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Abstract. We introduce a bang-bang shortcut to adiabaticity for the Dicke model,

which we implement via a 2-D array of trapped ions in a Penning trap with a spin-

dependent force detuned close to the center-of-mass drumhead mode. Our focus is on

employing this shortcut to create highly entangled states that can be used in high-

precision metrology. We highlight that the performance of the bang-bang approach is

comparable to standard preparation methods, but can be applied over a much shorter

time frame. We compare these theoretical ideas with experimental data which serve

as a first step towards realizing this theoretical procedure for generating multi-partite

entanglement.
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1. Introduction

The field of quantum metrology has the potential to drastically improve precision

measurements from the standard quantum limit to the Heisenberg limit. These

techniques rely on the ability to create entangled quantum states and employ them, via

interferometric methods, to produce high-accuracy measurements. A range of different

techniques can be employed to harness the metrological applications of a variety of

entangled states [1, 2, 3, 4, 5].

Creating these metrologically useful states is generally a difficult task. One

promising method is adiabatic state preparation, where the system starts with a simple

Hamiltonian that has an easily produced product state as its ground state and is then

adiabatically evolved to the entangled ground state of a complex Hamiltonian by slowly

varying an external parameter. The challenge is that the adiabatic state preparation

must be done slowly compared to the relevant minimum energy gap to reduce unwanted

diabatic excitations during the evolution. For systems that have vanishing gaps in

the thermodynamic limit, the minimal gap for a finite system often decreases inversely

with the system size making adiabatic state preparation particularly difficult for larger

systems. Current quantum simulators cannot evolve the system long enough to be able

to fully carry out this process, as they are limited by decoherence and technical noise.

This constraint, of a short evolution time, inevitably produces diabatic excitations,

which can be significant and can seriously affect the fidelity of the target entangled

state. The challenge lies in finding balance between decoherence errors entering on long

time scales and the diabatic excitations entering on short time scales.

One potential solution to this problem is a shortcut to adiabaticity—the system is

evolved non-adiabatically so that it ends up in the entangled ground state at the end

of the evolution. These techniques reduce the total state preparation time, which make

them attractive when dealing with decoherence effects. Lately, there have been many

theoretical breakthroughs in this area [6, 7, 8]. One technique, based on adding counter-

diabatic fields to the Hamiltonian, guarantees that the system evolves to the correct

entangled ground state. It does this by adding an auxiliary term to the Hamiltonian,

which is designed to exactly cancel the excitations that would take place, ensuring that

the system always remains in the instantaneous ground state. The strength of this term

goes to zero at the end of the ramp, which results with the system in the entangled

ground state of the target Hamiltonian. Unfortunately the auxiliary terms that must

be employed require a large number of nonlocal and time-dependent interactions to be

added to the Hamiltonian, which are difficult to implement due to their complexity.

Recent advances [9] show that while exact counter-diabatic driving may not be realized

in real systems, local counter-diabatic terms may be applied to reduce the diabatic

excitations. These techniques would increase the ground-state fidelity, but for this work

the terms used to construct them generally break a parity symmetry that protects the

entangled states.

An alternative approach is to try to minimize the diabatic excitations by ramping
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quickly when the instantaneous energy gap is large and slowly when it is small, given

the constraint of the total experimental run time. Implementing this logic continuously

results in a ramping scheme termed the locally adiabatic (LA) ramp [10]. Here, the ramp

speed for the external parameter is optimized by ensuring the diabatic excitations are

created at a uniform rate throughout the ramp. It requires knowing the instantaneous

minimum energy gap within the same symmetry sector as the ground-state, so it is

challenging to implement for systems where this gap is not known a priori. There is a

conjecture that this is the best continuous ramp profile to use for a given experiment if

the energy gap in the given symmetry sector is known and the experimental run time

is long enough to achieve reasonable fidelity [10].

