haar measure.
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9.2 Complexity markers

is called single-fractal (or just fractal), which is the case for the Rosenzweig—Porter
model in the non-ergodic extended regime [689]. In the general case, D, is a function
of q. Such a state is called multi-fractal. An example occurs in the power-law random
banded model at the Anderson transition [685,688]. Here, we focus on ¢ = 2 only.

9.2.2 Entanglement entropy

The second marker we consider is the entanglement entropy maximized with respect
to all possible equal-sized (half-half) bipartitions of the state in the computational
basis. The maximal entanglement entropy is a key measure of quantum correlations
between subsystems. The presence of entanglement has been identified as one of the
first limitations for efficient classical simulations of quantum states [154,726,727], and
entanglement entropy provides an estimate of the bond dimension required in tensor-
network methods [91,542,673,674]. Moreover, it is widely used to probe many-body
localization and quantum phase transitions [728-732].

Given a bipartition of the Hilbert space H = HA®H g and a pure state [¢)) € H, the
von Neumann entropy is defined as S(pa) = —Tr(palogpa), with pa = Trp|v) (Y|
the reduced density matrix for subsystem A. The maximal entanglement entropy
is then defined as the von Neumann entropy maximized over all possible half-half
bipartitions of the system,

Shax = LAIE[%}VX/% S(pa) - (9.5)

For Haar-random states, the entanglement entropy follows the Page curve [733], which

for L4 < Lg reads
LaLg
age 1 Ly—1
SEAg,LB - Z (E) B 2LB ’ (96)

kZLB+1

where Ly p is the Hilbert space dimension of H4 p. In this chapter, we work in the

convention where logarithms are in base 2, so that S7°%; /N ~ 1 in the large-N limit.

9.2.3 Stabilizer Rényi entropy (SRE)

The last complexity marker we consider is the stabilizer Rényi entropy (SRE). Recall
from Sec. 2.7.5 that the SRE captures how a state is distributed when expressed in
the basis of Pauli operators P € Py, where Py represents the Pauli group for n-
qubits. Stabilizer states, which are common eigenstates of a maximal set of mutually
commuting Pauli operators, exhibit a highly concentrated probability distribution
of the Pauli expectation values, confined to a subset of 2V operators, and thus are
easily simulable [148, 149, 151, 158, 166, 167]. In contrast, a Haar-random state has
approximately equal weight on all P’s [168]. Thus, a natural way to quantify the
nonstabilizerness of a state 1) is by assessing the spread of this distribution using the
g-th order stabilizer Rényi entropy,

M) = 1 log, > LTI (0.7

In this work, we will use the second-order Rényi entropy, ¢ = 2. The SRE vanishes
for a stabilizer state and grows as the state exhibits increasing degrees of magic.
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Chapter 9. Complexity transitions in chaotic quantum systems

SRE in Haar-random states

For unitary-invariant Haar-random states, the expectation value of Pauli strings can
be easily calculated analytically by averaging over Haar-random states. Using the
formula [734]

k
J i a= B Zwﬂ, 9

where Sy is the permutation group and W) is the replica—permutation operator and

L =2%, we find
i=0,
J 1P ) Py - {2N1+1 o (9.9

The stabilizer Rényi entropy (SRE) can be calculated using similar techniques [168]
and takes the following analytical forms depending on the ensemble with respect to
which the Haar measure is invariant:

Miaar(QUE) = mE8ar (GSE) = — log, (4> ,

N
; S (9.10)
M (GOE) = — log, ((H—2N> .
This value approaches the maximal value of 1 in the thermodynamic limit.
0.81 . .
Figure 9.2. The magic com-
= 0.7 puted for GUE and GSE ensembles
~ _ exhibits similar behavior, while the
z 0.61 ‘ 777777 ggi ::Z'ﬁ;t":'l GOE shows a distinct trend. The nu-
O GUE numerical merically obtained values are in excel-
0.5] o +  GSE numerical lent agreement with the correspond-
v ¢ GOE numerical . . o .
0.4 ¢ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ing analytical predictions.
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In random matrix theory, the Gaussian ensembles—GOE, GUE, and GSE—are dis-
tinguished by their symmetry classes and the associated Dyson index g € {1,2,4},
corresponding to real symmetric, complex Hermitian, and quaternionic self-dual Her-
mitian matrices, respectively [735]. Let H be an N x N Hermitian matrix. The

probability distribution over the ensemble is given by P(H) o exp (—% Tr (H 2)),
where 5 = 1 corresponds to GOE, § = 2 to GUE, and 8 = 4 to GSE. The choice of
[ determines the symmetry class of the matrices:

o GOE (B=1): HcRN*N with H = HT (real symmetric).

« GUE (8=2): Hc CN*N with H = H' (complex Hermitian).

o GSE (8 =4): H is quaternionic Hermitian (self-dual), which can be represented
by 2N x 2N complex matrices with symplectic structure.

In what follows, we investigate how the three complexity markers discussed above
evolve as a system transitions from a chaotic random matrix regime to a localized
phase. We consider three representative models: the generalized Rosenzweig—Porter
(RP) model (Sec. 9.3), the Power-Law Random Banded Matrix (PLRBM) model
(Sec. 9.4), and the Sachdev—Ye-Kitaev (SYK4) model coupled to an Ising chain
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9.3 Rosenzweig-Porter model

(Sec. 9.5). These models are characterized by a single tunable parameter, which
controls the interpolation between chaotic and localized behavior. Moreover, the
RP and PLRBM models exhibit Anderson criticality and support multifractal eigen-
states [656,689], providing a fertile ground for analyzing the distinct responses of the
complexity markers.

9.3 Rosenzweig-Porter model

Figure 9.3. Three model Hamil-
tonians exhibiting a transition from
chaotic (ergodic) to localized phases,
controlled by tunable parameters. (a)
Rosenzweig—Porter (RP) model: A
random matrix ensemble where the
off-diagonal elements have decreasing
weight as the parameter ~ increases.
(b) Power-Law Random Banded Ma-
trix (PLRBM) model: Characterized
by off-diagonal elements that decay
with a power-law determined by the
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In this section, we study the above complexity markers for the Rosenzweig—Porter
(RP) model, both for bulk and ground states. By numerically analyzing varying
system sizes, we identify sharp transitions that occur at different points for different
markers, and we find distinct behavior in the bulk and ground state.

9.31 Model

The RP model is an ensemble of L x L random Hermitian matrices defined as [683]

H;j = di5hi + Vii(1—0y5) . (9.11)

1
2
Here, h; as well as V;; are independent random Gaussian variables (real for h; and
complex for V;;) with mean zero and standard deviation 1. At v = 0, the RP model
recovers a Random Matrix Theory (RMT), which in the case of the above choices
is given by the Gaussian unitary ensemble (GUE). Upon increasing v, the model
interpolates between this RMT and a diagonal Hamiltonian reached at v — oo, whose
eigenvalues are completely uncorrelated.

The relative simplicity of the RP model enables an analytical treatment of both
its spectral properties [689,736] and eigenvector statistics [737-739], allowing for a
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Chapter 9. Complexity transitions in chaotic quantum systems

comprehensive characterization of the model in the bulk of the energy spectrum. In
the ergodic phase, which spans the range 0 < v < 1, the model behaves like an RMT,
with Wigner—Dyson level spacing and Porter-Thomas statistics for the eigenvector
probability distribution, signaling quantum chaos and ergodicity in Hilbert space. At
~v = 1, a transition to non-ergodic behavior occurs, and at v = 2 Anderson localization
sets in. In the regime 2 < v < 0o, wavefunctions are localized within a small region of
Hilbert space, and the level spacing distribution exhibits Poissonian statistics. A key
feature of the RP model is the presence of an intermediate regime between the ergodic
and localized phases, in the range 1 < v < 2, where wavefunctions remain extended
but occupy only a fraction of the full Hilbert space, exhibiting fractal behavior that
deviates from conventional ergodicity without being fully localized. The fractal dimen-
sion defined in Eq. (9.3) is a particularly effective marker for these transitions [689],
leading to the characterization

1 vy<1,
(Dg) =q2—v 1<y<2, (9.12)
0 v > 2.

