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A B S T R A C T

Quantum simulators may be utilised to solve the hitherto intractable problem of simu-
lating lattice gauge theories in regimes where simulations on classical computers are
challenging. Current experimental state-of-the-art realisations, however, incorporate
only view qubits thus seriously hindering a faithful simulation of lattice gauge theories.
While being restricted in system size we employ lattice improvements to facilitate
an accurate description of the continuum theory. We choose 1 + 1d quantum electro-
dynamics to quantify improving only with higher derivatives by benchmarking to the
non-perturbative particle production rate in the Schwinger mechanism. Numerical
simulations proceed with classical-statistical as well as exact diagonalisation methods.
The latter offers an accessible route to the strong coupling regime of QED where we
can confirm the particle production rate to grow. The former reveals including only
higher derivatives in the improvement programme does not yield significant alleviation
in need for larger system sizes.
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1I N T R O D U C T I O N

Quantum field theory (QFT) combines three of the most fundamental set of ideas in
physics: quantum theory, the concept of fields, and special relativity [1]. As such, it has
proven to be a highly successful framework underlying much of modern day physics.
It is central to a wide range of subjects–like elementary particle physics, condensed
matter physics, and cosmology [1].

Fundamental to any quantum field theory are fields which are classified according
to their statistics in either of two types: bosonic fields, and fermionic fields.
Gauge theories are certain types of quantum field theories where physics is invariant
under local so-called gauge transformations. They describe fermions, the quanta of
excitation of fermionic fields, as the fundamental particles of matter, and bosons, the
quanta of excitation of bosonic fields, as the mediators of the fundamental forces.
Gauge theories are the generally accepted and highly successful framework describing
the strong, weak, and electromagnetic interactions of the fundamental fields of the
standard model [2]. The theory of quantum chromodynamics (QCD) is such a gauge
theory. It describes the strong interaction between quarks and gluons.

The set of mathematical tools to uncover and predict the behaviour of quantum
fields has long been limited to perturbation theory [2] in which the coupling constant, a
number quantifying the interaction of two quantum fields, is required to be sufficiently
small. In this approach one may picture the interplay of quantum fields with Feynman
diagrams and particles as their constituents [1, 3]. This was most successfully applied
to the theory of quantum electrodynamics (QED) [3]. Yet, this approach fails when the
interaction strength becomes strong.
This is particularly true for the theory of quantum chromodynamics [2]. Only when
Kenneth Wilson in 1974 showed how to rigorously formulate gauge theories on a
discretised lattice mimicking space and time, it was possible to numerically study
phenomena in QCD beyond perturbation theory [2, 4], like the confinement of quarks
and gluons. The coupling constant not needed to be sufficiently small and the quantum
fields at hand may be strongly interacting and correlating.

Ever since, the quest of simulating quantum field theories in numerical simulations
has become a branch of physics in its own right [2]. Ever more numerical methods
to tackle problems which answers lie beyond perturbation theory have been devised.
Among the most successful ones is the quantum Monte Carlo method. However, when
strongly correlated and interacting fermionic quantum fields are involved, the quantum
Monte Carlo method suffers from the so-called sign problem, which means the general
numerical solution to this method scales in complexity larger than any polynomial [5].
As a consequence, the application of quantum Monte Carlo methods to systems in-
volving fermionic fields is limited to the special case of thermal equilibrium, in which
case the quantum theory problem can be mapped on a statistical (classical) mechanics
problem [6].
However, a vast range of phenomena out of thermal equilibrium are excluded. They
require real-time evolution, which is still an open problem without a general solution.
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2 introduction

Yet, a part of the problems which require real-time dynamics can be accurately approx-
imated by classical-statistical simulations [6]. Those simulations have shown remarkable
results in describing phenomena beyond perturbation theory and simulating real-time
dynamics of gauge theories [6–8]. The classical-statistical approximation, however,
describes the full quantum theory accurately only in the limit of strong gauge fields
and weak couplings [6].

Tensor Network States (TNS), aka. Matrix Product States (MPS) in 1 + 1d, may be
considered another promising numerical method for real-time dynamics of lattice
gauge theories [9, 10]. This method, however, is mostly restricted to physics of low
energy states of 1+ 1d with a gapped Hamiltonian [11]. Furthermore, due to restricting
the maximal entanglement entropy, it can typically only cover relatively short time
scales [11].
It is fair to say that to this day, there are no satisfying general and comprehensive
methods to unravelling phenomena out of equilibrium quantum fields display.

The field of quantum simulation has emerged in parallel to numerical efforts in an-
swering questions of real-time dynamics of quantum fields and more general quantum
many-body systems [12, 13]. The concept dates back to 1982 when Richard Feynman
proposed to take advantage of the ‘quantumness’ of nature at small scales to simulate
quantum behaviour in a controlled and orderly fashion [12, 13]. Underlying this pro-
posal is the insight of QFT that fundamental constants like the charge or mass of an
electron are neither fundamental nor constant! Rather the symmetries of the respective
QFT and the dimension it is embedded in define its properties. Those ‘constants’ ought
to be measured and by doing so the experiment confirms where in the range of all
possible values the QFT is realised. This, in turn, implies one can observe the same
physics if one was to implement the same symmetries of e.g. a fundamental gauge
theory regardless of the actual size of the system.
Unfortunately, his idea was left unappreciated as there was no known systems which
could serve as a quantum simulator [14]. Later in 1989 Deutsch [15] formulated the
notion of a general purpose quantum computer, which could compute any quantum
algorithm. He showed that, only a certain small set of manipulations on quantum
states would be necessary for building a general purpose quantum computer. Together
with the quantum error correction protocols by Shor [16] and Steane [17] this set the
feasibility of quantum simulation in regimes much closer to realise [18]. Those ideas
base on the notion of a digital quantum computer with a set of manipulations called
quantum logic gates. Simulating the physics of any system requires to translate the
laws of motion into a successive application of quantum logic gates which simulate
the original physics in discrete steps with quantum bits (qubits) storing the quantum
information. This take on quantum simulators is hence called digital.
Today, there are several concepts to quantum simulation [19]. In view of gauge fields as
emerging degrees of freedom in condensed matter systems [20], and the high fidelity
with which one can tune isolated ultra cold quantum gases [20, 21], one may consider
to engineer such an isolated quantum system such that it displays e.g. a local gauge
symmetry. The laws governing the evolution of the system of interest are mapped in a
one-to-one correspondence to the system at hand [19]. Then, the degrees of freedom in
the ultra cold quantum system serve as an analogue of the fundamental degrees of
freedom in the theory one wishes to simulate. Hence, this take on quantum simulators
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is generally called analogue.

Within this thesis, however, we want to focus on the digital take on quantum sim-
ulators. Most prominent realisations with trapped ions include Refs. [22, 23] and
with superconducting qubit circuits Refs. [24]. Engineering trapped ions to simulate
a quantum many-body system of interest has many advantages like very long-lived
coherence times, strong Coulomb interaction facilitating two-qubit gates, and experi-
mental demonstration of very high fidelities [19]. However, the current state-of-the-art
experimental realisations come with the drawback of only having few qubit degrees
of freedom of the order of 10 [23]. The restricted system size is seriously hindering
the simulation of effects that are characteristic of the infinite degrees of freedom any
quantum field theory has.
However, physicists who are trying to use such quantum simulators to simulate lattice
gauge theories are not the first to face this kind of restriction in system size. The earlier
mentioned lattice QFT community devised a methodology to overcome some of those
restrictions which goes by the name of lattice improvements, first proposed by Symanzik
in 1979 [25].
This thesis aims at applying lattice improvements to small system sizes in order to
investigate the benefits of the very same in view of digital quantum simulators. As a
testbed we opt for QED in 1 + 1d (aka. the Schwinger model) and the Schwinger mech-
anism of particle pair production to benchmark our findings as analytical predictions
for a certain regime are well-known [26]. For our main method of simulating QED in
1 + 1d we choose exact diagonalisation as it constitutes an unbiased and exact method
of simulation. Moreover, it is characterised by the same set of fundamental degrees of
freedom as a digital quantum computer, making it our method of choice.

This thesis is structured as follows. In Chapter 2 we lay out the theoretical founda-
tions involved in the Schwinger model, the Hamiltonian approach to lattice QED, and
lattice improvements. Chapter 3 is dedicated to introducing the two methods of numer-
ical simulation we employ: exact diagonalisation and classical-statistical simulations.
In Chapter 4 we review some foundations of quantum computing with trapped ions
before we compute the quantum logic gate sequence which comes about after applying
lattice improvements to lattice QED. Subsequently, we show the results of numerical
simulations in Chapter 5 and measure the quantitative benefits of lattice improvements
in view of quantum simulations.





2F O U N D AT I O N S

Within this chapter we wish to approach all of the theoretical foundations and physical
principles relevant to describe lattice QED with staggered fermions and an improved
Hamiltonian in the prospect of the Schwinger mechanism.

To this end, we first review the Schwinger model and some of its features in the
continuum in Section 2.1, after which we discuss the fermion doubling problem
on the lattice and introduce a solution with staggered fermions in Section 2.2 and
Section 2.3, resprectively. Subsequently, we cover a revision on the renormalisation
group, improvements and there connection in Section 2.4. Finally, we conclude this
chapter with the description of the Schwinger mechanism in a constant, homogeneous
electric field in Section 2.5.

2.1 introduction to the schwinger model in the continuum

The Schwinger model describes Quantum Electrodynamics (QED) in (1 + 1)d, and
it entails a non-trivial interaction of Dirac fermions with a gauge field. It is an often
studied toy model for inspecting a wide range of interesting phenomena. For instance,
it exhibits confinement of fermions, appearance of a massive boson field, breaking of
the chiral symmetry through the axial anomaly, screening of any external charge and
background electric fields, and infinite (continuous) degeneracy of the vacuum state of
the theory without mass [27].

The QED Lagrangian is given by,

L = ψ̄
(
i∂µγµ − eAµγµ −m

)
ψ− 1

4
FµνFµν , (2.1)

where ψ and ψ̄ is the Dirac spinor and its canonical conjugate describing the electron
and positron, Aµ is the gauge vector field describing the photon, and Fµν = ∂µ Aν −
∂ν Aµ is the (electromagnetic) field strength tensor.

In 1 + 1 dimensions there are only two anti-commuting elements of the Clifford
algebra defined by{

γµ, γν

}
= 2ηµν , (2.2)

5



6 foundations

where ηµν = diag(1,−1) is the Minkowski metric. Thus, we have only three anti-
commuting Dirac matrices. Hence, one can choose a representation with Pauli matrices:

γ0 = σz =

(
1 0

0 −1

)
, (2.3)

γ1 = iσy =

(
0 1

−1 0

)
, (2.4)

γ5 = γ0γ1 = σx =

(
0 1

1 0

)
, (2.5){

γµ, γν

}
= 2ηµν . (2.6)

which will be of use some time later.
Please note that in 1 + 1d the electromagnetic coupling constant e has units of an

inverse length, i.e. units of mass.

2.1.0.1 Temporal gauge

For the analysis of the Schwinger model we want to resort to the ‘temporal’ or ‘Weyl
gauge’, A0(x) = 0. Hence, the Lagrangian takes the form

L = ψ̄
(

i∂µγµ − eA1γ1 −m
)

ψ +
1
2

(
∂0A1

)2
, (2.7)

However, the temporal gauge is in a sense an incomplete gauge as we are left with
a residual gauge redundancy, where equivalent configurations are linked by time-
independent gauge transformations. Additionally, Gauss’s law is not obeyed at the
operator level. It becomes a constraint on the physical Hilbert space. This is because
setting A0 = 0 in the Lagrangian prohibits us from varying with respect to A0 or ∂0A0.
Thus, we cannot obtain Gauss’s law from a variational principle since Gauss’s law is
actually the equation of motion obtained by the Euler-Lagrange equation for A0.
To see this, consider,

0 =
∂L
∂A0
− ∂µ

∂L
∂(∂µ A0)

, (2.8)

∂L
∂A0

= eψ̄γ0ψ +
1
2

∂µ∂µ A0 − 1
2

∂µ∂0Aµ , (2.9)

∂µ
∂L

∂(∂µ A0)
= −1

2
∂µ∂µ A0 +

1
2

∂µ∂0Aµ , (2.10)

⇒ 0 = eψ†ψ + ∂µ∂µ A0 − ∂0∂µ Aµ (2.11)

with A0 = 0 we obtain Gauss law,

0 = eψ†ψ− ∂1 ∂0A1︸ ︷︷ ︸
=E

= eψ†ψ− ∂xE . (2.12)

We can deduce from Equation 2.7 that the conjugate momentum to A1, (= ∂L
∂Ȧ1 ), is

minus the electric field:

−Ȧ1 = F10 = E (2.13)
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and impose canonical commutation relations

[A(x), E(y)] = iδ(x− y) (2.14)

Hence, we find the Hamiltonian to be

H =
∫

dx
{

iψ̄γ1 (∂1 + ieA1)ψ + mψ̄ψ +
1
2

E2
}

. (2.15)

At first sight, Gauss’s law does not seem to be implemented into the theory when
working in temporal gauge. However, this fact is mitigated by the following observation
[27]: We wish to restrict the Hilbert space to the ‘physical’ subspace where(

∂xE(x)− eψ†ψ
)
|φ〉 =: G(x) |φ〉 = 0, (2.16)

and Gauss’s law is fulfiled. Yet, the gauge field as the canonical conjugate of the electric
field is a generator for linear shifts of the electric field. Together with the canonical
commutation relation Equation 2.14 one finds:

e−i
∫

dy α(y)A(y)G(x)e+i
∫

dy α(y)A(y) (2.17)

= ∂x [E(x) + α(x)]− eψ†(x)ψ(x) (2.18)

= G(x) + ∂xα(x) (2.19)

Subsequently, one may start with a subspace where

G(x)
∣∣φphys

〉
= 0, (2.20)

and construct another subspace by∣∣φphys
〉
−→ |φα〉 = e−i

∫
dy α(y)A(y) ∣∣φphys

〉
, (2.21)

ending up in a subspace for which

G(x) |φα〉 = ∂xα(x) |φα〉 . (2.22)

Therefore, if the initial state fulfils Gauss’s law any time evolved state of this initial
state will too. Moreover, we see that the Schwinger Hamiltonian generates a Hilbert
space which has infinetly many subspaces for which Gauss’s law is pairwise differently
implemented.
Fortunately, all operators G(x) commute with each other and with H such that we may
simultaneously diagonalise them [27]. Thus, we are free to impose the sate condition of
Equation 2.20 as the Hamiltonian will never take us out of the subspace we previously
called “physical”. Actually, we are free to impose the more general state condition of
Equation 2.22 for any arbitrary function α(x). Then, however, Gauss’s law is modified
by a classical static background distribution ρclass = ∂xα(x).

Therefore, canonical quantisation of the Schwinger model in temporal gauge pro-
duces not only one but rather an infinite number of theories, all having different
classical background fields. This should not be a big surprise as one expects to be able
to formulate QED with any classical background field.

On physical grounds, we are restricting ourselves to the case where ρclass = ∂xα(x) =
0, such that α(x) is a constant in space. A unitary transformation like Equation 2.17 of
the operator E(x) shifts it by a constant, i.e. we implement a constant background field
ε, which is equivalent to the presence of boundary charges at finite volume.
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2.1.0.2 Constraining Hilbert space to the physical subspace

Throughout this thesis we are only interested in (initial) states of zero total charge.
Hence, in this section we want to express the Hamiltonian constraint on the ‘physical’
sector of the Hilbert space Hphy. such that ∀ |Ψ〉 ∈ Hphy.:

Qtot |Ψ〉 =
∫ ∞

−∞
dx ρ(x) |Ψ〉 = 0 , (2.23)

ρ(x) = ψ†(x)ψ(x) . (2.24)

As mentioned above, any dynamics will stay inside the respective sector of the Hilbert
space as G(x) commutes with H.

First, consider the following Maxwell equation,

∂xE(x) = ∑
j

ejδ(x− xj) = eρ(x) , (2.25)

which is solved by the Green’s function

∂xΘ(x′) = δ(x− x′) , (2.26)

∂−1
x = Θ(x) . (2.27)

This implies the general solution of Equation 2.25 is given by

E(x) = ∑
j

ej Θ(xj) + eε , (2.28)

where ε is a constant of integration and constitutes a constant background field.
Using (2.25), we can solve for E(x) in terms of ρ(y),

E(x) = e
∫ x

−∞
dx′ ρ(x′) , (2.29)

and substitute this into the Hamiltonian (2.15) and obtain

H =
∫

dx ψ†γ0

(
iγ1∂1 + eγ1A1 + m

)
ψ(x)− e2

4

∫
dx dy ρ(x)|x− y|ρ(y) . (2.30)

Now, we may use the residual gauge freedom when working in axial temporal gauge.
That is, one can still perform spatially dependent only gauge transformations. With

ψ′(x) = e−i
∫ x
−∞dyA(y)ψ(x) , (2.31)

we can eliminate the remaining A(x) from the Hamiltonian:

H =
∫

dx ψ′†γ0

(
iγ1∂1 + m

)
ψ′(x)− e2

4

∫
dx dy ρ′(x)|x− y|ρ′(y) . (2.32)

2.1.0.3 Bosonisation of the Schwinger Model

In this subsection we merely want to motivate and cite the bosonisation process fairly
briefly. It will become of particular interest because the bosonised version of the
Schwinger model offers a clear view of the relevant degrees of freedom in the infinite
coupling limit. As we will show below, the Schwinger Model can not only be treated
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perturbatively at small couplings in the fermionic formulation. It is also possible to
employ perturbation theory in the mass at infinite coupling in the boson representation
of the theory. For an in-depth treatment we refer the reader to [28].

With (2.32) we have managed to express the Hamiltonian only in terms of fermionic
degrees of freedom (DoF). In fact, the Hamiltonian of (2.32) can be expressed only in
terms of bosonic DoF. For this, consider the ‘two-currents’,

jµ(x) = ψ̄(x)γµψ(x) , (2.33)

jµ
5 (x) = ψ̄(x)γµγ5ψ(x) , (2.34)

which are conserved [29]. Due to the identity in two dimensions γ5 = γ0γ1, γµγ5 =

εµνγν (εµν is the Levi-Civita symbol), the axial and vector currents can be expressed by
some scalar field φ as [28]:

jµ(x) = − 1√
π

εµν∂νφ (2.35)

jµ
5 (x) = − 1√

π
∂µφ (2.36)

Introducing some test charges ρext = ±qext at ±∞, respectively, simply shifts

ρ→ ρ + ρext =
1√
π

∂1 (φ + φext) . (2.37)

Hence, we obtain a boundary term for the charge density and via Gauß’s law one has
a background electric field.

Subsequently, we substitute (2.37) into (2.32) which yields

H =
∫

dx ψ̄
(

iγ1∂1 + m
)

ψ− e2

4π

∫
dx dy ∂1 (φ + φext) |x− y|∂1 (φ + φext) . (2.38)

If we know integrate by parts and remind ourselves that the coupling has mass
dimension in 1 + 1d, we can see the mass term of the scalar field emerge [29].