The bang-bang protocol [11, 12], presented here, is a more widely applicable

alternative, because it does not require one to know the minimal energy gap as a function

of time. It consists of (i) initializing the system in a convenient product state (usually

chosen to be the ground-state of the initial “simple” Hamiltonian); (ii) quenching the

external parameter to an intermediate Hamiltonian (which often has a gap close to the

minimal gap of the system) and holding for a period of time and (iii) then quenching

the external parameter to the final Hamiltonian of interest. The procedure involves

optimizing two parameters: the external parameter for the intermediate Hamiltonian

and the holding time. In earlier work, the protocol was shown to work better for longer-

range interactions [12].

In this work, we experimentally implement the bang-bang and LA protocols in

a system of ∼ 70 trapped Be+ ions forming a two dimensional (2-D) planar Coulomb

crystal. The trapped-ion system realizes a quantum simulator of the Dicke model, which

describes the behavior of a large collective spin coupled to a single radiation mode

in the presence of an additional transverse field coherently driving the spin [13, 14];

here the radiation mode is the center-of-mass phonon mode. The model possesses a

quantum critical point separating two distinct quantum phases: the superradiant phase

characterized by a macroscopic population of the radiation mode and ferromagnetic spin

correlations and the normal phase where the radiation field remains in vacuum and the

spins are aligned to the strong external field. We investigate the performance of each

protocol when preparing the ground-state of the Dicke model in the superradiant phase,

which is a multi-partite entangled state optimal for quantum sensing protocols [15].

We experimentally characterize the performance of each protocol using collective spin

observables and full spin distribution functions and compare them to extensive theory

calculations. The latter also allow us to benchmark the performance of the protocols

based on ground-state fidelity and quantum Fisher information. In Sec. II we first

outline the Dicke model, following Ref. [14]. We present experimental observations for

the implemented ramps and accompanying theoretical calculations in Sec. III. In Sec. IV

we discuss how the protocols may be optimized for the production of metrologically

useful entangled states. Lastly, in Sec. V we make concluding remarks.



Bang-bang shortcut to adiabaticity in the Dicke model as realized in a . . . 4

2. Formalism and Description of the System

We consider a trapped-ion system of laser-cooled 9Be+ ions in a Penning trap. The

interplay of the Coulomb repulsion and the external electromagnetic trapping potentials

stabilizes a 2-D planar crystal. The valence electron spin states in the ground state of

the ion encode the spin-one-half degree of freedom, while the normal vibrational modes

of the self-assembled Coulomb crystal form the bosonic degree of freedom (phonons). In

the 4.46 T magnetic field of the Penning trap, the electronic states are split by 124 GHz.

A pair of laser beams couple the spin and phonon degrees of freedom. By adjusting the

detuning of the lasers close to the center of mass (COM) mode of the crystal, only this

mode is excited and the spin-phonon coupling becomes uniform throughout the system.

In this regime, the experimental system can be described by the Dicke Hamiltonian,

defined to be HDicke(t) = HPh +Hint(t) +HB(t), with

HPh = ωCOM â
†
COM âCOM , (1)

Hint(t) = − 2g√
N

(âCOM + â†COM)Ŝz cos(µt), (2)

HB(t) = Bx(t)Ŝx. (3)

Here âCOM (â†COM) are the phonon annihilation (creation) operators for the COM mode

with frequency of ωCOM ([âCOM , â
†
COM ] = 1), g is the spin-phonon coupling strength,

µ is the beat-note frequency of the Raman lasers driving the system and Bx(t) is

the time-dependent transverse field (we work in units with ~ = 1 and geffµB = 1).

As the coupling is uniform, the spin degree of freedom is described by collective

operators where Ŝα =
∑

i σ̂
α
i and σ̂αi is the Pauli spin matrix at site i with α = x, y, z

([σαj , σ
β
k ] = iδjkεαβγσ

γ
j ). Moreover, as the Dicke Hamiltonian conserves the total spin,

we may restrict our Hilbert space to the N + 1 Dicke states that span the maximal spin

multiplet (since the ground-state is the global ground-state over all possible multiplets),

enabling us to numerically simulate the quantum dynamics of large systems. When

the transverse field goes to zero, Ŝz commutes with the Hamiltonian and the spin

components of the eigenstates take the form of Ŝz projections within the maximal spin

multiplet (subject to possible degeneracies of different spin projections).

