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The formation of patterns in driven systems has been studied extensively, and their emergence can
be connected to a fine balance of instabilities and stabilization mechanisms. While the early phase of
pattern formation can be understood on the basis of linear stability analyses, the long-time dynamics
can only be described by accounting for the interactions between the excitations generated by the
drive. Here, we observe the stabilization of square patterns in an interaction-driven, two-dimensional
Bose-Einstein condensate. These patterns emerge due to inherent high-order processes that become
relevant in the regime of large phonon occupations. Theoretically, this can be understood as the
emergence of a stable fixed point of coupled nonlinear amplitude equations, which include phonon-
phonon interactions. We experimentally probe the predicted flows towards such a stable fixed-point,
as well as repulsion from a saddle fixed-point, using the experimental control unique to quantum
gases.

I. INTRODUCTION

Many physical systems exhibit the formation of large
scale patterns, both in the ground state or in the course
of dynamics. Understanding these structures can provide
simplification as well as classification of complex phenom-
ena. These patterns range from simple structures such as
stripes and lattices to more complex arrangements such
as spirals, and emerge in a wide variety of disciplines [1–
4]. In the last decades, powerful theoretical tools to ana-
lyze and classify pattern formation have been developed.
In certain cases, the development and stability of pat-
terns can be analyzed by calculating the evolution of am-
plitudes of elementary patterned states such as stripes,
i.e., Aje

ikj ·x + c.c.. The complex amplitudes Aj are as-
sumed to vary slowly in time and are used to capture
the dynamics resulting from complex underlying details.
In two dimensions, under the assumptions of rotational
invariance as well as generalized parity, translation, and
inversion symmetry, one constructs the phenomenologi-
cal amplitude equation [1, 5]

dAj

dt
= εAj − κ |Aj |2 Aj + κ

∑
i ̸=j

G (θij) |Ai|2 Aj . (1)

Here, ε describes exponential growth of the individual
stripes, κ the self-interaction of a single stripe pattern,
and κG(θij) the cross-interaction between stripes. The
first nonlinear term describes self-interaction leading to
saturation, while the second is the interaction between
different stripes with angle θij between them. While
|kj | = kc is assumed to be constant, the direction is
not fixed. The functional form of G(θij) determines the
stability of certain arrangements, for example square lat-
tices. The mathematical form of this equation is generic
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and does not depend on microscopic details. However,
stabilization dynamics depend on system-specific nonlin-
earities and the microscopic description.
In driven classical fluids, experimental and theoreti-

cal works have investigated pattern formation, including
geometry-selective nonlinearities in a variety of parame-
ter regimes [1, 6, 7]. Phenomenologically similar dynam-
ics can occur in superfluids, realized using ultracold Bose
gases. The drive leads to the exponential growth of den-
sity waves (ε > 0) at a characteristic wavenumber kc.
The corresponding length scale is set by the driving fre-
quency through the dispersion relation of elementary ex-
citations to good approximation, and a mean background
interaction leads to a non-vanishing κ.
In superfluids, the role of high-order non-linear pro-

cesses in the stabilization of specific pattern geometries
has not been studied. In one dimension, Faraday insta-
bilities have been demonstrated [8–18], and saturation of
density wave contrast was observed [9, 18, 19]. In two di-
mensions, square and hexagonal patterns were produced
using two drive frequencies at given ratios, which lead to
geometry-selective scattering processes between energy
shells [20]. Alternatively, driving at frequencies resonant
to surface modes in a harmonic trapping potential has
been shown to produce highly-structured surface waves
[21], rather than structures that emerge from the bulk.
Here, we report on the spontaneous emergence of a

square lattice pattern in a two-dimensional BEC, driven
with a single frequency. The pattern is a result of inher-
ent high-order non-linear processes of the system, which
become relevant in the regime of large occupations of
phonons. The state is stabilized due to a cubic non-
linearity similar to eq. (1) and emerges naturally as a
result of two factors: large occupations of produced ex-
citations and a positive background interaction, which
ensures significant coupling between phonons. We show
that the stability of the square lattice can be understood
in terms of a stable fixed point of amplitude equations,
whereas lattice solutions with θ1,2 very different from 90°

ar
X

iv
:2

30
9.

