
Department of Physics and Astronomy

Heidelberg University

Master thesis

in Physics

submitted by

Paul Leonard Große-Bley

born in Cologne

2021



Universal Dynamics and Correlation Functions

of the Three-Dimensional Bose Gas

at a Nonthermal Fixed Point

This Master thesis has been carried out by Paul Leonard Große-Bley

at the

Kirchhoff-Institute for Physics

under the supervision of

Herrn Prof. Thomas Gasenzer



Universelle Dynamik und Korrelationsfunktionen des
dreidimensionalen Bose Gases an einem nicht-thermischen Fixpunkt:

Um nicht-thermische Fixpunkte (NTFP) während der Relaxation des ultra-
kalten, weit aus dem Equilibrium gequenchten Bose Gases zu studieren, wurden
numerische Simulationen des semi-klassischen Gross-Pitaevskii Models in der
’Truncated Wigner‘-Näherung (TWA) verwendet. Indem die Änderung der
Dynamik durch das Quenchen zu sehr kleinen Impuls-Skalen untersucht wurde,
konnte eine mögliche Erklärung für das experimentell entdeckte, unerwartet
langsame Skalierungsverhalten in Glidden et al. [2021] gefunden werden, welche
die scheinbar anomalen kritischen Exponenten nicht auf einen anomalen NTFP
zurückführt. Nachdem, wie in Kobayashi et al. [2021] beschrieben, viele Vortex-
Ringe mit zufälligen Orientierungen und Positionen in einem Kondensat platziert
wurden, konnte ein unerwartet schnelles Skalierungsverhalten (α ≈ 2.4, β ≈ 0.8)
bei späten Zeiten festgestellt werden. Jenes folgte auf ein unterschiedliches
Skalierungsverhalten bei frühen Zeiten welches dem erwarteten Gaußschen
Fixpunkt (α ≈ 1.65, β ≈ 0.55) entspricht. Es wurden Feld-, Dichte- und
Phasen-Korrelationsfunktionen berechnet und verglichen um die Rolle von Dichte-
Fluktuationen am Gaußschen NTFP zu bestimmen. Auf Basis dieser Korrelatoren
wurden verbundene 4-Punkt Korrelationsfunktionen direkt berechnet und, durch
Mikheev et al. [2019] inspiriert, verbundene 2-, 4-, 6- und 8-Punkt Phasenwinkel-
Korrelationsfunktionen indirekt berechnet, unter der Annahme, dass die Vortex-
dominierte Dynamik durch eine niederenergetische, effektive Feldtheorie (EFT)
des Phasenwinkels beschrieben werden kann.

Universal Dynamics and Correlation Functions of the Three-
Dimensional Bose Gas at a Nonthermal Fixed Point:

To study nonthermal fixed points (NTFP) during the relaxation of the ultra-
cold Bose gas quenched far out of equilibrium, numerical simulations of the
semi-classical Gross-Pitaevskii model in the Truncated Wigner Approximation
(TWA) are employed. By investigating the change in dynamics due to quenching
to very small momentum scales, a possible explanation for the experimentally
found, slower than expected scaling behavior in Glidden et al. [2021] is found,
according to which the seemingly anomalous critical exponents do not correspond
an anomalous NTFP. After placing many vortex rings with random orientations
and positions in a condensate as described in Kobayashi et al. [2021], a faster than
expected scaling behavior (α ≈ 2.4, β ≈ 0.8) was observed at late times following
behavior consistent with the expected Gaussian fixed point (α ≈ 1.65, β ≈ 0.55)
at earlier times. Field-, density- and phase correlation functions were calculated
and compared to determine the role of density fluctuations at the Gaussian NTFP.
Based on these, connected 4-point correlation functions were calculated directly
and, inspired by Mikheev et al. [2019], connected 2-, 4-, 6- and 8-point phase-
angle correlation functions were calculated indirectly under the assumption that
a low-energy effective field theory (EFT) in the phase-angle is able to describe
the vortex-dominated dynamics.
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1 Introduction

Ultra-cold Bose gases are at the frontier of research into non-equilibrium quantum
many-body physics. This regime, being probed by experiments around the globe
like Glidden et al. [2021], Johnstone et al. [2019], Prüfer et al. [2018] in all kinds of
configurations, shapes and initial conditions, gives rise to new classes of universal
phenomena waiting to be charted and classified in terms of nonthermal fixed points
(NTFP) of the configuration space. NTFP typically appear during the relaxation of
an isolated Bose gas forming a Bose-Einstein condensate on the way to thermal
equilibrium. This is accompanied by coarsening regions of coherent phase and
vanishing (quasi-) topological excitations like solitons in one dimension, point-vortices
in two dimensions and vortex-lines in three dimensions.

In this thesis, an ultra-cold Bose gas in three dimensions and without an internal
(Spin-) degree of freedom will be probed and analyzed numerically. To accurately
model a weakly interacting Bose gas in the limit of high occupation numbers,
the truncated Wigner approximation (TWA) is used, yielding the Gross-Pitaevskii
equation (GPE) as a semi-classical description. The GPE is integrated numerically
in time using a pseudo-spectral split-step Fourier method starting from sampled
initial conditions distributed around a far-from-equilibrium starting point in configuration
space.

After the successful theoretical [Karl and Gasenzer, 2017] and experimental [Johnstone
et al., 2019] demonstration of a strongly anomalous NTFP for the two-dimensional
Bose gas due to vortex clustering, new experimental results [Glidden et al., 2021]
suggest another anomalous NTFP for the three-dimensional Bose gas, which was not
yet observed numerically. Therefore, the first goal of this thesis will be to reproduce
these experimental results numerically. Second, the use of full and connected correlation
functions shall be explored in the absence of any internal degrees of freedom complicating
their analysis by the sheer number of combinations.