Our calculations are facilitated further by implementing the rotating wave

approximation (RWA) within the frame rotating with an angular velocity µ. In this

frame, we recover the Dicke Hamiltonian given by

HRWA
Dicke(t) = −δâ†COM âCOM −

g√
N

(
â†COM + âCOM

)
Ŝz +Bx (t) Ŝx, (4)

with δ = µ− ωCOM . We always have δ < 0, so that the first term in the Hamiltonian is

positive. Note that the z and x projections are interchanged from the standard form of

the Dicke Hamiltonian [16].

While it is not possible to find an analytic expression for the ground-state of the

Dicke Hamiltonian generally, it is possible to do so in certain regimes. We begin by
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rewriting the Hamiltonian in Eq. (4) as

HRWA
Dicke(t) = −δb̂†b̂+

g2

Nδ
Ŝ2
z + 2Bx(t)Ŝx, (5)

where b̂ = âCOM − (g/
√
Nδ)Ŝz. In this form, the ground-state can be well understood

in two distinct regimes: the weak-field Bx � g2/4|δ| (superradiant) and strong-field

Bx � g2/4|δ| (normal) limits. A quantum critical point separates these phases at

Bx ∼ g2/4|δ|.
In the weak-field limit, Bx � g2/4|δ|, the energy of the Hamiltonian is minimized

by aligning all spins along ±êz and coherently displacing the phonons via the spin-

dependent displacement of ±α ≈ (g/
√
N |δ|)Ŝz. This leads to a cat-like spin-phonon

ground-state

|ψ,Bx → 0〉 = |CAT (α)〉 ≡ |α, 0〉ph⊗|+N/2〉z+ |−α, 0〉ph⊗|−N/2〉z, (6)

where |α, n〉 = D̂(α)|n〉 is a displaced Fock state and D̂(α) = exp(αâ†COM − α∗âCOM) is

the displacement operator.

Conversely, in the strong-field limit, Bx � g2/4|δ|, the nature of the ground-state

will be dominated by the transverse field and is characterised as all spins aligned against

the field, i.e. pointing along −êx (here we assume Bx > 0 for simplicity). Given this

spin-orientation, the displacement of the phonons vanishes and the spin-phonon ground-

state is

|ψ,Bx →∞〉 = |0〉 ⊗ | −Ns/2〉x. (7)

A schematic representation of different low-energy eigenstates is given in Fig. 1 for the

phonon-like regime.

The capability of a ramping protocol to satisfy the adiabatic condition in our system

is intimately determined by the energy gap of the Dicke Hamiltonian. This is particularly

relevant for the LA protocol which, as we will detail in the following section, requires

full knowledge of the energy gap. We note also that while the bang-bang protocol isn’t a

smooth ramp but rather a double quench, we still expect that a smaller gap will generate

more unwanted excitations following the quench, thus reducing the efficiency of ground-

state production. For the Dicke Hamiltonian, the size of the gap generally depends on

δ in a complex manner as discussed in detail in Ref. [14]. However, in qualitative terms

the gap increases with detuning δ, as long as we can keep the effective coupling strength

g2/|δ| fixed.

While the size of the energy gap can be problematic for adiabaticity, the Dicke model

also possesses symmetries which increase the efficiency of ground-state preparation.

Specifically, the Dicke Hamiltonian is symmetric with respect to the transformation of

the spin operators Ŝx → Ŝx, Ŝy → −Ŝy, and Ŝz → −Ŝz (this is equivalent to a π

rotation of the spins about the x-axis), and a transformation of the phonon momentum

and position operators (p̂→ −p̂ and x̂→ −x̂), or equivalently the raising and lowering

(â†COM → −â†COM and âCOM → −âCOM). This symmetry allows us to characterize the

eigenstates as even or odd parity under the spin reflection operation (when expressed
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Figure 1. Schematic diagram of the ground states of the Dicke model for the

normal and superradiant phases. (a) The energy eigenstates of the normal phase are

represented by the phonon Fock states, |n〉, and the spins oriented along the x-axis. If