In fact, one can show the operator identities [28, 29]

ψ̄iγµ∂µψ =
1
2

∂µφ∂µφ , (2.39)

ψ̄ψ = −c
e√
π

cos
(
2
√

πφ
)

, (2.40)

with c = exp(−γ)/2π and γ = 0.5774 the Euler–Mascheroni constant.
We find after integrating by parts

H =
∫

dx
1
2
(∂µφ)2 +

1
2

e2

π

(
φ +

√
πqext

e

)2

− cm
e√
π

cos
(
2
√

πφ
)

. (2.41)

We may define the background field θ = 2πqext/e and shift the field φ by it to obtain
the bosonised version of the Schwinger model [28, 29]

H =
∫

dx
1
2
(∂µφ)2 +

1
2

e2

π
(φ)2 − cm

e√
π

cos
(
2
√

πφ− θ
)

. (2.42)

Note this Hamiltonian describes a massive Sine-Gordon model with mass e√
π

. The
massless Sine-Gordon model is known to be integrable, while the massive Sine-Gordon
model is not.

However, in the limit e/m → ∞, or equivalently m/q → 0, the interaction term of
(2.42) cos

(
2
√

πφ− θ
)

is suppressed by the mass term (φ)2. Thus, the strong coupling
limit yields a free massive scalar theory.
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2.1.0.4 Spontaneous symmetry breaking

Here, we wish to cite the well-known fact that the vacuum state of the massless
Schwinger model spontaneously breaks chiral symmetry [29, 30]. The quantum ex-
pectation value of the chiral order operator ψ̄ψ with respect to the vacuum state of the
massless Schwinger model |Ω〉 takes on a non-zero value according to [29, 30]

〈Ω|ψ̄ψ|Ω〉 = −c
e√
π

cos(θ) , (2.43)

although the Hamiltonian (2.15) in the case of m = 0 is symmetric under the symmetry
transformation

ψ→ eiαγ5
ψ , (2.44)

ψ̄→ −ψ̄eiαγ5
. (2.45)

We shall write the background field θ as

θ = 2π
E
Ec

(m
e

)2
, (2.46)

Ec =
m2

e
, (2.47)

and thus can follow that the massive Schwinger model in the limit of e/m → ∞ ⇔
m/e→ 0 and E/Ec = const. yields a vacuum expectation value of [28–30]

〈Ω|ψ̄ψ|Ω〉 = −c
e√
π

= − eγ

2π3/2 e . (2.48)

2.2 lattice derivatives and doublers

In this section we wish to explain the fermion doubling problem which comes about
when naively discretising fermions on the lattice.

Our analysis in this section shall be based on the simplifying case of the free theory.
The action of a free fermion field in 1 + 1d in Minkowski spacetime is given by

S =
∫

d2x ψ̄(x)
(
γµ∂µ −m

)
ψ(x) . (2.49)

To formulate this theory on the lattice where on every site we place (fermionic) degrees
of freedom ψn, we need to find a lattice representation of the derivative.
To this end we shall inspect the Taylor expansion of a function f :

f (x± a) = f (x)± a f ′(x) +
a2

2
f ′′(x)± a3

3!
f ′′′(x) +O

(
a4
)

. (2.50)

Therefore, we may define the symmetric (naive) derivative as

f (x + a)− f (x− a)
2a

= f ′(x) +O
(
a2) . (2.51)
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Consequently, one might formulate the continuum action of free fermions on the
lattice naively as

S = a ∑
n

i
2a

ψ̄α(n)
(
(γ0)αβ ψβ(n + e0) + (γ1)αβψβ(n + e1)

)
−mψ̄α(n)ψα(n) (2.52)

= a ∑
n

ψ̄α(n)Mαβ(n, m)ψβ(m) (2.53)

with

Mαβ(n, m) =
i

2a ∑
µ

(
γµ

)
αβ

(
δn+eµ,m − δn−eµ,m

)
−mδαβδn,m . (2.54)

We may define the discrete Fourier transform as

ψ̃α(p) =
1√
N

N−1

∑
n=0

e−i 2πq
N ψα(n) , (2.55)

ψα(n) =
1√
N

N−1

∑
n=0

ei 2πq
N ψ̃α(q) , (2.56)

and find the action in Fourier space to be

S = a
N−1

∑
q,p

ψ̃†
α(p)δqp M̃αβ(p)ψ̃α(p) , (2.57)

with Mαβ(p) =
1
a ∑

µ

(
γµ

)
αβ

sin(pµa)−mδαβ . (2.58)

Here, we see that the matrix of the Dirac operator is diagonal in Fourier space. Hence,
we can easily invert it Fourier space and transform it back to real space.

It is well known how to invert this matrix formally and we shall only state the result.
For computational details see [2].

One finds

M̃−1
αβ (p) = i

m + ∑µ γµπ(pµ)

m2 + ∑µ π2(pµ)
, (2.59)

with π(pµ) =
1
a

sin(pµa) . (2.60)

This yields for the (naive) propagator in real space on the lattice

M−1
αβ (x, y; a) =

∫ π/a

−π/a

dd p
(2π)d i

m + ∑µ γµπ(pµ)

m2 + ∑µ π2(pµ)
eip(x−y) . (2.61)

It is here, where we see why the naive lattice derivative yields troubling results. The
continuum limit a→ 0 of (2.51) will not give the correct well-known continuum limit,

D = i ∑
µ

γµ∂µ −m , (2.62)

D−1(x− y) =
∫ ∞

−∞

dd p
(2π)d i

∑µ γµ pµ + m
p2 −m2 e−ip(x−y) (2.63)
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This is because the sine in the denominator of (2.51) has for every dimension two zeros;
namely everywhere where pµ has an entry of 0 or π/a, respectively. This extra zero in
π(pµ) compared to the continuum case pµ gives rise to an extra low energy excitation,
as the poles of the propagator gives rise to particles. This problem is referred to as the
fermion doubling problem.

Our theory suffers fermion doubling as long as we not remedy this. There are many
‘cures’ for fermion doubling available. They all must obey the Nielsen-Ninomiya no-go
theorem [31] that every real, local, chiral as well as translation symmetry obeying free
fermion action will suffer from fermion doubling. Hence, any cure of the fermion
doubling will necessarily violate one of the above assumptions.

In the next section we want to explain how Kogut and Susskind’s staggered fermi-
ons [32] break translational invariance and remove (most of) the fermion doublers.

2.3 the staggered fermion transformation in hamiltonian formula-
tion

As we have seen in the previous section, the fermion doubling problem arise from the
fact, that the naive discretisation of the derivative will yield unphysical contributions
from the Brillouin zone boundary. One might think that we could eliminate these
unphysical contributions by effectively halving the Brillouin zone, i.e. doubling the
lattice spacing. To that end, one distributes all relevant degrees of freedom into one
hypercube, such that the effective lattice spacing doubled. Consequently, we may be
able to eliminate the doublers. However, this comes at the cost of explicitly breaking
translational invariance, and doubling the lattice spacing and therefore halving the
effective size of available points in the BZ.

Kogut and Susskind’s approach [32] to remove the fermion doublers can be outlined
like this. We diagonalise the naive action in both the matrix indices n, m, labelling
position, and α, β, labelling spinor entry. Then we spread those degrees of freedom onto
a hypercube in our lattice thereby doubling the effective lattice spacing between the
same degrees of freedom. A crucial observation one has to make is that a hypercube in
d spatial dimensions has 2d sites. However, a spinor has in d (d odd) spatial dimensions
2

d+1
2 components (if d is even, the spinor has as many components as in d− 1 spatial

dimensions). Thus, for d spatial dimensions one is forced to populate all 2d sites of a
hypercube with 2d− d+1

2 = 2
d−1

2 different ‘species’ of fermions in order to maintain the
effective doubling of the lattice spacing between the same degrees of freedom. In fact,
those extra DoF might be considered as doublers.

In one spatial dimension we are fortunate enough to eliminate the doubler fermion
entirely–without the otherwise applicable caveat of introducing new fermion species,
also known as tastes.

Below we want to outline how the staggered fermion transformation, which diagon-
alises the naive action, looks like in the Hamiltonian picture in Minkowski spacetime.
Due to the Hamiltonian description we opted for, the fundamental degrees of freedom
are ψ† and ψ as opposed to ψ̄ and ψ in the path integral approach. This change in
variables must be accommodated for by a modified staggered fermion transformation
which is usually not cited in the literature.
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The transformation often referred to in the literature is in euclidean d-dimensional
spacetime given by

ψa(x) = Uab(x)ψb(x) , (2.64)

Uab(x) =

(
d

∏
i=0

γxi

i

)
ab

. (2.65)

Then, the action

S = ∑
n

∑̂
µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m ∑
n

ψ̄nψn , (2.66)

is diagonal in the variables ψ and ψ̄ in the sense that there is only one independent label
for the matrix connecting these two variables. This implies the spatial and spinor indices
are mixed to give this new label in which the resulting matrix is diagonal. This does
not pose a problem for a treatment where the path integral is the fundamental object,
since the path integral measure is invariant under the variable transform ψ† −→ ψ̄.
However, when changing to Minkowski spacetime and treating the Hamiltonian as
the fundamental object of our theory, the same transformation which diagonalised the
action in the above mentioned sense and in the variables ψ, ψ̄ will not diagonalise the
Hamiltonian in the variables ψ and ψ†. Hence, we may incorporate γ0 in the staggered
fermion transformation. As we will see later, the transformation we chose diagonalises
the Hamiltonian in the above mentioned sense only if a representation of the Clifford
algebra is chosen such that γ0 is diagonal.

In general, transformation matrices UR and UL,

ψ(n) = UR(n)φ(n) (2.67)

ψ†(n) = φ†(n)UL(n) (2.68)

will bring the Hamiltonian into diagonal form in the variables φ and φ† if they satisfy

UL(n)γ0γ1UR(n− 1) = K f (n− 1) , (2.69)

UL(n)γ0γ1UR(n + 1) = K f (n + 1) , (2.70)

UL(n)γ0UR(n) = M f (n) , (2.71)

UL(n)UR(n) = 1 , (2.72)

with K f (n± 1), M f (n) being diagonal matrices.
A possible choice for the transformation matrix in 1 + 1d would be

UR(n) = U(n) , UL(n) = U†(n) , (2.73)

U(n) = (γ0γ1)
n . (2.74)

Then, we find

ψ†(n)γ0ψ(n) = φ†(n)(−γ1γ0)
nγ0(γ0γ1)

nφ(n) (2.75)

= φ†(n)(−1)n γn
1 γn

0 γ0 γn
0 γn

1 φ(n) (2.76)

= φ†(n)(−1)n γn
1 γn

0 γn
0 γn

1 (−1)nγ0 φ(n) (2.77)

= φ†(n)(−1)n(−1)n(−1)nγ0 φ(n) (2.78)

= (−1)nφ†(n)γ0φ(n) . (2.79)
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and, respectively,

ψ†(n)γ0γ1ψ(n± 1) = φ†(n)(γ0γ1)
nγ0γ1(γ0γ1)

n±1φ(n± 1) (2.80)

= φ†(n)(−γ0γ0γ1γ1)
n+1/2(1±1)φ(n± 1) (2.81)

= φ†(n)1n+1/2(1±1)φ(n± 1) (2.82)

= φ†(n)φ(n± 1) . (2.83)

Hence, the Hamiltonian is diagonal, provided a choice of representation where γ0 is
diagonal.
For 1 + 1d spinor fields, this is possible by choosing from (2.3).

This implies one can only realise uneven lattice derivatives ∂(2n+1) with staggered
fermions as outlined below:

ψ†(n)γ0γ1ψ(n± l) = φ†(n)(γ0γ1)
nγ0γ1(γ0γ1)

n±lφ(n± l) (2.84)

= φ†(n) (γ0γ1γ0γ1)
n+1− l+1

2 ± l+1
2 (γ0γ1)

±(l−1) φ(n± l) (2.85)

= φ†(n)(γ0γ1)
±(l−1)φ(n± l) (2.86)

NB:

(γ0γ1)
2n = (γ0γ1γ0γ1)

n = (−γ0γ0γ1γ1)
n = (−γ1γ1)

n (2.87)

= 1n = 1, ∀ n ∈N (2.88)

This is also in accordance with the fact that staggered fermions ‘preserve’ a remnant
– the axial symmetry – of the chiral symmetry [2, 29], as a second derivative term
containing ψ(n± 2) would explicitly break this remnant symmetry.

We gather, we are able to diagonalise the Hamiltonian by ‘mixing’ spin and configur-
ation space. Hence, we have a Hamiltonian

H =
N−1

∑
m,n=0

1

∑
a,b=0

φ†
a (n)ha,b(n, m)φb(m) , (2.89)

with

hab(n, m) = δa,b

(
− i

2a
δm,n+1 +

i
2a

δm,n−1 + m(−1)n
)

, (2.90)

being a diagonal 2× 2 matrix, which breaks translation invariance, thus fulfils a neces-
sary requirement of the Nielsen-Ninomiya no-go theorem.

By mixing spatial and spinor index we achieved writing the Hamiltonian in a
diagonal form in the sense that we couple the hermitian conjugate vector φ† via a
diagonal matrix h to the vector φ. Consequently, the two components decouple and
we wish to omit the latter since we know of the doubling problem which we have not
remedied until now. Omitting the second degree of freedom, we write

H =
N−1

∑
m,n=0

φ†(n)h(n, m)φ(m) , (2.91)

and we are left with only a single (spinless) fermionic degree of freedom [2]. We must,
however, show that this is still of physical relevance. To this end we show that in the
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limit of a→ 0 we can actually ‘rebuild’ the spinor components and retrieve the correct
continuum action.

For this, consider the relabelling

ψα(n) = φ(2n + α) , (2.92)

ψ†
α(n) = φ†(2n + α) , (2.93)

α ∈ {0, 1} .

Notice the index n for the spinor ψ labels spacetime points of a lattice with lattice
spacing 2a.

Together with (−1)2n+α = (−1)α, (2.91) takes the following form in the relabelled
spinors:

H =
N/2−1

∑
n=0

1

∑
α=0

−i
2a

φ†(2n + α) [φ(2n + α + 1)− φ(2n + α− 1)] (2.94)

+
N/2−1

∑
n=0

1

∑
α=0

m(−1)αφ†(2n + α)φ(2n + α) . (2.95)

Considering

φ(2n + α + 1) = δα,0ψ1(n) + δα,1ψ0(n + 1) , (2.96)

φ(2n + α− 1) = δα,0ψ1(n− 1) + δα,1ψ0(n) , (2.97)

we can write (2.94) as

Hstagg =
1
2

N
2 −1

∑
n=0

1

∑
α,β=0

ψ†
α(n)

[
δβ,α+1i∂L + δβ,α−1i∂R + mδα,β(−1)α

]
ψβ(n) (2.98)

=
1
2

N
2 −1

∑
n=0

(
ψ†

0(n), ψ†
1(n)

)( m i∂R

i∂L −m

)(
ψ0(n)

ψ1(n)

)
(2.99)

with

∂Rψβ(n) =
1
a
(
ψβ(n + 1)− ψβ(n)

)
, (2.100)

∂Lψβ(n) =
1
a
(
ψβ(n)− ψβ(n− 1)

)
. (2.101)

Notice that we are to require N to be even. Later, this will be emphasised with denoting
the total number of lattice points as 2N.

This Hamiltonian yields in the limit a→ 0 the correct continuum result [2, 33],

H =
∫

dx ψ†(x)γ0

(
iγ1∂1 + m

)
ψ(x) , (2.102)

with the representation of the Clifford algebra chosen in (2.3)ff. Furthermore, we
removed the doublers from our theory by effectively doubling the lattice spacing
through relabelling according to (2.96)f. This renders the BZ half the size and as such
the lattice momentum πq will only have one zero in the first Brillouin zone. For an
explicit calculation of the fermion propagator see e.g. Refs. [2, 33].
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At this point it should be stressed, that we achieved to remove the doublers at the
cost of doubling the lattice spacing and halving the effective number of spinor DoF.
The relabelling (2.96) implies that a staggered fermion lattice of 2N sites describes in
fact only N physical fermions. However, the symmetric lattice derivative from (2.90)
yields an accuracy of O

(
a2).

Lastly, we want to remark that (2.73), the transformation which diagonalises the
Hamiltonian, can readily be generalised to higher dimensions as

U (nµ) =
d

∏
µ=0

(
γ0γµ

)nµ

. (2.103)

However, as we already emphasised above, in more than 1 spatial dimension we are
not fortunate enough to remove all the doublers and we are left with 2

d−1
2 (d odd), 2

d−2
2

(d even) doublers in d spatial dimensions [2, 33].

Summarising, we found a transformation which breaks translation invariance and
brings the Hamiltonian in to a diagonal form in the sense of (2.90). Subsequently, we
have shown after omitting the second degree of freedom in (2.90) we disposed of the
doublers and we can retrieve the correct continuum result by relabelling according
to (2.96). Consequently, we found a suitable fermion discretisation which does not
suffer the doubling problem. Within the framework of this thesis we will choose the
staggered fermion discretisation.
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2.4 introduction to improvements & the renormalisation group

The concepts and the motivation behind lattice improvements in general can be
appreciated in view of the renormalisation group. Hence, we first review in this section
Wilson’s approach to renormalisation [34], introduce the renormalisation group, and
define the notion of relevant, marginal and irrelevant operators, since we use those to
improve our lattice theory. This introduction is closely oriented towards chapter 12 of
Peskin & Schroeder’s book [1].

Subsequently, we want to introduce Symanzik’s improvement programme in Sec-
tion 2.4.3 and discuss what kinds of irrelevant operators are at our disposal to improve
1 + 1d QED in Section 2.4.4, before we opt only for higher kinetic terms for our
improvement procedure.

In Section 2.4.5 we apply the knowledge acquired over the previous sections to
improve the Hamiltonian for staggered fermions in 1 + 1d.

We conclude this chapter with Section 2.4.6 where we attempt to quantify improve-
ments.

2.4.1 Integrating momentum shell-wise [1]

In his 1974 paper [34], Kenneth Wilson put forward a highly successful approach to
renormalisation. It is based on the functional integral method in which the degrees
of freedom of a quantum field theory are variables of integration. The main idea is to
work with cutoff regularisation and integrate out ‘highly fluctuating field modes’.

For our introductory purposes, we shall work with a scalar φ4 theory. Wilson’s
approach can be applied to other QFTs too as long as one respects all symmetries within
the cutoff regularisation scheme. The generating functional in some d dimensional
Minkowski spacetime is given by

Z[J] =
∫
Dφ ei

∫
(L+Jφ) = ∏

k

(∫
dφ(k)

)
ei
∫
(L+Jφ) , (2.104)

where φ is the scalar field, L is its Lagrangian density, J is the source term, and D
marks the functional integral measure defined as above. In order to sensibly talk about
‘highly fluctuating field modes’ i.e. field modes with ‘high momenta’, we need to
perform a Wick rotation and formulate the field theory rather in euclidean spacetime:

t→ i t (2.105)

i
∫
L → −

∫
LE (2.106)

In the following, we will drop the subscript E on all euclidean variables for concise-
ness of notation.