The same phase transitions have been confirmed not only through eigenvalue and
eigenstate statistics but also via dynamical properties, such as diffusion characteris-
tics [740,741], as well as survival and return probabilities [742,743]. Given the presence
of different well-established regimes, the RP model serves as an ideal benchmark for
evaluating how the behavior of the various complexity markers across different phases,
as we discuss in detail in the following section.

9.3.2 Results

In this section, we comparatively study the behavior of eigenvectors—both ground
state and bulk states—undergoing a localization transition using the complexity mark-
ers defined in Sec. 9.2: fractal dimension (D,), maximum half-chain von-Neumann
entanglement entropy (Syn), and stabilizer Rényi entropy (M), where the angular
brackets denote ensemble averaging. We first analyze the bulk eigenstates of the RP
model in detail before extending our discussion to the ground state. We focus on the
parameter range v € [0,3] for varying system size N = 4 to 12 (corresponding to
matrix dimension 2V x 2V) averaged over multiple samples.

Bulk state analysis: To characterize the bulk behavior of the RP model, we com-
pute each complexity marker by averaging over the central 20% 2 of the ordered
eigenstates. At v = 0, the system effectively behaves like a Haar-random ensemble,
with all three markers saturating their respective analytical values, as described in
Sec. 9.2. In the opposite limit, as v — oo, the Hamiltonian becomes fully diagonal,
leading to eigenstates that are localized in the computational basis. In this regime,
both the fractal dimension Dy and the entanglement entropy S,x vanish. Further-
more, since the diagonal Hamiltonian commutes with all 2V Pauli strings composed
of only I and Z, these are the only ones contributing to the Pauli spectrum. Hence,

2We obtain the same result if more than 20% of the bulk eigenstates are choosen instead, see
Section 9.3.3.
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Figure 9.4. (al-cl) Complexity markers (normalized with respect to V), averaged over the central
20% of the bulk eigenstates of the RP model for different system sizes from N = 4 up to N = 12,
and averaged over samples from 20000 for N = 4 to 500 for N = 12. All markers plateau at the
maximum value in an extended regime at small 7, overlapping with the model’s ergodic regime. The
N-dependent value matches with predictions from the GUE ensemble that is exactly recovered at
v = 0. The plateau’s extent in terms of v depends on the marker: the plateau is largest for Syn and
smallest for Ds. At large 7y, the model enters a localized regime, characterized by a low value of all
markers. The slope at which the model goes from the ergodic to the localized regime is different for
all markers, as becomes clear from the derivatives (a2-c2). The crossings in the derivatives (insets
in a2-c2) determine two different transition points v; and 7. There are, therefore, three different
regimes of high, intermediate, and low complexity, which do not coincide for the different complexity
markers used.

every eigenstate is a stabilizer state, resulting in vanishing magic. The Pauli spectra
for different regimes are shown in Section 9.7.

For the fractal dimension, two critical points are known within v € (0, 3), corre-
sponding to transitions from ergodic to non-ergodic at v{ = 1 and then to the localized
phase at v5 = 2 [Eq. (9.12)]. However, it is not a priori clear that entanglement and
magic should exhibit the identical behavior. As can be seen in Fig. 9.4bl.cl, at
small v they exhibit O(1) scaling, indicating a high-complexity regime that one may
expect in an ergodic phase. At a marker-dependent value 7, the complexity begins
to decay, signaling entry into the non-ergodic regime. This decay continues until a
second point 75, beyond which the markers eventually stabilize to a O(1/N) plateau
as N — o0, indicating a low-complexity regime consistent with a large degree of local-
ization. Within the intermediate regime v, < v < s, all markers display fractal-like
scaling of the form O(N?) with —1 < § < 0.

Notably, the points v; and 7., and therefore the parameter ranges corresponding to
high- and low-complexity behavior, differ significantly between markers. For example,
as shown in Fig. 9.4, the entanglement entropy features the broadest high-complexity
plateau (panel bl), while the fractal dimension shows the narrowest (panel al). We
can make the separation into distinct regimes more precise by examining the first
derivative of each marker with respect to . The intersection of these derivatives for
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Chapter 9. Complexity transitions in chaotic quantum systems

different system sizes N provides a reliable signature of emerging non-analytic behav-
ior, indicating the onset of a sharp transition in the thermodynamic limit. We extract
the transition points by extrapolating the crossing positions between two consecutive
system sizes, N7 and Ny, as a function of the inverse geometric mean, 1// Ny Ny [744).
These extrapolations are shown in the insets of Fig. 9.4a2-c2.

In the case of d<d—l?y2>, the crossing points for consecutive system sizes lie within a
relatively narrow range, see the insets of Fig. 9.4a2. By applying a quadratic fit to
the crossing locations as a function of 1/4/N; Ny #, we extract the transition points in
the thermodynamic limit as 47°[Dy] = 1.03 £ 0.03 and v5°[Ds] = 1.92 £ 0.06. These
values are in excellent agreement with the analytically predicted transition points
from Eq. (9.12), thereby validating our numerical method. The quoted uncertainties
are derived from the covariance matrix of the fit parameters.

In the half-system entanglement entropy, an even—odd behavior is observed in the
O(1) regime: In this regime, the system assumes a volume-law entanglement deter-
mined by the subsystem size | N /2], leading to nearly identical half-system entangle-
ment densities for N and N + 1. However, once the system departs from the O(1)
regime, this pairing breaks down, as the volume law no longer holds (see Fig. 9.4b1).
Considering this effect, we use only even N when extracting v7° via finite-size scal-
ing, while we include all available N for determining 75°. Given the limited number
of even-sized systems, the estimate for v{°[Syn] = 1.51 £+ 0.22 has a comparatively
larger uncertainty. Even when taking these error bars into account, we have that
YlSuyN] > 5°[D2]. Conversely, we find v5°[Syn] = 1.66 £+ 0.10, which is smaller
than 7°[D,], indicating that the intermediate regime identified by the entanglement
entropy is significantly narrower than the non-ergodic fractal regime.

The behavior of magic is smoother across system sizes. The scaling of its crossing
points yields a transition point v{°[Ms] = 1.60£0.06 in the same range as that of the
entanglement entropy. However, the transition to the low-complexity O(1/N)-regime
occurs at a higher value, 73°[Ms] = 1.89 £ 0.07, rather more closely aligned with that
of the fractal dimension v5°[Ds].

Among all the transition points, the most notable contrast lies in {°, where Syx
and M, display a new phase transition that occurs significantly later than v = 1 and
that is undetected by Dsy. A similar trend is evident in their self-averaging behavior
(see Section 9.6.2), which undergoes abrupt changes that reinforce this observation.
This behavior may stem from the fact that fractal states, while non-ergodic, can still
exhibit high entanglement and high magic [706], causing these markers to remain large
even after the system departs from full ergodicity. Consequently, the extended regime
between v{°[Ds] and v{°[Ms] represents a distinct non-ergodic phase, where the states
remain highly entangled and highly magical, yet are no longer fully ergodic. This
aligns with the intuition that the non-ergodic fractal phase can host highly complex
states.

3To find the transition points in the thermodynamic limit, we fit a second-order polynomial curve
to the crossing point with respect to 1/4/N;N;41, of the form

1 1
+c .
\/NiNi+1 NiNH-l

By extrapolating to N — oo, we obtain the transition points 7> = a. To obtain the correct points
after scaling, we found it crucial to set the acceptable parameter range of b and ¢ while fitting the
curve. For obtaining -1, the fitted curve should move to higher v with increasing N, i.e., b,c < 0,
while for -5, it should move to smaller v, i.e., b,¢ > 0.

y=a+b (9.13)
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9.3 Rosenzweig-Porter model

Finally, we highlight an additional noteworthy observation. As discussed in Sec-
tion 9.6.2, among the various complexity markers, the SRE exhibits superior self-
averaging properties across nearly all regimes, except in the interval (v°[Ds], 77°[Ma)),
where the entanglement entropy shows faster convergence. This enhanced self-averaging
behavior makes the SRE a particularly reliable probe for identifying transitions in
finite-size systems, where statistical fluctuations are significant. At the same time,
the fact that entanglement entropy outperforms SRE in a specific regime underscores
the complementary nature of these markers in capturing the structure of complex
quantum states.