Bx > δ (plotted here), the low lying excitations are phonon like, and if Bx < δ (not

shown) they are represented by spin flips along the x-axis. (b) The energy eigenstates

in the superradiant phase, where the phonons are represented by displaced Fock states,

D̂(α)|n〉, and the spins are aligned in the ±z-direction. In this region, the low lying

excitations are phonon like if g2/δ > δ (plotted here) and are represented by spin flips

along the z-axis if g2/δ < δ (not shown). The symbol êi denotes the unit vector in the

i direction.

in the z or y spin bases) plus an inversion of the phonon coordinates, with associated

conserved quantity 〈exp[−iπ(n̂COM+Ŝx)]〉. This symmetry restricts the available Hilbert

space to states with the same parity. More explicitly, if the system is initialized in the

ground state at large Bx (|0〉ph ⊗ | − N/2〉x), then states are restricted to the even

parity sector if N is even, and restricted to the odd parity sector if N is odd during the

ramp. This implies that the relevant gap to determine the rate of diabatic excitations

is the energy gap to the first excited state in the same symmetry sector as the ground

state. In the presence of diabatic excitations, this enlarged energy gap helps maintain

multipartite entanglement and metrological utility in the final state. Note that if a

longitudinal magnetic field (in the z-direction) is added to the Dicke model, breaking

the spatial-spin reflection parity symmetry, this can rapidly lead to a degradation of the

entanglement in the system. In the experiment, stray longitudinal fields do occur and

will need to be controlled in order to achieve optimal cat-state production [14].

3. Experimental Results
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We now present a comparison between the experimental observations and theoretical

simulations for the bang-bang and LA protocols. The theoretical simulations were

carried out by time evolving the total quantum state while assuming perfect state

preparation, spin operations, and measurement readout. We note that despite the

imperfections in the experiment, computational complexity prevents us from fully

incorporating decoherence into the theoretical simulations.

The experimental sequence uses resonant 124 GHz microwave pulses to create

arbitrary collective spin rotations. These allow the initial state to be completely

polarized along the x-axis. Resonant microwaves are also used to generate the transverse

field. Projective collective spin measurements are performed at various times by first

rotating the desired spin axis to the z-axis and then using global ion fluorescence to

image the spin states (the up spins are bright and the down spins are dark).

The experiment was operated at g = 2π × 0.935 kHz and at a detuning of

δ = −2π × 1 kHz from the COM mode, where the spins and the phonon model

are uniformly coupled and the RWA is valid. The initial transverse field was set to

Bx(t = 0) = 2π × 7 kHz. We note that the proximity of δ to the critical point at

Bc makes ground-state preparation much more difficult, as discussed in Sec. 2 [14].

However experimental considerations, in particular current decoherence rates, restrict

us to operate the experiment in this parameter regime.

Figure 2. Ramp profiles for the time-dependent transverse field in the Dicke model.

We show the LA ramp and the bang-bang ramp. The LA and bang-bang ramps

have been optimized to produce the highest ground-state fidelity for a simulation time

less than or equal to 2 ms. The theoretical and experimental bang-bang ramps are

optimized at about 1 ms (open circle). The experimental data was sampled out to 2

ms with the same quench field.
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The experimental sequence was as follows: The initial state was prepared with

all spins aligned along the x-axis. In the case of the bang-bang protocol, this was

followed by a quench to an intermediate transverse field. This intermediate quench was

optimized in the lab to give the spins the largest possible projection onto the z-axis.

Note that, as shown in Fig. 2, the transverse field was not quenched to zero when the

peak magnetization along the z-axis was reached.