03
79

2v
4 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

0 
D

ec
 2

02
4

mailto:pattern-formation@matterwave.de


2

0

1

2

3

4

5

101

100

10-1

Random
Stripes

Square Lattice
Phase

Momentum
Redistribution

Parametric
Resonance

20 �m 

1

0

g 0
(t

)

t (Periods)

a b c d
7 Shake Periods 14 Shake Periods 21 Shake Periods 35 Shake Periods

e

-1 0 1
k (�m-1)

k 
(�

m
-1

)

-1

0

1

7 14 21 35

FIG. 1. Structure Formation. a, Real space (top row) and momentum space (bottom row) distributions after 7 shake
periods with r = 0.4 and ωd = 2π × 400Hz. The dashed lines in momentum space show the region of resonant momenta,
centered on kc = 2π × 0.11µm−1. b, Distributions after 14 periods, where density modulations have become more apparent in
real space and appear in momentum space as back-to-back correlated, randomly oriented peaks. c, Structures in the square
lattice phase. The left column shows single realizations, whereas the right column shows averaged real and momentum space
distributions. The smooth mean distributions indicate that structures are formed spontaneously in random directions. d, Late
times show that square lattices at the characteristic length scale are still apparent, but other momenta also become occupied.
Both color codes indicate the signal in atoms per pixel. e, The interaction is periodically modulated with a single frequency
and a non-zero offset. The colored arrow indicates the various phases during time evolution.

are unstable, and use state of the art control of our sys-
tem to experimentally probe the theoretical framework.
The observed dynamics reveal the stability and instabil-
ity landscapes underlying the dynamical system.

As is generically the case in systems with sponta-
neously broken translational symmetry, boundary effects
play an important role in the development and stability
of emergent patterns; we implement a novel box poten-
tial with slanted walls. The resulting trap suppresses co-
herent reflections of quasiparticles at the boundary while
conserving atom number and leads to dynamics similar to
an infinitely extended system. The effective absorption
results from a combination of slowing of the wavefront
due to the gradual decrease of the density at the edge,
as well as roughness of the potential, which both lead
to scrambling of the reflected wavefronts. This makes it
possible to experimentally demonstrate the emergence of
square lattices, which are explained theoretically in the
infinitely extended limit (see Supplemental Materials).

In the following, we first present experimental results on
the emergence of these patterns in our driven conden-
sate, and then detail the theoretical description of the
non-equilibrium fixed point.

II. EMERGENCE OF LATTICES IN
EXPERIMENT

We experimentally realize a quasi two-dimensional
BEC of around 30,000 39K atoms, with trapping fre-
quency ωz = 2π × 1.5 kHz in the gravity direction. In
the horizontal plane, the trap shape is circularly sym-
metric and flat, with walls that are linearly slanted, such
that the density distribution of the cloud is uniform and
falls linearly at the edges (see Supplemental Materials).
This is crucial for the emergence of square patterns, as
this density distribution implements absorptive bound-
aries. To achieve gain at a specific length scale (ε > 0),
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FIG. 2. Growth and Stability of Structures. a, Mean momentum distributions at three representative drive times.
Excitations at the resonant momentum are pronounced, and show radial symmetry. The occupations at kc saturate, and at
later times non-resonant momenta also become populated. b, A quantitative analysis of occupations in momentum space. The
black data points show occupations at the resonant momentum kc, whereas the red points indicate off-resonant momenta. The
inset shows the occupations at all momenta on a log scale from early (blue) to late (red) times; shaded regions correspond

to the area yielding black and red data points. c, Correlation functions g(2)(δθ) at the same drive times as the momentum
distributions plotted in (a). Early times show back-to-back correlations but no other structure. In the square lattice phase,
peaks at δθ = 90o appear, as well as anti-correlations at other angles. Later times show dampened correlations but retain
the peak at δθ = 90o. Insets show representative single realizations at the corresponding drive times. d, Extracted values of
g̃(2)(δθ) for δθ = 45o (purple), δθ = 90o (green), and δθ = 180o (blue). Near saturation of momentum occupations (b), the
system begins to form 90o correlations, while 45o correlations are suppressed. The initial increase of back-to-back correlations
at early times is an artifact due to enhanced signal-to-background. For all plots, standard errors are either shown or are smaller
than the markers.

we periodically change the s-wave scattering length as
with a frequency ωd by varying the external magnetic
field near the 561G Feshbach resonance [22], such that
as(t) = ās(1 − r sinωdt), with 0 < r < 1 and ās set to
100a0, with a0 the Bohr radius. The resulting chemical
potential is µ ∼ 2π × 300Hz.

Single shots of in situ density distributions as well as
momentum distributions after various drive periods are
shown in fig. 1. Density distributions are imaged directly
after the drive with high field absorption imaging [23].
Alternatively, we extract the momentum space distribu-
tion with a phase space rotation, by rapidly switching off
the atomic interaction using the zero-crossing of the Fes-
hbach resonance and allowing the cloud to propagate in a
weak harmonic trap in the horizontal plane for a quarter
period (2π× 4.7Hz) [24, 25]. The vertical confinement is
ramped down to a weak value, just enough to retain the
atoms within the focal plane of the imaging system.