In the following a short introduction to the Wigner-Weyl formalism as the main
ingredient of the TWA, as well as the GPE, its interpretation, vortex lines as its
quasi-topological solutions and NTFPs will be given. In chapter 2 different far-
from-equilibrium initial states will be introduced and the dynamics of their spectra
analyzed for self-similar scaling. Furthermore, in ?? a host of correlation functions
will be defined and analyzed in the presence of the Gaussian NTFP. At last there
will be a synopsis in chapter 4, giving conclusions and an outlook to possible future
research.
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1.1 Wigner-Weyl Quantization

In order to motivate the truncated Wigner approximation (TWA), the Wigner-
Weyl quantization will be introduced loosely following Polkovnikov [2010]. Phase-
space formulations of quantum mechanics like the Wigner-Weyl quantization are
equivalent to the well-known Schrödinger- and Heisenberg-pictures and give a full,
probabilistic description. While the Wigner-Weyl quantization can be derived from
Feynman’s path integral formalism, here it will only be presented starting from the
operator formalism in its coherent state form.
Given the annihilation operator ψ̂ and the creation operator ψ̂† the canonical

coherent state is defined as the eigenstate |ψ〉 of ψ̂ such that

ψ̂|ψ〉 = ψ|ψ〉 (1.1)

with the complex eigenvalue ψ. The equivalent of an operator Ω̂(ψ̂, ψ̂†) in this
formalism is called a Weyl symbol and is given by the Wigner transform

ΩW (ψ,ψ∗) ≡ 1

2M

∫
dMη dMη∗

〈
ψ − η

2

∣∣∣ Ω̂(ψ̂, ψ̂†)
∣∣∣ψ +

η

2

〉

×exp

(
−|ψ|2 − 1

4
|η|2 +

1

2
(η∗ψ − ηψ∗)

)
. (1.2)

Here, M is the number of single particle states in the system. Therefore, operators,
states and eigenvalues are M -vectors, i.e. ψ = {ψj}j=1...M . Operators that are
totally symmetric in the fields can be directly exchanged for their eigenvalues as the
corresponding Weyl symbol. The symmetric ordering of an operator Ω̂(ψ̂, ψ̂†) is also
called Weyl ordering and is denoted as : Ω̂(ψ̂, ψ̂†) :W . To illustrate this, the Weyl
symbol of the number operator n̂ = ψ̂†ψ̂ is nW = |ψ|2 − 1/2, but the Weyl symbol
of the Weyl ordered operator : n̂ :W≡ (ψ̂†ψ̂ + ψ̂ψ̂†)/2 is just |ψ|2. By construction,
correlation functions calculated in the path integral formalism are also Weyl ordered.
TheWeyl symbol of the density matrix %̂ is the so-calledWigner functionW(ψ,ψ∗).

It is of special importance, as it serves as the quasi-probability distribution:
〈

Ω̂(ψ̂, ψ̂†)
〉

=

∫
dMψ dMψ∗ΩW (ψ,ψ∗)W(ψ,ψ∗) (1.3)

What distinguishesW(ψ,ψ∗) from a proper probability distribution is that it is not
necessarily positive-definite.
The Weyl symbol of the product of two operators is

(Ω1Ω2)W = Ω1,W exp

(
Λ

2

)
Ω2,W , (1.4)

with the symplectic coherent state operator

Λ ≡
∑

j

←−
∂

∂ψj

−→
∂

∂ψ∗j
−
←−
∂

∂ψ∗j

−→
∂

∂ψj
, (1.5)
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where the arrows above the derivatives mark the direction in which they act. Using
this, the equivalent of the commutator is the coherent state Moyal bracket

([Ω1,Ω2])W = {Ω1,W ,Ω2,W}MBC ≡ 2 Ω1,W sinh

(
Λ

2

)
Ω2,W . (1.6)

When applying the Wigner transformation to both sides of the von Neumann
equation

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂], (1.7)

which describes quantum dynamics in the Schrödinger picture, one gets a master
equation for the Wigner function:

ih̄Ẇ = 2HW sinh

(
Λ

2

)
W , (1.8)

where HW is the Weyl symbol of the Hamiltonian describing the system.
By expanding the hyperbolic sine one finds that the zeroth order term yields the

classic Liouville equation while the following terms can be interpreted as quantum
corrections, which in general do not have to be small. However, in the presence
of high occupation numbers |ψ| � 1 (wave-limit), higher order terms become less
important and truncating the expansion becomes a viable option for a semi-classical
approximation. Truncating after the first order quantum correction is then called
the truncated Wigner approximation (TWA).

1.2 The Gross-Pitaevskii Equation

After introducing the TWA, it will now be applied to the specific system in question
by plugging the Bose gas Hamiltonian

Ĥ =

∫
d3x ψ̂†

(
h̄2

2m
~∇2 + Vext(~x) + gψ̂†ψ̂

)
ψ̂ ≡

∫
d3x ψ̂†Kψ̂, (1.9)

with an external potential Vext(~x) added for generality, into Equation 1.8. The
resulting Fokker-Planck equation

ih̄
∂W
∂t

=

∫
d3x

(
− δ

δψ(~x)
Kψ +

1

4

δ3

δ2ψδψ∗
ψ

)
W − c.c. (1.10)

≈
∫

d3x
δ

δψ(~x)
KψW − c.c., (1.11)

where the TWA was applied to get rid of the third order functional derivatives, can
be rewritten as a stochastic partial differential equation in ψ, which is equivalent to
the non-linear Schrödinger or Gross-Pitaevskii equation (GPE) [Steel et al., 1998]:

ih̄
∂

∂t
ψ(~x, t) =

(
h̄2

2m
~∇2 + Vext(~x) + g |ψ(~x, t)|2

)
ψ(~x, t). (1.12)
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In three-dimensional space the coupling constant g of the non-linearity can be related
to the s-wave scattering-length aS by

g =
4πh̄2aS
m

. (1.13)