The LA ramp profile was implemented according to the equation Ḃ(t) = ∆(t)2/γ,

for

γ =
τramp∫ Bx(0)

0
dB 1

∆(B)2

, (8)

where ∆(t) [∆(B)] is the energy gap of the instantaneous Hamiltonian (at instantaneous

field strength) and τramp is the total ramp duration. Essentially, the LA profile ramps

the transverse field rapidly when the gap is relatively large, and is slowest when the gap

reaches a minimum. Further discussion of the ramp and corresponding details of the

experimental optimization procedure can be found in Ref. [14].

In the absence of decoherence, we expect the final state to be the spin-phonon cat

state (modified by the fact that the initial phonon population has n̄ = 6), but we cannot

tell whether such a state was actually formed from our data because we only measured

the spin properties. We did not measure the spin-phonon entanglement.

Typical examples of the bang-bang and LA ramps are shown in Fig. 2. We note

that the bang-bang ramp is similar to an extreme limiting case of the LA protocol,

where the field is held constant near the critical point during the ramp.

The spin-projection plots in Figs. 3 (a) and (b) show good qualitative agreement.

Both the experimental and theoretical data show an optimal peak in the Sz-projection

around 1 ms when the transverse field is initially quenched to Bx = 0.4 J . A more

detailed comparison can be seen in Figs. 3 (c) and (d) where 〈|Sz|〉 and 〈Sx〉 are plotted

as functions of time. These plots give close agreement between experiment and theory

for times t < 0.4 ms, but even at longer times there is good qualitative agreement.

In the case of the LA ramp, the qualitative behavior of the experimental data

matches what is expected by the theory, as shown in Figs 4 (a) and (b). Figs 4 (d) and

(c) show 〈|Ŝz|〉/N and 〈Ŝx〉/N as a function of ramp time. Here, the LA ramp achieves

a slightly larger 〈|Ŝz|〉 at the end of the 2 ms ramp than the bang-bang data reaches at

1 ms, as expected. Fig. 4 (d) shows a deviation of experimental and theory plots of 〈Ŝx〉
at short times, which hints that certain decoherence processes may also be present.

Although the theory provides a qualitative understanding of the experimental

results, there are clearly dynamics taking place which are not solely described by pure

evolution under the Dicke Hamiltonian. We expect that decoherence effects are the main

contributor to this discrepancy. The two main sources of decoherence present in the

experiment are Rayleigh and Raman scattering [14, 17]. Rayleigh scattering causes the

off-diagonal elements of the density matrix to be damped in the Ŝz-basis, an effect also

know as dephasing. Raman scattering produces spontaneous emission and absorption.

Hence, Rayleigh scattering is expected to be the main source of decoherence in these
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Figure 3. Comparison of experimental data and theory estimates for the optimal

quench of the bang-bang ramp for a system of 75 ions with coupling constant

J = 2π×0.875 kHz, and detuning from the COM mode of δ = −2π×1 kHz. The spins

are initialized to the state | − N/2〉x and the COM mode is in a thermal state with

an initial occupation of n̄ ≈ 6. Figures (a) and (b) show plots of the experiment and

theory respectively for the total spin projections in the x, y, and z directions. Figure

(c) shows the mean value of 〈|Sz|〉/N . A noticeable growth of 〈|Sz|〉 is observed after

the initial quench. Figure (d) shows the mean value of 〈Sx〉/N which exhibits fast

demagnetization. For this observable, however, dephasing plays a non-negligible role

and the disagreement between theory and experiment becomes larger. The statistical

error bars are on the order of the size of the data points.

experiments [17]. The dynamics of the density matrix is dictated by a master equation

that satisfies, ρ̇ = i[Ĥ, ρ]− Γ
∑

i(ρ− σ̂zi ρσ̂zi ), where Γ is the single particle decoherence

rate due to Rayleigh scattering (measured in the lab to be 60s−1 at Bx = 0).

While including the effects of decoherence along with the phonons and spins is too

computationally costly for the system sizes considered in the experiment, in certain

limits, one can create phenomenological models for the effects of decoherence. In

particular, when Bx = 0, the coherences between different spin sectors, |mi〉〈mj|,
in the density matrix decay as exp(−(mi −mj)Γt) where mi is a given eigenvalue
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a. b.

c. d.