Comparison between IPR and D,: Although the fractal dimension Dy can be

formally related to the inverse participation ratio (IPR) I, defined in Eq. (9.1), via the

logy (1q)
N(1-q)
can be challenging. This is because the multifractal nature of the wavefunctions

manifests through the scaling relation I, oc 1/LP4(4=Y [685, 688,690,695, 699], which
can be captured in D, instead of I,. As illustrated in Fig. 9.5, the averaged IPR
(I5) reveals only the transition near v ~ 2, corresponding to the non-ergodic to
localized transition, while it fails to resolve the ergodic to non-ergodic transition.
This limitation highlights the advantage of using the fractal dimension as a more
sensitive diagnostic of intermediate, multifractal phases.

expression D, = , relying solely on I, to detect phase transitions in such models

1.0
4 —9
- 5 —10
w5'0.5 3 :E Figure 9.5. Unlike the fractal di-
g mension, the average IPR does not re-
solve two distinct transition points in
0'(_) the bulk phase diagram of the RP model
15 1004003 r—213 4002 (Fig. 9.4). Instead, the derivative cross-
101 ;i” ‘ : ings yield nearly coincident transition
§‘ < ‘ 000 0.95 points, suggesting a single transition
° 0.5 1/VNiN point at . ~ 2.
0'%.0 0.5

Ground state analysis: The analysis of random matrix models is traditionally
focused on the properties of the full eigenspectrum. However, their ground state tends
to be more sensitive to ergodicity breaking, giving rise to a mobility edge [649,745-750]
and motivating a dedicated analysis.

As shown in Fig. 9.6, again all complexity markers approach their Haar-random
values in the small-y regime, with complexity scaling as O(1). However, they begin
to deviate from this value at a smaller v than their bulk counterparts. Such an earlier
transition point in the ground state compared to the bulk indicates the presence of a
mobility edge (see Section 9.3.3). Furthermore, all markers transition more rapidly to
a O(1/N) scaling than was the case in the bulk. As a result, in the large-N limit, the
intermediate region with scaling O(1/N?) appears to vanish entirely, giving rise to a
sharp, first-order-like transition directly from O(1) to O(1/N) scaling. These abrupt
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A% =0.72 £ 0.03 a

Figure 9.6. Complexity markers for
the ground state of the RP model.
Inset: first derivative with respect
b| to 7. A direct transition from an
ergodic to a localized phase is ob-
served.  The transition points de-
tected through fractal dimension Dy
(a) and SRE density Ms/N (c) co-
incide within error bars. The entan-
glement entropy Syn (b) indicates the
C transition at a slightly smaller value of
v, but with a larger error bar due to
the even—odd effect.

transitions are identified by extrema in the derivatives of the complexity markers *,
signaling non-analytic behavior in the thermodynamic limit (see insets of Fig. 9.6).
After finite-size scaling, we find that both the fractal dimension and magic detect
the ground-state transition at around the same value, v>*°[Dy] = 0.72 £+ 0.03 and
7> [My] = 0.7340.02, respectively. In contrast, for entanglement it appears somewhat
earlier, at y*°[S,x] = 0.61+0.06, but again with a larger error bar. Given the relative
vicinity between the different transition points, we cannot exclude the possibility that
they identify the same phase transition. Above, we found that the transitions in S,n
and My occurred well within the fractal regime. One may thus conjecture that all
transition points agree when an intermediate fractal regime is missing.

9.3.3 Mobility edge in the energy spectrum

The transition to the localized phase can be energy-dependent, a phenomenon referred
to as a mobility edge [649,746-750]. For instance, low-energy states can become
localized at lower values of the parameter regime compared to states near the middle of
the spectrum. Random banded models are known to exhibit such a mobility edge [745].
A similar trend is observed in our numerical analysis of the RP model (see Fig. 9.1c).
As a result, for certain values of the control parameter, low-energy states may already
be localized while high-energy states remain ergodic. Given this sensitivity to the
energy window, it is crucial to investigate how different complexity markers respond
to variations in the chosen spectral region.

In Fig. 9.7al—c1, we analyze consecutive 5% segments of the energy spectrum.
Since the spectrum is symmetric on average, we focus only on the lower half. As we
move toward the center of the spectrum, the transition curves systematically shift to

4Similar to bulk states, the derivatives of the ground state’s complexity marker for systems of
size N and N + 1 intersect at two distinct points. However, after finite-size scaling, these crossings
converge to a single transition point, which is consistently identified by the extrema of the derivative.
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Figure 9.7. Dependence of the ergodic regime on energy window in the RP model. Top panel:
The eigenenergies span a broad range, with densely packed, nearly degenerate states located in the
spectral bulk, while the edges are populated by relatively few states. In the ergodic phase (v = 0),
the energy distribution is flatter as compared to the localized phase (7 = 3). The eigenstates are
ordered in ascending energy, and the lower half of the spectrum is divided into 10 equal windows,
labeled w; to wyg, each containing 5% of all eigenstates. As the energy window shifts toward the
spectral center (thin to thick lines), the O(1) ergodic plateau and corresponding transition points
~v1 and 2 move to higher v values for all complexity markers (al—c1). This shift saturates beyond
approximately ws (a2—c2), indicating that the crossing points remain essentially unchanged when
averaging over bulk regions ranging from as narrow as the central 10% to as broad as 90% of the
spectrum. Data shown for N = 6 (10000 samples) and N = 8 (4000 samples). Insets of (al-c1 show
the derivative of the complexity markers, from which the crossing points are calculated.

the right, indicating that the transition point occurs at higher values of the control
parameter, consistent with the presence of a mobility edge. Additionally, the curves
corresponding to higher-energy windows quickly collapse onto one another, suggesting
rapid convergence. This behavior supports our choice of using the central 20% of the
spectrum for the bulk calculations in section 9.3.2, as this range already displays stable
and converged behavior.

The rapid convergence becomes even clearer when examining the evolution of the
crossing points of the derivatives of the complexity markers, which we used to pinpoint
the transitions. As shown in Fig. 9.7a2—c2, these crossing points quickly stabilize to
a constant value above the energy window 10%-15%, confirming the robustness of our
choice.
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9.4 Power-Law Random Banded Matrix model

To further deepen our understanding of the complexity transitions in random ma-
trix models, in this section we examine another paradigmatic model—the Power-Law

Random Banded Matrix (PLRBM) model.

9.41 Model

The PLRBM model [685] is conceptually similar to the RP model, as it is a random
matrix model with suppressed off-diagonal elements. Nevertheless, its physics and
phase diagram have distinct features from the RP model. The PLRBM model is a
random matrix ensemble whose elements are given by

Hyj = Gija(li = jl) - (9.14)

In our case, G is chosen as a GUE matrix. The coefficients a(r) implement a polyno-
mial decay of the off-diagonal elements beyond a certain range,

1 r <b,
a(r) = {(r/b)o‘ N (9.15)

where b is called the bandwidth parameter and « is the decay exponent. In this work,
we set b = 1, i.e., only terms adjacent to the diagonal remain intact, and o remains
the single tunable parameter.

The model is known to behave like a random matrix theory for a < % [685,751]. In
the regime % < a < 1, the eigenvectors depart from the Porter-Thomas distribution
and follow a generalized hyperbolic distribution [752], signaling the presence of a
weakly-ergodic regime distinct from that of the RP model. A recent study on the
variable-range SYKs model reveals clear signatures of this non-ergodic transition at
o= % in the many-body spectral statistics [753]. There is an Anderson critical point
at o = 1 [685,754], where the eigenvectors display proper multifractal behavior that
has been intensively studied in the literature [656,688,690]. In the range 1 < o < %,
the PLRBM enters a localized yet superdiffusive phase, while it becomes fully localized
for a > %

The differences between the PLRBM and RP models provide a valuable framework
for a comparative analysis of how the complexity markers behave in the different
regimes, as we will see in what follows. In this section, we focus on the bulk, again
considering the central 20% of the energy eigenstates.