Given the average density ρ = N/V , where V is the simulated volume, the characteristic
length scale of the GPE is the healing length

ξ ≡ h̄√
2mgρ

(1.14)

and the characteristic time scale can be taken to be 2mξ2/h̄. The characteristic
momentum scale is therefore naturally the so-called healing momentum

kξ =
h̄

ξ
=
√

2mgρ. (1.15)

Originally the GPE is used as the mean-field description of only the condensate
mode of a Bose gas [Gross, 1961, Pitaevskii, 1961]. In the context of the TWA it
instead describes the full matter field.
Substituting the Madelung transform ψ(~x, t) =

√
ρ(~x, t)eiθ(~x,t) into the GPE,

separating the real and imaginary part of the equation and identifying the velocity
~v(~x, t) = h̄

m
~∇θ(~x, t), one finds

∂

∂t
ρ = −~∇(ρ~v) (1.16)

∂

∂t
~v + (~v · ~∇)~v = − 1

mρ
~∇(P + Pq)− 1

m
~∇Vext, (1.17)

where the quantum pressure Pq ≡ −ρ h̄
2 ~∇2

4
log ρ is expected to be insignificant

at low energies, while the pressure P ≡ gρ2

2
arising from density interactions is

dominating. These equations are the quantum analogue to the Euler equations of
classical fluids. While the first equation is the continuity equation expressing the
conservation of particle number (or mass), the second equation is concerned with
momentum conservation. Conservation of total momentum is naturally only possible
in the case of Vext = 0.

1.3 Universal Scaling

Starting from far-from-equilibrium initial states, one often finds that before finally
thermalizing, the system approaches a non-thermal fixed point (NTFP). In the
vicinity of that NTFP, one can observe a critical slowing down of the dynamics
as well as local power laws in the angle-averaged occupation number spectrum

n(k, t) ≡ 1

4π

∫
dΩk〈ψ̂†(~k, t)ψ̂(~k, t)〉. (1.18)
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The power laws then show self-similar scaling in time as

n(k, t) = (t/t0)αn((t/t0)βk, t0), (1.19)

where t0 is an arbitrary reference time inside of the scaling time interval and α and
β are critical exponents [Piñeiro Orioli et al., 2015]. Physically, this corresponds to
a transport of particles to lower momentum scales, while energy is transported to
higher momentum scales. There, a thermal tail k−2 develops long before the whole
system thermalizes.
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2 Initial States and Scaling

As calculating and sampling theWigner distribution for any complex, non-equilibrium
state is notoriously hard, the Wigner distribution is instead approximated by a
independent Gaussian distribution for each mode. The Gaussian distributions are
chosen to have the same first and second statistical moments as theWigner distribution
corresponding to a Fock states. This is accomplished by centering it around the
number of particles in the Fock state using a standard deviation of 1/2. In practice
one takes a mean-field initial condition ψ0(~k) and adds complex noise η which is
normally distributed on both the real and imaginary axis independently, both with
a mean of 0 and a standard deviation of 1/2.

2.1 Box Initial State

The box initial condition as based on Piñeiro Orioli et al. [2015] is used as a well
known reference initial condition, which is found to reliably lead to the Gaussian

NTFP. To introduce dynamic instabilities, only modes ψ(~k) =

√
n(~k)eiθ(~k) up to the

cutoff momentum kcutoff are occupied:

n(~k) =
N∫

d3k′Θ(kcutoff − |~k′|)
Θ(kcutoff − |~k|). (2.1)

Here, Θ is the Heaviside step function and the cutoff momentum kcutoff is usually
chosen to be the inverse ’coherence length‘ Q ≡

√
2kξ. The phase-angle θ(~k) is

chosen randomly from a uniform distribution over the range [0, 2π). The used initial
state differs from the cited one in including the condensate mode ψ(~k = ~0) in the
’box‘, which is not observed to affect the dynamics in the universal regime. While
such an idealized cutoff can not be achieved experimentally during a strong cooling
quench, the dynamics in the universal regime are independent of the form of any
power law tail between the over-occupied IR modes and the unoccupied UV modes
in the initial distribution, as long as the power law is steep enough [Nowak et al.,
2014].
The spectrum of this reference initial state can be found in Figure 2.1a. Relying

on the fitting procedure described in Piñeiro Orioli et al. [2015] (the only difference
being that a time in the middle of the logarithmical time interval was taken to be
the reference time), the universal exponents were found to be α = 1.68 ± 0.06 and
β = 0.56± 0.03. A rescaled spectrum can be found in Figure 2.3.
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Figure 2.1: Angle-averaged occupation number spectrum of the box initial state with
different kcutoff and at logarithmically spaced times showing self-similar
scaling. Both axes use logarithmic scales to visualize the scaling and
power laws in momentum k but include a linear region around 0 to
accommodate the condensate mode k = 0 and the empty UV-modes of
the initial state. The error of n is estimated using bootstrap resampling
and marked by a semi-transparent error band which is only visible as a
line between the data points at low momenta.
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Figure 2.2: Occupation number of the condensate mode of the box initial state with
different kcutoff and at logarithmically spaced times showing universal
scaling. Both axes use logarithmic scales to visualize the scaling and
power law in time t. The error of n(0, t) is estimated using bootstrap
resampling and marked by a semi-transparent error band.
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Figure 2.3: Log-log plot of the rescaled, angle-averaged occupation number spectrum
in the k region used for fitting the universal exponents at logarithmically
spaced times simulated from the box initial state with kcutoff = 1.4kξ.
The error of n is estimated using bootstrap resampling and marked by
error bars.

