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A many-body quantum localization phenomenon constrains the influence of Trotter errors on local
observables in digital quantum simulation.

A fundamental challenge in digital quantum
simulation (DQS) is the control of inherent errors.
These appear when discretizing the time evolu-
tion generated by the Hamiltonian of a quan-
tum many-body system as a sequence of quantum
gates, called Trotterization. Here, we show that
quantum localization–by constraining the time
evolution through quantum interference–strongly
bounds these errors for local observables. Conse-
quently, for generic quantum many-body Hamil-
tonians, Trotter errors can become independent
of system size and total simulation time. For lo-
cal observables, DQS is thus intrinsically much
more robust than what one might expect from
known error bounds on the global many-body
wave function. This robustness is characterized
by a sharp threshold as a function of the Trot-
ter step size. The threshold separates a regu-
lar region with controllable Trotter errors, where
the system exhibits localization in the space of
eigenstates of the time-evolution operator, from
a quantum chaotic regime where the trajectory is
quickly scrambled throughout the entire Hilbert
space. Our findings show that DQS with compar-
atively large Trotter steps can retain controlled
Trotter errors for local observables. It is thus
possible to reduce the number of quantum gate
operations required to represent the desired time
evolution faithfully, thereby mitigating the effects
of imperfect individual gate operations.

Introduction

Quantum computers promise to solve certain com-
putational problems exponentially faster than any
classical machine [1]. A particularly promising applica-
tion is the solution of quantum many-body problems
[2], with large potential impact on quantum chemistry,
material science, and fundamental physics. The devices
employed in this effort can be divided into two major
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classes: analog quantum simulators, where the Hamil-
tonian of interest is engineered to mimic the desired
quantum many-body physics; and digital quantum sim-
ulators (DQSs), where a target time-evolution operator
is represented by a sequence of elementary quantum
gates. The digital approach is particularly flexible, since
a universal DQS can be freely programmed to simulate
the unitary evolution of any many-body Hamiltonian
with local interactions [3] (Fig. 1a). Recent experiments
have demonstrated remarkable progress in implementing
DQS, e.g., by simulating simple molecules in quantum
chemistry [4–6], condensed-matter models [7–12], and
lattice gauge theories [13]. It is remarkable that in the
regular region second-order perturbation theory remains
valid even for long times. This feature makes the error
on local observables well-controlled and enables a finite-τ
extrapolation to the ideal limit.

The working principle of DQS is as follows. Suppose

that the target Hamiltonian H =
∑M
l=1Hl can be de-

composed into M terms whose time evolution operators
Ul(t) = exp(−itHl) can be implemented on the con-
sidered quantum computing device. Using the Suzuki–
Trotter formula, the full time-evolution operator U(t) =
exp(−itH) can be approximated by discretizing it into
n ∈ N repetitions of the fundamental gates Ul:

U (n)(t) =

[
U1

(
t

n

)
U2

(
t

n

)
· · ·UM

(
t

n

)]n
. (1)

This Trotterization comes inherently with an error that
can be rigorously bounded via the accuracy of the global
unitary time-evolution operator [3]

U(t)− U (n)(t) =
t2

2n

M∑
l>m=1

[Hl, Hm] + ε . (2)

Here, ε subsumes terms of order t3/n2 and higher. Con-
sequently, for the lowest order corrections the error grows
quadratically with total simulation time t and (in generic
quantum many-body systems) linearly in the number of
simulated degrees of freedom N . It is possible to improve
this bound, but an error bound that scales less than lin-
ear in t is not possible if one is concerned with the entire
unitary operator [14]. Although the polynomial scaling
with both t and N is efficient in a computational com-
plexity sense, it poses a significant challenge for practical
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Figure 1: Trotterized time evolution and resulting er-
ror on local observables. (a) Gate sequence for the digital
quantum simulation (DQS) of an Ising model. The desired
evolution up to total simulation time t is split into n repeated
sequences of length τ = t/n, each decomposed into funda-
mental quantum gates. The example shows a gate sequence
for a 4-qubit chain with Ising spin–spin interactions (ZZ) and
transverse and longitudinal fields (simulated by single-qubit
operations along the X and Z directions on the Bloch sphere).