9.4.2 Results

The numerical results for the three complexity markers as a function of « € [0, 3] are
plotted in Fig. 9.8. Note that compared to the RP model, the PLRBM model has more
significant fluctuations across realizations due to the persistence of some long-range
correlations, which do not vanish in the large N limit (see Fig. 9.3b). For instance,
while 1000 samples suffice for the RP model, we use 10000 samples for the PLRBM
at N = 8 (see Section 9.6.1) when computing the SRE—the most self-averaging of
the three markers—yet noticeable fluctuations persist.
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Figure 9.8. (al-cl) Complexity markers (normalized with respect to V), averaged over the central
20% of bulk eigenstates of the PLRBM model for N =4 up to N =9 (N = 12 for the fractal dimen-
sion) averaged over different sample sizes of 35000 to 3000, respectively. Throughout an extended
regime at small «, all markers plateau at the value matching predictions from the GUE ensemble
(recovered by the model at o = 0). At large «, the model transitions to a localized regime, character-
ized by a lower value of all the markers. The transition point can be deduced from the derivatives of
the complexity markers (a2-c2). The crossings in the derivatives (insets a2-c2) effectively find only
one distinct transition point. Therefore, in contrast to the RP model, there are only two different
regimes of high and low complexity that coincide with the ergodic and localized phases, respectively.

At o = 0, the state behaves again equal to a Haar-random state and reaches the
maximal value for all complexity markers, similar to the RP model. This value extends
up to around « = 1, creating a plateau with value O(1) and indicating the extended
ergodic regime of the model. Depending on the marker, the complexity begins to
decay at a specific value aq, signaling the entry of the system into the non-ergodic
regime. In the limit for &« — oo, the PLRBM model becomes a tridiagonal matrix.
Hence, it does not commute with all the 2V diagonal Pauli strings and, consequently,
the magic is nonzero (see Section 9.7). For the same reason, the eigenstates cannot
completely localize in the computational basis. Indeed, in Fig. 9.8 we see that for large
values of o the markers do not vanish and still show a finite N-dependence. As before,
we identify the phase transition points for each complexity marker by considering the
positions of the crossing points of the first derivatives in the thermodynamic limit.

For the fractal dimension, we find two crossing points a$°[Ds] = 0.90 £ 0.08 and
as°[Dy] = 0.91 £ 0.28, indicating that, in the large N limit, they will collapse to
the same value. The curves for entanglement entropy and magic at different system
sizes cross just at one transition point a°[Syn] = 0.99” and a$°[M,] = 1.03 £ 0.03.

For Sy, the entanglement entropy exhibits even-odd effects even in the O(1) regime, prompting
us to focus on even N values to locate the transition. To improve resolution near the critical point,
we compute additional data for N = 10, resulting in three crossing points—(4,6), (6,8), and (8,10).
These enable a quadratic fit that recovers the Anderson localization transition at o = 1, although
the limited number of points precludes a reliable error estimate.
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Chapter 9. Complexity transitions in chaotic quantum systems

Note there might be a second crossing point that remains undetected due to the more
sizable fluctuations in the localized regime for large . Thus, in contrast to the RP
model, our analysis does not detect an intermediate regime that is non-ergodic but
delocalized. Rather, the available data suggest a direct transition from the delocalized
to the localized phase close to the Anderson critical point at o« = 1.

Although the analysis of the PLRBM model is restricted to smaller system sizes
and exhibits larger fluctuations, it supports what we conjectured for the RP model:
the complexity markers assume distinct values across the ergodic-to-non-ergodic tran-
sition only in the presence of a genuine fractal (or multifractal) phase. Indeed, within
error bars, in the PLRBM model, the transition points identified by all three com-
plexity markers coincide (or almost coincide) with the Anderson critical point, the
only transition captured by the fractal dimension in the thermodynamic limit. We do
not report here the results for the ground state behavior of the PLRBM model since
they qualitatively resemble that of the RP model considered in Sec. 9.3.2: the transi-
tions occur earlier than in the bulk [755], yet no intermediate phase is observed. This
is consistent with expectations, as the markers used do not reveal a clear extended
non-ergodic regime even in the bulk of the PLRBM model.

9.5 SYK,+Ising model

In this section, we consider a quantum many-body model subject to a chaotic—
integrable transition to contrast with the random-matrix behavior. For this, we choose
a hybrid model consisting of the SYK model interpolating towards the Ising model.
The SYK model, originally introduced as a phenomenological model for non-Fermi
liquids [686], is a quantum mechanical system consisting of M Majorana fermions
with random ¢-body interactions. It has accumulated significant attention due to
the combination of strong interactions and solvability in the large-M limit [687, 756],
making it a paradigmatic system to study quantum chaos beyond RMT. Moreover,
randomly interacting many-body systems, like the SYK model, are known to behave
drastically differently from RMT near the edge of their energy spectrum [757]. This
makes it particularly interesting to compare the complexity markers for the ground
state of this model to those of the RP model of Sec. 9.3.2. Further, the SYK model is a
prototypical system in the study of black holes and quantum gravity [693,694] through
the AdS/CFT correspondence [758,759]. Indeed, at low energies, it exhibits an emer-
gent conformal symmetry and is effectively described by a Schwarzian action [756],
mirroring the behavior of Jackiw—Teitelboim gravity [760]. Since the duality becomes
manifest in the infrared, it is of particular interest to understand the ground-state
properties of the model in order to assess the stability of the holographic phase under
perturbations.

9.51 Model

The system under study is composed of M interacting Majorana fermions, described
by operators 1; fulfilling the commutation relations {;,;} = d;;. The Hilbert space
of the model is isomorphic to that of N = M /2 qubits. The interactions between the
fermions are chosen to interpolate between a chaotic Hamiltonian at A = 0, provided
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9.5 SYK,+Ising model

by the SYK model, and a fully localized, integrable Ising chain reached at A =1,
H = (1— M) Hsyk, + AHising - (9.16)

The SYK, model is a system with M all-to-all interacting Majorana fermions with
random ¢-body interactions, (see Fig. 9.3c where ¢ = 4) , defined as

HSYKq = (Z)q/2 Z Jil...iql/}il c.. 1/11'(1 R (917)

1<iy <--<ig<M

where the couplings J;, ;, are independent and identically distributed random vari-
ables drawn from a Gaussian distribution with zero mean and variance given by
(J ) = J*(g—1)!/M*". In this article, we work with ¢ = 4.

The Ising Hamiltonian is given by an anti-ferromagnetic ZZ spin chain without a
magnetic field, Higng = ZZ]\SI go;o7, ;. It can be written in terms of Majorana oper-
ators using the Jordan—Wigner transformation, which maps each Majorana operator
to a Pauli string consisting of N Pauli matrices [761],

Yoi1 =01 ®.. 00, 1®0;, @11 ®...®l, (9.18)
Py =01®.. 00" | @0/ ®...01y. (9.19)

USng ¢2iw2i+1 = I[l X...RQ ]Iifl & —ZO'lZ X Uiz-i-l X ]Ii+2 X ... ]IN, we obtain

M/2—-1

Higing = 1 Z gaithaiit (9.20)

i=1

where only interactions between even-odd Majorana fermions remain, see Fig. 9.3c.

The Ising contribution to the model in Eq. (9.20) introduces purely neighboring
and equal-strength interactions between the Majorana fermions. Thus, an increasing A
gradually suppresses the disordered all-to-all interactions characteristic of the ergodic
SYK, regime. The effect is reminiscent of the suppression of off-diagonal terms in the
RP model in Eq. (9.11) considered above.

The symmetries of this model play an important role in understanding the behavior
of complexity markers, as will be discussed in detail in the following section. Both
the SYK, and Ising model Hamiltonian commute with the fermion parity operator

(=" = (@)1 .. b = (07N (9.21)

In addition, Hgyk, commutes with the anti-unitary time reversal operator 7. The
interplay between (—1)" and 7 determines the RMT ensemble and degeneracy of the
ground state of the SYK model [762]: for M mod 4 = 2 the ensemble corresponds to
GUE, for M mod 8 = 0 the corresponding ensemble is GOE, and for M mod 8 = 4 it
is GSE ° In contrast, Higng as given in Eq. (9.20) anticommutes with 7~ due to the
presence of the imaginary unit in the Hamiltonian, lifting for A # 0 the symmetry
class to GUE for all M.