2.1.1 Decreasing the Cutoff Momentum

When trying to reproduce the slow scaling found experimentally in Glidden et al.
[2021] after a strong cooling quench, slow dynamics were observed when decreasing
kcutoff significantly below the inverse coherence length Q. As the fitted exponents α
and β of the occupation number spectra like the ones pictured in Figure 2.1b are
strongly dependent on the choice of time interval (See Figure 2.4), these dynamics
might not actually represent universal scaling and therefore a new NTFP, but instead
a very slow case of prescaling or a superposition of universal dynamics with non-
universal phenomena. The problem becomes very clear with a look at the occupation
number of the condensate mode in Figure 2.2b in comparison to the same plot for
kcutoff = 1.4kξ in Figure 2.2a. While the condensate mode at kcutoff = 1.4kξ reflects
the universal dynamics with α ≈ 1.65, the condensate mode at kcutoff = 0.1kξ shows
significant and systematic oscillations. At late times, where the systems seems to
enter an actual scaling regime, a scaling analysis of the spectrum is inhibited by
the fact that the IR plateau is already below the finite momentum resolution of
the simulation. These oscillations cause the dependence of fitted exponents on the
choice of time interval and might be the cause of the seemingly slow scaling found
experimentally as well. Due to the lack of information on the form of the initial
state or approximate kcutoff achieved by the experimental cooling quench it is not
possible to come to a clear result in that regard.
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Figure 2.4: Fitted critical exponents α and β against the time of the latest
occupation number spectrum used in the fit. Using only very early times
it is possible to arrive at very small exponents.
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2.2 Random Vortex Rings

Instead of designing the initial state around a given spectrum and generating vortices
through instabilities, the random vortex rings (RVR) initial state as described in
Kobayashi et al. [2021] consists of Nv big artificially placed vortex loops placed
randomly on a condensate background. The vortex rings are all of the same radius
Rv and to keep the total momentum of the system at zero, two rings of opposite
circulation are placed on the lattice in parallel at a distance dv = 2Rv. While the
position of the vortex ring pair is chosen at random from a continuous uniform
distribution over the full computational lattice, the orientation is chosen from a
discrete uniform distribution over the six possible orientations along the three axes
of the lattice. This particular configuration is rather easy to implement numerically
while respecting the periodic boundary conditions. To add vortex rings to a condensate
initial state, the Padé approximated form of single vortex ring ψVR is multiplied
with the condensate wavefunction ψ0(~x) =

√
ρ0eiθ0 = const in the center of the grid.

Choosing the coordinate origin of x, y, z to be in the middle of the grid and the
symmetry axis of the ring to be in the z-direction, as well as defining r ≡

√
x2 + y2,

the approximation of a single ring has the following form:

ψVR(r, z, R) ≡ f

(√
(r −R)2 + z2

)
exp

(
i arctan

(
z

r −R

))
, (2.2)

f(d) ≈
√

a1(d/ξ)2 + a2(d/ξ)4

1 + b1(d/ξ)2 + a2(d/ξ)4
, (2.3)

a1 ≡
73 + 3

√
201

352
, a2 ≡

6 +
√

201

528
, b1 ≡

21 +
√

201

96
. (2.4)

A ring of opposite circulation is achieved by taking the complex conjugate of this
solution which corresponds to transforming z → −z. Additionally, to help with the
periodic boundary conditions, the long range effects of each vortex ring from the six
’neighboring volumes‘ are also multiplied with the condensate wave function:

ψVR(x, y, z, R)→ ψVR(x, y, z)

× ψVR(Lx + x, y, z, R)ψVR(−Lx + x, y, z, R)

× ψVR(x, Ly + y, z, R)ψVR(x,−Ly + y, z, R)

× ψVR(x, y, Lz + z,R)ψVR(x, y,−Lz + z, R), (2.5)

where Lx, Ly and Lz are the extents of the computational grid in each dimension.
After placing the two rings of a pair, they can be shifted by a random offset ~w by
multiplying by exp(i~k · ~w) in Fourier space.
The spectrum of the RVR initial state with Nv = 800, Rv = L/4 on a grid of

extents L = Lx = Ly = Lz = 512 and subsequent times is pictured in Figure 2.5.
The amount of particles in the UV tail is noticeably smaller than for the box initial
condition which uses the same simulation parameters. When taking a more precise
look at the condensate mode in Figure 2.6, one can observe that there seems to be
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a transition between the NTFP found from the box initial condition at early times
and a faster (anomalous) scaling at later times. Also the total amount of particles in
the condensate is at least an amplitude smaller compared to both of the box initial
states at the same times. Fitting the spectra yields the exponents

α = 1.61± 0.10, β = 0.55± 0.07, 200 ≤ t

2mξ2/h̄
≤ 800 (2.6)

in the early time interval and

α = 2.38± 0.11, β = 0.82± 0.05, 800 <
t

2mξ2/h̄
≤ 6400 (2.7)

in the late time interval. The rescaled spectra for both time intervals can be found
in Figure 2.7.
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Figure 2.5: Angle-averaged occupation number spectrum of the RVR initial state at
logarithmically spaced times showing self-similar scaling. Both axes use
logarithmic scales to visualize the scaling and power laws in momentum
k but include a linear region around 0 to accommodate the condensate
mode k = 0 and the empty UV-modes of the initial state. The error
of n is estimated using bootstrap resampling and marked by a semi-
transparent error band which is only visible as a line between the data
points at low momenta.
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Figure 2.6: Occupation number of the condensate mode of the RVR initial state at
logarithmically spaced times showing universal scaling with two different
exponents. Both axes use logarithmic scales to visualize the scaling and
power laws in time t. The error of n(0, t) is estimated using bootstrap
resampling and marked by a semi-transparent error band.
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Figure 2.7: Log-log plot of the rescaled, angle-averaged occupation number spectrum
in the momentum regions used for fitting the universal exponents at
logarithmically spaced times in the early and late time interval simulated
from the RVR initial state. The error of n is estimated using bootstrap
resampling and marked by error bars.
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3 Correlation Functions