Figure 4. Comparison of experimental data and theory estimates for the LA ramp

for a system of 76 ions with coupling constant J = 2π× 0.875 kHz, and detuning from

the COM mode of δ = −2π × 1 kHz. The spins are initialized to the state | −N/2〉x
and the COM mode is in a thermal state with an initial occupation of n̄ ≈ 6. Figures

(a) and (b) represent false-color plots of the experiment and theory respectively for

the total spin projections in the x, y, and z directions. Both of the Sz plots show good

qualitative agreement. Figure (c) shows the values of 〈|Sz|〉/N . A noticeable growth

of 〈|Sz|〉 is observed in the superradiant regime. Figure (d) shows the mean value of

〈Sx〉/N which exhibits fast demagnetization. Similar to the bang-bang case in this

observable dephasing plays a non-negligible role and the disagreement between theory

and experiment becomes larger. The statistical error bars are on the order of the size

of the data points.

of Ŝz [18]. Unfortunately, this means that the coherence of an ideal spin-phonon

cat state will decay exponentially with a rate that increases with ion number since

m = |N/2|. In the opposite regime, we attribute the rapid depolarization of Ŝx at short

times, in the presence of a dominant transverse field and for a state along the x-axis

(〈Ŝx〉 → 〈Ŝx〉 exp[−Γt]), to decoherence. We note that this condition is not present in

the bang-bang experiment as the system is never in the large Bx regime. If Bx ∼ |δ|, we

are unable to develop a phenomenological model for the effects of decoherence. However
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Figure 5. False color plots of the fidelity and the polarization for the theoretically

calculated bang-bang protocol with system sizes of 20, 40, 60 and 80 ions. These plots

can be employed to optimize the bang-bang ramp profile. The top rows of each figure

optimize the fidelity of the Dicke ground state while the bottom rows optimize the value

of 〈|Sz/N |〉. Left columns of each figure are optimized using the near-critical detuning

of δ = −2π × 1 kHz while the right columns are for a detuning of δ = −2π × 4 kHz.

one expects that decoherence will still result in a reduced final magnetization. We have

found that a generically longer ramp time correlates to a larger discrepancy between

the experimental data and the theory estimates of 〈|Ŝz|〉.
The experiment did not attempt to disentangle the expected spin-phonon

entanglement and transfer it to a spin-only entanglement, nor did it directly measure

the entanglement of the final state. These are generally complex tasks which will be

pursued in more detail in future experiments. Nevertheless this spin projection data

does serve as a first step in understanding the evolution and state characterization of

this system.

4. Theoretical optimization of cat-state production

As discussed in the previous sections, and evidenced by the experimental data, a

key challenge in the preparation of a cat-state is understanding the interplay between

diabatic excitations and decoherence. In simpler terms, mitigating diabatic excitations
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generically requires longer ramp times, but longer ramp times in turn magnify the effects

of decoherence. In this section, we follow the approach taken in [14] and propose an

ideal test case for the next generation of experiments.

We start by considering a detuning δ = −2π × 4 kHz, such that the spin-

phonon resonance at Bx ≈ |δ|, is well-separated from the critical point at Bc. This

increases the size of the minimal energy gap, while the spins are still—to an excellent

approximation—uniformly coupled to the COM mode. Moreover, we assume that the

initial thermal phonon occupation can be reduced to n̄ . 0.2, such that we can—to

a good approximation—ignore this thermal contribution in the following calculations.

This parameter regime allows us to explore the potential of the bang-bang protocol, both

for producing the ground-state, as well as for using it as a robust path to generating

multi-partite entanglement.

In Fig. 5, we plot the preparation fidelity and the collective spin observable 〈|Sz|/N〉
for detunings of δ = −2π × 1 kHz and δ = −2π × 4 kHz and for four different system

sizes. The fidelity is calculated with respect to the ground-state of the Dicke model in

the superradiant phase, and is given by

FCAT = |〈ψ|CAT 〉|2. (9)

We find that for the larger magnitude δ = −2π×4 kHz, the bang-bang shortcut performs

best for ramp parameters Bx ≈ 0.5J and thold ≈ 0.5 ms. This is evidenced by the

maximal FCAT as well as the peak in 〈|Ŝz|〉/N . The fidelity ranges from 0.45 for 20 ions

to 0.2 for 80 ions. We highlight that this optimal ramp duration is short compared to

the timescales on which decoherence has significant effect.