6The Gaussian symplectic ensemble describes the random L x L Hermitian quaternionic matrices.
The numerical results were obtained by representing the GSE matrices as 2L x 2L complex matrices.
For consistency, when comparing the SYK, results falling in the GSE symmetry class with the
corresponding Haar-random value, we take an ensemble of dimension LY ~! such that the Hilbert
space dimension of SYK, matches the dimension of the complex GSE representation.
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Chapter 9. Complexity transitions in chaotic quantum systems

9.5.2 Results

Similarly to the RP and PLRBM models, we carry out a comparative analysis of three
complexity markers for the SYK,; + Ising model. Additionally, we present a more
detailed study of magic across different M, which turns out to be sensitive to the
model’s symmetries introduced above. To be consistent with the rest of the chapter,
we consider the number of qubits N = M /2 instead of the number of Majorana
fermions when calculating the density of the markers.

In the integrable Ising model at A = 1, the ground state is doubly degenerate.
However, introducing a small perturbation from the SYK Hamiltonian, A < 1, lifts this
degeneracy. Due to the fermion parity symmetry of the full Hamiltonian, the system
selects a specific ground state: an equal superposition of the two antiferromagnetic
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Figure 9.9. Ensemble averaged complexity markers for the groundstate of the SYK, + Ising model
for different number of Majorana fermions M. (a) The fractal dimension Do starts to decrease for
any non-zero A and approaches the asymptotic value of the Ising model relatively quickly. Inset:
Difference of Dy to the Haar-random value, indicating that for sufficiently large M, Dy saturates
this value at A = 0. (b) The Syn-density shows a small remnant of a plateau around the SYK, limit
(A =0). Inset: for large M also the Syn-density approaches the Haar-random value at small A. (c)
For A 2 0.5, the average magic remains zero, while it reaches its maximum near A ~ 0, except for
states corresponding to the GOE ensemble (which reflects the symmetry of the SYK model at A = 0),
where the peak occurs away from zero. Left inset: At A = 0, the ground states corresponding to the
GUE and GSE ensembles are degenerate, where a range of SRE values is possible; however, as soon
as A deviates from zero, it chooses the minimum. Right inset: The difference to the Haar-random
value is larger than for Dy and Syn.
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9.5 SYK,+Ising model

spin configurations, with a relative phase of 1. As a result, in this limit, the fractal
dimension and maximal von-Neumann entropy density approach the values of 1/N.
In contrast, the magic tends to zero since this superposition is a stabilizer state (see
Section 9.5.3). All considered markers approach the values of the A ~ 1 limit relatively
rapidly without appreciable changes beyond A 2 0.5, see Fig. 9.9.

In the chaotic regime for A 2 0, unlike in the RP ground state, we cannot a
priori know if the complexity markers saturate the Haar-random values since we are
now considering a many-body system. The deviation from the Haar-random value is

quantified by
<CHaar> <C>

- — 9.22
o) 22, (922)

where C denotes one of the three markers Ds, S,n, or Ms. As shown in the insets of
Fig. 9.9, for sufficiently large M, (ADs) and (AS,x) tend to zero as A — 0, whereas
(AMy) is strictly larger than zero. This behavior can be understood by the fact that,
similarly to what we have seen for A\ ~ 1, the ground state for small A has fixed
fermion parity, which means that only Pauli strings composed of the product of an
even number of Majorana operators (those that preserve the symmetry) contribute
to a non-zero My. Since these comprise only half of all possible Pauli strings, the
overall My is smaller than the Haar-random value. The situation is, however, a bit
more subtle in the strict A = 0 case since in pure SYKy the ground state is not always
unique. For M = 0 mod 8 (GOE), there is just one ground state with fixed fermion
parity. In contrast, for GUE and GSE, M # 0 mod 8, the presence of degeneracy
allows for the superposition of the two ground states with opposite fermion parity,
which can enhance the SRE. We numerically determine the maximum and minimum
values of this linear combination 7, as shown in the left inset of Fig. 9.9. Notably, the
minima coincide with the values shown in the main plot (¢) at small but non-zero A,
confirming that the Ising Hamiltonian breaks the degeneracy and selects one specific
parity.

(AC) =

Moreover, the SRE exhibits a peculiar M-dependent behavior at small A\, which
can be attributed to the characteristics of the underlying RMT ensembles [694, 763].
Specifically, when M mod 8 = 0, M5 begins at a lower value, and then rises to a peak
at some small nonzero A, followed by a monotonic decrease. This behavior can be
comprehended in the following way: for finite-size systems, the GOE ensemble yields
lower magic than GUE or GSE for Haar-random states (see Eq. (9.10) and Fig. 9.2
in Section 9.2.3). As contributions from the Ising Hamiltonian kick in at A # 0, the
symmetry class is lifted from GOE to GUE, leading to a rise of the value for the
SRE in the case of M mod 8 = 0. In contrast, for M mod 4 = 2 and M mod 8 = 4,
the SRE starts at its maximal value, and the addition of the Ising contribution only
decreases it.

As we move further away from A ~ 0, all three markers start deviating from their
ergodic value without exhibiting a long plateau as in the RP model—indicating that
the ground state is rather susceptible to perturbations by the Ising contribution (see
Fig. 9.9), unlike the A 2 0.5 regime. Such fragility of the SYK, ground state resembles

"Given the two ground states GS; and GSs with opposite fermion parity and a generic linear
combination

|9)) = sin @ |GS;) + € cos 0 |GSa) , (9.23)

we numerically optimize (M (1)) over a 200 x 200 grid in the (6, ¢) plane to determine the maximum
and minimum values.
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recent observations in a related model interpolating between SYK, and SYK, [711],
which implements a crossover from many-body chaos to single-body chaos, while al-
ways maintaining volume-law magic in the ground state. In our model, the perturbed
Ising ground state is a stabilizer state; therefore, the transition in magic appears
sharper, reminiscent of the transition observed in the RP ground state (Fig. 9.6).

We expect the ensemble-dependent features discussed above to disappear in the
M — oo limit. Indeed, the M mod 8 = 0 peak seems to progressively move to smaller
values of A and AM, progressively decreases if we compare the same ensembles.
Nonetheless, such finite-size effects are particularly relevant for characterizing realis-
tic many-body chaotic systems beyond random matrix universality [757,764]. The
analysis highlights the utility of the SRE as a diagnostic tool due to its sensitivity
to the model’s symmetry structure, distinguishing it from other markers such as the
fractal dimension and entanglement entropy.

9.5.3 Complexity markers for superposition of two computational
basis states

It is instructive to examine the behavior of the three complexity markers for a simple
superposition of two computational basis states. Consider the following N-qubit state:

[v) = sinf|a) + ' cos f |a) (9.24)

where |a) and |a) are N-qubit orthogonal computational basis states differing by a
Hamming distance of N, i.e., they are locally orthogonal at each qubit site. For such
a state, the complexity markers are given by:

Dy = —% log, (sin* 6 + cos*6) , (9.25)
Sen = — [cos® flog, (cos® ) + sin® flog, (sin® )] . (9.26)

The SRE is given by [765]:

(9.27)

1 + cos* 20 + sin* 20 (0084 ¢ + sin? gb) )
5 .

My = —log, (

Among the three markers, only the SRE is sensitive to the relative phase ¢. In
the special case of an equal superposition with +1 difference, i.e., sinf = cosf = \/Li

and ¢ = 0,or 7, the complexity markers simplify to

1 Sa 1 My

Do = — vy _ =
> N° N N N

=0. (9.28)
Such a superposition state appears in the A — 1 limit of the SYK+Ising model.
Due to the fermion parity symmetry of the full Hamiltonian, the ground state has
double degeneracy and forms a superposition of two degenerate states connected by

(=1
(—1)F|GSy) = +|GS,) . (9.29)

Moreover, the symmetry ensures that they form equal superpositions without any
complex relative phase, as explained in the following way. Consider the generic su-
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perposition .
1) = sin§|GS;) + €' cos 0 |GS,) . (9.30)

As |¢) should also be symmetric under (—1)¥ with possible eigenvalues +1,
(D" |) = £4) = 0 =n/4.6 =0, (9.31)

Now, close to A — 1, as both ground states are computational basis states, we can
use the above Eq. (9.28). That is, we expect fractal dimension and von-Neumann
entropy density to scale as 1/N and SRE to vanish, which is exactly what we observe
in Fig. 9.9c.

