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Physical systems can be used as an information processing substrate and with that extend
traditional computing architectures. For such an application the experimental platform must
guarantee pristine control of the initial state, the temporal evolution and readout. All these
ingredients are provided by modern experimental realizations of atomic Bose Einstein condensates.
By embedding the nonlinear evolution of a quantum gas in a Machine Learning pipeline, one can
represent nonlinear functions while only linear operations on classical computing of the pipeline are
necessary. We demonstrate successful regression and interpolation of a nonlinear function using a
quasi one-dimensional cloud of potassium atoms and characterize the performance of our system.

A very general approach to harness the computational
resources of a system is to embed it in a Machine Learning
pipeline, which processes data sequentially. Each block in
the pipeline must be able to compute functions of its input.
For example, continuous-time input can be processed
by a dynamical system, such as a recurrent artificial
neural network [1–4]. Physical systems can also compute
expressive functions, making them strong candidates for
a computational block in a Machine Learning pipeline, if
they are reliable. This has been demonstrated previously
[5–7].

Only recently, it has been suggested that a Bose Ein-
stein condensate (BEC) of ultracold atoms is an ideal sys-
tem to be embedded in a Machine Learning pipeline [8, 9]:
It allows for precise control, and its complex nonlinear
dynamics depend unambiguously on the input. The dy-
namics of the order parameter of a BEC are well described
by a nonlinear differential equation (Gross-Pitaevskii equa-
tion). Thus, it can be employed as a nonlinear physical
layer of a Machine Learning pipeline. We address the
concrete task of computing the value u = f(x) of a given
nonlinear function f , employing a standard computer for
linear operations only. Thus we perform a regression,
which is another application of such models besides the
common task of classification. In the context of Machine
Learning, this is known as the Linear Basis Function
Model [10, Chapter 3.1].

The model The structure of the overall scheme is de-
picted in fig. 1a and consists of an input block, a physical
block with a Bose Einstein condensate (BEC) as the cen-
tral element, and a linear output block, where the latter
is defined by supervised learning (see fig. 1b). In the
first, linear block, one of Nx input values xi is mapped
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onto the mean-field of freedom of a BEC, namely the
complex order parameter Ψ = ψeiφ, with amplitude ψ(z)
and phase φ(z). As the representation of the number
xi we choose a step in the phase at a certain spatial
position zi. The physical block is defined by the imprint-
ing of the phase, a subsequent evolution, and a readout
of the density. The resulting one-dimensional density
ni(z) = |Ψi(z)|2 corresponds to the input xi. The linear
output block consists of two layers: The first improves
signal-to-noise by binning the density ni(z) to Nw bins,
leading to a data vector n̄i = (ni,1, ..., ni,Nw). The sec-
ond layer performs a linear transformation yi = n̄i · w,
where the weight vector w = (w1, ..., wNw) is a result of
supervised learning. In the example given in fig. 1b, the
function f(x) = sin(πx)/(πx) is implemented, and for the
input value of x42 = −0.5152 we find y42 = 0.6084, close
to u42 = f(−0.5152) = 0.6172.

Implementation Our physical system is a quasi one-
dimensional BEC of 39K atoms with a length of 85µm
and a width of 6µm confined in a box trap. The con-
densate is confined in the gravitational direction with a
trap frequency of 1.5 kHz, realized with a blue-detuned
(532 nm) lattice with a spacing of ∼ 5µm. In the other
direction a digital micromirror device (DMD) is used
to realize the quasi one-dimensional configuration, em-
ploying laser light at the same wavelength. The phase
step encoding the input is experimentally implemented
by shining the blue-detuned light on a specific area of the
atomic cloud for 100µs inducing an estimated phase shift
of 1.4π on one side of the cloud (see fig. 1b). Using the
DMD, we imprint the phase step at arbitrary positions on
the atomic cloud with excellent reproducibility. Careful
adjustment of the light intensity for the box trap avoids
changes of the trapping frequency along the short axis
during the imprint. After one input value is encoded, the
atomic cloud evolves freely in the box trap. The imprint
leads to the formation of a density peak, which moves
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FIG. 1. Machine learning pipeline. (a) In the input block,
the input x is mapped to a degree of freedom of a physical
system. The physical block includes the actual preparation of
the corresponding initial state, a nonlinear time evolution and
the readout. Finally, in the output block, the physical readout
is binned and a trained linear transformation produces the
output. (b) An input value xi is mapped to the phase function
φ(z) of a quasi one-dimensional Bose Einstein condensate. The
phase imprint is realized using a digital micromirror device
(DMD). After the time evolution the density distribution is
read out. The density is further processed by binning and
transformed via a vector multiplication to a single output
value.