In the absence of an external potential, translational and rotational invariance in
position space are assumed for TWA-sampled observables on average. Therefore,
any correlation function C(~x, ~y) will be averaged over position space, yielding C(~y−
~x) ≡ C(~r) and then over the solid angle, yielding C(|~r|) ≡ C(r). Analogously the
number density ρ(~x), which is used as normalization, will be averaged over position
space because there is no inherent distance r to it. Due to numerical constraints,
all spatial averages were taken before averaging over TWA-samples (of then one-
dimensional observables) and calculating composite observables (e.g. normalization
of correlation functions by ρ and calculating squares of ’normal‘ observables for
connected correlation functions).

3.1 Full Correlation Functions

The normalized, Weyl-ordered 2-point correlation function

g(1)(~x, ~y, t) ≡ 1

ρ

〈
: ψ̂†(~x, t)ψ̂(~y, t) :W

〉
(3.1)

and the density-density (4-point) correlation function

g(2)(~x, ~y, t) ≡ 1

ρ2

〈
: ψ̂(~x, t)ψ̂†(~x, t)ψ̂(~y, t)ψ̂†(~y, t) :W

〉
, (3.2)

are analogous to observables of the same names from earlier works such as Świsłocki
and Deuar [2016].
As can be seen in Figure 3.1a, the field correlator g(1) mainly shows an exponential

decay towards long distances r, with the rate of decay getting smaller over time,
similar to the results reported in Schmied et al. [2019] for the spinor Bose gas.
This signifies the growth of regions of similar phase θ(~x) which will be confirmed
in the following by the phase correlation functions. For early times, one can find
some rather complex behavior at the end of the approximately exponential decay,
which at later times is not observable anymore due to the finite size of the simulated
volume. The existence of scaling behavior in the field correlations will be further
discussed in the context of connected phase-angle correlators (subsection 3.2.2).
The density correlation function g(2) which can be seen in Figure 3.2 shows a

lot less in terms of dynamics. While there is a drop in correlation which might be
encompassing several different power laws at small distances r, for long distances
the correlation function stays approximately at 〈: ρ̂ :W 〉2/ρ2, which is expected for
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the thermalized Bose condensate. While there could be some scaling behavior in
the power laws at small to intermediate distances, it is exceedingly hard to extract
due to the thermal noise that is expected to be dominating at small distances and
the very small range in which there seems to be a stable power law. As one clearly
needs to rescale the data on both the ordinate and the abscissa to achieve overlap,
one would also need to identify two power laws to try any systematic approach.

Moving on, the 2j-point correlation function given by
(
ψ̂†(~x, t)ψ̂(~y, t)

)j
will be

termed g(1,j), such that g(1) ≡ g(1,1) and

g(1,j)(~x, ~y, t) ≡ 1

ρj

〈
:
(
ψ̂†(~x, t)ψ̂(~y, t)

)j
:W

〉
. (3.3)

Only the 4-point correlation function g(1,2) will be shown at this point in Figure 3.1b,
as the g(1,j), j > 1 on their own are visually very similar to the g(1). To investigate the
effect of phase excitations on their own, analogous phase eiθ̂(~x,t) ≡ ψ̂(~x,t)

|ψ̂(~x,t)| correlation
functions are defined as

g
(1,j)
θ (~x, ~y, t) ≡

〈
:
(

eiθ̂(~x,t)e−iθ̂(~y,t)
)j

:W

〉
. (3.4)

Because these phase correlation functions were visually indistinguishable from the
respective full field correlation functions g(1,j), Figure 3.3 shows the 2- and 4-point
phase correlation functions divided by their field correlation function counterparts.
Apart from very small distances and times, the phase correlation functions encode
the same spatial information as the field correlation functions.

3.2 Connected Correlation functions

Due to the U(1) symmetry of the system, the mean field 〈ψ̂(~x, t)〉 as well as any
correlation functions containing unpaired bosonic field operators like 〈ψ̂(~x, t)ψ̂(~y, t)〉
or 〈ψ̂(~x, t)ψ̂†(~x, t)ψ̂(~y, t)〉 have to vanish as they are not invariant under global U(1)-
transformations. In practice, however, they are nonzero due to finite size/finite
sampling size effects. When taking them into account while calculating connected
correlation functions, they can contribute significantly, especially when phase-ordering
dynamics create long-range order over the whole computational grid. As can be
seen in Appendix B, these contributions and their combinations, as they would be
used for connected correlation functions, depend strongly on the number of samples
while the full correlation functions do not. Therefore, these contributions will be
disregarded in the following.