9.6 Effects of samples

Analyzing disordered systems requires averaging over several random disorder in-
stances to eliminate instance dependence, i.e., reduce the variance of results. However,
it is often a model, its phase, and an observable dependent. For example, a highly
ergodic phase with a self-averaging observable requires fewer samples compared to a
localized phase to obtain the same order of variance. In this section, first, we dis-
cuss the number of samples we use for each model and complexity markers. Then we
discuss how the self-averaging property of the complexity markers also contains the
information of the phase transition.

9.6.1 Details on number of samples

For numerical reproducibility, we provide detailed tables listing the exact number of
disorder realizations used for the results for different models (see Tables 9.1-9.3). To
keep the numerical effort manageable under the exponential growth of the Hilbert-
space dimension with system size N, we progressively reduced the number of realiza-
tions with increasing N. However, this reduction does not compromise the accuracy
of our results, as the observables become increasingly self-averaging with larger N (see
Fig. 9.10al,bl,cl).

Moreover, we adapted the number of samples for the marker under consideration.
The computational complexity for computing the maximum entanglement grows as

( NA;Q) X construction(p,) X diag(ps) = Qj%v. Similarly, the complexity for computing

the Stabilizer Rényi Entropy (SRE) scales as O(2%Y), due to the size of the Pauli group.
In comparison, the computational complexity for calculating the fractal dimension is
more modest, scaling as O(2Y), permitting us to increase the number of samples to
even further improve the quality of the results.

Among the considered models, we found the most substantial sample-to-sample
fluctuations in the PLRBM model, making a larger number of realizations necessary
to achieve satisfactory statistical accuracy. In contrast, due to the large density of
states in the bulk, a comparatively smaller number of realizations was sufficient for
the RP bulk model as compared to studies on its ground state. For the SYK+Ising
model, we maintained a comparable sample size to that of the RP bulk case across
all markers.
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Model /N | 4 5 6 7 8 9 10 11 12
RP bulk 20000 15000 10000 5000 4000 3000 2000 1000 500
RP gs 20000 15000 10000 5000 4000 3000 2000 1000 500

PLRBM bulk | 20000 15000 10000 5000 4000 3000 2000 1000 500
SYK+Ising 5000 4000 3000 2000 1000 500 100 - -

Table 9.1. Number of samples used for fractal dimension estimates across different models and
system sizes IN.

Model /N | 4 5 6 7 8 9 10 11 12
RP bulk 5000 4000 3000 2000 1000 800 100 30 -

RP gs 20000 15000 10000 5000 4000 3000 500 100 50
PLRBM bulk | 35000 24000 40000 16000 10000 3000 500 -
SYK+Ising 5000 4000 3000 2000 1000 500 100 - -

Table 9.2. Number of samples used for maximum entanglement entropy estimates across different
models and system sizes V.

Model /N | 4 5 6 7 8 9 10 11 12
RP bulk 5000 4000 3000 2000 1000 500 80 - -
RP gs 20000 15000 10000 5000 4000 1000 200 100 50

PLRBM bulk | 35000 24000 20000 20000 10000 1500 - - -
SYK+Ising 5000 4000 3000 2000 1000 500 100 - =

Table 9.3. Number of samples used for Stabilizer Rényi Entropy estimates across different models
and system sizes N.

9.6.2 Self-averaging property

In disordered quantum many-body systems, the self-averaging property refers to the
tendency of observables to converge to their ensemble-averaged (disorder-averaged)
values as the system size increases. A physical quantity C is said to be self-averaging
if its relative variance vanishes in the thermodynamic limit. This can be quantified
by the dimensionless ratio

_ Var(C)
I (OL

where (-) denotes the disorder average. In ergodic phases, where the system uniformly
explores its Hilbert space, Re — 0 as the system size increases, indicating strong self-
averaging. In contrast, in non-ergodic or localized regimes, Rs can remain finite even
in the thermodynamic limit, reflecting strong sample-to-sample fluctuations and the
breakdown of ergodicity.

Re (9.32)

RP bulk states. In Fig. 9.10al, we find that the complexity markers exhibit self-
averaging behavior exclusively within the ergodic regime (v < 1). Beyond this point,
deviations begin to emerge. Notably, at v = 1.2, the fractal dimension D, starts losing
its self-averaging character due to its scaling as O(N?), whereas both the normalized
von Neumann entropy Syn/N and the magic My/N, which remain O(1), continue
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to exhibit self-averaging. At stronger disorder strengths, such as v = 1.8, the en-
tanglement remains more strongly self-averaging, consistent with a larger plateau in
Fig. 9.4b1 of the O(1) regime. At v = 3, none of the markers remain self-averaging,
in accordance with their O(N°) and O(1/N) scaling behaviors, respectively.

Furthermore, the strength of self-averaging can be inferred from the scaling be-
havior of R with system size L = 2V i.e.,

Reoc L7F =277, (9.33)

A system is strongly self-averaging if f > 1, and weakly self-averaging if 0 < <
1.Notably, Fig. 9.10a2 shows that up to v = 1.5, even in the non-ergodic phase,
the system remains strongly self-averaging. Beyond v = 2.5, all markers exhibit the
same exponents. Additionally, M demonstrates stronger self-averaging in the ergodic
regime and undergoes the most pronounced change around the transition points.

Bulk state RP PLRBM Ground state RP
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Figure 9.10. Self-averaging behavior of different complexity markers and their scaling exponents.
(al) For the bulk of the RP model, in the ergodic regime (v = 0), all markers exhibit strong self-
averaging, indicated by a vanishing relative variance. At intermediate disorder (y = 1.2), Dy already
begins to deviate, showing non-self-averaging behavior, while others remain stable. At v = 1.8 and
~v = 3, none of the markers are self-averaging, consistent with the breakdown of ergodicity and the
emergence of strong sample-to-sample fluctuations. (a2) Scaling exponent S as a function of v for RP
bulk states. All three markers exhibit strong self-averaging (8 > 1) up to v = 1.5, and after v = 2.5,
they show same 3. Notably, My displays the steepest variation in 3, indicating a more pronounced
change in self-averaging across the transition. The deviation from the plateau region of constant 3
occurs in the same order, i.e., Dy then Syn and My as observed in Fig. 9.4. (b1) In the bulk states
of the PLRBM model, complexity markers exhibit behavior analogous to the RP model, with magic
showing the highest degree of self-averaging, followed by entanglement entropy, and fractal dimension
displaying the least self-averaging in the ergodic phase. (b2) The scaling exponent of all the markers
becomes weakly self-averaging (8 ~ 1) close to a ~ 1, and the o > 1 regime is comparatively more
self-averaging than the bulk states of the RP model. (c1) In the ground state of the RP model,
all the markers stop exhibiting the self-averaging behavior after crossing the phase transition point
¥ ~ 0.75, leading to S < 0 as seen in (c2).
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RP ground states. A key distinction between the bulk and ground state phases is
the absence of a fractal regime in the latter, where only ergodic and localized phases
are detected via complexity markers. Notably, the ground state exhibits a first-order
phase transition, raising the question of whether self-averaging behaves differently
compared to the bulk. As shown in Fig. 9.10c1, self-averaging holds at v = 0, but
breaks down beyond the transition point at v = 0.8, the marker even increases with N.
This behavior is reminiscent of the vanishing marker values at large v (see Fig. 9.6).

PLRBM bulk states. Similar to the RP bulk states, the PLRBM bulk state also
shows the strongly self-averaging behavior, and near the Anderson critical point, at
a =1, all the complexity markers still remain strongly self-averaging, i.e., f =1 (see
Fig. 9.10b2), which is a behavior quite different from that in the RP bulk states.

Since the scaling behavior of the self-averaging property in complexity markers re-
flects the ergodicity transitions observed in the markers themselves, one might specu-
late that in disordered systems where fluctuations play a crucial role, the self-averaging
property could serve as a diagnostic tool for phase transitions.