For simplicity, let us set the source field to J = 0. Then the generating functional
reads as

Z[J] =
∫
[Dφ]Λ exp

{
−
∫

ddx
(

1
2
(∂µφ)2 +

1
2

m2
0φ2 +

λ0

4!
φ4
)}

, (2.107)

[Dφ]Λ = ∏
|k|<Λ

dφ(k) , (2.108)
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where we made the Lagrangian L explicit, in which m0 and λ0 are the bare (un-
renormalised) mass and coupling constant, respectively. In the Wilsonian approach of
momentum shell-wise integration of the functional integral, momentum modes of the
field are devided in two: The variable φ̃(k) shall be only non-vanishing iff bΛ ≤ |k| < Λ
while the variable φ(k) (with a slight abuse of notation) shall be only non-vanishing iff
|k| < bΛ. Our aim is to integrate out the highly fluctuating degrees of freedom. Hence,
we split the Lagrangian as

Z =
∫

[Dφ]bΛDφ̃ exp
{
−
∫

ddx
[

1
2
(
∂µφ + ∂µφ̃

)2
+

m2

2
(φ + φ̃)

2
+

λ

4!
(φ + φ̃)

4
]}

(2.109)

=
∫

[Dφ]bΛ e−
∫
L(φ)

∫
Dφ̃ exp

{
−
∫

ddx
[

1
2
(
∂µφ̃

)2
+

m2

2
φ̃2

+ λ

(
1
6

φ3φ̃ +
1
4

φ2φ̃2 +
1
6

φφ̃3 +
1
4!

φ̃4
)]}

(2.110)

The product φφ̃ vanishes identically in this expression.
We learn that integrating over the high momentum modes φ̃ is equivalent to the

addition of ‘correctional’ terms proportional to powers of λ to the ‘standard’ Lagrangian
L(φ):

Z =
∫
[Dφ]bΛ exp

{
−
∫

ddxLeff

}
(2.111)

=
∫
[Dφ]bΛ exp

−
∫

ddx

1
2
(∂µφ)2 +

1
2

m2φ2 +
λ

4!
φ4︸ ︷︷ ︸

L‘std.’(φ)

+O(λ) +O
(
λ2)+ . . .︸ ︷︷ ︸

‘corrections’




(2.112)

To this end, we will analyse this theory perturbatively in a Feynman diagram
approach. Since we are interested in the case of m2 � Λ2, we will not only treat the
terms proportional to λ as a perturbation but also the mass term.

Thus, the free theory of the high momentum modes φ̃ is trivially solved by computing

the propagator φ̃(k)φ̃(p): ∫
L0(φ̃) =

1
2

∫
bΛ≤|k|<Λ

ddk
(2π)d φ̃∗(k) k2 φ̃(k) , (2.113)

⇒
∫
Dφ̃ φ̃∗(k)φ̃(p)e−S0[φ̃]∫

Dφ̃ e−S0[φ̃]
=: φ̃(k)φ̃(p) =

1
k2 (2π)dδ(d)(k− p)Θ(k) , (2.114)

where Θ(k) =

1 if bΛ ≤ |k| < Λ

0 otherwise
(2.115)

Subsequently, we will follow the standard procedure by substituting every field φ̃

in the interaction terms by its corresponding functional derivative δ
δJ and expand the

exponential. This follows closely usual perturbation theory. However, we only allow
for low momentum modes φ to be external states and φ̃ fields must be contracted

internally, i.e. the propagator φ̃(k)φ̃(p) only occurs as an internal propagator.
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First, we shall inspect the O(λ) contribution of the ‘correctional’ terms in (2.110). One
of the terms might be

−
∫

ddx
λ

4
φ2φ̃φ̃ = −1

2

∫
ddk µ φ∗(k)φ(k) , (2.116)

where µ consists of the contraction φ̃(k)φ̃(p) and some numerical factors to suite above
equation. This term looks just like a correction to the mass at O(λ). We will inspect
further contribution from this perturbation series diagrammatically. The propagator of
the highly fluctuating field φ̃ shall be denoted in a dotted line while the propagator of
the lower momentum modes by a straight line. Then, Equation 2.116 can be expressed
by

<latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit><latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit><latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit><latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit> . (2.117)

At O
(
λ2) we will find, among others, these diagrams

(
<latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit><latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit><latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit><latexit sha1_base64="EVwY5jd8OfNJIw/l4Hbi2BDo7PQ="></latexit>

)2

, (2.118)

p1

p2 k2

k1 p01

p02
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=: − 1
4!

∫
ddk1 ξφ4 . (2.119)

Let us now inspect the contribution of Equation 2.119:

ξ ∼ 1
k2

1

1
k2

2
(2.120)

=
1
k2

1

1
(p1 + p2 − k1)2 (2.121)

We can now expand the second fraction in Equation 2.121 because we said earlier the
momentum modes of φ̃(ki) are larger than the momentum modes of φ(pi).

ξ ∼ 1
k4

1

(
1 + 2

p1 + p2

k1
+ 3

(
p1 + p2

k1

)2

+ 4
(

p1 + p2

k1

)3

+ . . .

)
(2.122)

Together with Equation 2.119 the first term of this series expansion in Equation 2.122

will yield a term only containing four powers of the field φ. It takes the from of a
correction to the interaction. The higher terms of the series in Equation 2.122 will yield
an operator containing derivatives acting on the fields φ.

In general one can deduce from this sketch that integrating out φ̃ will generate all
possible interactions of the fields φ and their derivatives which respect the original
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symmetries of the theory. This integration generated also disconnected diagrams as
seen in Equation 2.118. With a standard combinatoric argument in QFT we can rewrite
the sum of all diagrams as the exponential of all connected diagrams. Hence, we can
conclude schematically

Leff =
1
2
(∂µφ)2 +

1
2

m2φ2 +
λ

4!
φ4 + {sum of all connected diagrams} . (2.123)

The contributions of all connected diagrams includes corrections to m2, like Equa-
tion 2.116, and λ, like the first term of Equation 2.122, as well as higher-dimensional
operators. One might now go ahead and use the new Lagrangian Leff to compute ob-
servables like corelation functions. Any loop integral would be finite and only include
modes up to bΛ instead of the original cutoff Λ. The correction terms in Leff precisely
compensate for this change.

2.4.2 Renormalisation Group Flows [1]

In the last section we left things at the effective Lagrangian Leff in which the momentum
modes reach only bΛ – unlike the Lagrangian we started with (there we allowed for
momenta up to Λ). Now, we shall compare these two Lagrangians more thoughtfully.
To this end, we will rescale momenta and lengths such that it appears we allowed for
momenta up to the cutoff again:

k′ = k/b x′ = xb. (2.124)

As we have seen, the new addends in the effective action can be seen as correctional
terms to the existing ones as well as entirely new terms. We will appreciate both
thoughts in noting∫

ddxLeff =
∫

ddx
[

1
2
(1 + ∆Z)(∂µφ)2 +

1
2
(m2 + ∆m2)φ2

+
1
4!
(λ + ∆λ)φ4 + ∆C(∂µ)

4 + ∆Dφ6 + . . .
]

(2.125)

=
∫

ddx′ b−d
[

1
2
(1 + ∆Z)b2(∂µφ)2 +

1
2
(m2 + ∆m2)φ2

+
1
4!
(λ + ∆λ)φ4 + ∆Cb4(∂µ)

4 + ∆Dφ6 + . . .
]

. (2.126)

From this Lagrangian we could get the same free propagator as in Equation 2.114 if we
rescaled the field

φ′ =
(

b2−d(1− ∆Z)
)1/2

φ . (2.127)

NB: This is only sensible as long as we can treat all but the kinetic term as small
perturbations. Hence, we need the couplings to be small, near the free theory. Then the
corrections ∆m2, ∆λ, et cetera, originate from high orders of perturbation theory and
thereby are small compared to leading order.
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However, once we rescaled the field appropriately, the free theory looks the same as
before. Yet, the interaction couplings have transformed:∫

ddxLeff =
∫

ddx
[

1
2
(∂µ′φ

′)2 +
1
2

m′2φ′2

+
1
4!

λ′φ′4 + C′(∂µ)
4 + D′φ′6 + . . .

]
(2.128)

with

m′2 = (m2 + ∆m2)(1 + ∆Z)−1 b−2 ,

λ′ = (λ + ∆λ)(1 + ∆Z)−2 bd−4 ,

C′ = (C + ∆C)(1 + ∆Z)−2 bd ,

D′ = (D + ∆D)(1 + ∆Z)−3 b2d−6 .

(2.129)

By successive application of this momentum shell-wise integration while in every
step the fraction b is chosen infinitesimally close to 1, we can make the transformation
of the coefficients in the effective Lagrangian (cf. Equation 2.129) continuous. This
flow is referred to as the renormalisation group flow albeit this operation is not invertible
implying this is truly not a group.

Suppose you wish to compute a correlation function of fields with momenta pi
much smaller than the cutoff. You might either use the original Lagrangian L or the
effective Lagrangian Leff one obtains when following the renormalisation group flow
to momenta of the order of pi. Both must yield the same results. However, in the
former one encounters the effects of high momentum modes only when computing
loop diagrams. In the later those effects have been absorbed in the new coupling
constants. Renormalisation should then be viewed as a flow in the space of all possible
coefficients which define a specific Lagrangian.

The simplest starting point to consider in the space of all possible Lagrangians is
0 = m = λ = C = D = . . ., the free field Lagrangian L0 = 1

2

(
∂µφ

)2. By construction,
the transformation laws we defined above leave L0 unchanged. Whenever this occurs,
we speak of a fixed point of the renormalisation group transformation. As the free
action is quadratic in the fields we call it the Gaussian fixed point. Here, the functional
integral can be computed analytically.
In some neighbourhood of L0 we may approximate the effects of renormalisation by
only keeping terms linear in λ in the transformation laws from (2.129). This simplifies
them to

m′2 = m2 b−2 ,

λ′ = λ bd−4 ,

C′ = C bd ,

D′ = D b2d−6 .

(2.130)

Moreover, a general operator in d spacetime dimension containing N powers of a
fermionic / bosonic field and P derivatives has canonical mass dimension

[O] =

N( d−2
2 ) + P scalar field

N( d−1
2 ) + P fermionic field

, (2.131)
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and its corresponding coefficient transform like

C′ =

bN( d−2
2 )+P−dC scalar field

bN( d−1
2 )+P−dC fermionic field

. (2.132)

Notice the exponent is precisely the mass dimension of the operator minus spacetime
dimensions.

Successive application of the transformation law Equation 2.132 down to a mo-
mentum scale accessible in an experiment will cause some coefficients to become
vanishingly small. Conventionally, one speaks of those additional operators in Leff as
perturbation to L0 and we group them according to the behaviour of their coupling
constants:
Operators for which the coupling decreases by successive application of the trans-
formation laws (2.132) are called irrelevant. Coupling constants which transform under
(2.132) to a larger value correspond to relevant operators. Lastly, operators are called
marginal when the value of their coupling constant does not change under (2.132).
To find out whether these grow or decay, one must inspect higher order (quantum)
corrections, as we left out terms of O

(
λ2) and higher in the transformation laws.

Equivalently, an operator with canonical mass dimension di in d spacetime dimen-
sions is relevant if di < d, irrelevant if di > d, and marginal if di = d.

2.4.3 Symanzik improvement programme

In this section we want to draw the connection from the renormalisation group to
lattice improvements first discussed by Symanzik in 1979 [25]. To this end, we remind
ourselves to define a quantum field theory, it does not suffice to write down its classical
Lagrangian L(x). One needs to define the functional integral aka. path integral:∫

D[ψ]D[ψ†] ei
∫

ddxL(x) .

A valid method of obtaining a mathematically well-defined functional integral is
to define the theory on a lattice with physical volume V and lattice spacing a. This
procedure naturally introduces a cutoff at the ultraviolet

(
∼ 1

a

)
and the infrared

(
∼ 1

V

)
ends of the momentum spectrum, thus regularising the theory. One then has to take
the thermodynamic limit V → ∞ and the continuum limit a→ 0, respectively. While it
is generally believed that finite-size effects concerning the limit V → ∞ are controllable
and observables which do not probe the topological nature of the theory display no
trouble making features [35], the limit of taking the lattice spacing very much smaller
than any other (physical) scale a→ 0 is in practice often only (too) slowly reached [36].
Taking this limit might not always be straightforward.

The goal lattice improvements are aiming for, is to approach this continuum limit
faster. To this end, we want to make the UV-cutoff effects explicit, which gives structural
insight. At scales much larger than the spacing a, we expect the lattice theory to be
effectively continuum-like. At such scales far away from the cutoff, the RG-flow should
have renormalised the couplings of all irrelevant operators to zero.
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The resulting effective action is conceptually the same as the one from (2.112). One
might now expand this effective action in a power series of a [36],

Seff = S0 + aS1 + a2S2 + . . . , (2.133)

Si =
∫

ddx gi(a, V, gj, . . .)Li(x) . (2.134)

NB: S0 is the continuum action.
Following our analysis from the previous section, for dimensional reasons all terms

of the effective action which go with one power or higher in a must only contain
irrelevant operators which respect the symmetries of the theory. Their correction to
observables must hence vanish with a→ 0.

However, limited by computational complexity and finite hardware resources, one
might find oneself in a situation where the limit of a → 0 is not yet reached. For
instance, in some QFT’s the a-dependence in the running of the coupling goes like
a log(a) which only slowly decays to the value of 0 in the limit a→ 0.

Alternatively, on any lattice with finite lattice spacing, we are excluding modes of
excitation higher than ∼ 1

a . These highly oscillating modes, however, play an important
role in a quantum field theory! As we have seen in Section 2.4.1, they contribute via
renormalisation to real physical quantities like particle mass or coupling strength.
Thus, we must include the effect of those highly fluctuating field modes on the lower
modes [37].

The central idea of lattice improvements is to include lattice representations of the
operators constituting Li(x) from (2.133) with an appropriate coupling ci = −gi such
that the corresponding a-dependence gets canceled and the irrelevant operators imitate
the renormalisation effect of high momentum modes on low momentum modes.

Now, the obvious question to answer is: What might be the appropriate value of the
coupling ci? At first, this might seem like a tautologic question; If one exactly computed
these couplings, one would have solved the problem of computing the observables in
the first place.

Here we pick up the idea of rendering the a-effects explicit and employ lattice
and continuum perturbation theory [25, 33, 36]. Knowing the continuum result from
(continuum) perturbation theory, we can explicitly compute the a-dependence in lattice
perturbation theory and counter the effects order by order in a with including Li and
appropriate ci. For this, we restrict ourselves to on-shell quantities and employ the
equations of motion to eliminate further degrees of freedom in choosing the ci. This is
often referred to as classical or tree-level improvement. For instance, in consistently
including all irrelevant operators respecting the symmetries and with canonical mass
dimension d1 = d + 1, which make up L1 from (2.133), on can completely remove
the O(a)-dependence of some observable within perturbation theory, as there is no
operator left which can affect an observable to O(a) within perturbation theory.

An important caveat is that this relies on perturbation theory and therefore it is un-
clear whether this improvement scheme works for strong couplings where perturbation
theory does not hold.

Lastly, we want to remark that the involved and intricate quest of emulating the effect
of all high momentum modes on lower ones is taken on in the approach of so called
perfect actions. It involves the exact solution of renormalisation group transformations
like we looked at in Section 2.4.2, which is known for few special cases. For further
reference see e.g. [38, 39].
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2.4.4 Canonical Mass Dimension

In the previous section we discussed that in order to improve a QFT we need to
explicitly add all operators with mass dimension up to some order.

The canonical mass dimension of an operator O with N powers of a Dirac spinor
field ψ and P derivatives in d spatial dimensions is

[O] = N
d
2
+ P , (2.135)

whereas the mass dimension of the corresponding coupling is given by

[O]g = d + 1− [O] . (2.136)

We established above that irrelevant operators have positive mass dimension (while
the coupling constant has negative), relevant operators have negative mass dimension,
and marginal operators have zero mass dimension.

Since we are investigating the physics of QED in 1 + 1d, we list the mass dimension
of several couplings corresponding to different operators in 1 + 1d QED, where d is
the spatial dimension:

[
ψψ
]

g = −2
d
2
+ d + 1 = +1 , (2.137)[(

ψγµψ
)2
]

g
= −4

d
2
+ d + 1 = d− 2 = 0 , (2.138)[(

ψψ
)3
]

g
= −6

d
2
+ d + 1 = 2d− 3 = −1 , (2.139)[

ψ /D2ψ
]

g
= −2

d
2
− 2 + d + 1 = −1 , (2.140)[(

ψγµψ
)4
]

g
= −8

d
2
+ d + 1 = 3d− 4 = −2 , (2.141)[

ψ /D3ψ
]

g
= −2

d
2
− 3 + d + 1 = −2 , (2.142)[(

ψ /Dψ
)2
]

g
= −4

d
2
− 2 + d + 1 = −2 (2.143)[(

ψDµψ
)2
]

g
= −4

d
2
− 2 + d + 1 = −2 . (2.144)

In order to improve the Hamiltonian of 1 + 1d QED and remove all lattice artefacts to
O(a) we would naively assume to include the derivative term from Equation (2.140)
as well as the the cubic interaction term from Equation (2.139). However, we will not
include a lattice representation of those operators in our theory, as we are considering
staggered fermions which obey in 1 + 1d the axial symmetry. Those two operators
would explicitly break this symmetry. This is reflected in our earlier finding in Sec-
tion 2.3, that staggered fermions can only implement uneven lattice hopping terms.
Moreover, it is consistent with our finding that staggered fermions are accurate up
to O

(
a2) and operators of canonical mass dimension 1 need not to be considered.

Consequently, we are only to include the third derivative from (2.142), the Thirring-like
interaction term from (2.141) as well as the squared first derivatives in (2.144) and
(2.144), respectively.
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Introducing new interaction terms into our theory requires us to perform lattice
perturbation theory, in order to obtain an on-shell result on the lattice, as well as
perturbation theory in the continuum to have a referencing result, with which we must
check against, in order to determine the improvement coefficients ci. This process is
somewhat more involved and we will not pursue this in the framework of this thesis.

Henceforth, we will only introduce higher-order derivatives as irrelevant operators
to improve our lattice theory.

In this framework we are limiting ourselves on a ‘subspace’ of what improvements
might be able to offer. Now, it is only the free theory which we can be sure of is freed
from all O

(
a2) lattice artefacts. Coming from the free theory, we are promoting the

derivates to covariant derivatives. The RG flow for the interacting theory will generate
more than derivatives terms, as we have already seen from Section 2.4.2. In the limit of
small couplings, i.e. in the neighbourhood of the Gaussian Fixed Point, we assume the
results for the free theory to still be applicable to the interacting theory.

By introducing only irrelevant kinetic operators in 1 + 1d – in the context of high
momentum modes affecting lower ones via renormalisation – we are neither fully
capturing the effect of all of them on to the lower modes, nor do we include consistently
irrelevant operators to a given order in a.

On the other hand, introducing only higher derivative terms can give an intuition of
what improvements are providing; namely correcting the dispersion relation on the
lattice to be accurate up to higher orders in a. This will be discussed in the next section.

As we will see later, in the interacting case after promoting the U(1) symmetry to a
gauge symmetry and promoting the derivative to a covariant derivative, we find that
improving the kinetic terms of the Hamiltonian yields an improvement in the kinetic
observables like the current.

2.4.5 Improvement coefficients

In this section we want to familiarise ourselves with improvements. To this end we will
show, using the example of the (free) energy dispersion relation, that improvements
reduce the lattice artefacts of some observable. The energy dispersion relation offers a
very intuitive picture of what improvements can provide.