At early times (7 periods of driving, fig. 1a), excita-
tions appear at the critical length scale 2π/kc but no ob-
vious pattern has yet emerged. In momentum space, the
excitations appear distributed on a ring of the resonant

momentum kc. These early times are well understood
to show growth due to parametric resonance [26–29], as
the energy input from the drive produces pairs of quasi-
particles, where the frequency of each quasi-particle E is
half a drive quantum, E = ωd/2. The corresponding kc
is determined by the Bogoliubov dispersion relation, as
has been previously predicted and measured in a variety
of experiments [20, 27].

Continuing the drive (14 periods, fig. 1b), the density
distribution shows enhanced modulation at the critical
length scale, but still shows no global structure. This
regime can be understood as the coexistence of different,
randomly oriented stripe patterns. This is directly re-
vealed by the momentum distributions, which show clear
back-to-back correlated peaks at the resonant momen-
tum.

At intermediate times, global square lattice patterns
emerge (21 periods, fig. 1c). This can be observed di-
rectly in real space as a square density modulation, or in
momentum space as four momentum peaks, each sep-
arated by 90o. Averaging all realizations in real and
momentum space, we recover the homogeneous density
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distribution and a radially symmetric ring in momen-
tum space (second column of fig. 1c). This confirms that
square patterns are formed spontaneously, i.e., with ran-
dom orientation and spatial phase. For late times, real
space distributions still show some structure, while mo-
mentum space distributions reveal that many other mo-
menta beside kc have become occupied, indicating that
the model of superimposed stripes at a specific momen-
tum as in eq. (1) is insufficient to capture the late-time
dynamics.

The emergence and persistence of square lattices can
be quantified by analyzing occupations as well as angular
correlations in momentum space. In fig. 2a, momentum
distributions averaged over many realizations are shown.
The ring at kc is pronounced and saturates in amplitude,
and at late times a broad range of off-resonant momenta
becomes populated. Figure 2b shows the occupation in-
crease relative to the unperturbed condensate, centered
at kc = 2π × 0.11µm−1 as well as off-resonant momenta
centered at k = 2π × 0.07µm−1, integrated over a width
of 2π× 0.04µm−1. Early times show exponential growth
at kc, as expected by parametric resonance (dashed black
line in fig. 2b). After around 10 periods, a deviation
from this exponential growth due to saturation becomes
clear, and eventually occupations reach a steady value
of 4,000 atoms in the summed region, relative to 30,000
condensed atoms. When resonant momenta kc are sat-
urated, non-resonant momenta also begin to grow and
eventually have similar occupations to the resonant mo-
menta (red line in fig. 2b). We will show in the following
that in the regime where occupations are saturated but
modes with |k| = kc dominate, a description similar to
eq. (1) captures the dynamics.

To describe the spatial structure of density waves, we
analyze the correlations of particle distributions along
the ring at kc in single shots. Momentum distributions
of single realizations are analyzed by binning occupations
along the resonant momentum as a function of the polar
angle θ. The auto-correlation of this vector is calculated,
and these correlations are averaged over all realizations,
yielding

g(2)(δθ) =

〈
⟨n(kc, θ)n(kc, θ + δθ)⟩θ

⟨n(kc, θ)⟩2θ
− 1

〉
. (2)

Here, n(k, θ) is the experimentally measured momentum
distribution, and the average over θ indicates the average
over absolute orientation while keeping relative angle δθ
fixed, whereas the average of the whole expression indi-
cates an average over all shots of a given data set. We
further define g̃(2)(δθ) = g(2)(δθ)/g(2)(0), a normalized
value of the correlation that accounts for variations in
total signal on the resonant ring. In this normalization,
g̃(2)(δθ) = 1 indicates that every bin at θ has the same
magnitude as the bin at θ + δθ, regardless of total oc-
cupations. Note that because this is an auto-correlation,
the function only contains information about angle dif-
ferences, δθ ∈ [0o, 180o].

Exemplary g(2)(δθ) are plotted in fig. 2c. After 11
drive periods (fig. 2c, i ), an auto-correlation peak as
well as a peak at ∼ 180o appear, but no other structure
is apparent, indicating randomly oriented stripes. During
the square lattice phase (fig. 2c, ii ), these correlations
show a clear peak at 90o and 180o, while angles between
these peaks become anti-correlated. At even later times
when redistribution effects begin to dominate (fig. 2b,

iii ), one can see that correlations have a slightly lower
contrast, but the characteristic peaks at 90o and 180o

remain. While the positive correlation at 90o indicates
that square lattices are produced frequently, the anti-
correlation of angles other than 90o indicates that single
square lattice structures over the whole system are domi-
nant in single realizations, as negative correlations are the
result of suppressed signal relative to the average value.
The dynamics can be characterized by extracting spe-