9.7 Pauli spectrum for RP and PLRBM bulk states

The stabilizer Rényi entropy is defined as the Rényi entropy of a probability distri-
bution constructed from the expectation values of Pauli strings on a given quantum
state. Since a probability distribution inherently contains more information than any
of its finite-order entropies, additional structure—particularly relevant in complex
phases—is revealed by examining higher-order moments M,. Moreover, non-ergodic
behavior is often captured by higher-order entropies, such as the fractal dimension
D,.

It is therefore worth investigating if relevant signatures can emerge from the Pauli
spectrum, defined as the set of squared Pauli expectation values on the state [168,766]:

spec(|v)) = {|<¢|a|¢>|2, PePy; i=0,1,...,45 - 1} . (9.34)

The support of the Pauli spectrum, i € [0,4" — 1], changes depending on N. The
frequency distribution of these expectation values,

p()) = 30 I — ), (9.35)

7

offers a diagnostic tool for understanding the ergodicity behavior independent of N.
However, individual realizations would have different I1p, which can average away
relevant features. Instead, we focus on the averaged Pauli spectrum, where the ex-
pectation value for each P; is averaged over states from each realization. To better
interpret its structure, we organize the Pauli strings by indexing ¢ in a specific order:
the first 2V indices i € [0,2" — 1] correspond to diagonal operators {I, Z}*¥ followed
by all other (non-diagonal) strings. The overall ordering is then refined by sorting the
values of (P;) in descending order, using the localized state at o = 10 or v = 10 as a
reference. This choice is motivated by the fact that localized states exhibit significant
weight on the diagonal strings (see Fig. 9.11 a2, b2), and thus provide a natural order.
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Ergodic states follow the Haar-random prediction (see Section 9.2.3) and exhibit
an almost uniform distribution over Pauli strings around the value ﬁ, except for
the identity component I®Y, which saturates to 1, resulting in IIp sharply peaked
around zero (orange bars in Fig. 9.11 al, bl) and low variance in the frequency
distribution (orange shaded region in a2, b2 ). In contrast, localized states have only
a few significant Pauli components (a2, b2), leading to larger individual (F;) values
and a broadened spectrum (blue bars in al, bl).

Notably, exact stabilizer states yield Pauli expectation values of either +1 for all
2N stabilizers, or a balanced set of +1 and —1 values [168], as can be observed in the
RP bulk case (blue lines in a2). In the PLRBM model, however, bulk localized states
do not align with the computational basis {I, Z}®" resulting in a more dispersed
Pauli spectrum (b1) compared to the RP model (al). Even after averaging over
random realizations, the PLRBM bulk state retains high variance in its Pauli spectrum
across the non-ergodic and localized regimes, except in the ergodic phase where the
distribution sharply concentrates [767].

In summary, the Pauli spectrum offers insight into why an ergodic state, which
contains high magic, requires a larger number of basis states and is thus considered
more complex, while a localized state, with non-zero contributing terms limited to a
few Pauli strings, is considered less complex (see Fig. 9.1b). Furthermore, the differ-
ence between the RP and PLRBM models is clearly captured in the Pauli spectrum,
where the less suppressed off-diagonal terms of the PLRBM model yield strong fluc-
tuations even in the localized regime, thus providing a direct interpretation of the
relatively high magic in the localized regime of PLRBM bulk states (see Fig. 9.8c1),
compared to its RP counterpart.
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Figure 9.11. Frequency distribution for a single realization (left) and averaged Pauli-spectrum for a
bulk state in the middle of the spectrum (right) of the RP (top) and PLRBM models (bottom). Data
for N = 8 with 4000 and 8000 realizations, respectively. In the ergodic phase (orange), expectation
values are nearly uniformly distributed over all Pauli strings with minimal variance (shaded regions
in a2, b2), resulting in a distribution with small variance around (P;) = 0 in IIp (al, bl). In
contrast, localized states (blue) exhibit pronounced peaks in IIp, reflecting non-zero expectation
values aligned with the stabilizer basis (notably within i = [0,2"] in a2, b2). The intermediate
regime shows partial delocalization with mixed features. These distinct distribution patterns are
reflected in the magic values. Compared to RP, localization in PLRBM bulk states is weaker (b1)
and exhibits reduced self-averaging behavior (b2).
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Chapter 9. Complexity transitions in chaotic quantum systems

9.8 Summary and outlook

In this work, we have conducted a comparative study of various complexity mark-
ers across families of Hamiltonians that interpolate between ergodic, extended non-
ergodic, and localized phases. When a fractal region in the parameter space is present,
such as for states in the bulk of the Rosenzweig—Porter model spectrum, the different
markers identify high and low complexity regimes in overlapping but distinct parame-
ter regions. Both entanglement entropy and stabilizer Rényi entropy undergo a tran-
sition within the fractal phase that is not detected by the fractal dimension, indicating
the existence of a non-ergodic yet complex regime with respect to these two markers.
Moreover, the stabilizer Rényi entropy reveals an additional extended intermediate
regime with non-maximal magic, before eventually dropping to low complexity in cor-
respondence to the localization point. The presence of an extended fractal region
seems to be crucial to the appearance of new complexity regimes: when such a region
is absent, as in the ground state of the Rosenzweig—Porter model and the bulk of the
power-law random banded model, the transition points identified by all complexity
markers remain consistent. The behavior of the stabilizer Rényi entropy suggests that
it can uncover subtle features in the quantum phase diagram that might otherwise go
unnoticed using conventional localization markers. It would be interesting to corrob-
orate these findings through analytical studies, e.g., of the Rosenzweig—Porter model
akin to those employed for fractal dimensions [689].

Moreover, our analysis of the ergodic to integrable transition of the SYK, + Ising
model suggests that stabilizer Rényi entropy may be a more sensitive marker to the
underlying symmetries of the model, as indicated by its non-monotonic behavior as
compared to the fractal dimension and the entanglement entropy. This observation
motivates a more systematic investigation of the relationship between nonstabilizer-
ness and symmetry classes in SYK-type models, extending beyond the cases considered
in Refs. [762,763]. Additionally, it would be valuable to study other quadratic per-
turbations of the SYK model to determine whether the complexity markers studied
here can consistently capture the observed fragility of ground-state ergodicity. This is
especially relevant for assessing the stability of the holographic phase, which has been
argued to remain robust under deformations only within a vanishingly small region in
the thermodynamic limit [768].

Investigating the presence of non-ergodic but highly complex regimes would not
only shed light on the structure of the quantum phase diagram but also help assess
the sensitivity of non-stabilizer magic to non-ergodic behavior and complexity tran-
sitions. This could be further pursued by analyzing many-body systems undergoing
a many-body localization transition, where multifractal phases are expected to arise,
such as disordered spin systems [769,770] and the Bose-Hubbard model [748,771]. Lo-
calization also plays a significant role in quantum optimization [243,570,571,574,772],
whose target problems are often described by spin-glass models [236,529,538]. In these
contexts, our work offers a promising perspective for probing complex characteristics
of physical systems approaching the many-body localization transition.

The presence of distinct crossover values at finite system sizes is crucial for both
classical and quantum simulations, as the feasible techniques are often constrained
by available quantum resources. For instance, in noisy intermediate-scale quantum
(NISQ) devices, the bottleneck is the ability to build up entanglement across the
device [773], while in tensor networks, the reachable bond dimension constrains the
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9.8 Summary and outlook

accessible entanglement entropy [91,542,673,674]. In contrast, the efficiency of classi-
cal calculations using the Gottesmann—Knill framework [148,149,151,158,166] as well
as the cost of broad classes of fault-tolerant quantum computers [774,775] is deter-
mined by the number of T-gates [167,545], which is related to the magic in a quantum
state [165]. In this context, our analysis could guide the identification of the most
efficient simulation strategies for each regime.
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Chapter 10
Conclusions and Outlook

In this thesis, we demonstrated how various quantum resources enhance our under-
standing of quantum optimization and simulation, providing critical insights into the
performance and capabilities of quantum technologies. After introducing the con-
cepts of quantum resources and quantum optimization in Part I, we dedicated Part
IT entirely to quantum optimization and Part III to disordered systems.