The above mentioned demonstration will be performed in the Hamiltonian frame-
work of lattice gauge theories. As explained in Section 2.4.3, Symanzik’s improvement
programme is formulated in the functional integral approach to lattice QFT, where
the degrees of freedom are classical variables of integration. Luo et al. argue one can
expand this programme to the Hamiltonian approach in which the classical degrees
of freedom are quantised according to canonical quantisation [40]. They demonstrate
the classically improved quantum Hamiltonian has formally reduced O(a) dependence
and can in fact be obtain in two different ways. First, one might obtain the classical
improved Hamiltonian via Legendre transform from the classically improved action,
and then canonically quantise it. Or equivalently, one might start with the (unimproved)
classical action, construct the quantum Hamiltonian via the transfer matrix and then
add appropriate operators to reduce the O(a)-dependence [40].
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We shall consider the Hamiltonian in temporal axial gauge

Hlat = m
2N−1

∑
n=0

(−1)nψ†
nψn +

a
2

2N−1

∑
n=0

E2
n

− c1
i

2a

2N−2

∑
n=0

[
ψ†

nUnψn+1 − h.c.
]

− c3
i

2a

2N−4

∑
n=0

[
ψ†

nUnUn+1Un+2ψn+3 − h.c.
]

, (2.145)

where a is the (spatial) lattice spacing, ψn denotes the discretised version of the spinor
field, Un is the link variable which relates to the gauge field like Un = exp{ieaAn}, c1

and c3 are the improvement coefficients corresponding to the first and third derivative
of the fermion field ψ, respectively.

The choice of c1 = 9/8, c3 = −1/24, as Naik proposed [41], is the on-shell improve-
ment up to O

(
a4). To see this, let us take (2.145) in the limit of e = 0, i.e. the free theory.

Then, we can diagonalise Hlat explicitly, read off the dispersion relation, and observe
an O

(
a4) improvement, as we will show now. Defining the Fourier transform as

ψn =
1√
2N

∑
q

e
iπqn

N ψ̃q , (2.146)

ψ̃q =
1√
2N

∑
n

e−
iπqn

N ψn , (2.147)

and taking e = 0, we find [42]

Hfree =
N−1

∑
q=0

(
ψ̃†

q ψ̃†
q+N

)(π(q) m

m −π(q)

)(
ψ̃q

ψ̃q+N

)
, (2.148)

with π(q) =
1
a
(c1 sin(πq/N) + c3 sin(3πq/N)) (2.149)

=
1
a
(c1 sin(ka) + c3 sin(3ka)) . (2.150)

The eigenvalues of Hfree are

±ω(q) = ±ωq = ±
√

m2 + π2(q) (2.151)

and the eigenvectors read as

v+(q, m) =
[
2ωq(ωq − πq)

]− 1
2

(
m

ωq − πq

)
(2.152)

v−(q, m) =
[
2ωq(ωq + πq)

]− 1
2

(
−m

ωq + πq

)
. (2.153)

Those eigenvectors build up the transformation S(q) = (v+(q, m), v−(q, m)) under
which Hfree becomes diagonal; and as such they transform the field operators ψ̃q and
ψ̃q+N onto the quasi-particle creation and annihilation operators:(

aq

b†
q

)
= S(q)†

(
ψ̃q

ψ̃q+N

)
(2.154)
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If one now would like to improve the Hamiltonian to O
(
a4) instead of the regular

O
(
a2) of staggered fermions, one can uniquely fix the coefficients c1 and c3 by equating

coefficients of the series expansion of the lattice momentum πk to the ‘coefficients’ of
the continuum result πcont(k) = k

π(k; a) =
1
a
(c1 sin(ka) + c3 sin(3ka)) (2.155)

= k(c1 + 3c3)−
a2

6
k3(c1 + 27c3) +O

(
a4k5

)
(2.156)

!
= k +O

(
a4k5

)
(2.157)

The two algebraic equations c1 + 3c3 = 1, c1 + 33c3 = 0 uniquely define the coefficients
to be c1 = 9/8 and c3 = −1/24.

Consequently, we find the dispersion relation,

ωk =
√

m2 + π2
k =

√
m2 + k2 +O

(
a4k5

)
, (2.158)

to be accurate to O
(
a4k5).

Now, suppose we would include a fifth derivative operator, the next highest de-
rivative respecting the symmetries of staggered fermions, in the Hamiltonian. It is
easily confirmed this would alter the lattice momentum π(k) simply by a new addend
1
a c5 sin(5ka). In fact, it can be readily generalised upon including n higher derivates,
which all must be uneven as we showed in Section 2.3, the lattice momentum in the
free theory takes the form

π(n)(k) =
1
a

n

∑
i=0

c2i+1 sin((2i + 1)ka) (2.159)

From this analysis, we can follow a general relation of the improvement coefficients
ci given the improvement order n in the case of the free theory with staggered fer-
mion discretisation. We find the following system of equations which determine the
coefficients up to any finite order uniquely:

n

∑
i=0

c2i+1(2i + 1) !
= 1 , (2.160)

1 ≤ j ≤ 2n + 1 :
n

∑
i=0

c2i+1(2i + 1)2j+1 !
= 0 . (2.161)

In Table 2.1 values of the coefficients up to order three in improvement are displayed.

2.4.6 Quantifying Improvements

In this section we wish to quantify the benefits of improvements. To this end, we want
to quantify in some notion how ‘close’ we can get to the continuum dispersion relation
upon improving the free theory.

From the explicit expression for the lattice momentum (2.149) it is evident, that
for fixed a0 one cannot find a factor α such that an improved curve agrees with an
unimproved at a = αa0:

∀α :
1
a0

(
9
8

sin(ka0)−
1
24

sin(3ka0)

)
6= 1

αa0
sin(kαa0) (2.162)
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Order c1 c3 c5 c7

0 1 0 0 0

1 9
8 − 1

24 0 0

2 75
64 − 25

384
3

640 0

3 1225
1024 − 245

3072
49

5120 − 5
7168

Table 2.1: Improvement Coefficients for the free theory

0 π
8a0

π
4a0

3π
8a0

π
2a0

k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 a
0

continuum
unimproved, π(k; a0)
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Figure 2.1: Displayed is the unimproved lattice momentum (π(0)(k; a0)) in blue, the first order
improved lattice momentum in orange (π(1)(k; a0)), and the unimproved lattice mo-
mentum with half the lattice spacing w.r.t. the previous a0 (π(0)(k; 0.5a0)). All plotted
in the positive half of the Brillouin Zone (BZ). π(1)(k; a0) follows the continuum
dispersion more closely over a longer interval in BZ than π(0)(k; a0). However,
π(0)(k; 0.5a0) is still the most advantageous when it comes to describing more
accurately the momentum in the same physical momentum range.

However, one might find a rather good agreement in e.g. the interval
[
− π

4a0
, π

4a0

]
. The

factor α, where the improved curve and the unimproved curve coincide most closely,
may then give a hint of what improvements quantitatively yield. Figure 2.1 displays
such a relation of the unimproved curve with a0, the improved curve with a0, and an
unimproved curve with a = 0.5a0, which yields good quantitative agreement over the
interval

[
0, π

4a0

]
.

For further analysis, we defined a figure of merit by the following protocol: Given
a small δ and starting at k = 0, at which k does one find a deviation of the given
dispersion curve from the continuum curve which is equal or greater than δ? This
Figure of Merit is displayed in Figure 2.2. Here, we can see, just as in Figure 2.1, at
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Figure 2.2: Figure of merit δ-deviation from the continuum: Given a small δ and starting at
k = 0 when is it, that the respective lattice momentum deviates from the continuum
with more then δ? (a) lin-log plot over the positive half BZ, (b) log-log plot over the
positive half BZ. We observe for an error margin of a few per cent an increase in
accuracy by a factor of around 1.5.
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equal a0 the improved curve gives better agreement with the continuum as opposed to
the unimproved curve. From Figure Figure 2.2b we can clearly see that the unimproved
curves are parallel while the improved curve has a higher slope. Upon increasing
α→ 1 one would move the improved curve towards the unimproved curve, and vice
versa.

In a regime of the order of 0.1%–2% deviation from the continuum, the improved
curve yields the best results of those three curves. Beyond this, the unimproved
curve with half the lattice spacing performs best with regards to this figure of merit.
Consequently, if one was to restrict oneself to an error on the lattice momentum of
only 0.1%–2%, only then the improved curve would surpass the unimproved one with
half the lattice spacing. However, the self-restricted momentum range would then only
cover half the Brillouin zone. This forgoes important numerical resources which ought
not to be wasted. In comparison, if one was to allow an error of a few per cent, the best
curve would be the unimproved curve with half the lattice spacing, as it follows the
continuum dispersion more closely over a larger range of k. Nevertheless, the improved
curve yields better performance over the improved curve given same lattice spacing.
If one allows for a few per cent error margin from the continuum, we read off from
Figure 2.2 a good coverage in the Brillouin zone of about 1.5 lager compared to the
unimproved curve. This is also evident from Figure 2.1.

Therefore, we conclude that improving the lattice momentum yields very good
agreement with the continuum over a little more than half the Brillouin zone (cf.
Figure 2.1). However, the improvements do not change the lattice cutoff at the Brillouin
zone boundary ∼ 1

a , and consequently, for high momenta they cannot compete against
a truly reduced αa0.

It shall be noted, that the Schwinger effect, which we will use to benchmark our
results, indeed produces particles at p = 0. For low momenta, as we already discussed,
the improved curve has a better accuracy over the unimproved curve by some per
cent points. Hence, we may be able to observe some better accuracy of the particle
production rate with improved Hamiltonians, as the high momentum accuracy is not
of great importance for particle production.

Lastly, we want to summarise our findings in this section by remarking that whether
and how much improvements are beneficial depends on the phenomena of interest,
whether it probes only low momenta or also high momenta towards the boundary of
the Brillouin zone.
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2.5 schwinger mechanism in a constant, homogeneous electric field

In this section we wish to expand the foundations we laid in the previous section
and apply those insights to the ‘interacting’ theory in the limit of a strong, constant,
and homogeneous electric field. In this limit the link variables Un = U = eiaeEt are
treated classically. We will show the results from Section 2.4.5 still hold and the
improvement coefficients can be taken from the free theory. Finally, we want to present
some numerical results from Classical Statistical Simulations, to give some intuition in
how the Schwinger effect works with a constant field.

2.5.1 Particle Number definition

The Hamiltonian (2.145) with the approximation Un = U = eiaeEt can then be written
as [20]

Hlat = m
2N−1

∑
n=0

(−1)nψ†
nψn +

e2a
2

2N−1

∑
n=0

L2
n

− i
2a

2N−2

∑
n=0

[
c1ψ†

neiaeEtψn+1 − h.c.
]

− i
2a

2N−4

∑
n=0

[
c3ψ†

nei3aeEtψn+3 − h.c.
]

, (2.163)

=
N−1

∑
q=0

(
ψ̃†

q ψ̃†
q+N

)(π(q) m

m −π(q)

)(
ψ̃q

ψ̃q+N

)
, (2.164)

with

π(q) =
1
a

[
c1 sin

(πq
N

+ aeEt
)
+ c3 sin

(
3
(πq

N
+ aeEt

))]
(2.165)

=
1
a
[c1 sin(a(k + eEt)) + c3 sin(3a(k + eEt))] . (2.166)

Energy will not be conserved as the Hamiltonian is explicitly time dependent. It is
important to stress that the function πq from (2.165) is not the same as in (2.149). In
fact, the physical momentum from the previous section is generalised to the canonical
momentum

k −→ k + eEt , (2.167)

corresponding to

∂ −→ ∂ + eA(t) , (2.168)

in the limit of E = ∂t A = const.⇒ A(t) = Et.
We can still diagonalise the Hamiltonian instantaneously. The derivation is straight-

forward and follows the diagonalisation of Section 2.4.5, only taking into account the
modified version of πq. We would find for the improvement coefficients exact agree-
ment with the ones from the previous section if we were to demand the continuum
result to of the dispersion relation to be ω(k) =

√
m2 + (k + eEt)2.
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The Hamiltonian still has eigenvalues ωq = ±
√

m2 + π2
q , and eigenvectors

v+(q, m) =
[
2ωq(ωq − πq)

]− 1
2

(
m

ωq − πq

)
(2.169)

v−(q, m) =
[
2ωq(ωq + πq)

]− 1
2

(
−m

ωq + πq

)
. (2.170)

Again, defining

S(q) =
(
v+(q, m), v−(q, m)

)
(2.171)

=

 m
N− − m

N+

ωq−πq
N−

ωq+πq
N+

 , (2.172)

with

N± =
√

2ωq(ωq ± πq) , (2.173)

and (
aq

b†
q

)
= S(q)†

(
ψ̃q

ψ̃q+N

)
, (2.174)

the Hamiltonian becomes diagonal and reads as

H =
N−1

∑
q=0

ωq

(
a†

q aq + b†
q bq − 1

)
. (2.175)

Consequently, we define the quasi-particle number density

nq := 〈Ω|a†
q aq + b†

q bq|Ω〉 , (2.176)

as the expectation value of the instantaneous number operator. The state |Ω〉 is taken
to be the ground state of H with Un = 1, En = 0.

Furthermore, we may conclude for the energy density

εq = ωq(nq − 1) , (2.177)

and E = 〈Ω|H|Ω〉 =
N−1

∑
q=0

ωq(nq − 1) . (2.178)

Utilising the Bogoliubov transform (2.172), we can compute the two contributions to
the particle number density nq as

〈Ω|a†
q aq|Ω〉 =

m2

2ωq(ωq − πq)
〈Ω|ψ†

q ψq|Ω〉+
ωq − πq

2ωq
〈Ω|ψ†

q+Nψq+N |Ω〉

+
m

2ωq

(
〈Ω|ψ†

q ψq+N |Ω〉+ 〈Ω|ψ†
q+Nψq|Ω〉

)
, (2.179)
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and

〈Ω|b†
q bq|Ω〉 =

m2

2ωq(ωq + πq)
〈Ω|ψqψ†

q |Ω〉+
ωq + πq

2ωq
〈Ω|ψq+Nψ†

q+N |Ω〉

− m
2ωq

(
〈Ω|ψqψ†

q+N |Ω〉+ 〈Ω|ψq+Nψ†
q |Ω〉

)
, (2.180)

respectively. With this result and the definition of the statistical propagator

F̃q,p := 〈Ω|
[
ψ̃q, ψ̃†

p

]
|Ω〉 = 1

2N

2N−1

∑
n,m=0

e−
iπ
N (qn−pm)Fn,m (2.181)

at hand, we can formulate the energy density εq in terms of F,

εq =
1
2
(
πq(F̃q+N,q+N − F̃q,q)−m(F̃q+N,q + F̃q,q+N)

)
. (2.182)

Then, the particle number density distribution is given by nq =
εq
ωq

+ 1, and the total
particle number density by

N (t)
Lt

=
1

Na

N−1

∑
q=0

nq . (2.183)

NB: This definition of the particle number counts particles as well as anti-particles.
Depending on the reference, an appropriate factor of two must be included.

particle production rate in the continuum Here, we merely want to cite
the particle distribution for late times after a sudden switch-on of the constant electric
field in the continuum [43],

nk = exp
(
−πm2

eE

)
Θ(k)Θ(eEt− k) . (2.184)

For the particle production rate follows [43, 44]

N (t)
L t

=
eE
2π

exp
(
−πm2

eE

)
=

m2E
πEc

exp
(
−πEc

E

)
, (2.185)

with

Ec =
m2

e
. (2.186)

2.5.2 Fermionic Current Operator

The fermion current j(n) can be computed with the help of a Maxwell equation. In
1 + 1d Ampère’s law reads

curl(B) = 0 = e j +
∂E
∂t

. (2.187)

Since θ = aeA and L = E
e are canonical conjugates of each other, they obey the

following commutation relation1:

[Lm, Un] =
[

Lm, eiθn
]
= δnmUn (2.188)

1 This is a corollary of the Baker-Campbell-Hausdorff formula, esXYe−sX = Y + s[X, Y] ⇔
[
esX , Y

]
=

s[X, Y]esX , when [[X, Y], X] = 0 = [[X, Y], Y].
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Hence, we obtain

∂L
∂t

= −i[L, H] = − ĵ , (2.189)

ĵ(n) =
1
2a

[
c1

(
ψ†

nUnψn+1 + h.c.
)

+ c3

(
ψ†

nUnUn+1Un+2ψn+3 + ψ†
n−1Un−1UnUn+1ψn+2 + ψ†

n−2Un−2Un−1Unψn+1

+ h.c.
)]

. (2.190)

This calculation is straightforward to generalise when including higher order kinetic
terms.

2.5.3 Average Current & its improvement

For the average current ∑n j(n) we can compute in the homogeneous case:

1
2N

2N−1

∑
n=0

ĵn =
1

2N

2N−1

∑
n=0

1
2a

1
2N

2N−1

∑
q,p=0

[
c1

(
ψ̃†

qUψ̃pe−
iπn
N (q−p)e

iπp
N + h.c.

)
+ 3c3

(
ψ̃†

qU3ψ̃pe−
iπn
N (q−p)e3i πp

N + h.c.
)]

(2.191)

=
1

2N
1
2a

N−1

∑
q=0

[
c1

((
ψ̃†

q ψ̃q + eiπψ̃†
q+Nψ̃q+N

)
Ue

iπq
N + h.c.

)
+ 3c3

((
ψ̃†

q ψ̃q + e3iπψ̃†
q+Nψ̃q+N

)
U3e3i πp

N + h.c.
)]

(2.192)

Here, we can substitute ψ̃p and ψ̃p+N according to (2.174) with the quasi particle
creation and annihilation operators:

〈
ψ̃†

q ψ̃q − ψ̃†
q+Nψ̃q+N

〉
=

〈
m2

N 2
−

a†
q aq +

m2

N 2
+

bqb†
q −

(ωq − πq)2

N 2
−

a†
q aq −

(ωq + πq)2

N 2
+

bqb†
q

〉
(2.193)

=
πq

ωq

〈
a†

q aq − bqb†
q

〉
. (2.194)

This yields for the expectation value of the average current

1
2N

2N−1

∑
n=0

〈
ĵn
〉
=

1
2N

1
a

N−1

∑
q=0

πq

ωq

〈
a†

q aq − bqb†
q

〉
(2.195)

·
{

c1 cos
(πq

N
+ aeEt

)
+ 3c3 cos

(
3
(πq

N
+ aeEt

))}
(2.196)

=:
1

2Na

N−1

∑
q=0

πq

ωq

〈
a†

q aq − bqb†
q

〉
µq =

1
2Na

N−1

∑
q=0

πq

ωq

(
nq + 1

)
µq .

(2.197)

We defined the function µq as

µq = c1 cos
(πq

N
+ aeEt

)
+ 3c3 cos

(
3
(πq

N
+ aeEt

))
, (2.198)
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which might be written in terms of the physical momentum k = πq
Na as

µk = c1 cos(a(k + eEt)) + 3c3 cos(3a (k + eEt)) . (2.199)

Notice the addend +1 in (2.197) may be omitted as

π/(2a)

∑
k=−π/(2a)

π(k)µ(k) = 0 , (2.200)

for all orders of improvements. One can see (2.197) confirmed in Figure 2.3b. There,
we plotted the averaged current according to (2.197) given the particle number from
classical-statistical results as well as the direct measure via the operators from (2.190)
and subsequent averaging.