In contrast, for smaller magnitude detuning δ = −2π × 1 kHz, we do not find a

significant correlation between the maximal fidelity and the maximal polarization of

the spin. In fact the maximal fidelity is only 0.14 for 20 ions and is as small as 0.016

for 80 ions, while the polarization remains large in the 0.4 range for all cases. We

reconcile this observation by noting that while diabatic excitations only slightly reduce

the polarization (mex < mCAT = N/2), they drastically reduce the ground-state fidelity

since the excited states are orthogonal to the cat state.

In order to fairly evaluate the performance of the bang-bang protocol, we provide

comparisons to the LA ramp. Guided by the previous calculations, we restrict to a

system size of 20 ions and δ = −2π × 4 kHz where the LA ramp can produce rather

large fidelities within 2 ms.

As shown in Fig. 6, the bang-bang shortcut always has a higher fidelity for

t < 0.9 ms. The LA ramp produces better fidelities for t > 0.9 ms. However, we

note that when the maximal fidelity reached is < 0.5 it is insufficient to independently

demonstrate non-trivial overlap with the entangled cat-state. Specifically, a fidelity of

0.5 can also be obtained with a statistical mixture of all spins up and all down. In the

absence of decoherence, one may distinguish between the cat state and the maximally

mixed state by measuring the amplitude of the coherence |ρN/2,−N/2| = FCAT/2. We

note that, for a spin-phonon cat state, this coherence can be measured only after the
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Figure 6. Theoretical predictions for a system of 20 ions with J = 2π × 0.875 kHz,

δ = −2π× 4 kHz, and an initial phonon vacuum state. Panel (a) shows the maximum

ground-state fidelity as a function of ramp time for both the bang-bang and LA ramps.

The bang-bang approach outperforms the LA ramp for times less than 0.9 ms. Panel

(b) shows the effects of adding a small longitudinal field on each ramping protocol

for the case with 20 ions. The coherence of the cat state is obtained when a small

longitudinal field is added to the Dicke Hamiltonian. A 2 ms LA ramp is compared to

an optimized bang-bang ramp of 0.485 ms. The slower decay in the bang-bang plot is

due to the shorter ramp time.

disentangling procedure discussed in Ref. [14]. When significant decoherence is present,

the verification of cat state coherence requires full characterization of the state.

In Fig. 7, we show the scaling of the ground-state fidelity with system size. We find

that, for fixed ramp times, both protocols perform worse as the system size increases.

However the bang-bang protocol appears to be less sensitive to increasing system size

for shorter ramp times.

So far we have considered idealized conditions for the ramping protocols. However,

a common experimental imperfection to consider in a Penning trap is a residual

longitudinal field, which can break the degeneracy of the ground-state and thus degrade

the preparation of the cat-state. In Fig. 6, we illustrate the effect of a fixed uniform

longitudinal field, ∝ BzŜz, on the coherence of the spin-phonon cat state. Here, the

coherence of the spin-phonon cat state is defined as 〈N/2|〈α|ρ| − α〉| − N/2〉. As the

spin-phonon reflection parity is no longer a symmetry of the model, the initially purely

odd or even parity ground-states begin to mix as the state is evolved forward in time.

In this example, the state is initialized in the even parity manifold. One can see that

the longitudinal field causes the final coherences to decay with the effect being more

dramatic for the LA ramp than for the bang-bang ramp. The slower decay of the spin-

phonon cat state coherence is a result of the bang-bang ramp having a shorter ramp

time [14].