along the cloud and disperses, as well as a stationary but
decaying density dip (see fig. 3a). The positions of the
phase imprint are in the center-half of the condensate
minimizing the effect of the edges. The density profile
is extracted after a variable evolution time tevo via two-
frequency absorption imaging [11]. The resulting image
of the elongated density distribution is integrated along
the short axis of the cloud.

Training the linear output block In the first layer of the
linear output block, the values of the extracted density
are binned leading to a vector n̄i of length Nw. Then,
the final linear transformation is defined by supervised
learning, minimizing the root-mean-square (RMS) error

ε =

√√√√ 1

N

N∑
i=1

(yi − ui)2 . (1)

where yi ∈ R are the results of the model and ui = f(xi) ∈
R are the prescribed function values to be learned. Since
Nw < Nx, this is achieved by calculating the Moore-
Penrose pseudo-inverse [12] for the system of linear equa-

tions  n̄1,1 . . . n̄1,Nw

...
...

n̄Nx,1 . . . n̄Nx,Nw


 w1

...
wNw

 =

 u1
...

uNx

 , (2)

constructed from measured n̄i and target values ui asso-
ciated with the input values xi. Note that the number
of bins is also the number of weights Nw. Therefore,
there is an optimal Nw much smaller than Nx, where
high signal-to-noise as well as expressive power is given.

Regression Task. We solve a regression task for the
function f(x) = sin(πx)/(πx), a standard nonlinear func-
tion for benchmarking. For that purpose we compile the
dataset {(xi, ui)} from Nx = 100 evenly spaced input
values xi ∈ [−3, 3] with their associated target values
ui = f(xi). The experiment is run for each input value
xi with the associated phase imprint and an evolution
time of tevo = 1.1 ms. An example of the resulting density
distribution for the specific input value x80 is shown in the
upper trace of fig. 2a. The linear transformation is then
trained by inverting eq. (2) with binned density profiles
n̄i (see fig. 2a, lower), resulting in an optimized weight
vector w. This training is successful if the weight vector
leads to viable results not only for training data, but also
for new experimental realizations of the same input values
(testing).

Training on differently binned data reveals that there is
an optimal binning giving the best performance as can be
seen in fig. 2b. The RMS-error for training monotonically
decreases with the number of weights Nw, and ultimately
vanishes as the matrix in eq. (2) reaches full rank, i.e. the
number of inputs equals the numbers of weights. A char-
acteristic kink at ∼ 18 weights can be identified. While
the RMS-error of the training suggests better performance
with a further increase of Nw, testing clearly reveals that
the performance of the regression does not improve be-
yond the kink but saturates and ultimately decreases.
As can be seen in fig. 2a the number of bins Nw affects
the spatial resolution. Thus the system’s expressivity is
limited not only by the number of weights Nw, but also
by the information extracted from the physical system.
A minimal sampling is required to resolve the density
feature, and therefore the substantial output information
is accessed given Nw > 2Z/∆z = Ñw, where ∆z is the
characteristic extension of the density feature and Z is
the length of the system used for information encoding
(see Methods), in close analogy to the Nyquist-Shannon
sampling criterion [13].