cific values of these correlations as a function of drive
time. Figure 2d shows extracted values of correlation
functions for δθ = 45o, 90o, and 180o. Correlations cor-
responding to the lattice structure emerge in the course
of the dynamics, when occupation numbers and back-
to-back correlations are fully established, indicating that
lattice formation is a higher-order process. These corre-
lation values persist over a number of periods, indicating
the emergence of the steady-state, until very late times
where redistribution effects dampen correlations at all
angles. We note that lattices emerge over a large range of
experimental parameters, including different background
interaction strengths, drive frequencies, and geometries,
including a harmonic trapping potential, confirming the
robustness of the formation process.

III. AMPLITUDE EQUATION

The emergence of this patterned state can be described
by amplitude equations for standing waves on a BEC.
The evolution of the BEC order parameter Ψ(x, t) is de-
scribed by the time-dependent Gross-Pitaevskii equation
(GPE),

iℏ
∂Ψ(x, t)

∂t
=

(
− ℏ2∇2

2m
+ V (x)

+ g0 (1− r sinωdt) |Ψ(x, t)|2
)
Ψ(x, t).

(3)

Here, m is the atomic mass, ℏ is the reduced Planck’s
constant, and the interaction strength given by g0 =
√
8πℏ2

m
ās

lz
, where lz =

√
ℏ

mωz
. We describe the emerging

pattern as a sum of two stripe patterns

Ψ(x, t) = Ψuni(t)
[
1 + ϕk(t) cos (k · x) + ϕp(t) cos (p · x)

]
(4)

and insert this into the time-dependent GPE, eq. (3),
with V (x) = 0. Ψuni(t) is a uniform, infinitely ex-
tended background field with time evolution Ψuni(t) =
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FIG. 3. Attractive Fixed Point. a Flow diagram of a 3D cut from the full 4D phase space of the dynamics of Rk/p, where

θ = 90o, φk = φp, r = 0.5 and Γ = 0.4α. Arrows show flow lines from the projection of the first derivative d
dt
Rk/p onto this

cut, and colors show the flow speed. Two in-spirals towards fixed points (blue and green points) are apparent. b, Stability

diagram for δθ = 90o. Arrows indicate the direction of the second derivative d2

dt2
Rk/p in the plane where φk = φp = π/4 for

Γ = 0. The three unique fixed points are shown as colored points: unstable points for the homogeneous (gray) and stripe
(blue) solutions, and a stable point for a lattice solution (green). c, Extracted values of saturated momentum occupations as a
function of driving amplitude r. The inset shows occupations near kc for different values of r, integrated over the same region
as in fig. 2b. Saturated occupations nsat are determined by averaging the last 5 points, and the value is shown as the dashed
line in the inset and as green points in the main plot. The green points of the main plot approximate the occupations at the
fixed point at various drive amplitudes. The dashed line is a fit to the data with the theoretically predicted functional form
F (r) = a

√
(r/b)2 − 1. Standard errors are smaller than the data points.

√
n0 exp[−iµt− i(µ/ωd)r cosωt], where n0 is the 2D den-

sity. The vectors k and p with |p| = |k| = kc have an
angle θ ∈ [0o, 180o] between them. The ansatz eq. (4) ex-
tends previous theoretical work, which analyzed the sta-
bility of a single standing wave, and did not consider cou-
pling between multiple waves [27]. Because the excited
modes are Bogoliubov quasi-particles, the amplitudes of
the standing waves are parameterized by

ϕk/p(t) =

(
1− ϵ+ 2µ

E

)
Rk/p(t)e

i
ωd
2 t

+

(
1 +

ϵ+ 2µ

E

)
R∗

k/p(t)e
−i

ωd
2 t.

(5)

Here, E =
√
ϵ(ϵ+ 2µ) with ϵ =

ℏk2
c

2m is the correspond-
ing Bogoliubov energy in units of frequency. Rk/p are
complex amplitudes that vary slowly in time. The phase
of Rk/p can be understood as a relative phase between

the oscillation of the phonon and the drive, and |Rk/p|2
corresponds to phonon occupation numbers.