From Section 2.4.5 we know c1 = 9
8 and c3 = − 1

24 , such that we follow

µk = 1 +O
(

a4(k + eEt)4
)

. (2.201)

As such, µk is in fact accurate to O
(
a4(k + eEt)4) as opposed to O

(
a2(k + eEt)2)

without the next-to-leading order improvement. This is because we know µk approaches
1 in the continuum, as the continuum expression for the time-dependent part of the
current for late times reads as2 [43]

j =
∫ dp

2π
v(p)np =

∫ dp
π

p
ωk

np . (2.202)

The previous analysis is valid up to any order in improvement. In fact, one can
show that for the system of equations from (2.160)f. µk is going to have ever less lattice
artefacts just like its counterpart πk. To see this, consider a given order of improvement
n. The function µ(k) then changes according to,

µ(k) =
2n+1

∑
i=0

(2i + 1)c2i+1 cos((2i + 1)a(k + eEt)) . (2.203)

Indeed, demanding for a given order of improvement n

2n+1

∑
i=1

(2i + 1) · c2i+1 cos((2i + 1) · a (k + eEt)) !
= 1 +O

(
a2n+2(k + eEt)2n+2) (2.204)

gives the exact same conditions for the ci:

n

∑
i=0

(2i + 1) · c2i+1 = 1 , (2.205)

1 ≤ j ≤ 2n + 1 :
n

∑
i=0

(2i + 1)(2i + 1)2j · c2j+1 = 0 . (2.206)

Thus, upon including irrelevant kinetic operators to improve the Hamiltonian we are
to improve the current as well as the dispersion relation. This confirms our earlier
claim improving with kinetic operators yields improvement in kinetic observables.

2 We differ from the refs. by a factor of two as Tanji defines np =
〈

a†
pap

〉
(cf. Equation 2.176). For late times,

the time-independent part of the current arises from the sudden switch-on quench. It merely gives an
offset to the current at late times, i.e. after the quench.
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Crucially, we see from (2.201) that improvement for the current means not only more
accuracy in orders of a but also in orders of t! This is due to promoting k→ k + eEt in
the presence of a constant, homogeneous field. Consequently, we expect the current to
be more accurate over a longer period of time.

Reflecting on (2.182) and nk = εk/ωk + 1, we hope this argument should also extend
to the particle number.

continuum estimate for the current Together with (2.184) we can estimate
the continuum result of the current for late times to be:

j = 2
∫ dk

2π
vnk = 2 e−

πm2
eE

∫ eEt

0

dk
2π

k√
m2 + k2

(2.207)

tm�1' 1
π

e−
πm2

eE eEt . (2.208)

2.5.4 Periodicity and Cutoff

From the explicit time dependence of the link U = eiaeEt in the Hamiltonian, it becomes
evident that the system must obey some periodicity with frequency ∼ aeE. From the
continuum result (2.184) we expect particles to be produced homogeneously in space
and at p = 0 in the BZ. The constant field will then accelerate the particle pairs in
opposite directions respective to their charge. Eventually, these particles will gain so
much momentum they run into the lattice cutoff π

2a . This can be estimated by the
continuum expansion rate of the particle distribution in momentum space:

eEtmax.
!
=

π

2a
(2.209)

from which we can follow

⇔ tmax.m =
πm2

2(am)eE
=

π

2(am)E/Ec
=

πN
2(Lm)

(2.210)

This maximal cutoff in time can also be derived from (2.197), as we have, simplifying
for

This cutoff in time is inherently programmed into the theory as long as we do not
reduce the production rate via back reactions onto the electric field. This effect, however,
requires a full quantum treatment of the gauge sector, which we cannot offer within
Exact Diagonalisation and periodic boundary conditions. This will become clearer in
the next chapter.

Furthermore, the maximum time estimated by (2.210) marks an cutoff for all kinetic
observables like the current. When particles overstep the cutoff in the Brillouin zone
the lattice recognises them as particles travelling in the opposite direction. At the very
latest here, the description of their kinematics must be rendered useless.

However, the particle number merely counts the number of particles within the
Brillouin zone. And as already mentioned, being accelerated over the Brillouin zone
edge results only in a misinterpreted momentum. Particles can only ‘leave’ the BZ via
annihilation processes. Since the Schwinger mechanism creates particle pairs at p = 0
in the BZ and accelerates them both in the same direction depending on E, annihilation
does only happen when the particle distribution is pushed over the BZ edge, comes
around at negative momenta and meets itself at p = 0. Consequently, the ‘cutoff’ in
time for the particle production rate is given by 2tmax.
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2.5.5 Illustration

We wish to illustrate above thoughts with plots from a classical-statistical simulation
(without back reaction) in order to facilitate the intuition as to how the Schwinger
mechanism works on the lattice in the limit of a constant, homogeneous background
field. To this end, we show results of a classical-statistical simulation with N = 500,
am = 0.05 and E/Ec = 1.0. We plot the particle production rate and the corresponding
current in Figure 2.3 and use Equation 2.197 to infer a second curve for the current,
which almost perfectly agrees with the direct measure on the lattice after (2.190) in
(b). We demonstrated above that (2.197) is in fact accurate to O

(
a2n+2(k + eEt)2n+2) for

improvement order n. This means particularly, for any finite cutoff we will find the
current to be more accurate for longer times comparing improved and unimproved.
This is to be observed in Figure 2.3b as the improved current appears to be more
accurate for a 1.5 times longer period of time. This factor in accuracy is reminiscent
the previous section at Figure 2.1 and Figure 2.2, respectively, if one allows for a
reasonable error margin of a few per cent. However, at such large system sizes and
small lattice spacings, the particle production rate already converged in the simulated
time scales to its continuum value. Any benefit of improvements are thus unnoticeable.
The investigation whether we see such benefits below such large system sizes and
small lattice spacings will be discussed in Chapter 5. In Appendix A one may view
the particle number distribution for different times and observe it overstepping the
Brillouin zone boundary to reemerge on the other side until it interferes with itself.



38 foundations

0 10 20 30 40 50 60
t ·m

0.0

0.2

0.4

0.6

0.8

N
(t

)/
m

N = 500, am = 0.05, E/Ec = 1

unimproved
1st improved
Schwinger rate

(a) Particle Number

0 10 20 30 40 50 60
t ·m

−0.1

0.0

0.1

0.2

0.3

0.4

sp
ac

e
av

er
ag

ed
cu

rr
en

t
[m

]

N = 500, am = 0.05, E/Ec = 1

unimproved
1st improved
current check, unimproved
current check, improved
Schwinger rate

(b) Averaged Current

Figure 2.3: Displayed is a single run without any improvement and with first order improve-
ment, respectively. For demonstration we ran the simulation of the unimproved
system until 2tmax m = 20π ' 63, while the improved simulation ran only up to
tmax. (a) The particle number displays continuum behaviour almost up to 2tmaxm.
Only then lattice artefacts find their way into the observable. (b) In blue and orange
is plotted the space averaged current from the local currents defined by (2.190) for
the unimproved and improved system, respectively. We used Equation 2.197 and the
particle number from (a) to draw the green and red curves, respectively. They agree
almost perfectly; only during the quench we observe a difference. The improved
current follows the continuum estimate more closely for a period about 1.5 times
larger than for the unimproved current and both currents find their maximum at
tmaxm. This confirms Equation 2.197. One can observe at the unimproved current
that particles pushed over the BZ edge are being recognised as backwards travelling
which counters the growth of the current. For further plots, see Appendix A.
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In this thesis we employ two methods to investigate the physics of QED in 1 + 1d.
This chapter is dedicated to introducing these two. On the one hand we have Exact
Diagonalisation – a long-established method [45, 46] within condensed matter physics /
quantum many body physics, and the newly application of the very same to simulating
real time dynamics of lattice gauge theories [47, 48]. On the other hand we will invest-
igate the approach to the continuum limit also with Classical Statistical Methods [49],
which already served as a benchmark to real time dynamics in the Schwinger Model
at strong fields [20, 50, 51].

We implemented both methods such that they simulate the physics of the Schwinger
model with Hamiltonian

H = m
2N−1

∑
n=0

(−1)nψ†
nψn +

a
2

2N−1

∑
n=0

E2
n

− i
2a

2N−1

∑
n=0

[
c1ψ†

nUnψn+1 − h.c.
]

− i
2a

2N−1

∑
n=0

[
c3ψ†

nUnUn+1Un+2ψn+3 − h.c.
]

− i
2a

2N−1

∑
n=0

[
c5ψ†

nUnUn+1Un+2Un+3Un+4ψn+5 − h.c.
]

(3.1)

and improvement coefficients chosen from Table 2.1 up to second order of improvement.
For the sake of brevity and readability we shall from now on write the Hamiltonian

only to first order in improvement and omit the second order improvement term. It
is implied we also have an additional irrelevant operator. However, any calculation
which follows goes through with the additional operator. We conclude it suffices to
write one improvement order vicariously for both of them.

3.1 exact diagonalisation

This section wishes to explain the methodology of Exact Diagonalisation (ED) and the
framework in which it is used to simulate real-time dynamics of lattice QED in 1 + 1d.

The central idea around Exact Diagonalisation is to numerically work with a (finite
dimensional) matrix representation of a quantum mechanical operator. These would
build up a matrix representation of the Hamiltonian corresponding to the system of
interest.

Through C-symmetry we can restrict the full Hilbert space of N fermions of naive
size dim(H) = 22N to be only of size dim(H) = (2N

N ). This is because we will always
want to have an initial state free of total charge. And as we argued in Section 2.1.0.2,
time evolution commutes with the Gauß operator such that one never leaves the
subspace of zero total charge.

39
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3.1.1 Solving Gauss law with periodic boundary conditions

An essential requirement for employing ED is the finiteness of the Hilbert space one
wishes to simulate. Gauge theories describe the fundamental interaction of fermionic
matter fields with bosonic gauge fields. Bosonic degrees of freedom, however, always
have an infinite Hilbert space of states. This poses a fundamental problem of how to
handle gauge theories with ED. Previously, there were so called ‘encoding’ techniques
employed [52], which relied on open boundary conditions. Within this thesis we will
however demand periodic boundary conditions. A short review of the effects of open
boundary conditions is enclosed in Appendix D.

Following Refs [53], we take a similar approach to the encoding technique in [52],
adapted for periodic boundary conditions.

We shall consider

H = HF + HE , HE =
a
2

2N−1

∑
n

E2
n , (3.2)

as well as Gauß’s law

En − En−1 = Qn , (3.3)

and read it as an operator equation when acting on a state in the physical subspace.
In the approach of [53] one splits the electric field into the spatial average part and a

spatial varying part defined like,

En = E + δEn , (3.4)
2N−1

∑
n=0

En = E , (3.5)

2N−1

∑
n=0

δEn = 0 . (3.6)

Thus,

1
2

2N−1

∑
n=0

(
E2

+ 2EδEn + (δEn)
2
)
= NE2

+
1
2 ∑

n
(δEn)

2 . (3.7)

Ultimately, one is able to express ∑n (δEn)
2 only in terms of charge operators Qn

which are bilinears in the fermionic fields while their exact form varies from different
fermion discretisation. For staggered fermions the charge operator reads as [20]

Qn = ψ†
nψn +

1
2
((−1)n − 1) . (3.8)

One finds [53]

2N−1

∑
n=0

(δEn)
2 = −e2 2N − 3

2(2N − 2)

2N−1

∑
n=0

[
N

∑
d=0

(
d +

d2 − 3d + 2
2N − 3

)
Qn (Qn+d + Qn−d)

+ Qn(Qn+1 + Qn−1) +
4N2 − 8

4(2N − 3)
QnQn+N

]
,

(3.9)
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Figure 3.1: Displayed is the potential v(d; a; N) for different values of system size 2N. One can
see the potential to yield ever more linear behaviour for larger N. The continuum
and infinite volume curve is plotted as a dotted line.

given the restriction on the physical subspace where Gn = 0 = En − En−1 − eQn. This
is only possible because of the periodic boundary conditions QN = Q0, EN = E0 as
well as the constraint (3.6) [53].

One might define the potential v(d; a) as

v(d; a) = − a
4

2N − 3
2N − 2

·


d , d = 0, 1

d + d2−3d+2
3−2N , 2 ≤ d ≤ N − 1

4N2−8
8(2N−3) d = N

. (3.10)

We gather

HE =
2Na

2
E2

+ e2
2N−1

∑
n=0

N

∑
d=0

v(d; a)Qn (Qn+d + Qn−d) . (3.11)

Let us define L = 2Na and |x| = da. Then, this potential has the limits

lim
2N→∞

v(d; a)→ −1
4

ad , d < ∞ , (3.12)

lim
a→0

v(d; a)→ −1
4

(
|x| − x2

L

)
, (3.13)

lim
a→0

lim
2N→∞

v(d; a) = lim
2N→∞

lim
a→0

v(d; a)→ −1
4
|x| . (3.14)

For illustrative purposes we plotted the potential in Figure 3.1. Hence, in the limit of
N → ∞, a→ 0 we find the same expression as in Equation 2.30,

HG = − e2

4

∫
dx dy ρ(x)|x− y|ρ(y) , (3.15)

with Qn → ρ(x).
Similarly to the residual gauge transformation in Equation 2.31 we shall perform the

analogous transformation on the lattice:

ψn = ∏
l<n

U†
l ψ′n (3.16)
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However, with periodic boundary conditions, we have a persistent ‘boundary’ term:

H = − i
2a

c1

2N−2

∑
n=0

(
ψ′†nψ′n+1 + h.c.

)
− i

2a
c3

2N−4

∑
n=2N−2

(
ψ′†nψ′n+3 + h.c.

)
− i

2a
c1ψ′†2N−1

(
2N−1

∏
n=0

Un

)
ψ′0 −

i
2a

c3ψ′†2N−3

(
2N−1

∏
n=0

Un

)
ψ′0 + h.c.

+ m
2N−1

∑
n=0

(−1)nψ′†nψ′n

+
2Na

2
E2

+ e2
2N−1

∑
n=0

N

∑
d=0

v(d; a)Qn (Qn+d + Qn−d) . (3.17)

We have

E :=
2N−1

∑
n=0

En = 2NE , (3.18)

U :=
2N−1

∏
n=0

Un , (3.19)

[E ,U ] = eU , (3.20)

U = eiae
∫

dt ∑n En = eiae2N
∫

dtE . (3.21)

Thus, these two persistent ‘boundary’ variables (E , U ) are true quantum degrees of
freedom, which find no analogy in the continuum and infinite volume limit.

This (boundary) degree of freedom has unfortunately an infinite Hilbert space. To
render the Hilbert space finite, we shall omit the quantum nature of this DoF and
suppose the electric background field is strong and constant, such that the quantum
corrections can be neglected, much similar to the classical statistical approximation [49,
51]. This, however, means we are unable to observe a back reaction from the fermion
current onto the electric field.

Consequently, we approximate

U ' eiae2NEt . (3.22)

It must be noted that the residual gauge transformation (3.16) renders the ‘dressed’
statistical propagator F′n,m =

〈[
ψ′n, ψ′†m

]〉
gauge invariant. Consequently, the definition

for the particle number from Section 2.5.1 with F′n,m will be gauge invariant, too.

retrieving the electric field As we implemented Gauß’s law in the physical
Hilbert space to eliminate the electric field from our Hamiltonian, we may just invert
this to recover the state of the local electric field variation δEn in terms of the charge
operator. To this end, consider Gauß’s law En− En−1 = eQn from which we can deduce

δEn = δE0 + e
n

∑
i=1

Qi . (3.23)
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Together with (3.6) we can constrain above equation to obtain

0 =
2N−1

∑
n=0

δEn = 2N δE0 + e
2N−1

∑
n=1

n

∑
i=1

Qi = 2N δE0 + e
2N−1

∑
i=1

(2N − i)Qi , (3.24)

δE0 = − e
2N

2N−1

∑
i=1

(2N − i)Qi . (3.25)

From (3.25) onwards one can apply Gauß’s law iteratively to obtain the state of every
local field variation δEn.

3.1.2 Numerical simulation

Before we give the explicit form of the Hamiltonian we wish to simulate on the
lattice with Exact Diagonalisation, we will perform one last transformation. As we
approximate the product over all link variables as a c-number U = exp

(
iae2NEt

)
we

shall ‘redistribute’ this function over all DoF, according to the unitary transformation

ψ′n = ∏
l<n

2N
√
Uψ′′n = U 1

2N ψ′′n =: U n
ψ′′n , (3.26)

with

U = eiaeEt . (3.27)

Finally, we can cast the Hamiltonian from (3.17) into the following form:

H = − i
2a

c1

2N−1

∑
n=0

(
ψ′′†nUψ′′n+1 + h.c.

)
− i

2a
c3

2N−1

∑
n=0

(
ψ′′†nU

3
ψ′′n+3 + h.c.

)
+ m

2N−1

∑
n=0

(−1)nψ′′†nψ′′n

− e2
2N−1

∑
n=0

N

∑
d=0

v(d; a)Q′′n
(
Q′′n+d + Q′′n−d

)
. (3.28)

The analogy to the form of the Hamiltonian of Section 2.5 is now more obvious. The
crucial difference, however, is that we have in Section 2.5 a constant homogeneous
electric field, while in this section we have the approximation of a constant background
field. This is expressed by the additional non-local quartic interaction term which HE

includes. However, retrieving a definition of a particle number from aboce Hamiltonian,
we must diagonalise it. To this end, we neglect the electric part as it is quartic in fermion
fields. Consequently, the particle number as defined in Section 2.5.1 can be applied.
Merely the current changes into a rotating frame according to

As already mentioned, the Hamiltonian (3.28) is quartic in the fermion fields. To
diagonalise it, we have to resort to numerical methods.
The numerical implementation of (3.28) is performed with the QuSpin package for the
Python programming language [54].
The initial state is obtained from (3.28) with U = 1 and E = 0 by diagonalisation via
the Implicitly Restarted Lanczos Method to find eigenvalues and eigenvectors [54, 55].
It is the state corresponding to the lowest eigenvalue. For better numerical conver-
gence, we always retrieve ∼ 10 of the algebraically lowest eigenstates and eigenvalues,
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respectively.
Time evolution is governed by the Schrödinger equation. It is solved with the explicit,
adaptive Runge-Kutta method of order O(4(5)) due to Dormand and Prince.
Operators corresponding to observables like the current jn and Fn,m are initialised
as matrices and applied to the respective state at some time t in order to obtain the
expectation value.
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3.2 classical statistical simulation

In this part of the chapter we introduce the Classical Statistical Approximation briefly,
discuss its limitations and derive what changes with respect to the Improvements we
are implementing.

3.2.1 Introduction

The Classical Statistical Approximation is based on the path integral approach. The
central idea of this approximation is to map the full quantum theory onto a classical-
statistical ensemble, which is achieved by a semi-classical expansion around the initial
state [49, 51]. This means in detail that one solves classical equations of motion and
samples over fluctuating initial values in order to obtain non-perturbative approxima-
tions for real-time quantum observables. For a more detailed introduction we refer the
reader to [49].