The deviation of the performance of training and testing
occurs because the training becomes dominated by a
generic property of a physical system - the noise. For
ultracold gases this is ultimately given by the shot noise
due to the finite number of particles. With binning this
noise level is reduced since adjacent pixels are averaged.
Because fewer pixels are averaged as the number of bins
increases, the noise on the density profiles increases as well.
This increase of noise can be partially compensated in the
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Training
Testing

FIG. 2. Performance dependence on number of
weights. (a) Density distribution for an evolution time of
1.1 ms after the phase imprint (top). Lowering the number
of bins Nw reduces the spatial resolution and leads to less
information about the original distribution, while reducing
the noise (bottom). (b) RMS-error of training and testing
as a function of Nw. For training the RMS-error decreases
for higher bin numbers, with a characteristic kink at ∼ 18
bins. This behaviour is caused by the dependence of both
expressivity and signal-to-noise on the number of bins. Error
bars have been calculated by bootstrap resampling analysis
(see methods). (c) Examples for training (A-C) and testing
(D) for different number of bins. The red lines indicate the
target functions.

training data due to the increasing number of weights, i. e.
expressivity; however, when applying the trained weights
to testing data, the noise directly translates into poorer
performance. As a consequence the best performance
of a physical layer strongly depends on Nw, which has
to be optimized to balance information extraction and
noise reduction. This is system specific and has to be
determined for a chosen physical system. In Machine
Learning, this phenomenon is known as the bias-variance
trade-off or decomposition [10, Chapter 3.2].

Time evolution of the physical system To analyse the
relevance of the physical evolution, the quality of the
regression is investigated for different evolution times.
Figure 3a shows the averaged (30 realizations) density
profiles corresponding to the input value x80 for different
evolution times. The profiles share the same scale and
are shifted by a constant offset for clarity. The standard
deviation of the mean is given by the grey shaded area.
After the preparation a peak of expelled atoms moves
to the left while the depletion remains stationary. This
scheme of phase imprinting has been employed for dark
soliton preparation [14, 15] and the observed phenomenol-

FIG. 3. Performance dependence on evolution time.
(a) Density distributions after different evolution times. De-
picted is the mean over 30 realizations, with the standard
deviation given by the shaded area. Over time the imprint
leads to a density peak, which moves to the left and widens,
and a non-moving density dip. For evolution times longer than
2 ms both features slowly decay. (b) RMS-error of training
and testing as a function of evolution time. For each evolution
time the number of weights Nw is chosen such that the RMS-
error of testing is minimal. An optimum for both training and
testing can be found at 1.1 ms, where the signal-to-noise of
the binned density profiles is maximal.

ogy suggests that the emerging dark soliton decays due to
a snake instability expected for the given trap geometry
[16].

For a quantitative analysis the model is trained with
different evolution times of the physical system. The
resulting RMS-error ε with Nw chosen optimally at each
evolution time is shown in fig. 3b for training and testing.
With increasing evolution time the error decreases and
reaches a minimum at tevo = 1.1 ms. This behaviour can
be understood from the evolution of the profiles, where the
density features resulting from the phase imprint have to
develop first and widen. For times shorter than 1.1 ms the
narrow density features imply that the optimal number
of bins Ñw ∝ Z/∆z is high. Thus the resulting signal-to-
noise ratio is low, limiting the performance. The increase
in RMS-error for significantly longer times is mainly a
result of the decreasing signal due to the spreading of the
peak and filling of the depletion. The testing error is close
to the training error for all times, demonstrating successful
learning (in contrast to overfitting, see Methods). The
significant reduction of the error for evolution times on
the order of 1 ms indicates a high predictive power of our
model.