(b) Magnetization dynamicsM(t) = N−1 ∑N
l=1〈S

z
l (t)〉 in the

DQS of the Ising model for N = 20 spins and different Trotter
step sizes τ compared to the exact solution. The normalized
deviation ∆M(t)/(hτ)2 with ∆M(t) = |Mτ=0(t) − M(t)|
from the ideal dynamics Mτ=0(t) shows a collapse of the er-
ror dynamics for sufficiently small τ .

computations [15, 16], seemingly preventing current tech-
nology from simulating all but small instances. As we
show in this article, these generic bounds on the global
many-body wave function overestimate by far the actual
error on local observables such as magnetizations or low-
order correlation functions. For example, in the DQS
of a quantum Ising chain the deviation of the magneti-
zation dynamics from the ideal evolution can be signifi-
cantly smaller and remain bounded even at long times,
see Fig. 1b and inset. It is the purpose of this article, to
explain this observation from physical grounds, and thus
assign a physical interpretation to Trotter errors.

We achieve this by linking Trotterization errors to
quantum localization. Localization is a ubiquitous phe-
nomenon with many facets. Initially, it has been intro-
duced to understand the absence of transport in systems

of free particles with disorder [17]. Since then, the con-
cept has been generalized to various contexts such as
many-body localization in Hilbert space as absence of
quantum ergodicity [18] or energy localization in periodic
time-dependent quantum many-body systems as absence
of heating in continuously driven systems [19]. As we
show here, at small Trotter steps a related localization
in Hilbert space occurs that bounds time-discretization
errors on local observables.

Results

Trotter sequences as Floquet systems
In this work, we interpret the Trotterized evolution
as a periodically time-dependent quantum many-body
system with a period τ = t/n, see Fig. 1. The desired
stroboscopic dynamics is therefore governed by an
associated Floquet Hamiltonian HF , which we define for
later convenience in the following form:

e−iHF τ = U1 (τ)U2 (τ) · · ·UM (τ) , (3)

The starting point of our considerations is an analytical
expression for HF in the limit of sufficiently small Trotter
steps τ ,

HF = H + i
τ

2

∑
l>m

[Hl, Hm] +O(τ2). (4)

This form, which can be obtained from Eq. (3) via a
Magnus expansion, quantifies the Trotterization error
on a Hamiltonian level. There remain, however, two
fundamental questions that we aim to address in this
work: (i) What is the radius of convergence τ∗ of this
expansion? (ii) What is the influence of corrections to
H that appear in HF on the long-time dynamics of
observables? Recent theoretical predictions for heating
in generic quantum many-body systems subject to a
periodic drive might leave a rather pessimistic impres-
sion [20–22]. We show in this work that the errors on
local observables can nevertheless be controlled for all
practical purposes.

Benchmark model: quantum Ising chain
In the following, we illustrate our discussion with
a generic, experimentally relevant model, the quan-
tum Ising chain with Hamiltonian H = HZ + HX , with

HZ = J
∑N−1
l=1 Szl S

z
l+1+h

∑N
l=1 S

z
l andHX = g

∑N
l=1 S

x
l .

Here, Sγl , γ = x, y, z, denote spin-1/2 operators at lat-
tice sites l = 1, . . . , N . Such models are paradigmatic
workhorses for DQS platforms such as nuclear magnetic
resonance [23], trapped ions [7], and superconducting
qubits [24]. As initial state, we choose |ψ0〉 =

⊗
l |↑〉l,

which can be prepared with high fidelity [7, 24, 25]. In
the remainder, we use the parameters h/J = g/J = 2.
For details about the simulations including the used gate
sequences, see Methods. Though we focus on this model,
our findings also apply to various other model systems,
and thus seem generic [26], see also the Supplementary
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Materials where we provide a similar analysis for the
lattice Schwinger model.