3.2.2 Validity

First, we shall denote the classical electric field as Ē and the quantum electric field as Ẽ.
Then the U(1) gauge part of the action is invariant under a rescaling of the fields [49]:

Ē = Ē′/e , (3.29)

Ẽ = eẼ′ . (3.30)

Diagrammatically, the classical statistical approximation involves only contributions
with one quantum field Ẽ′, any higher contribution is neglected. Whence, the classical
statistical approximation is exact to O

(
e2), while contributions of two or more quantum

fields Ẽ′ are neglected. Or equivalently, contributions with O
(
e4) and higher are

omitted [49].
Thus, the classical statistical approximation is only valid for small couplings.

3.2.3 Equations of Motion

Within the classical statistical approximation, the state is fully parameterised by the
statistical propagator Fn,m =

〈[
ψn, ψ†

m
]〉

, the link variable Un and the electric field En.
We want to abbreviate (3.1) as

H = HF + HG (3.31)

with

HF = ∑
n,m

ψ†
nhF

n,mψm , (3.32)

hF
n,m = − i

2a
c1

(
Unδm,n+1 −U†

nδm,n−1

)
− i

2a
c3

(
UnUn+1Un+2δm,n+3 −U†

nU†
n+1U†

n+2δm,n−3

)
+ (−1)nmδm,n . (3.33)



46 methods

In Section 2.5.2 we present the calculation of the fermionic current jn when including
improvement. It is now straightforward to express the operators for jn in terms of Fnm

and Un. The detailed computation shall be omitted and the result stated.
The equations of motion are [50]

∂tEn =
e

2a
{c1R (Fn+1,nUn)

+ c3R (Fn+3,nUnUn+1Un+2 + Fn+2,n−1Un−1UnUn+1 + Fn+1,n−2Un−2Un−1Un)} ,

(3.34)

∂tUn = iaeEnUn , (3.35)

∂tFn,m = −i ∑
j

(
hF

n,jFj,m − Fn,jhF
j,m

)
. (3.36)

As we explained in Section 3.1, the Exact Diagonalisation method is not fit to observe
back reactions from the current onto the electric field. We therefore set the equation of
motion

∂tEn = 0 , (3.37)

to better compare results between the two methods.
The equations of motion are again solved with an adaptive Runge-Kutta algorithm

of order 4(5) due to Dormand and Prince.

3.2.4 Initial conditions

The state of the system is prepared in the fermionic vacuum with Un = 1, En = 0. The
initial conditions for

Fn,m = 〈0|
[
ψn, ψ†

m

]
|0〉 =

2N−1

∑
q,p=0

〈0|
[
ψ̃q, ψ̃†

p

]
|0〉 ei π

N (qn−pm) (3.38)

are computed by diagonalising HF like in Section 2.4.5. The exact calculation is straight-
forward and shall be omitted. The result reads as

Fn,m =
1

2N

N−1

∑
q=0

ei πq
N (n−m)

[
πq

ωq

(
1 + (−1)n+m)+ m

ωq
((−1)n + (−1)m)

]
. (3.39)

Naturally, with different improvement order the functions πq and ωq are altered and
the initial state changes accordingly.

Because the dynamics is dominated by the strong electric field, we will omit the
statistical sampling over the initial conditions and only opt for a good approximation
by single runs as was done in Refs. [42, 50, 51].
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In this chapter we will briefly review some of the most relevant concepts to quantum
computing with trapped ions. In particular, we will discuss the 4-qubit quantum
gate corresponding to the irrelevant kinetic first order improvement discussed in Sec-
tion 2.4.5.

The concept of universal quantum computing was significantly propelled after David
Deutsch published his 1985 landmark paper [15] in which he describes the notion of a
quantum Turing machine. That is to say, Deutsch describes the formal requirements of
manipulation on quantum states to successfully be able to compute all computable, in
particular finite, quantum algorithms. The required manipulations are called quantum
gates in analogy to their classical counterpart–binary logic gates. Particularly, he argues
one only requires single-qubit gates as well as one specific two-qubit gate [15, 18] to
have a so-called complete set of gates.

In the digital approach to quantum simulation the time evolution operator U(t, t0) =

T exp
{
−i
∫ t

t0
H(t′)dt′

}
is approximate by the Lie-Trotter product formula,

eA+B = lim
N→∞

(
eA/NeB/N

)N
, (4.1)

and as such split into a sequence of successive application of different factors corres-
ponding to different terms in the Hamiltonian. This gives an error of higher order in
∆t. As

Consequently, we first cite the Hamiltonian of cold ions trapped on a string, after
which we review the single-qubit gate as well as the two-qubit gate after Mølmer and
Sørensen [56]. This review is closely oriented towards Refs. [18, 57].

Finally, we compute the specific gate sequence corresponding to the 4-qubit interac-
tion involved in the first order improvement term, as it is the only new term compared
to the unimproved Hamiltonian, for which the corresponding quantum gate sequences
are already known from Refs. [23].

4.1 hamiltonian of trapped ions

The relevant degrees of freedom describing the physics of ultra cold ions trapped
in a string are often the two-level system of a single ion and a single mode of the
collection of harmonic oscillators as the motional degrees of freedom–the centre-of-
mass mode [18].

The Hamiltonian of trapped ions is given by [18, 56]

Hint = Ω
N−1

∑
n=0

{
σ+

n e−i(∆t−φ) + σ−n ei(∆t−φ) + iη
(

σ+e−i(∆t−φ) − σ−ei(∆t−φ)
) (

ae−iωtt + a†eiωtt
)}

,

(4.2)

47
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where Ω is the Rabi frequency, σ± the qubit raising / lowering operators, a and a† the
phonon annihilation and creation operators, respectively. Furthermore, φ is the phase
of the field with respect to the qubit polarisation, ∆ is the laser-atom detuning, and ωt

is the trap frequency.This Hamiltonian is a result of some approximations including the
rotating wave approximation which assumes both laser detuning ∆ and Rabi frequency
Ω to be much smaller than any other optical relevant frequency.

4.2 single-qubit gate

Given the Hamiltonian (4.2), single qubit operations are simply rotations on the Bloch
sphere described by

Ri(θ, φ) = exp
{

i
θ

2

(
eiφσ+

i + e−iφσ−i
)}

(4.3)

= 1i cos
(

θ

2

)
+ i
[
σx

i cos(φ)− σ
y
i sin(φ)

]
sin
(

θ

2

)
, (4.4)

where φ specifies the azimuthal angle of the axis of rotation and θ describes the amount
of rotation. Rotations around the z-axis are either decomposable in rotations around
the x and y axis or it might be realised via far detuned laser beam which shifts the
energies due to an AC-Stark effect [18].

Experimentally, θ is given by the pulse area Ωt of the Raby frequency and the time
of the pulse, and φ is given by the phase of the field.

4.3 two-qubit gate

Historically, the first two-qubit gate experimentally realisable was the proposal of Cirac
and Zoller [58]. However, this proposal bears some weakness in its robustness and
requires direct addressing of the individual qubits.

Instead, we review the two-qubit gate proposed by Mølmer and Sørensen [56] (MS
gate) in which all qubits are irradiated by a dichromatic laser field. The two frequencies
are symmetrically close around the qubit transition frequency (ω0 ± (ωeg + ∆)). The
detuning is chosen such that an effective second-order coupling between pairs of ions
is generated by off-resonantly coupling the the blue and red phonon side bands [57].
The MS gate is particularly favourable as it not necessarily requires the ions to be in
the motional ground state [18, 56, 57], and it addresses the qubits collectively and
drives spin flipping of the desired qubits. Figure 4.1 shows the driven transitions
|n, gg〉 ↔ |n, ee〉 and |n, eg〉 ↔ |n, ge〉 via the intermediate states indicated with
dached lines. The former transition is the only energy conserving transition given
above mentioned detuning. The Rabi frequency Ω̃ of this transition can be computed
using second order perturbation theory and is given by [56]

Ω̃ = − (Ωη)2

2(ν− ∆)
, (4.5)

where ν denotes the phonon oscillation frequency. Remarkably, (4.5) does not depend
on the phonon number n. This is due to the symmetric path illustrated in Figure 4.1
and the deconstructive interference that comes with it due to the different sign in the
detuning [56].
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Figure 4.1: Illustration of the energy levels involved in the two-qubit Mølmer-Sørensen (MS)
gate. The slightly blue and red detuned laser beams drive the system via the virtual
levels marked by dashed lines between the states |n〉 ⊗ |gg〉 and |n〉 ⊗ |ee〉. |n〉
marks the state with phonon number n and |g〉, |e〉, the ground and excited state,
respectively. This figure applies to cases where the detuning is much smaller than
the Rabi frequency. Then, the Rabi frequency is in fact independent of the phonon
number n as the influence destructively interferes due to the symmetric paths and
the opposite sign of the detuning. This allows the application of the MS gate without
cooling to motional ground state.

Furthermore, the transition |n, eg〉 ↔ |n, ge〉 can be realised by a so-called photon
echo trick: the detuning is at a suitable time inverted such that the exchange of the
excited quantum in the two qubits can be realised [56]. The Rabi frequency of this
transition is of identical magnitude as (4.5) but with opposite sign.

Consequently, by applying the MS gate to two qubits of one’s liking the transition
they undergo read like

|gg〉 → cos
(

Ω̃t
2

)
|gg〉+ i sin

(
Ω̃t
2

)
|ee〉 , (4.6)

|ee〉 → cos
(

Ω̃t
2

)
|ee〉+ i sin

(
Ω̃t
2

)
|gg〉 , (4.7)

|ge〉 → cos
(

Ω̃t
2

)
|ge〉 − i sin

(
Ω̃t
2

)
|eg〉 , (4.8)

|eg〉 → cos
(

Ω̃t
2

)
|eg〉 − i sin

(
Ω̃t
2

)
|ge〉 . (4.9)

Varying the pulse area Ω̃t thus tunes the amount of entanglement and reaches for
Ω̃t = π/2 its maximum.

4.4 4-qubit gate

For the basic four-qubit gate we specialise the multi-qubit MS gate as described in [57].
Underling the multi-qubit MS gate is the collective spin Sx,y = ∑n

i=0 σ
x,y
i over all ions

involved in the gate; including the 0th (ancilla) qubit.
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The MS gate operation is then described by [57]

UMS(θ, φ) = exp
{
−i

θ

4
[cos(φ)Sx + sin(φ)Sy]

}
, (4.10)

where θ is the main control parameter for which it is at θ = π/2 maximally entangling
while φ is again the phase of the field tuning a σx-type gate (φ = 0)and a σy-type gate
(φ = π/2).

We wish to simulating a coherent time step of a specific 4-qubit interaction term,

' e−iHατ , (4.11)

with Hα = ωασx
1 σx

2 σx
3 σx

4 . (4.12)

Although it is in principle possible to solely rely on single and two-qubit gates–as we
already mentioned Deutsch proved [15]–Refs [57] resorts to a gate sequence involving
the 4-qubit MS gate. This sequence is a series of three gate operations: a maximally
entangling 4-qubit MS gate, a single-qubit rotation on the ancilla qubit, and another
inverse maximally entangling 4-qubit MS gate.

This evolution is given by [57]

UHα = UMS

(
−π

2
, 0
)

Rz
anc(φ)UMS

(π

2
, 0
)

(4.13)

= exp
{

i
π

4
Sxσx

0

}
exp{iφσz

0} exp
{
−i

π

4
Sxσx

0

}
(4.14)

= exp

{
iφ

[
cos

(
π

2

4

∑
i=1

σx
i

)
σz

0 + sin

(
π

2

4

∑
i=1

σx
i

)
σ

y
0

]}
. (4.15)

Crucially, the collective spin in the cosine and sine do not include the spin of the ancilla
qubit which factors out of the trigonometric function. Furthermore, for 4-qubits we
have the indentities

cos

(
π

2

4

∑
i=1

σx
i

)
=

4

∏
i=1

σx
i =

Hα

ωα
, (4.16)

sin

(
π

2

4

∑
i=1

σx
i

)
=

4

∏
i=1

σx
i =

Hα

ωα
, (4.17)

with which we conclude

UHα = exp
{

i
φ

ωα
Hα

}
exp{iφσz

0} . (4.18)

Thus, the dynamics of the ancilla qubit completely factors out and as a consequence
we can in principle use any of the participating qubits as the ancilla qubit.

4.5 4-qubit gate sequence of 1st improvement

Here, we want to employ the knowledge of simulating coherently 4-body interactions
and compute the gate sequence for the 4-qubit interaction corresponding to the 1st
order improvement term expressed in spin DoF in Section B.2.
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4

3

2

1

time

Figure 4.2: Graphical representation of the gate sequence to simulate the 4-body qubit interac-
tion due to the 1st improvement. Read from right to left. The ancilla qubit operation
is colourised red, the rotation around the z-axis is colourised green, the rotation
around the y-axis is colourised yellow, and the 4-qubit MS gate is colourised blue.

To this end, we shall first compute the interaction term only in terms of σx,y,z:

exp
{
−iφ

(
σ+

1 σz
2 σz

3 σ−4 + h.c.
)}

(4.19)

= exp
{
−i

φ

4
(
σx

1 σz
2 σz

3 σx
4 + σ

y
1 σz

2 σz
3 σ

y
4 + iσy

1 σz
2 σz

3 σx
4 − iσx

1 σz
2 σz

3 σ
y
4

+σx
4 σz

3 σz
2 σx

1 + σ
y
4 σz

3 σz
2 σ

y
1 + iσy

4 σz
3 σz

2 σx
1 − iσx

4 σz
3 σz

2 σ
y
1

)}
(4.20)

= exp
{
−i

φ

2
(
σx

1 σz
2 σz

3 σx
4 + σ

y
1 σz

2 σz
3 σ

y
4

)}
(4.21)

= exp
{
−i

φ

2
(σx

1 σz
2 σz

3 σx
4 )

}
exp

{
−i

φ

2
(
σ

y
1 σz

2 σz
3 σ

y
4

)}
exp

{
O
(
φ2)} (4.22)

Subsequently, we must perform several single-qubit rotations from (4.3) to map (4.22)
into the interaction Hα we discussed in the previous section. We want to denote qubit
rotations as

Rx,y,z
i (±θ) = exp

{
∓i

θ

2
σ

x,y,z
i

}
. (4.23)

Then, we obtain for

exp
{
−iφ

(
σ+

1 σz
2 σz

3 σ−4 + h.c.
)}

(4.24)
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(4.25)
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)
Rz

1
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(4.27)

A graphic representation of the result is displayed in Figure 4.2.
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Within this chapter we present the result of numerical simulations with exact diagonal-
isation and classical-statistical methods, respectively.
First, we must beg your pardon as we abandoned the previously set notation of refer-
ring with 2N to the total number of lattice sites; within this chapter and the next we
shall denote the total number of lattice sites, particularly in descriptions of plots, et
cetera, with N.

5.1 approaching the continuum – exact diagonalisation

What follows are the results of Exact Diagonalisation Simulations to gain insight into
the effects of improvements on small lattices. The Exact diagonalisation was performed
without solving Gauß’s law and expressing the electric field in terms of fermionic
charge operators. Instead, we have a constant homogeneous electric field.

We sampled for one critical field
(
E = 1m2/e

)
, e/m = 0.1, and different volumina

(Lm = 4, 5, 6) the UV-convergence of the particle production rate by increasing N = 10
to N = 20 in order to find some lowest N at which one is with the improved curves
still in acceptable margins within the theoretical prediction while the unimproved
curve is significantly off. The results for Lm = 6 can be inspected in Figure 5.1, while
the series for Lm = 5 and Lm = 4 are outsourced to Appendix C at Figure C.1 and
Figure C.2, respectively.

Contrasting improved versus unimproved, in neither of those series is any enhance-
ment regarding the UV convergence of the particle production rate obviously to be
observed.

Since these series of convergence were not indicative and the maximum capacity of
available computing power is only a few sites larger, we resort in the next section on
classical statistical simulations to observe an approach to the continuum, in which we
wish to observe the advantages of lattice improvements.
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Figure 5.1: UV convergence series with Lm = 6, E/Ec = 1, e/m = 0.1. The largest time plotted
is at each instance 2tmaxm = π

am·1 . For reference we indicated the analytic prediction
for late times with a black dotted line. The benefits of improvements are hardly
distinguishable. For this set of parameters, there is no obvious advantage with
improvements over the unimproved theory. System sizes with significantly larger
N, i.e. smaller am, and thereby a larger tmax cannot be realised within this method.



5.2 approaching the continuum – classical statistical simulation 55

5.2 approaching the continuum – classical statistical simulation
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Figure 5.2: Comparison: Classical Statistical (CS) and Exact Diagonalisation (ED). Both simula-
tions did not realise back reaction from the current onto the electric field. In the ED
simulation we did not express the electric fields via Gauss law as charge operators.
We observe near perfect agreement between the two methods. Only because the
simulation of the second order improvement for ED (brown) is realised with double
time step size, we can make out the second order improved curve of CS (green)
merely at the troughs and peaks of said curve. Everywhere else, we observe perfect
alignment such that only the three curves of ED are visible. We shall disregard the
differences as insignificant.

As discussed in Section 3.2, we employ the classical statistical simulation without
back reactions of the currents to the electric field. Recall that in this scenario we
are unable to observe plasma oscillations. Instead, we want to focus on the particle
production rate as a reference observable in the continuum.

Moreover, in the previous simulations from Section 5.1, we did not use Gauss law
to express the electric field in terms of fermionic bilinears, and we thus expect the
two methods to agree perfectly with each other. This is because the classical statistical
simulation treats the fermionic degrees of freedom exactly while it approximates the
gauge degree of freedom. When we are now additionally neglecting the back reaction
of currents onto the electric field, the equation of motion (EoM) of En is trivial and as
such the EoM of U is as well (cf. (3.34)ff.). Indeed, we find perfect agreement between
the two methods (cf. Figure 5.2).

Appreciating this, we wish to expand the UV convergence series of the particle
production rate from ED simulations to ever smaller lattice spacings corresponding
with the aid of classical-statistical simulations.

We will proceed the investigation with refined data analysis and fit for every run a
linear function in a suitable time window at sufficiently late times such that quench
dynamics already faded and until approximately 1.5tmax for the respective run. The
time window boundary will be varied with ∆t ≈ 0.5tm such that we have a total of
seven differently large time windows. The linear fit for the unimproved curved is
displayed as a red dashed line in the plot series of single runs. Fitting linear functions
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over seven different time windows, the average is taken as the data point for the
respective run while the fit error and the standard deviation of different fits for the
same run is quadratically added to the respective error estimate. In the following
figures we plot the respective fitted slope normalised to the continuum prediction from
(2.185). In all figures are plotted on the lower horizontal axis the inverse of the lattice
spacing 1/am, while on the higher horizontal axis the total number of lattice sites is
plotted (only even numbers are realised in simulation).