The dynamics of these amplitudes can be understood
using a Ginzburg-Landau-type equation [5]. To derive
this equation from eq. (3) and eq. (4), we perform a
multiple-timescale analysis [30], resulting in the ampli-
tude equations

i
d

dt
Rk(t) =− iαR∗

k(t)− iΓRk(t) + ∆Rk(t)

+ λ |Rk(t)|2 Rk(t)

+ λ
[
c1(θ) |Rp(t)|2 Rk(t) + c2(θ)Rp(t)

2R∗
k(t)

]
(6)

and analogously for Rp, with the k and p labels ex-
changed. Here, α = r µϵ

2E is the exponential growth
rate from parametric resonance, Γ is a phenomenological
damping constant, and ∆ = ωd

2 − E is a detuning term

that is set to zero. Other constants λ = µ 5ϵ+3µ
E , c1(θ)

and c2(θ) are set by kc and the angle between k and p
(see Supplemental Materials). This equation exhibits a
similar structure to eq. (1). Exponential growth at early
times is given by the difference between gain α and loss
Γ, whereas saturation and coupling of waves results from
the nonlinear terms. Saturation occurs even for a single
wave (i.e., Rk > 0 while Rp = 0), as growth of one stripe
is limited due to a GPE-type nonlinear interaction. Addi-
tionally, the last two terms capture the angle-dependent
coupling between Rk and Rp and are characterized by the
real functions c1(θ) and c2(θ). These determine whether
stripe or lattice solutions are stable at a given angle, as
discussed in the generic amplitude eq. (1) with factor
G(θ). The dynamics shown in Fig. 2 can now be under-
stood in terms of the amplitude equation. Early times
show exponential growth of occupations (linear terms).
Later, saturation occurs as the occupations become large
and nonlinear terms become relevant, eventually leading
to square patterns.

For a set angle θ, the time evolution of the complex
amplitudes Rk and Rp takes place in a four-dimensional
phase space, as each amplitude influences the magnitude
and phase of the other (see Supplemental Materials for
coupling between magnitude and phase of complex am-
plitudes). For the following discussion, we set the angle
to θ = 90o.
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FIG. 4. Dynamics of imprinted lattices a, Ensemble average of the initial condition for imprinted patterns at 90o.
Occupations of Rk (Rp) are extracted by summing over the red (yellow) boxes. b, Extracted |R| values (pink dots) in the
theoretically predicted stability diagram for θ = 90o. c Oscillations of average occupations per summation box in momentum
space of the imprinted waves, with error bars indicating standard errors. The inset shows the extracted phases of Rk/p, with
1σ fit errors. Though waves are imprinted with different phases, they quickly phase-lock with a slight delay to the drive. d
Average momentum distributions for an identically imprinted wave to (a), but with θ = 30o. e, Extracted |R| values and the
stability diagram for θ = 30o, indicating an unstable lattice fixed point. f, Occupations of momenta for the triangular lattice,
θ = 30o. Despite identical initial conditions to the imprinted wave at θ = 90o, growth of the second stripe is significantly
suppressed.

In order to visualize the structure of the amplitude
equations, we utilize flow diagrams, which show the di-
rection and magnitude of the first derivative d

dtRk/p at
all points in space. Flows in the four-dimensional phase
space are projected onto the three-dimensional cut where
the phases φk/p = argRk/p are equal, and are illustrated
in fig. 3a, where the color map shows the flow speed at
a given point. The flow patterns reveal in-spirals toward
two fixed points at nonzero amplitude and phase, marked
by the blue and green spheres.

To further investigate the structure and stability of
these fixed points, we focus on the plane φk = φp where
all the fixed points lie (φk/p = π/4 for Γ = 0). Within
this plane, by plotting the direction of the force field
d2

dt2Rk/p (see [30]) we obtain the global stability dia-
gram shown in fig. 3b. Three unique fixed points (i.e.,
steady states of the driven system, plotted as colored
dots) can be identified: one where all amplitudes are zero
(Rk = Rp = 0), one where only one density wave has a
nonzero amplitude (Rk = 0, |Rp| > 0 or vice versa), and
one lattice solution (|Rk| = |Rp| > 0). The uniform
fixed point Rk = Rp = 0 (grey) is unstable in the driven
system, and the outgoing arrows represent exponential
growth of small non-zero amplitudes (i.e. phonon occu-

pation numbers) due to parametric resonance. While in
one dimension, the single stripe fixed point would be a
stable solution, in two dimensions this point is unstable
towards forming a lattice at 90o. We note that the fixed
point exists solely due to the nonlinearities of the ampli-
tude equation, and that even in the case of Γ = 0 the
structure and qualitative behavior of the fixed point re-
mains. Γ > 0 ensures that the fixed point is approached
dynamically.