Our discussion up to now has focused on the ground-state fidelity to characterize

the performance of each protocol. However, an equally important measure is

the metrological useful entanglement, which we quantify using the quantum Fisher
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Figure 7. Panel (a) shows how the ground-state fidelity of the Dicke Hamiltonian

scales as a function of system size for bang-bang and LA ramps of 1.0, 1.5 and 2.0 ms.

The bang-bang approach outperforms the LA ramps of 1.5 ms at 90 ions. Panel (b)

shows how the multiparticle entanglement depth scales as a function of system size.

information (QFI). For a pure state the Fisher information is given by

FQ = 4〈(∆Ŝ~n)2〉, (10)

where ∆(Ŝ~n)2 is the variance of Ŝ~n, and ~n the spin direction that maximizes the

QFI [19]. The QFI is an effective witness of multipartite entanglement in the following

sense: FQ ≥ N implies that entanglement is present in the system and full N-body

entanglement is classified as FQ ≥ N2/2. Maximal entanglement, in this context, refers

to a saturation of the bound for the quantum Fisher information, FQ = N2, which

represents the result for the spin-phonon cat state. In Fig. 7(b), we show the behavior

of QFI as a function of system size. We find that QFI is much less sensitive to the size

of the system, implying that the number of diabatic excitations do not degrade the QFI

as severely as the ground-state fidelity. This occurs, in part, because we are symmetry

restricted to the spin multiplet, which when Bx → 0 exhibits N-partite entanglement

for every eigenstate, due to the parity symmetry. It is interesting to note that while the

bang-bang entanglement quickly drops off at small N , it appears to approach a constant

value of 0.65N2, which is still a quite large entanglement depth for systems on the order

of hundreds of ions, and for short ramp times. We don’t know why the bang-bang ramp

approaches this limit.

Finally, we note that both the fidelity and QFI will be affected by decoherence

processes as discussed in the previous section. While modeling the exact effect of

decoherence is beyond the scope of this work, it is expected that the impact will scale

with the ramp time. As such, while the bang-bang protocol may not be able to create

experimentally useful fidelities, it will be a valuable approach for generating large QFI

even in the presence of appreciable decoherence. Clearly faster protocols are more

resilient to decoherence. Furthermore, since the effects of decoherence are magnified

as the number of ions increases, the bang-bang protocol may provide a robust, and
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experimentally feasible path to creating states for quantum enhanced metrology.

5. Conclusions

We have shown that the bang-bang protocol as applied to the Dicke model can be

easily realized in Penning trap quantum simulators. This shortcut to adiabaticity is

clearly superior to the alternative LA approach in terms of the creation of metrologically

useful entangled states on short time-scales. The bang-bang approach also scales better

with larger system sizes when compared to the LA ramp. The ability to generate

entanglement rapidly for large systems has crucial implications for future experiments,

where decoherence is a key consideration. Specifically the bang-bang protocol has the

potential to easily create highly entangled states of hundreds or even thousands of ions.

6. Acknowledgments

The authors acknowledge fruitful discussions with J. Marino, M. Holland and K.

Lehnert. A. M. R acknowledges support from Defense Advanced Research Projects

Agency (DARPA) and Army Research Office grant W911NF-16-1-0576, NSF grant

PHY-1521080, JILA-NSF grant PFC-173400, and the Air Force Office of Scientific

Research and its Multidisciplinary University Research Initiative grant FA9550-13-

1-0086. M.G. acknowledges support from the DFG Collaborative Research Center

SFB1225 (ISOQUANT). E. J. also acknowledges support from Leopoldina Fellowship

Programme. JKF and JC acknowledge support from NSF grant PHYS-1620555.

In addition, JKF acknowledges support from the McDevitt bequest at Georgetown.

Financial support from NIST is also acknowledged.

References

[1] Gilchrist A, Nemoto K, Munro W J, Ralph T, Glancy S, Braunstein S L and Milburn G 2004

Journal of Optics B: Quantum and Semiclassical Optics 6 S828

[2] Giovannetti V, Lloyd S and Maccone L 2011 Nature photonics 5 222–229

[3] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M,

Jost J D, Langer C et al. 2005 Nature 438 639–642

[4] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A and Oberthaler
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