3.2.1 Connected 4-point Correlation Functions

Given the above considerations, the 2-point correlation function already corresponds
to a connected correlation function g(1)

c ≡ g(1), while the connected 4-point functions
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(a) 2-point correlation function
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(b) 4-point correlation function

Figure 3.1: Normalized, angle-averaged 2- and 4-point field-field correlation
functions of the box initial state with kcutoff = 1.4kξ and at
logarithmically spaced times showing coarsening. To visualize the
exponential decay, the ordinate uses a logarithmic scale up to a region
around zero to accommodate negative values of the correlation functions
while the abscissa (distance r) is using a linear scale. The errors of
the correlation functions are estimated using bootstrap resampling and
marked by a semi-transparent error band.
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Figure 3.2: Normalized, angle-averaged density-density (4-point) correlation
function of the box initial state with kcutoff = 1.4kξ and at logarithmically
spaced times. To focus on the (comparatively small) dynamics, all values
were subtracted by the constant (g(1)(0, t))2 which can be evaluated to
(1 + 1/(2ρ))2 ≈ 1 in the context of TWA on a discretized lattice. Both
axes use a logarithmic scale up to a region around zero to accommodate
g(2)(0, t) ≡ 〈ρ̂2〉/〈ρ̂〉2 and the correlator slightly undershooting
(g(1)(0, t))2 at long distances r. The error of g(2) is estimated using
bootstrap resampling and marked by a semi-transparent error band.
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(b) 4-point correlation function ratio

Figure 3.3: Ratio between the angle-averaged 2- and 4-point phase correlation
functions and the 2- and 4-point field correlation functions of the box
initial state with kcutoff = 1.4kξ and at logarithmically spaced times.
To focus on the dynamics mostly happening at small distances r, the
abscissa uses a logarithmic scale up to a region around zero. The errors
of the ratios are estimated using bootstrap resampling and marked by a
semi-transparent error band. To avoid values with big errors, the ratios
are only plotted at distances where |g(1,j)(r, t)| > 10−3, j ∈ {1, 2}.

23



are given by

g(2)
c (~r, t) ≡ g(2)(~r, t)−

(
g(1)(~r, t)

)2 −
(
g(1)(~0, t)

)2

, (3.5)

where g(1)(~0, t) ≡ 〈: ρ̂ :W 〉/ρ and

g(1,2)
c (~r, t) ≡ g(1,2)(~r, t)− 2

(
g(1)(~r, t)

)2
. (3.6)

Both connected 4-point correlators depicted in Figure 3.4 seem to be dominated by
the −(g(1))2 contribution in their roughly exponential decay but look quite different
at long distances, where already the g(1) showed some complex behavior. While the
−(g(1))2 term naturally can not be positive, both connected correlators overshoot
zero at different distances r. For comparison with the phase-angle correlators of the
next section, Figure 3.5 shows minus the exponent of the decay of the two connected
4-point correlation functions. While they are very similar in form, the − log(−g(1,2)

c )
flattens off more at short distances and is more consistent between different times
in its slope at long distances.

3.2.2 Connected Phase-Angle Correlation Functions

An alternative way of arriving at connected correlation functions was inspired by
Mikheev et al. [2019], where a low-energy effective field theory (EFT) for the U(N)
models was proposed. The EFT is derived from the full theory by integrating out
the density degree of freedom, as the density excitations are much more costlier
in terms of energy than the phase excitations which are the Goldstone bosons of
the U(1) symmetry and therefore massless. It should be mentioned here that the
proposed EFT does not include (quasi-) topological excitations like vortex-lines and
is therefore generally not expected to describe the numerical results in this thesis.
However, the cited paper also makes use of the expansion of the generating functional
of the EFT

Zeff[J ] ≡
∫

Dθ exp

{
iSeff[θ] + i

∫

x,C

J(x)θ(x)

}
(3.7)

in the connected n-point correlation functions functions G(n)

Z[J ] = exp

{ ∞∑

n=1

∫

{xi}ni=1,C

in

n!
G(n)(x1, . . . , xn)J(x1) . . . J(xn)

}
(3.8)

to relate the 2-point phase correlation function to connected phase-angle correlation
functions G(n)

θ (~x1, . . . , ~xn, t) = 〈θ(~x1, t) . . . θ(~xn, t)〉c without applying any functional
derivatives. This is achieved by observing that for this special case, evaluating the
generating functional with delta distributions as source terms gives phase correlation
functions:

Zeff[{J = j[−δ(~x− ~r) + δ(~x)]δC(x0 − t), 0}] =

∫
Dθ (eiθ(~x,t)e−iθ(~x−~r,t))jeiSeff[θ]

= g
(1,j)
θ (~x, ~x− ~r, t) (3.9)
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(a) Density correlation function
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(b) Field correlation function

Figure 3.4: Normalized, angle-averaged connected 4-point density and field
correlation functions of the box initial state with kcutoff = 1.4kξ and
at logarithmically spaced times showing coarsening. To visualize the
exponential decay, the ordinates use logarithmic scales up to a region
around zero to accommodate negative values of the correlation function
while the abscissas (distance r) are using a linear scale. The error of the
connected correlation functions is estimated using bootstrap resampling
and marked by a semi-transparent error band.
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(a) Density correlation function
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Figure 3.5: Minus the logarithm of minus the angle-averaged connected 4-point
density and field correlation functions of the box initial state with
kcutoff = 1.4kξ and at logarithmically spaced times showing universal
scaling in r. For each time only distances up to the first r where
the standard deviation of the respective correlation function grows
bigger than its mean are used, stopping the evaluation before they
turn negative. To visualize the different power laws in the exponent of
the correlators, the ordinates use logarithmic scales while the abscissas
(distance r) are using a logarithmic scale up to a region around zero.
The error of the observables is estimated using bootstrap resampling
and marked by a semi-transparent error band which is not visible due
to its small size.
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Evaluating Equation 3.8 for the same source term gives the following expansion:

g
(1,j)
θ (~x, ~x− ~r, t) = exp

{ ∞∑

n=1

jn
in

n!
G(n)
θ (~r, t)

}
, (3.10)

where the connected n-point phase-angle correlation functions were grouped into
terms

G(n)
θ (~r, t) ≡

∑

~x1∈{~0,~r}

. . .
∑

~xn∈{~0,~r}

(−1)
∑n

i=1 δ~r,~xi G
(n)
θ (~x1, . . . , ~xn, t). (3.11)

The terms G(n)
θ (~r, t) combine Weyl ordered connected correlation functions

G
(n,q)
θ,sym(~r, t) ≡ (−i)nδn log(Z[J ])