In this section we employ statistics over view simple fit procedures to extract faith-
fully a linear growth rate. We cover a wide range of parameters for E/Ec and Lm in
which we always sample from low cutoff and small system size, such that the linear
growth in particle production is hardly observable, to clearly converged system size
and large cutoff, such that 2tmax is long enough to retrieve a truthful averaged fit.
We observe clear benefits, that is showing significantly better accuracy over the un-
improved curve, in certain parameter regimes of view, i.e. one digit, per cent points
upon improving our theory. Considering the parameters we realised, improvements are
particularly beneficial for the particle production rate when the electric field strength is
between 1 or 2 critical field strengths. Higher critical field strengths render the benefits
insignificant. Parameters, we realised, displaying most benefits from improvements
include Lm = 7 and E/Ec = 1 (Figure 5.3c), Lm = 7 and E/Ec = 1.5 (Figure 5.4b), as
well as Lm = 5.5 and E/Ec = 2 (Figure 5.5c).

We can make out three general trends. 1.) Large relative errors reflect on significant
finite-size effects in the form of volume oscillations. Then, varying the fitting window
significantly alters the slope of the fit which is reflected in the large standard deviation
(see e.g. Figure 5.3c). 2.) Given a field strength we observe an increase with accuracy
with an decrease in volume. This reflects on the smaller lattice spacing which in turn
renders 2tmax sufficiently larges such that we can fit linear functions and truthfully
excerpt a linear growth unaffected by possibly present finite-size effects (see e.g. Fig-
ure C.5). 3.) The advantages of improvements over the unimproved system decrease
with an increase in field strength (see e.g. Figure 5.3c vs Figure 5.7c).
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(c) Lm = 7
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(d) Lm = 6
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(e) Lm = 5

Figure 5.3: UV convergence series with E/Ec = 1, e/m = 0.1. First and last run for respective
volume are enclosed in Figure C.2. For this series, the relative error (precision)
of data points is minimal (maximal) at Lm = 7, while the overall accuracy of
all points in a run is increasing with decreasing volume. The former reflects the
balance between finite-size effects in form of volume oscillations, and small enough
lattice spacing such that 2tmax = π

am E/Ec
is large enough to observe linear growth

in particle number (cf. Figure C.2). Lattice improvements are most beneficial for
Lm = 7.
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(a) Lm = 9
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(b) Lm = 7
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(c) Lm = 6
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(d) Lm = 5

Figure 5.4: UV convergence series with E/Ec = 1.5, e/m = 0.1. First and last run for respective
volume are displayed in Figure C.2. The relative error (precision) is increasing
(decreasing) with decreasing physical volume. The overall accuracy increases with
an decrease in volume. The overall increase in precision reflects the smaller lattice
spacings such that 2tmax become large enough to observe linear growth in particle
number. The most beneficial setup for improvements is Lm = 7 given E/Ec = 1.5.
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(a) Lm = 8.5
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(b) Lm = 7.5
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(c) Lm = 5.5

Figure 5.5: UV convergence series with E/Ec = 2, e/m = 0.1. First and last run for respective
volume are displayed in Figure C.3. At Lm = 8.5 and Lm = 7.5 the simulations
suffer from too small 2tmax and consequently a linear fit is infeasible (cf. Figure C.3).
Only at Lm = 5.5 2tmax is large enough to accurately fit a linear function. Here, the
benefits of improvements are in relative terms significant, while the overall precision
is already for the unimproved system as good as few per cent.
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(b) Lm = 3
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(c) Lm = 2

Figure 5.6: UV convergence series with E/Ec = 5, e/m = 0.1. First and last run for respective
volume are displayed in Figure C.4. Precision at E/Ec = 5 suffers from the large
finite-size effects through volume oscillation rendering a linear fit infeasible (cf.
Figure C.4), while the overall accuracy is retained through the symmetric variation
of the fitting window. The benefits of improvement are almost insignificant.
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(b) Lm = 3
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(c) Lm = 2

Figure 5.7: UV convergence series with E/Ec = 7, e/m = 0.1. First and last run for respective
volume are displayed in Figure C.5. Similar to the case of E/Ec = 5, here too, we find
large relative errors for the two smaller volumina due to finite-size effects in form of
volume oscillations. The overall accuracy is retained through symmetrically varying
the fitting window. Only the runs for Lm = 4 at medium and large system size
show accurately and precisely continuum behaviour. There, however, no significant
benefits of lattice improvements is to be observed. Reflecting on (2.210), it becomes
evident, that ever larger field strength need ever smaller lattice spacing in order to
obtain a time window in which one can observe linear growth.
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6.1 strongly coupled qed at Lm = 7 and E/Ec = 1.5

In this chapter we present the results obtained from using the unbiased exact diagonal-
isation approach to simulate strongly coupled QED in 1 + 1d. Our main interest is the
particle production rate in the Schwinger mechanism and how it is affected by strong
coupling.
Reflecting on the findings in the previous chapter, we opted for the parameter set
Lm = 7 and E/Ec = 1.5 (cf. Figure 5.4b) since this configuration displays clear benefits
of lattice improvements as opposed to Lm = 7 and E/Ec = 2 (cf. Figure 5.5b) while still
yielding overall better precision compared to Lm = 7 and E/Ec = 1 (cf. Figure 5.3c).
Furthermore, the parameters Lm = 7, E/Ec = 1.5 and Lm = 5.5, E/Ec = 2.0 yield
very similar results in terms of precision, overall accuracy and advantages of lattice
improvements. We decided in favour of the former as the maximal time 2tmax is 1.5
times higher at the former, allowing for a longer time window to observe the Schwinger
mechanism–or what it might turn into–at strong couplings.

In our numerical simulations we encountered significantly different results for
different system sizes. We want to resort to the fact that the Schwinger model in the
massless limit features spontaneous symmetry breaking as the vacuum expectation
value (VEV) of the chiral order parameter is 〈ψ̄ψ〉0 non-vanishing according to (2.48),
in order to discard some of the results we encountered numerically, as we will discuss
now. On the staggered lattice Equation 2.48 translates to [59]

〈ψ̄ψ〉 = 1
2

(
ψ†

2nψ2n − ψ†
2n+1ψ2n+1

)
= − c√

π
. (6.1)

Additionally, recall the Brillouin zone of staggered fermions with N sites has only N/2
modes (cf. Section 2.3). The total number of lattice sites thus has to be even. Henceforth,
we shall call the number of total lattice sites N ‘even’ iff it is divisible by 4, and we shall
call it ‘odd’ iff it is only divisible by 2, thus reflecting on the fact that for ‘odd’ number
of sites the Brillouin zone actually contains and odd amount of modes, and vice versa.
Furthermore, observe the Hamiltonian (3.28) we implemented retrieves axial symmetry
in the limit of e/m → ∞. To see this, note the action of γ5 on the discretised spinor
rebuilt via the relabelling (2.96) and the representation according to (2.3) is equivalent
to a translation of one site given periodic boundary conditions [60]. The (massive)
Hamiltonian (3.28) displays no invariance under translation by one site as the mass
term is odd under this transformation,

m ∑
n
(−1)nψ†

n+1ψn+1 = −m ∑
n
(−1)nψ†

nψn , (6.2)

but not the (non-local) sum of charge operators,

∑
n,m

Qn+1v(n + 1−m− 1)Qm+1 = + ∑
n,m

Qnv(n−m)Qm . (6.3)
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Thus, in the zero mass limit the Hamiltonian (3.28) displays axial symmetry. A truthful
simulation of the continuum theory on the lattice with staggered fermions should thus
display spontaneously broken symmetry in form of the non-vanishing VEV (6.1) and
ideally approach the continuum expectation given in our parameter set as −c/

√
π.

Yet, we find this symmetry to be only spontaneously broken in the limit e/m→ ∞
in the case of ‘odd’ lattice sizes, as can be seen in Figure 6.1. For ‘odd’ system sizes
we recover a non-vanishing VEV of the chiral order parameter 〈ψ̄ψ〉 very close to
the continuum aexpectation. For the ‘even’ case, however, the chiral order parameter
vanishes in the strong coupling limit.
We find further disagreement between ‘even’ and ‘odd’ system sizes upon inspecting
the particle number distribution in the Brillouin zone for the vacuum (cf. Figure 6.2).
Here, we find the zero mode of ‘odd’ systems after some threshold e/m = 1.5 to be fill
maximally with 2 particles, whereas the ‘even’ systems keep the zero mode unoccupied.
This substantiates the assumption that the numerical simulation for ‘odd’ and ‘even’
system sizes realises different vacuum states.

The fact that only in the case of ‘odd’ system size we do not obtain the wrong VEV
for the chiral condensate with regards to the continuum theory leads us to believe we
must disregard the simulations of ‘even’ system sizes as artefacts of our discretisation,
although we have at present no satisfying ab initio answer as to why this should be the
case.

Having settled for the correct initial state on ‘odd’ system sizes, we want to inspect
the dynamics of the very same. Consequently, we display the particle production
rate for strongly coupled QED at ‘odd’ system sizes in Figure 6.4. For the sake of
transparency, we enclose the plots for ‘even’ system sizes in Appendix E. We find
the particle production rate to increase within small and medium coupling strengths
(e/m ≤ 1). This is in accordance with a naive first-order correction to the particle
production rate in the continuum (2.185), which we want to outline here.

The self-energy of the massive Schwinger model in the so-called quenched rainbow
approximation is given to infinite order by [61]

Σ(q2) = − e2

2πm
+ {terms vanishing with /q → 0} , (6.4)

implying for the renormalised physical mass mphy of the fermion to depend on the
bare mass m and the coupling e as

mphy = m− e2

2πm
. (6.5)

Note the coupling in 1 + 1d QED is not renormalised since the photon self-energy
(vacuum polarisation) vanishes identically for q → 0 [61] and the theory is super-
renormalisable [27, 44]. If one was to plug into (2.185) this physical mass and demand
to measure the electric field in ‘unrenormalised’ critical field strengths,

E = ε
m2

e
, (6.6)

then the particle production rate would we modified like

Nmod.

Lt
=

eE
2π

exp

{
−

πm2
phy

eE

}
= m2 ε

2π
exp

{
−π

ε

(
1− 1

2π

( e
m

)2
)2
}

, (6.7)
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which yields for small couplings a larger production rate, which is in qualitative
accordance with our findings in simulations of ‘odd’ system sizes. This corroborates
our choice of disregarding ‘even’ system sizes as they display lower production rates
for small to medium couplings compared to the original Schwinger formula (cf.
Figure E.1). The numerical simulations can however not accurately reproduce this
naive first-oder correction quantitatively for small couplings, as can be observed
in Figure 6.6. This naive first-order approximation by no means has to serve as a
quantitative reference since renormalisation on the finite lattice must also be dependent
on the lattice spacing and the physical volume. However, as we are with am ' 0.27
and Lm = 7 on a rather corse lattice we shall treat this naive first-order correction as
a qualitative reference whose demands we meet. Lastly we want to emphasise that
the 2nd order improvement yields quantitatively very similar results for small and
medium couplings as can be inspected in Figure 6.4a. Only for large couplings they
differ. As we derived the improvement coefficients for the free theory, we cannot argue
they should yield quantitative similar results for strong coupling, although we can
say that the improvement coefficients, in general, tend to be decrease by one order of
magnitude comparing two ‘neighbouring’ coefficients (cf. Table 2.1). Thus, it can be
argued any quantitative disagreement must be related to a significant change in the
relevant degrees of freedom of the system.

The particle number shows clear worsening regarding the UV-convergence, that is
keeping Lm fixed and increasing N, with stronger couplings (cf. Figure 6.5 as well
as Figure 6.5). Furthermore, it displays a stark quantitative change from e/m = 1 to
e/m = 1.5 thus reflecting on the phase transition from the unbroken phase to the
spontaneously broken phase (cf. Figure 6.1). This, however, should be of no surprise.
The particle number is an observable derived from the free theory, and by virtue of
perturbation theory expanded onto a weakly interacting theory. By no means should
this also apply to the strong interacting case. Displaying a stark shift from e/m = 1
to e/m = 1.5 and growing with couplings beyond that, the particle number of the
vacuum state reflects on the inadequacy of the concept we attach to the observable we
call particle number at such high couplings.

Furthermore, the total energy 〈H〉 and the electric field energy 〈HE〉 are displayed
Figure 6.7. Inspecting the electric field energy content for small to medium couplings
(Figure 6.7c) we may consider the initial drop in energy in the field as a result of
the quench, since the time window corresponds also to the settling of the particle
production rate to the linear growth of late times (cf. Figure 6.3a). This, however, cannot
be confirmed within our results from simulation as such late times we were currently
inaccessible. The dynamics at large couplings should be dominated by the massive
free bosonic field. We thus expect the energy content to be dominated by the part of
the Hamiltonian describing the electric field content, as we have seen in Section 2.1.
We find the total energy to be dominated by the electric field energy at couplings
≥ 2. There, both energies show poor UV-convergence. Considering the dynamics at
large couplings, we thus want to suggest the quantitative results must be taken with a
grain of salt. Generally speaking, we expect the system in the massless or ultra-strong
coupling limit to have massive bosonic excitations with mass ∝ e. Consequently, the
continuum limit of this theory is given by #a · e → 0 with some numerical prefactor.
Thus, we cannot arbitrarily take e/m high when we keep am constant.
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In this chapter we presented our findings on strong coupling QED simulated on
a staggered lattice with Lm = 7 and E/Ec = 1.5. We found contradictory results for
‘even’ and ‘odd’ system sizes and disregarded the former by virtue of knowing the
vacuum expectation value of the chiral order parameter 〈ψ̄ψ〉0 must not vanish in the
continuum theory for E/Ec = 1.5. Having settled for ‘odd’ system sizes, we found the
particle production rate to grow with small to medium coupling strengths (e/m ≤ 1).
Furthermore, we emphasised our results for the dynamics of strong coupling QED are
not to be taken quantitative as they show no UV-convergence yet.
While papers studying spontaneous symmetry breaking of the Schwinger model on
finite lattices with massless staggered fermions include Refs. [29, 60, 62, 63], we are
unaware of any reference reproducing our finding that coming from the massive theory
and approaching the infinite coupling limit requires an ‘odd’, that is only divisible by
4 not 2, number of lattice sites in order to observe spontaneous symmetry breaking on
a staggered lattice.
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Figure 6.1: The vacuum of the massive Schwinger model for ‘odd’ N does not retrieve trans-
lation invariance as lime/m→∞ 〈ψ̄ψ〉 6= 0 although at similar cutoff am ' 0.27, 0.29
the vacuum of the system with ‘even’ N arrives numerically at 0. (a) VEV measured
in m. For small couplings the two cases of ‘odd’ and ‘even’ are displaying similar
behaviour in the VEV measured in m as well as in particle number (cf. Figure 6.2)
Only between e/m = 1 and e/m = 1.5 a significant quantitative disagreement
shows up. (b) VEV measured in e. Starting with m 6= 0 and continuously decreasing
m/e, only ‘odd’ system sizes seem to qualitatively simulate the non-zero VEV of the
spontaneously symmetry broken continuum theory (cf. (2.48)), neglecting a sign.
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Figure 6.2: Large quantitative disagreement between ‘odd’ and ‘even’ sites show up between
e/m = 1 and e/m = 1.5. The initial particle number at the zero mode is for ‘odd’
N = 26 at e/m ≥ 1.5 at the highest possible value of 2, while for ‘even’ N = 24 it
vanishes throughout the tested range of e/m.
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Figure 6.3: Particle number for strongly coupled QED and ‘odd’ system sizes N = 26, marked
with solid lines, and N = 22, marked with dashed lines. For comparison in red the
result at same N but e/m = 0.1 with classical-statistical (CS) simulation. (a) For
small and medium couplings e/m ≤ 1 the particle production rate grows, and it is
less converged in the UV as e/m grows as can be seen in Figure 6.5. (b) The step
from e/m = 1→ 1.5 marks a clear cut as the particle number is already at tm = 0
non-vanishing. Beyond e/m = 1.5 the Schwinger mechanism effectively cannot
produce particles as the zero mode of those vacuum states are fully occupied (cf.
Figure 6.2). The UV convergence with larger couplings appears to worsen.
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Figure 6.4: Particle number for strongly coupled QED N = 26, unimproved in solid lines, and
2nd order improvement marked with dashed lines. For comparison in red the result
at same N but e/m = 0.1 with classical-statistical (CS) simulation. (a) For small and
medium couplings e/m ≤ 1 the particle production rate grows, and the 2nd order
improved curve yields quantitatively very similar results. ?? Only beyond e/m = 1.5
the improved curve and the unimproved yield quantitative different results. As
we derived the improvement coefficients for the free theory, we can not expect the
improved and unimproved curve to yield similar results at strong couplings.
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Figure 6.5: UV-convergence of particle number of systems with decreasing the lattice spacing
from am ' 0.32 to am ' 0.27. (a) A clear tendency from low to strong coupling the
UV convergence worsens. This is expected as at strong couplings the continuum
limit is given by ae→ 0.
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(b) Close-up of modified particle production rate for weak couplings.