IV. OBSERVATION AND PROBING OF THE
FIXED POINT

The location of the square lattice fixed point depends
on the growth rate α, nonlinearity λ, and damping Γ.
While α is a parameter of the linear term that is straight-
forward to calculate, λ describes a nonlinear effect result-
ing from the interaction between waves, which is theoret-
ically challenging. The phenomological damping parame-
ter Γ must be extracted experimentally. The fixed point
can be identified by looking at the saturation of occu-
pations in the long-time limit nsat (see inset of fig. 3c),
where the system is well characterized by the fixed point.
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These are given by nsat ∝ 1
λ

√
α2 − Γ2. Combining these

observations with the extracted growth rate of the oc-
cupation number at early times n(t) = e2(α−Γ)tn(t =
0) (fig. 2b), we determine these parameters (for de-
tails see Supplemental Materials). We find quantitative
agreement with the theoretical prediction for α. The
experimentally-determined λeff is a factor of three larger
than the predicted value from the theory framework. The
strongly reduced theoretical model includes neither finite
size, occupation-dependent loss nor the presence of addi-
tional excitations beyond a two-stripe description.

Building on our experimental capabilities of generating
arbitrary potentials and with that density distributions
[31], we can test the response of our system to specific
angles and phases of structures by explicitly imprinting
multiple stripes onto the condensate prior to the drive.
We experimentally seed excitations with amplitudes and
phases at values different from the stable fixed point solu-
tion. This is achieved by loading the BEC into a trapping
potential with additional periodic spatial modulations
to seed stripes. These periodic potentials are switched
off individually with given delay times to set the initial
phases of the stripes with respect to the drive. After the
delays, we switch on the driving of the interaction, and
detect the populations in the imprinted stripes after a
given drive time. We thus have extensive control over
imprinted waves: the angle between waves θ is set by the
shape of the modulated potential, the intensity of the
projected light field sets |Rk/p|, and the time between
switching off the modulated potential and starting the
drive sets φk/p = arg(Rk/p).

In particular, we contrast the different evolutions of
imprinted lattices at two angles, θ = 90o and θ = 30o,
as shown in fig. 4. Initial momentum occupations for the
two cases are shown in the left plots of fig. 4a and d.
We extract |ϕk/p|2 by summing over a region around the
imprinted momenta, indicated by red and yellow boxes,
and average the ±k peaks. Even for constant phonon
occupations, the measured atom numbers in momentum
space oscillate in time. By fitting the function f(t) =
A (1− cos (ωdt+ 2φ)) + const. to single periods of these
oscillating populations, we can extract the slowly-varying

magnitude of the stripe amplitudes |Rk/p| =
√

Aϵ
Nµ , and

the phase relative to the shaking φ = φk/p (see methods).

Imprints for both angles are realized with the same
initial occupations and φp(t = 0) ∼ −π/8, φk(t = 0) ∼
−π/2. In both cases, one observes the quick phase-
locking of the stripes to the drive, such that φp = φk =
−3π/8 (inset), showing that the dynamics of eq. (6) set
not only the occupations but also the phase of phonons.
Despite similar phase evolutions for both angles, the dy-
namics of the occupations look dramatically different.
While for the square lattice pattern both stripe direc-
tions grow over time, in the 30o case only one of the
stripe direction grows. This can be understood by look-
ing at the stability diagrams for θ = 30o and θ = 90o,
plotted in fig. 4b and e. While the lattice solution for

θ = 90o is a stable fixed point, for θ = 30o this point
is unstable. Converting the extracted oscillation ampli-
tudes to phonon amplitudes and plotting these into the
respective stability diagrams (pink points in fig. 4b and
e), one sees that amplitudes of waves in the square lattice
grow towards the fixed point, while the triangular lattice
shows a lack of growth of Rp.
These measurements thus give insight into the process

of lattice formation at later drive times. Once randomly
produced stripes have large amplitudes, the interaction
between them becomes relevant. Stripes with orienta-
tions close to θ = 90o flow towards higher occupation
numbers, whereas other orientations flow towards single
stripe solutions. Additionally, these results emphasize
the necessity of the soft wall potential, which minimizes
reflections of quasiparticles. Reflected waves would have
a broad distribution of angles relative to the original pat-
tern, and thus cause the deterioration of single square
lattices. Experiments performed with a steep wall trap-
ping potential showed brief emergence of square lattices,
but structures are quickly damped and end in disordered
patterns.

V. OUTLOOK

This work demonstrates the emergence of a stable
Faraday pattern in a two-dimensional superfluid, as well
as the pattern’s stabilization mechanism. Additionally,
we show that the precise control over the experiment en-
ables us to realize highly structured but unstable patterns
into the system and observe their dynamics, a capabil-
ity unique to ultra cold quantum gases. The stability of
the pattern combined with the ability to imprint arbi-
trary initial configurations opens the possibility to probe
additional properties. As a steady state of a driven su-
perfluid that spontaneously breaks translational symme-
try, it could be closely related to supersolidity if distinct
sound modes in the lattice and superfluid can be demon-
strated. Control over initial states could be used to probe
lattice excitations as well as superfluidity.
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APPENDIX A: EXPERIMENTAL SYSTEM