Generalization To estimate the model’s ability of gen-
eralization we test the performance with input values xi
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that are not part of the training data set. We define
good performance of a regression task as the robust and
reliable interpolation between the given supporting points
xi. For the following discussion we choose the deriva-
tive of the former target function f(x) = sin(πx)/(πx),
since it is better suited to reveal the direct connection
between our Machine Learning model and Linear Basis
Function Models [10, Chapter 3.1]. We use the physi-
cal block at its best performance given by tevo = 1.1 ms
and binning of Nw = 18, and take the Nx = 100 inputs
equally spaced in the range of xi ∈ [−1.5, 1.5]. We in-
vestigate the performance of the interpolation both for
equally spaced interpolation points over the whole input
range (interleaved) as well as for interpolation points in
a single domain (block, see fig. 4a). Panel (A) shows
the good performance in interpolating every third input
qualitatively. This is confirmed by the RMS-error (see
fig. 4b), which hardly depends on the distance between
interpolated points. Block interpolation, however, works
only up to a certain block size (panels (B)-(D)). The
RMS-error grows beyond a ratio between interpolation
points and training points of 0.2, corresponding to block
sizes larger than ∆x = 17 input points. This behaviour
can be understood by reinterpreting the data matrix in
eq. (2) to  n̄1

...
n̄Nx

 ≡
 g1 . . . gNw

 , (3)

where the introduced (gj)i is the mean density in bin j
given input xi. From this perspective the linear trans-
formation in the output block composes the discretized
function f(xi) = ui from the limited number of (gj)i
[17, Chapter 4]. This is the discretized version of a de-
composition of the target function into a finite set of
representative (basis) functions

f(x) =

Nw∑
j=1

wj gj(x), (4)

which is known as wavelet analysis and at the heart of Lin-
ear Basis Function Models. Our physical system produces
basis functions of spatially localized dispersive signals
gj(x). Due to the diagonal nature of our data matrix (see
Methods), the relative width of the basis function ∆x/X,
where X is the range of x values, is similar to the relative
width of the density features in n̄i, ∆z/Z. Interpolation
does not work if the basis function corresponding to the
center of the interpolation region has vanishing overlap
with the basis functions corresponding to the edges of the
block. This explains the failure of interpolation beyond
extended regions of Nx∆z/Z ∼ 17 interpolation points,
which is equivalent to a ratio of interpolation to training
points of 0.2 (see fig. 4b).

Conclusion and Outlook The demonstration of a Ma-
chine Learning model with a quasi one-dimensional highly

FIG. 4. Generalization. The model is used for interpolation
between trained input values. (a) Examples of the perfor-
mance. Red line: Target function, circles: training points,
squares: interpolation points. The interpolation inputs are
either equally spaced over the whole interval (interleaved case),
or all from the central region (block case). The interpolation
regions are indicated by grey shading. The interpolation be-
tween adjacent training points (interleaved) works very well
(A) but fails beyond a critical block length (B-D). (b) Depen-
dency of the RMS-error on the ratio between interpolation
and training points. The interleaved case works well for all
ratios. For ratios beyond 0.2, corresponding to a block size of
17 interpolation points, the performance drastically decreases
which can be understood as the failure of the corresponding
wavelet decomposition (details see text). Error bars are the
result of bootstrap resampling analysis.

controlled Bose Einstein condensate as the nonlinear phys-
ical block opens the general perspective of fusing highly
controlled physical systems with classical computing. The
approach and results are agnostic to the underlying the-
oretical description of the ongoing physics but rely on
precise experimental control. We have chosen the re-
gression problem for the first demonstration since the
performance can be straight forwardly quantified. It also
clearly demonstrates the parallels between our Machine
Learning model and the paradigmatic Linear Basis Func-
tion Model. Since our physical system offers a broad range
of precisely adjustable parameters (plasticity), such as
nonlinearity (interaction strength), potential landscapes
and temperature, the input block as well as the physical
block could be optimized for specific tasks. Especially the
perspective of utilizing quantum features of the physical
system in Machine Learning architectures opens up new
possibilities for information processing.
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SUPPLEMENTARY