Figure 6.6: Plotted in solid lines is the modified particle production rate according to (6.7).
In doted lines is the production rate measured on ‘odd’ lattice sizes. (a) Albeit
yielding the qualitative same tendency, the modified production rate is numerically
not realised in our simulations as can be also inspected in the close-up in (b). The
numerical difference is smaller for smaller couplings. This naive first order correction
marks only a qualitative reference as renormalisation on the lattice depends also
on lattice spacing a as well as physical volume Lm, and we are with am = 0.27 and
Lm = 7 neither in infinite volume nor continuum limit.
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Figure 6.7: Total energy 〈H〉 of ‘odd’ system sizes: (a) for small to medium couplings the total
energy grows reflecting on particle pair production, while (b) for strong couplings
the picture changes dramatically from e/m = 1.5 to e/m = 3.0 where the growth
in energy transitions positive gain over steady-state to energy loss. Upon further
increasing the coupling for the simulation times accessible the system only loses
energy. UV-convergence is at large couplings far from reached. We take it, we cannot
trust the simulation of the dynamics at such large couplings. Electric field
energy 〈HE〉 of ‘odd’ system sizes: (c) for small to medium couplings the initial
drop in 〈HE〉 may be considered as a result of the quench, since the time window
corresponds also to the settling of the particle production rate to the linear growth
of late times (cf. Figure 6.3a). Overall the electric field energy is still growing. (d)
Here, too, behaviour from e/m = 1.5 to e/m = 2.0 changes dramatically in 〈HE〉.
We can observe with (b) at such large couplings the energy is almost completely
contained in 〈HE〉. UV-convergence is at large couplings far from reached.
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7.1 conclusion

In Section 2.4, after having introduced Symanzik’s improvement programme, we op-
ted only for irrelevant kinetic operators to improve our theory. In Section 2.4.6 we
diagonalised the improved free theory and found the 1st order improved dispersion
relation to have a more accurate coverage throughout the Brillouin zone which we
quantified to be about 1.5 times larger compared to the unimproved curve given reas-
onable error margins of a few per cent. We then showed in Section 2.5.3, the average
current is upon improving more accurate both in powers of a and powers of t. This
was confirmed by an illustrating classical-statistical simulation (cf. Figure 2.3b). Even at
such large system sizes and small lattice spacings chosen in this illustrating simulation,
the current displayes clear benefits upon improving–quantitatively reminiscent of the
gain in Section 2.4.6, while the particle production rate has already converged to its
continuum value. Subsequently, we investigated the UV-convergence of the particle
production rate on small system sizes with exact diagonalisation methods and ob-
served no obvious benefits upon improving our theory. Consequently, we expanded
the search for better UV-convergence upon improving by using classical-statistical
simulations to reach larger system sizes and smaller lattice spacings. By employing
statistics over view simple fit procedures to extract faithfully a linear growth rate,
we observe clear benefits of view, i.e. one digit, per cent points upon improving in
certain parameter regimes. Considering the parameters we realised, improvements are
particularly beneficial for the particle production rate when the electric field strength is
between 1 or 2 critical field strengths. Higher critical field strengths render the benefits
insignificant. Parameters, we realised, displaying most benefits from improvements
include Lm = 7 and E/Ec = 1 (Figure 5.3c), Lm = 7 and E/Ec = 1.5 (Figure 5.4b), as
well as Lm = 5.5 and E/Ec = 2 (Figure 5.5c). However, none of those improved runs,
to first and second order, can reproduce our previous finding of a gain of 1.5 as seen in
the dispersion relation and the average current, although we covered a wide range of
parameters for E/Ec and Lm in which we always sampled from low cutoff and small
system size, such that the linear growth in particle production was hardly observable,
to clearly converged system size and large cutoff, such that 2tmax was long enough to
retrieve a faithful averaged fit.
We therefore conclude that neither the improved dispersion relation, which is disposed
of lattice artefacts up to O

(
a2(n+1)

)
given improvement order n, nor the average cur-

rent, which we showed is also disposed of lattice artefacts up to O
(

a2(n+1)
)

given
improvement order n, reduce the lattice artefacts in the particle number significantly,
nor is the particle production rate positively affected by the same amount above men-
tioned observables are. Since the dispersion relation is most significantly improved in
the upper half of the Brillouin zone (cf. Figure 2.1), while the current is most signific-
antly improved at late times (cf. Figure 2.3b when the particles in the system reached
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high momenta (cf. Figure A.1c), we must conclude that improving our theory with only
irrelevant higher derivatives mostly leads to an improvement in observables which
are sensitive to the high momentum range within the Brillouin zone. The particle
number is apparently no such observable as we infer it tests merely the low end of the
momentum spectrum.
In hindsight, the substantial benefits improvements yield in Refs. [64–66] may be
due to a combination of two things. Firstly, the (in)accuracy of the ibid. employed
unimproved Wilson fermions to O(a). As unimproved staggered fermions are already
precise to O

(
a2) they have an innate advantage over Wilson fermions regarding the

low momentum description of our system. We suggest this innate advantage suffices
to let staggered fermions adequately describe the momentum range which the particle
number is sensitive to. And more important secondly, above mentioned Refs. incorpor-
ated back reactions from the fermion current onto the electric field. This allows for a
negative feedback loop in which, naively viewed, particles are created homogeneously
and accelerated in the strong electric field. This builds up a current which in turn
reduces the electric field whenever energy is conserved. Clearly then, one can benefit
from the longer and more accurate description of the currents and improvements find
their way into the particle number via the current. However, within the approximation
of a constant electric field, we are neither conserving energy nor allowing for a feedback
from the currents onto the field. Thus, the particle number appears to be sensitive only
to the low momentum range.

In Chapter 6, we investigated the Schwinger mechanism for particle pair production
in a constant background field for a system which we restricted to the physical subspace
where we implemented Gauss law. Together with unbiased exact diagonalisation
methods this enabled us to perform simulations in the strong coupling regime of QED
in 1+ 1d. We found strong disagreement between systems of sizes divisible by 4, which
we called ‘even’, and system sizes only divisible by 2, which we called ‘odd’, as they
have only and odd amount of modes realised in the Brillouin zone, and vice versa. We
discarded the simulations with ‘even’ lattice size by virtue of knowing the vacuum
expectation value of the chiral order parameter 〈ψ̄ψ〉0 to take a non-vanishing value
which is given for our parameter set given by (2.48). The systems of ‘even’ sites however
realised a numerically vanishing expectation value, while the systems of ‘odd’ size
yielded a result corroboratively close to the continuum value. Furthermore, we found
the vacuum state to display further disagree in the particle number distribution, as
‘odd’ systems realise beyond e/m = 1.5 a zero mode in the Brillouin zone completely
filled with 2 fermions, while ‘even’ lattice sites behave diametrically opposite; they
have realise throughout the tested range of e/m an empty zero mode.
Subsequently, having settled for ‘odd’ systems sizes we investigated the dynamics of
its vacuum state upon quenching the electric field from off to 1.5Ec. We observed for
small to medium couplings (e/m ≤ 1) a rise in particle pair production. Our choice of
‘odd’ system size was substantiated after discussing a naive first-order correction to
Schwinger’s formula of the particle pair production rate (6.7). This first-order correction
captures the (finite) renormalisation of the bare mass to the physical mass and comes
about when one demands to measure the electric field strengths in ‘unrenormalised’
critical fields while Schwinger’s formula is modified by replacing the bare mass with
the physical mass. Our lattice simulations could not quantitatively agree with this
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modified formula. This should however not be of great concern as renormalisation
on the lattice manifestly incorporates the cutoff ∼ 1

a and the physical volume Lm.
Since we simulated on a coarse lattice with am ' 0.26 and Lm we do not expect
the continuum renormalisation formula to hold. We take this modified formula as a
qualitative reference whose demand we meet. As the particle number of the vacuum
state changes from e/m = 1 to e/m = 1.5 dramatically from numerically zero to a
significant non-vanishing quantity, it reflects on the phase transition from the unbroken
phase to the spontaneously broken phase (cf. Figure 6.1). Furthermore, the growth of
the very same reveals the inadequacy of the concept we attach to its observable. The
particle picture fails in such ‘intermediate’ regimes of the Schwinger model–only in
the ultra strong coupling limit we shall retrieve a free model.

We then emphasised at couplings beyond e/m ∼ 1.5 the dynamics of the Schwinger
model is most probably not accurately captured as the total energy as well as the
electric field energy in the system display ever less UV-convergence with ever larger
couplings.

The unbiased method of exact diagonalisation combined with the restriction of
the Hilbert space on the physical subspace via implementing Gauß’s law allowed us
to take an unprecedented approach to strong coupling dynamics in the Schwinger
model, namely from the massive theory starting gradually approaching e/m → ∞.
Consequently, we were able to quantitatively estimate the correction to Schwinger’s
formula of particle pair production for small to medium couplings e/m ≤ 1. We found
a linear growth with significant higher production rate already for relatively small
couplings. Our findings can offer a benchmark to other numerical methods being
valid only to low order in coupling as to how large the coupling may be to faithfully
reproduce the Schwinger rate in the weak coupling limit.

7.2 outlook

Concerning the outlook with regards to improvements, we suggest that further in-
vestigation must comprise interaction terms, as we concluded improving only with
irrelevant higher derivative terms will mostly be reflected in a better description of
the kinematics of the constituents of our system. This may be even performed in a
non-perturbative fashion since this would entail an improvement in the strong coupling
regime of the Schwinger model, to which our approach via exact diagonalisation offers
an accessible route.

Regarding the methodology, one might like to depart from the approximation of a
constant background field, as it allows the observation of plasma oscillation. Moreover,
the particle number can then derive benefit from improving our theory only with higher
derivatives. This would particularly mean one has to account for the two boundary
degrees of freedom in a suitable way, such that their dynamics is depicted accurately
in some sense while their Hilbert space must be truncated, in order to still be suitable
for the exact diagonalisation approach. Naturally, one might think of a quantum link
model to implement this. Furthermore, the methodology can be expanded and larger
system sizes realised using more symmetries of our system to restrict the Hilbert space
in size, as this by fare the most significant constraint in the numerical simulation.
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Lastly, we managed to retrieve the spontaneously broken phase of the Schwinger
model in the strong coupling limit yet we have at present no satisfying ab intitio
answer at hand why this requires an ‘odd’ system sizes. One can only speculate over
the behaviour at larger N–not at least an other reason to use further symmetries to
restrict the Hilbert space. The peculiarities of ‘even’ and ‘odd’ system sizes ought to be
investigated further. Particularly, since such behaviour can also be observed in similar
systems [67], but also since we are unaware of any other reference confirming our
finding of reaching the spontaneously broken phase from the massive theory only via
‘odd’ system sizes.



AI L L U S T R AT I O N O F T H E S C H W I N G E R E F F E C T
I N T H E B R I L L O U I N Z O N E

Here we append the plots of the particle number distribution as well as the energy
density and the dispersion relation in the Brillouin zone for the setup discussed in
Section 2.5.5.
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Figure A.1: A series of plots with the Brillouin zone on the horizontal axis. On the right vertical
axis is displayed the value of ωk and εk while on the left vertical axis one finds the
value of nk. Series goes through different time steps, starting at tm = 0 and ending
at tm = 64 ' 2tmaxm. Demonstrating periodic boundary conditions, the particle
number distribution crosses at tmaxm the BZ edge and comes back at opposite
momenta undisturbed. Only at 2tmaxm it interferes with itself.



BF E R M I O N I C O P E R AT O R S I N S P I N D O F

b.1 jordan-wigner transform

Here, we explain how to map fermionic degrees of freedom onto spin degrees of
freedom. This is necessary as a direct matrix representation for any spin operator with
arbitrary but finite spin length exists.

While spin operators S+
n = Sx

n + iSy
n and S−n = Sx

n − iSy
n fulfil the canonical anti-

commutation relation on-site ({S−n , S+
n } = 1), they commute offsite ([S−n , S+

m ] = 0, n 6= m).
If one would be able to ‘dress’ them in such a way they anti-commute off-site({

S̃−n , S̃+
m
}
= δnm

)
, the map of fermionic DoF to spin DoF would be complete. This

‘dressing’ in one dimension was first discovered by Jordan and Wigner 1928 [68].
In one dimension, the map of a single (spinless) fermionic degree of freedom onto a

spin (qubit) degree of freedom reads as

ψn =
n−1

∏
l=0

[iσz
l ] σ−n = exp

{
i
π

2

n−1

∑
l=0

σz
l

}
σ−n , (B.1)

ψ†
n =

n−1

∏
l=0

[−iσz
l ] σ+

n = exp

{
−i

π

2

n−1

∑
l=0

σz
l

}
σ+

n , (B.2)

ψ†
nψn =

1
2
(σz

n + 1) . (B.3)

Thus, we charge operator reads in qubit DoF as

Qn =
1
2
(σz

n + (−1)n) . (B.4)

Since we require the total number of lattice sites to be even, we can deduce in the case
of total vanishing charge,

0 =
2N−1

∑
n=0

Qn =
1
2

2N−1

∑
n=0

σz
n , (B.5)

translates to total vanishing ‘magnetisation’ in qubit degrees of freedom.
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82 fermionic operators in spin dof

b.2 hamiltonian

Applying the Jordan–Wigner transform to the Hamiltonian (3.28) we obtain

H = − i
2a

c1

2N−2

∑
n=0

(
Uσ+

n iσz
nσ−n+1 − h.c.

)
− i

2a
c3

2N−4

∑
n=2N−2

(
U 3

σ+
n iσz

niσz
n+1iσz

n+2σ−n+3 − h.c.
)

− i
2a

c1Uσ+
N−1 exp

{
−i

π

2

2N−1

∑
l=0

σz
l

}
iσz

2N−1σ−0

− i
2a

c3U 3
σ+

N−3 exp

{
−i

π

2

2N−1

∑
l=0

σz
l

}
iσN−3iσN−2iσN−1σ−0 − h.c.

+ m
2N−1

∑
n=0

(−1)nσ+
n σ−n

+ HE (B.6)

= − 1
2a

c1

2N−1

∑
n=0

(
Uσ+

n σ−n+1 + h.c.
)
+

1
2a

c3

2N−1

∑
n=0

(
U 3

σ+
n σz

n+1σz
n+2σ−n+3 + h.c.

)
+ m

2N−1

∑
n=0

(−1)nσ+
n σ−n

+ HE , (B.7)

where

HE = −e2 2N − 3
2(2N − 2)

2N−1

∑
n=0

[
N

∑
d=0

(
d +

d2 − 3d + 2
2N − 3

)
Qn (Qn+d + Qn−d)

+ Qn(Qn+1 + Qn−1) +
4N2 − 8

4(2N − 3)
QnQn+N

]
, (B.8)

and according to (B.4)

Qn (Qn+d + Qn−d) '
1
4
[
σz

n
(
σz

n+d + σz
n−d
)
+ (−1)n (σz

n+d + σz
n−d
)

+ σz
n

(
(−1)n+d + (−1)n−d

)]
, (B.9)

QnQn+N '
1
4

[
σz

nσz
n+N + (−1)nσz

n+N + (−1)n+Nσz
n

]
, (B.10)

where ‘'’ implies equality up to constant terms.

b.3 translation of statistical propagator

Here, we formulate the statistical propagator

Fnm = F(n, m; t) :=
1
2
〈Ψ(t)|

[
ψn, ψ†

m

]
|Ψ(t)〉 , (B.11)

in terms of qubit degrees of freedom.
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First, it shall be noted that Fnm is self-adjoint w.r.t. the coordinates n and m. Hence,
we can assume w.l.o.g. n > m and taking the hermitian conjugate in the other case.
We find

1
2

〈[
ψn, ψ†

m

]〉
=

1
2

〈[
σ−n ∏

l<n
[iσz

l ] , ∏
k<m

[−iσz
k ] σ+

m

]〉
(B.12)

=
1
2

in−m 〈[σ−n σz
n−1 . . . σz

m, σ+
m
]〉

(B.13)

=
1
2

in−m 〈σ−n σz
n−1 . . . σz

m+1
[
σz

m, σ+
m
]〉

(B.14)

= in−m 〈σ−n σz
n−1 . . . σz

m+1σ+
m
〉

, (B.15)

and in the case n = m, we have

1
2

〈[
ψn, ψ†

n

]〉
= −1

2
〈σz

n〉 (B.16)

b.4 current operator

Here, we want to express the fermion current operator (2.190) in terms of spin operators.
Recalling σ+σz = −σ+, we may write the current as

jn =
−i
2a
[
c1
(
Uσ+

n σ−n+1 − h.c.
)

−c3

(
U 3

σ+
n σz

n+1σz
n+2σ−n+3 − h.c.

)]
. (B.17)





CS U P P L E M E N TA RY P L O T S : U V C O N V E R G E N C E
S E R I E S

c.1 exact diagonalisation

The supplementary plots to Section 5.1 for the convergence series of exact diagonalisa-
tion simulations without implementing Gauß’s law can be found in Figure C.1 and
Figure C.2
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86 supplementary plots : uv convergence series
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Figure C.1: UV convergence series with Lm = 5, E/Ec = 1, e/m = 0.1. For reference we
indicated the analytic prediction for late times with a black dotted line together
with the label ‘Schwinger rate’.
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Figure C.2: UV convergence series with Lm = 4, E/Ec = 1, e/m = 0.1. For reference we
indicated the analytic prediction for late times with a black dotted line together
with the label ‘Schwinger rate’.



88 supplementary plots : uv convergence series

c.2 classical statistical simulation

The supplementary plots to Section 5.2 for the convergence series of classical-statistical
simulations can be found in Figure C.2 for E/Ec = 1, for E/Ec = 1.5 in Figure C.2, for
E/Ec = 2 in Figure C.3, for E/Ec = 5 in Figure C.4, and for E/Ec = 7 in Figure C.5
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(h) Lm = 6, N = 60
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Figure C.2: UV convergence series with E/Ec = 1, e/m = 0.1. We show the first and the last
run of the series, respectively. Linear function was fitted (red line) to suitable time
window where quench dynamics already faded up until 1.5tmax. Time window was
varied with ∆tm ≈ 0.5.
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(g) Lm = 5, N = 20
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Figure C.2: UV convergence series with E/Ec = 1.5, e/m = 0.1. We show the first and the last
run of the series, respectively. Linear function was fitted (red line) to suitable time
window where quench dynamics already faded up until 1.5tmax. Time window was
varied with ∆tm ≈ 0.5.
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(c) Lm = 7.5, N = 20
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(e) Lm = 5.5, N = 20
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Figure C.3: UV convergence series with E/Ec = 2, e/m = 0.1. We show the first and the last
run of the series, respectively. Linear function was fitted (red line) to suitable time
window where quench dynamics already faded up until 1.5tmax. Time window was
varied with ∆tm ≈ 0.5.
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Figure C.4: UV convergence series with E/Ec = 5, e/m = 0.1. We show the first and the last
run of the series, respectively. Linear function was fitted (red line) to suitable time
window where quench dynamics already faded up until 1.5tmax. Time window was
varied with ∆tm ≈ 0.5.
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Figure C.5: UV convergence series with E/Ec = 7, e/m = 0.1. We show the first and the last
run of the series, respectively. Linear function was fitted (red line) to suitable time
window where quench dynamics already faded up until 1.5tmax. Time window was
varied with ∆tm ≈ 0.35.





DO N T H E E F F E C T S O F O P E N B O U N D A RY
C O N D I T I O N S

In this appendix we wish to show the effects of open boundary conditions.
Tho this end, we inspect the current density plotted against time and location. For a
system size of 2N sites one has for open boundary conditions 2N − 1 different DoF for
the current density opposed to 2N for the current with periodic boundary conditions.

We briefly looked at the boundary effects on a small systems with N = 22, am = 0.32,
e/m = 0.1, and E/Ec = 1.5. Figure D.1 shows the current heat map of the respective
system. One observes that boundary effects find their way into the centre of the system
within the runtime of 1tmaxm. Displayed in Figure D.2 is the current averaged over two
neighbouring sites which is in the case of PBC and a homogeneous field identical to
space averaging over the entire system. Although the disturbance due to boundary
effects at the centre of the system is admittedly mild, we still opted for periodic
boundary conditions.

If one was to choose OBC one can eliminate the extra boundary degrees of freedom in
(3.17). However, one would have to alter the analysis of diagonalising the Hamiltonian
(and everything which is built on it) as plain waves would no longer constitute the
diagonalising set of basis, i.e. the Fourier transform will not yield a diagonal matrix.
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98 on the effects of open boundary conditions

(a) Open Boundary Conditions

(b) Periodic Boundary Conditions

Figure D.1: Comparison of open boundary conditions and periodic boundary conditions. Both
runs are performed with the same set of parameters: N = 22, am = 0.32, e/m = 0.1,
E/Ec = 1.5 without improvement. Within 1tmaxm ≈ 6.5 the boundary effects in (a)
find their way into the centre of the system.
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Figure D.2: Comparison of open boundary conditions and periodic boundary conditions. Both
runs are performed with the same set of parameters: N = 22, am = 0.32, e/m = 0.1,
E/Ec = 1.5 without improvement. In the case of PBC the average current discussed
in Section 2.5.3 is plotted as it in a homogeneous field identical to the average over
two neighbouring sites. To no surprise, the OBC system displays strong boundary
effects at the boundary. Even within 1tmaxm mild boundary effects find their way
into the centre of the system (cf. (b)).





ES U P P L E M E N TA RY P L O T S : S T R O N G LY C O U P L E D
Q E D AT L m = 7 , E / E c = 1 . 5 A N D ‘ E V E N ’ S Y S T E M
S I Z E

For the sake of transparency we shall enclose the plots for ‘even’ system size in this
appendix.
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102 supplementary plots : strongly coupled qed at Lm = 7, E/Ec = 1.5 and ‘even’ system size
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Figure E.1: Particle number for strongly coupled QED at ‘even’ system sizes.
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