We explored the quantumness of Quantum Approximate Optimization Algorithm
(QAOA) and Quantum Annealing (QA) through squeezing, multipartite entangle-
ment, and nonstabilizerness (magic), as well as experimentally measured entangle-
ment on an IBM quantum device. We shed light on the role of quantum correlation
in QAOA by connecting two fields of quantum technology: quantum computation
and quantum metrology. The goal of metrology is to establish measurement proto-
cols with increased sensitivity, and quantum computation aims to obtain the solution
state with reduced uncertainty, both requiring a reduction in variance. By expressing
the combinatorial MaxCut problem in terms of a collective spin basis, we are able to
generate spin-squeezed states by finding optimal solutions to the MaxCut problem.
We showed this both numerically and on the IBM Quantum chip. Then we connected
this squeezing to quantum Fisher information and multipartite entanglement. Fur-
thermore, squeezing generated by QAOA enabled us to propose a benchmark, where
more squeezing is associated with a higher probability of the solution state, conven-
tionally referred to as the approximation ratio of the quantum algorithm. Moreover,
such squeezing can also detect errors in the circuit. We also extended this connection
between the two fields to their benefits: using QAOA to generate arbitrary Dicke
states, and using squeezed states to warm-start QAOA.

To understand the presence of multipartite entanglement in quantum optimiza-
tion, we utilized the generalized geometric measure, a measure of genuine multipartite
entanglement, in quantum annealing and QAOA. Using numerical benchmarks, we
analyzed its occurrence in the annealing schedule in detail. We observed that entan-
glement increases with anneal time, and for successful instances, it decreases again,
creating a multipartite entanglement barrier. We explored how such a barrier relates
to the algorithm’s success. We also proved how multipartite entanglement provides
an upper bound to the overlap of the instantaneous state with an exact solution. Vice
versa, the overlaps to the initial and final product states, which can be easily mea-
sured experimentally, offer upper bounds for the multipartite entanglement during the
entire schedule.

Noisy devices raise the question of whether entanglement persists with longer
circuit depth, as its absence would render the algorithm’s success entirely dependent
on classical algorithms. To validate such quantum effects in real devices, we chose
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Chapter 10. Conclusions and Outlook

the new Heron processor from IBM Quantum to test entanglement generation in
the QAOA layers, using the SWAP circuit. We first measured the purity of the
subsystems, then extracted the maximum Schmidt coefficients, which served as a
proxy for entanglement. We found that such entanglement persists even for large
systems and significant depth, showing on the one hand that quantum effects play a
role in the QAOA, as well as that current hardware is mature enough to run quantum
optimization.

We also analyzed the presence of nonstabilizerness (a proxy for classical simulabil-
ity) in QAOA. We found that both stabilizer Rényi entropy (SRE) and mana initially
grow with circuit depth, peaking and then decreasing as the algorithm converges, cre-
ating a barrier that limits the algorithm’s capability for shallow circuits. We found
curves corresponding to different depths collapse under a simple rescaling, and we re-
vealed a non-trivial relationship between the final SRE and the fidelity of final states.
Finally, we identified a similar nonstabilizerness barrier also in quantum annealing.

In Part III, we turned to disordered systems. Since disorder mimics noise, under-
standing its effects helps model noisy devices. Averaging over disorder is computa-
tionally costly, so we developed an exact framework for disorder-averaged dynamics
generated by periodic Hamiltonians (including (p, q)-potent ones). These results are
valid for arbitrary initial states, evolution times, and even non-Hermitian systems.
The ensemble dynamics resemble open-system evolution, with non-Markovian features
depending on the disorder distribution and Hamiltonian periodicity. We illustrated
this for systems built from spin-1/2, spin-1, and clock operators.

We also investigated complexity transitions in paradigmatic models such as the
power-law random banded matrix model, the Rosenzweig—Porter model, and a hybrid
SYK+Ising model. Using fractal dimension, von Neumann entropy, and SRE as mark-
ers, we identified sharp complexity transitions through finite-size scaling. These mark-
ers, while aligned in ergodic and localized regimes, diverged in intermediate phases.
SRE in particular was highly sensitive to symmetries like fermion parity and time re-
versal. Our results show that no single marker suffices: combining different resources
offers a better understanding of phase behavior and classical simulability.

Throughout this thesis, we explored various aspects of quantum resources and their
exploitation in quantum optimization and many-body physics scenarios. Such quan-
tum resources define what is easy and hard, given the free and resourceful operations
within the resource theory. In quantum optimization, we observed that squeezing,
multipartite entanglement, and nonstabilizerness all grow with the quantum run of
the algorithm, validating that quantum algorithms are indeed quantum. Moreover,
when asked for classical optimization problems, one is looking for a classical solu-
tion. In that case, all such resources must be reduced to the classical level, creating
a resource barrier. The existence of such barriers makes the resource necessary for
quantum algorithms, and understanding them is essential, as success is closely re-
lated to it. In many-body physics, such peaks can be related to phase transitions or
crossovers, and it becomes interesting to understand if these barriers or transitions
appear at the same transition points for different resources. As we discovered, this
is not the case, suggesting that there may be multiple phases that require combining
different resources for a comprehensive understanding. Our results provided more pro-
found insights into how quantum resources influence quantum optimization, enabling
a better understanding of the success of such algorithms and the recognition of new
phases behind the wall of combined complexity markers arising from resource theories
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in many-body physics.

We now turn to a discussion of possible future directions and outlooks based on
the findings presented in this thesis. Since we had obtained squeezing for eight-qubit
QAOA on IBM hardware, the quantum hardware architectures have evolved into over
100 qubits with substantially improved gate fidelities [460,776]. Moreover, platforms
based on trapped ions and neutral atoms have become increasingly accessible, making
it feasible to perform cross-platform [777], large-scale benchmarks using squeezing as
a diagnostic tool. Such an approach could potentially realize squeezed states with
unprecedented precision [332]. This would not only validate the quantum nature of
QAOA but also help identify the breakdown points of classical tensor-network simu-
lations, offering a compelling case for quantum computational advantage. In parallel,
growing attention has been devoted to understanding the behavior of quantum an-
nealers [778] such as those developed by D-Wave [779,780]. Exploring how different
practical annealing schedules influence entanglement generation, and whether this en-
tanglement correlates with the success of those schedules, could offer valuable insights
into the behavior of quantum devices. While our study of nonstabilizerness in QAOA
was limited to small system sizes due to computational overhead, recent advance-
ments in tensor-network simulations of QAOA [265,544] now open the door to probing
larger system sizes. This would allow us to test the universality of the magic barrier
observed across scales. Additionally, since SRE is, in principle, experimentally mea-
surable [530], there is a clear opportunity to extend our entanglement-measurement
pipeline to include nonstabilizerness; thereby concluding the empirical investigation of
quantum resources explored in this thesis. A particularly intriguing avenue concerns
the relationship between squeezing and non-classicality, specifically through the ap-
pearance of negative Wigner functions [781], which are also directly related to mana,
a magic monotone. This raises the fundamental question of whether entanglement
and magic are generated in a correlated manner within the QAOA framework. While
several counterexamples suggest these resources can vary independently in other sce-
narios [522,782,783], if QAOA does exhibit correlated resource generation, it would
represent a distinctive and possibly unique feature of the QAOA ansatz. This war-
rants deeper exploration, particularly in light of the discrete nature of the Clifford
group and the challenge of designing QAOA evolutions that avoid magic generation
entirely, allowing simulation through stabilizer formalism [151].

In the context of disorder-averaged dynamics, our focus was on exact analyt-
ical results, which led us to consider a specific type of Hamiltonian. Extending
such analysis to other Hamiltonian classes, especially non-Hermitian systems [784],
presents an exciting theoretical direction. In such regimes, fundamental questions
arise: What constitutes a quantum resource under non-Hermitian dynamics? And
do traditional criteria for non-Markovianity still apply? Furthermore, it is worth ex-
ploring whether experimental observation of non-Markovian features can facilitate a
modelling method for the underlying disorder, which would be of interest for quantum
control theory [785]. Our resource-based complexity analysis in random matrix mod-
els, encompassing entanglement, nonstabilizerness, and fractal dimensions, provides
a comprehensive view of quantum complexity. Extending this multi-marker frame-
work to other many-body systems and quantum optimization problems could uncover
hidden structures in the non-ergodic regime, potentially leading to new classifications
of quantum phases and a deeper understanding of quantum information structure in
complex systems.
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