δn−qJ(~0, t) δqJ(~r, t)

∣∣∣∣
J=0

, q ∈ {0, . . . , n} (3.12)

in the following way:

G(n)
θ (~r, t) =

n∑

q=0

(−1)q
(
n

q

)
G

(n,q)
θ,sym(~r, t). (3.13)

Under translational and rotational invariance only even orders contribute, as
for uneven n there is always two G(n)

θ (~x1, . . . , ~xn, t) with ~r ↔ ~0 inverted position
combinations cancelling each other out. This also can verified in Equation 3.13 by
observing that G(n,q)

θ,sym(~r, t) = G
(n,n−q)
θ,sym (~r, t) and that for uneven n the sign of the q

and q′ = n− q terms is opposite.
Given the observables g(1,1)

θ , . . . , g
(1,jmax)
θ , taking the logarithm on both sides of

Equation 3.10 and approximating it by cutting off the expansion after nmax = 2jmax

orders, one gets a system of equations which can be solved for (−1)k

(2k)!
G(2k)
θ (~r, t) by

(numerically) inverting the matrix M = {Mj,k = j2k | j, k = 1, . . . , jmax}.
The resulting G(n)

θ for jmax = 4, as well as the log(g
(1,j)
θ ), of which they are

linear combinations of, are pictured in Figure 3.6. The result is clearly consistent
with regards to higher orders n of the expansion of g(1)

θ being smaller than lower
orders. While the leading order G(2)

θ is therefore almost identical with − log(g
(1)
θ ),

the higher orders show a power law reaching to much smaller distances r than
the power law visible at the leading order. At the smallest distances a plateau is
developing over time. While the power law of the leading order roughly translates to
a linear exponent of the decay of the field correlation seen in the pure field correlation
functions, the power law of higher orders n all correspond roughly to contributions
quadratic in r.

One can naively exchange g(1,n)
θ (~r, t) with field correlators

g
(1,j)
φ (~r, t) ≡ g(1,j)(~r, t)

g(1,j)(~0, t)
(3.14)
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Figure 3.6: Log-log plots of minus the logarithm of the 2-, 4-, 6- and 8-point phase
correlation functions − log(g

(1,j)
θ ) on the left as well as the combinations

of connected 2-, 4-, 6- and 8-point phase-angle correlation functions G(n)
θ

on the right. Each connected correlation function on the right side is a
linear combination of the four observables on the left side. The different
colors correspond to the same logarithmically spaced times as in previous
Figs. (black t = 0, blue t = 100, yellow t = 400, green t = 1600, red
t = 6400, where t is given in characteristic time units 2mξ2/h̄). For each
time only distances up to the first r where the standard deviation of any
g

(1,j)
(θ) grows bigger than its mean are used, stopping the evaluation before
they turn negative. Errors on both sides were estimated using bootstrap
resampling and are marked using semi-transparent error bands which are
not visible due to their small size. While the leading order G(2)

θ naturally
shows the same behavior as − log(g

(1)
θ ), the higher orders all show the

same behavior with the visible power law reaching smaller distances r
than the leading order.
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and observe the difference in behavior due to density fluctuations. The different
normalization is chosen to match g(1,j)

θ (~0, t) ≡ 1. However, to find a quantum field
theoretic description of such an observable, one would need to devise a description
in terms of the complex pseudo phase-angle φ(~x, t) ≡ θ(~x, t) − i

2
log(ρ(~x, t)). After

seeing previously that the phase correlation functions g(1,j)
θ and the field correlation

functions g(1,j) seem to carry the same spatial information at intermediate and long
distances r, it is not surprising that the G(n)

θ and G(n)
φ are very similar as well. The

main difference visible in the plots is that the plateau at short distances of the
n > 2 terms goes further and therefore the quadratic region is smaller when density
fluctuations are included.
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of connected 2-, 4-, 6- and 8-point phase-angle correlation functions G(n)
φ

on the right. Each connected correlation function on the right side is a
linear combination of the four observables on the left side. The different
colors correspond to the same logarithmically spaced times as in previous
Figs. (black t = 0, blue t = 100, yellow t = 400, green t = 1600, red
t = 6400, where t is given in characteristic time units 2mξ2/h̄). For each
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resampling and are marked using semi-transparent error bands which
are not visible due to their small size.
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4 Conclusions and Outlook

Quenching a Bose gas far below its characteristic momentum scale results in dynamics
that, due to oscillations in the scaling behavior, can lead to very small or very big
exponents α and β. Due to the limited amount of times that can be inspected
experimentally because of the destructive nature of quantum measurement, this is a
possible explanation of the observation of small exponents in Glidden et al. [2021].
As the characteristics of the experimental cooling quench are not easily accessible
from the information given in the paper, it is still possible that there is an actual
anomalous NTFP causing the slow scaling in the experiment, which was not captured
by the simulations due to the abstract nature of the used initial states. In the future
one could try to produce more realistic data by simulating the cooling quench itself,
instead of assuming its effect to be comparable with the effect of a box initial state.
By simulating a Bose gas with many big vortex rings at random positions and

orientations as proposed by Kobayashi et al. [2021] as random vortex rings (RVR),
fast anomalous scaling with β ≈ 0.8 and α ≈ 2.4 was observed at late times. This
new anomalous NTFP should be further investigated to find out how the dynamics
differ exactly from the Gaussian NTFP. The fact that it appears after showing
scaling compatible with the Gaussian NTFP, instead of before it, makes it even
more interesting.
Comparing field and phase correlation functions, it was possible to confirm that

almost all spatial information which encompasses the critical scaling is part of the
phase field. Density fluctuations certainly also play an important role for the thermal
background in the UV which allows vortex lines to shrink and vanish.
The very similar results of the two different connected 4-point correlation functions

at intermediate distances might be seen as a sign of their correctness, but a physical
interpretation of these results remains to be found. While it seems to be possible to
extract β from these correlations, the result does not differ significantly from what
was already extractable from full field correlation functions. Still, observables that
allow the β to be determined independently from α could play an important role in
future numerical research because it circumvents the problem that the IR plateau in
the occupation number spectrum scales to momenta too small to be resolved on the
computational lattice which in turn makes it impossible to determine the critical
exponents independently from the spectra.
The connected phase-angle correlation functions that were extracted indirectly

should be compared to directly computed phase-angle correlation functions to check
the validity of assuming an EFT in the phase-angle despite the presence of vortex
lines.
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Appendix