The experiment is described in [31]. In short, we use
a BEC of approximately 30,000 39K atoms in the state
corresponding to |F,mF ⟩ = |1,−1⟩ at low fields. The
trapping frequency in the z-axis is ωz = 2π × 1.5 kHz,
generated by a blue-detuned lattice. The BEC has a
temperature of approximately 20 nK. The time-averaged
chemical potential is µ ∼ 300Hz for all measurements,
which is extracted by scanning driving frequencies, mea-
suring the wavelength of produced density waves, and fit-
ting the Bogoliubov dispersion relation. Approximately
50 realizations are used for measurements in fig. 2, and
30 in fig. 3 and fig. 4. The slanted-wall potential is real-
ized with 532 nm light, shaped with a digital micromirror
device [31] and has the form

V (x) =

{
0 |x| < R

β(|x| −R) |x| ≥ R
(7)

where for our system R ∼ 22µm and β ∼ 2π×30Hz/µm.

APPENDIX B: ROLE OF BOUNDARIES

Here, we present a brief study on the role of boundary
conditions in the stabilization of patterns in the experi-
ment. As described in the main text, slanted walls are a
key experimental innovation that enable the experimen-
tal observation of stable square lattices, because they
significantly reduce the impact of reflections of density
waves at the boundaries. In order to systematically study
this phenomenon, we observe the spontaneous emergence
of patterns for two trapping geometries: slanted walls and
very steep (or hard) walls.

The following experiments use a drive amplitude of
r = 0.6, slightly larger than the amplitude typically dis-
cussed in the main text. The larger drive amplitude
makes dynamics faster and increases the rate of heating,
reducing the total lifetime of patterns. We use a digital
micromirror device to program the trapping potential of
our cloud to produce not only slanted walls (described
above), but also hard walls, whose steepness is limited
by the resolution of the optical objective (∼0.5 µm at 532
nm wavelength). The hard wall trapping potential has a
slightly larger radius such that the mean central density
is comparable in both cases. Both trapping geometries
are loaded identically, and around 50 realizations are used
for the following analysis.

Single shots and average densities are shown for both
cases in fig. 5a. While in the slanted wall case the square
lattice patterns are stabilized, in the hard wall case the

emergent lattice pattern is quickly distorted, resulting in
disordered structures for later times. As can be seen in
the averaged real space and momentum distributions for
the hard and slanted walls (fig. 5b), radial symmetry is
not broken on average in either of the traps, as indicated
by the homogeneous rings. Only one dominant length
scale is present in both cases, despite the structural dis-
order in the density distribution of the box trap.
In fig. 5c, the mean occupations at kc are plotted,

and the pattern correlations are plotted in fig. 5d. For
early times, both geometries show exponential growth of
occupations and no structure in g(2)(δθ). After around
8 drive periods, correlations are suppressed at δθ = π/4
while correlations at δθ = π/2 grow, indicating the
emergence of square lattices in both geometries. In the
slanted wall trap, the square lattice correlations remain
relatively constant; in the box trap, however, correlations
are quickly suppressed, showing that the brief emergence
of square lattices gives way to disordered stripes. At
the time where square lattices emerge in the slanted
wall case (13 periods), the average pattern contrast also
becomes larger in the slanted wall trap than in the box
trap. This confirms the theoretical prediction that many
competing stripes have lower mean occupations than
single patterns [30]. Finally, we note that the growth
of patterns can be increasingly suppressed by increasing
the steepness of the slanted wall, further verifying that
reflections play a role in the dynamics in the hard wall
case.

APPENDIX C: CORRESPONDENCE BETWEEN
PHONON AMPLITUDES AND ATOM NUMBERS

In the results described in fig. 4, we measure occupa-
tions of single standing waves, and thus analyze peaks
in the experimental momentum space distribution rather
than average occupations along the entire resonant mo-
mentum ring. The correspondence between the phonon
amplitude Rk and the atom number in a single peak
in momentum space nk is given by the corresponding
Fourier amplitude of the ansatz given in eq. (4). The
observed atom number in a summation box around a
momentum peak is given by

nk = N0|Rk(t)|2
[
1 + 2

µ

ε
sin2

(ωd

2
t+ φk(t)

)]
. (8)

Here, N0 is the condensate atom number, and φk is
the phase of the phonon amplitude Rk. Thus, the
number of atoms per momentum peak oscillates at
the drive frequency ωd. Other than for data in fig. 4,
measurements of occupations are taken when signal is
maximal, which differs by a phase of π between real and
momentum space. Period numbers given in the text are
rounded to the nearest whole period to avoid confusion.
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APPENDIX D: STABILITY CRITERION