Experimental System. We prepare a Bose Einstein
condensate of 39K with approximately 20,000 atoms in
the substate corresponding to F = 1,mF = −1 at low
magnetic fields. The scattering length is tuned to 50 aB
(aB being the Bohr radius) by applying a homogeneous
magnetic field to exploit the Feshbach resonance at 561 G
[18, 19]. An additional magnetic gradient levitates the
atoms against gravity. In vertical direction the atomic
cloud is confined in a single lattice site of a repulsive
lattice created by blue-detuned laser beam (532 nm
light, lattice spacing 5µm). This leads to a strong
two-dimensional confinement with a trap frequency of
ω ∼ 2π × 1.5 kHz. In the horizontal plane a configurable
dipole potential is applied with a blue-detuned 532 nm
laser beam, which is shaped by a digital micromirror
device (DMD) in direct imaging configuration [20]. To
avoid uncontrolled interferences between vertical and
horizontal confinement, the light frequencies are shifted
by 160 MHz. The DMD also allows to imprint phase
shifts on the atoms by illuminating one area of the cloud.
The density distribution of the atomic cloud is extracted
by absorption imaging with a two-frequency scheme[11].
The resolution for both setups is ∼ 1µm. We estimate
the chemical potential from the velocity of the density
peaks to be ∼ 1.2 kHz and the healing length to ∼ 0.3µm.

Bootstrap Resampling Analysis. In order to estimate
the statistical deviation of the RMS-error with a lim-
ited number of experimental runs, we employ a method
inspired by bootstrap resampling [21]. For every input
value xi (where i = 1 . . . N) we measure NR different
density profiles ni,k . We then compile a set of density
profiles NTrain by randomly choosing one of the realiza-
tions ki = 1 . . . NR for every input value xi ,

NTrain = {n1,k1 . . . nN,kN } . (5)

For this set of experimental realizations the training is
applied to obtain the weight vector w. We then calculate
the RMS-error ε for the training set according to eq. (1)
to judge the quality of the regression. Next, a testing
set NTest is put together the same way as the training
set NTrain, but using only density profiles ni,k /∈ NTrain .
Then, the RMS-error ε is calculated for the testing
set NTest. This technique allows the generation of
many different training sets from a limited number of
experimental realizations per input value. The results for
the RMS-error shown in this publication are calculated
from the mean and standard deviation of 25 repetitions
of this process.

Overfitting. To illustrate the importance of testing
the obtained weight vector w, we sabotage the training
procedure by using reference profiles as the input profiles
ni. These noisy but flat profiles do not have any phase
imprinted and are thus uncorrelated to input values xi.
However, by increasing the number of weights Nw a fit

FIG. 5. Example of overfitting. The top four plots show
the result of training a regression, where reference profiles were
used for each input value (N = 100). They are completely
uncorrelated to the input as they are obtained without the
phase imprint. However, by increasing the number weights
Nw a regression to the target function (dashed line) seems
possible. Testing the obtained weight vector w with a different
set of inputs reveals that no prediction can be made and the
results stem from overfitting (lower row).

becomes possible (fig. 5, upper row). If the number of
parameters matches the number of training points and all
input profiles are linearly independent, eq. (2) becomes
invertible and the training data is matched. Since there
is no information encoded in the data, testing with data
previously unseen by the model will fail. In the lower row
of fig. 5 this lack of predictive power is obvious.

Data matrix. The one-dimensional data vectors for
all input values and tevo = 1.1 ms are shown in fig. 6, in
the left plot. Each row is the detected one-dimensional
density ni on the camera for input value xi. One sees
the emergent density peak and dip. The position of the
pattern is linearly dependent on the input value, and
thus ∆x/X ∝ ∆z/Z. On the right side of the phase
step, small artifacts in the density are produced when the
DMD is switched on to imprint a phase on one portion of
the cloud. The right plot shows the data set binned for
optimal performance, i. e. 20 bins.
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FIG. 6. Data Matrix. Left: Bare data. Right: Binned data.
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