32



A Numerical Solution of the GPE

A.1 Dimensionless GPE

Given an arbitrary length scale `, we can define the following dimensionless variables
and constants:

~̄x ≡ ~x

`
, t̄ ≡ h̄

2m`2
t,

ψ̄(~̄x, t̄) ≡ `3/2ψ(~x, t), V̄ (~̄x) ≡ 2m`2

h̄2 V (~x), ḡ ≡ 2m

`h̄2 g = 8πāS.

(A.1)

After substituting these in eq. 1.12, dividing by h̄2

2m`2
and dropping the bar from the

dimensionless variables and constants one gets the dimensionless GPE:

i∂tψ(~x, t) =
(
−~∇2 + V (~x) + g |ψ(~x, t)|2

)
ψ(~x, t). (A.2)

In this thesis all shown numerical results used the following numerical parameters:

N = 64× 109, ḡ = 0.00104858, L = 512, ∆t̄ = 0.05, (A.3)

where L is the extent of the numerical lattice in all three directions, s.t. the simulated
volume is V̄ = L3, and ∆t̄ is the step size in numerical time units.

A.2 Position Discretization

The length scale ` is chosen as the lattice spacing of the numerical lattice. The
discretization in position space is therefore ~x~j =

∑
i(ji mod Li)ei, where ~j is the

three-vector of indices, Li is the number of vertices on the lattice in ith direction and
ei are the basis vectors. The modulo operation comes into play due to the nature
of the split-step Fourier algorithm which assumes periodic boundary conditions as
described in section A.5.
In the following, ψj ≡ ψ(~x~j) is used as a shorthand. Furthermore, it makes sense

to define the discrete Fourier transform (DFT) as

Φ~q =
1√
L

Li∑

~j

ψje
i2π~q~j/Li . (A.4)
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A.3 Momentum Discretization

The momentum space discretization is chosen to enforce the periodic lattice dispersion
relation:

k̂2ψj = −∇2ψj ≈ −(ψj+1 − 2ψj + ψj−1) (A.5)

=
1√
L

L∑

q=0

ψq e−i2πqj/L4 sin2(πq/L). (A.6)

This choice implicitly sets the maximum absolute numerical momentum to 2
√

3
(See section A.3), as numerical momentum takes values between -2 and 2 in each
dimension.

A.4 Time Discretization

Starting from the formal solution ψ(t) = U(t, t0)ψ(t0) with

U(t, t0) = T exp

(
−i
∫ t

t0

dt′K(t′)

)
, (A.7)

where T is the time-ordering operator and K corresponds to the ’Hamiltonian‘ of the
GPE defined in section 1.2, one arrives at the basic numerical ansatz by discretizing
time:

U(t, t0) = T
Nt∏

s=0

exp (−i∆tK(ts)) ≡ T
Nt∏

s=0

U(ts) (A.8)

A.5 Split-Step Fourier Method

To solve the Gross-Pitaevskii equation numerically while conserving the number
of particles, the pseudo-spectral Split-Step Fourier method is used. The ansatz of
explicitly calculating the discretized time evolution operator U(ts) is modified by
splitting K into operators that are diagonal in position space Kpos like an external
potential and the non-linear interaction term and ones that are diagonal in momentum
space Kmom like the kinetic term:

e−i∆tK = e−i∆tKmome−iKpos +O(∆t2) (A.9)

Now one can use a DFT to transform the state ψ between position basis and
momentum basis such that the operators become diagonal and therefore the matrix
exponential becomes an element-wise exponential. By using the Fast-Fourier-Transform
(FFT) algorithm, the DFTs can be computed very efficiently with O(N logN )
computational complexity and on modern (massively) parallel computer hardware
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using the FFTW and CUFFT implementations. For solving the Gross-Pitaevskii
equation to O(∆t2) without significantly increasing numerical complexity, This
naive algorithm can be improved upon by introducing half steps [Javanainen and
Ruostekoski, 2006]:

e−i∆tK = e−i ∆t
2
Kmome−iKpose−i ∆t

2
Kmom +O(∆t3). (A.10)

As one normally only analyzes snapshots of the system many numerical time steps
apart, one can in practice fuse the momentum space half steps of different time steps
to arrive at an algorithm which only has half steps at the beginning and end of time
integration while the bulk of steps is done in the same fashion as for the O(∆t2)
algorithm.
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B Finite Size / Finite Sampling Size
Effects

As can be seen in Figure B.1, unphysical observables change significantly with the
amount of TWA samples while physical ones show no such behavior that would
have to be canceled out in a connected correlation function. While at early times
the regions of coherent phase are so small that averaging over the simulation volume
already reduces observables dependent on the mean field to very small values, they
grow so big at late times that many more TWA-samples are needed to keep these
observables insignificant.
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Figure B.1: Examples of how the mean field which should vanish due to the U(1)
symmetry grows over time, while decreasing with an increasing amount
of TWA-samples, while an arbitrary observable that is independent of
global phase rotations shows no trend at all with an increasing amount
of TWA-samples.
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