The angle-dependent prefactors of eq. (6) are given by
[30]

c1(θ) =
µ

5ϵ+ 3µ

[
4
ϵ2 − µ2

µϵ
+

(
2ϵ+ µ

ϵ

2ϵ+ µ

2ϵ cos2 θ
2 + µ

−
(2ϵ− µ)(ϵ+ 2µ) + 2

(
2ϵ2 + µ2

)
cos2 θ

2

E2 − E2
+/4

+

(
cos

θ

2
→ sin

θ

2

))]
(9)

c2(θ) =
µ

5ϵ+ 3µ

[
−2

ϵ2 + 3µϵ+ µ2

µϵ
+

2ϵ+ µ

ϵ

(
2ϵ+ µ

2ϵ cos2 θ
2 + µ

+

(
cos

θ

2
→ sin

θ

2

))]
, (10)

where E± =
√
ϵk±p(ϵk±p + 2µ) with ϵk+p = 4ϵ cos2 θ

2

and ϵk−p = 4ϵ sin2 θ
2 . Performing small perturbations

around the lattice fixed point, one can linearize eq. (6),
and extract growth rates of these small excitations to
define a stability criterion [30]

D = −1 + c1(θ)
2 + 2c2(θ)− c2(θ)

2, (11)

whereD < 0 represents a stable fixed point andD > 0 an
unstable point. The functional form is plotted in fig. 6.
Angles ∼ 90o are always stable, though the band be-
comes narrower for higher drive frequencies. Divergences
occur at the angle where the energy of outgoing quasi-
particles of a collision are resonant to the drive energy,
i.e. Ek+p = ωd. This divergence is discussed in detail in

[30], and has no physical reality.

APPENDIX E: EXTRACTION OF
EXPERIMENTAL PARAMETERS

In the following, we determine the growth rate α,
damping Γ, and the effective λ in the experiment. The
predicted location of the fixed point is given by [30]

|Rfp|2 =
Γ

λ

√
(αΓ )

2 − 1

1 + c1 + c2
. (12)

Factors α, λ, c1, and c2 each depend on the driving fre-
quency, and at higher drive frequencies the fixed point
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is at larger values of R. Only α additionally depends
on the drive amplitude r. We fit the function F (r) =

a
√
(r/b)2 − 1 to the data plotted in fig. 3c. We extract

b = 0.19 ± 0.01, which is the threshold r below which
no quasi-particles are produced. We can conclude that
Γ = α(r = 0.19). Next, we use the growth rate extracted
from fig. 2b where

n(t) = e2(α−Γ)tn(t = 0), (13)

with shake amplitude r = 0.4, and find 2(α−Γ) = (95±
10)s−1. By using the growth rate and the critical drive
amplitude, we find Γ = (44 ± 5)s−1 and α(r = 0.4) =
(90±10)s−1, which is in good agreement with the theory
value of 114 s−1. Because we measure the occupations
at the time where eq. (8) is maximal and we integrate
over all four momentum peaks, we rewrite eq. (12) for
momentum space occupations

nfp(kc) = 4N0

(
1 + 2

µ

ϵ

) Γ
√
(αΓ )

2 − 1

λ(1 + c1 + c2)
. (14)

We compare this equation with the fit function F and
use fit parameter a to find

λeff =
4N0(1 + 2µ

ϵ )Γ

(1 + c1 + c2)

1

a
, (15)

yielding λeff = (3.4 ± 0.4) × 104s−1. The error is
dominated by the uncertainty in Γ, which is given by the
uncertainty in the growth rate. This is a factor 3 larger
than the theoretical value. We likely underestimate
the absolute value, as integration over the resonant
momenta includes incoherent particles as well as excita-
tions beyond the two-stripe description. We use λeff for
generation of all flow plots and stability diagrams.

APPENDIX F: AMPLITUDE EQUATION IN
POLAR FORM

One can rewrite eq. (6) such that dynamics of the mag-
nitude and phase of the phonons are separated,

d

dt
|Rk(t)| =

[
− α cos (2φk(t))− Γ (16)

+λc2(θ) |Rp(t)|2 sin (2φp(t)− 2φk(t))
]
|Rk(t)|

d

dt
φk(t) = α sin (2φk(t))− λ

[
|Rk(t)|2 (17)

+
(
c1(θ) + c2(θ) cos

(
2φp(t)− 2φk(t)

))
|Rp(t)|2

]
.

Here, one can separate the dynamics of the amplitudes
(fig. 4c and f) and the phases (fig. 4c and f insets) of
phonons. Here, the mechanism for limiting amplitudes
even of single density waves can be understood: large am-
plitudes induce a phase shift relative to the drive, which
in turn causes growth to cease. This induced phase lag
to the shaking can be seen clearly in fig. 4c.
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