Quantum many-body chaos threshold
As the central result of this work, we connect Trotter er-
rors in DQS with a threshold separating a many-body
quantum chaotic region from a localized regime, thus
linking the intrinsic accuracy of a DQS with a quantum
many-body phenomenon. For that purpose, we first in-
vestigate the inverse participation ratio

IPR =
∑
ν

p2ν , pν = |〈φν |ψ0〉|2 , (5)

with |φν〉 denoting a full set of eigenstates of the Floquet
Hamiltonian HF . The IPR measures the localization
properties of the state |ψ0〉 in the eigenbasis |φν〉, which
is well studied also in the single-particle context [27].
In a quantum chaotic delocalized regime, |ψ0〉 is scram-
bled across the full eigenbasis implying a uniform dis-
tribution pν → D−1, with D the number of available
states in Hilbert space. Since D grows exponentially with
the number of degrees of freedom N , we introduce the
rate function λD = N−1 log(D), which exhibits a well-
defined thermodynamic limit. Analogously, we define
λIPR = −N−1 log(IPR). In Fig. 2a, we show numeri-
cal data for the ratio λIPR/λD for the considered bench-
mark example. For the data in this plot, we take into
account the expected leading-order finite-size corrections
λD = N−1[log(D) − log(2)] in the delocalized regime,
which can be estimated using random matrix theory [28].
As one can see, there appears a sharp threshold sepa-
rating a quantum chaotic regime at large Trotter steps,
where λIPR tends to λD with increasing system size, from
a regular region with λIPR/λD < 1.

A strong fingerprint of quantum chaos can also
be found in out-of-time ordered (OTO) correlators,
which quantify how fast quantum information scrambles
through a many-body system. A typical OTO correlator
is of the form

F(t) = 〈V †(t)W † V (t)W 〉 , (6)

where V (t) denotes the time evolution of the operator
V in the Heisenberg picture. While quantum chaos via
OTO correlators is conventionally diagnosed by consid-
ering a late-time exponential growth for operators V and
W with finite support in real space [29], here we consider
the asymptotic long-time value of the extensive operator
V = W = N−1

∑
l S

z
l [30]. We estimate the correspond-

ing long-time limit, F = F(t → ∞), via a stroboscopic
average F = limn→∞ n−1

∑n
l=1 F(lτ).

In Fig. 2b, we present numerical evidence that this
quantity detects the many-body quantum chaos thresh-
old that we have seen in the IPR. There is a clear thresh-
old that separates a localized region at small Trotter steps
τ , where F > 0, from a quantum chaotic region at large
τ , where F → 0. The vanishing OTO correlator in the
many-body quantum chaotic regime can be understood
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Figure 2: Localization and quantum chaos in the Trot-
terized dynamics of the quantum Ising chain. (a) Rate
function λIPR of the inverse participation ratio, normalized to
the maximally achievable value λD describing uniform delo-
calization over all accessible states. A sharp threshold as a
function of the Trotter step size τ separates a localized regime
at small τ from a quantum chaotic regime at large τ . (b)
The long-time limit F of the out-of-time ordered correlator
also signals a sharp quantum chaos threshold. F is normal-
ized with respect to F0 = 1/8, the theoretical maximum. Full
scrambling is only achieved for large Trotter steps.

directly from the results obtained for the IPR. Consider
the spectral decomposition of a local Hermitian opera-
tor V =

∑
α λα|α〉〈α|, with λα the eigenvalues and |α〉

the eigenvectors of V (for the considered magnetization,
these are equivalent to the set of spin configurations).
The effective Floquet dynamics yields after n periods

V (nτ) =
∑
α

∑
ν,µ

λαCναC
∗
µαe
−i(Eν−Eµ)nτ |φν〉〈φµ| , (7)

with Eν the Floquet quasi-energy corresponding to the
eigenstate |φν〉 and Cνα = 〈φν |α〉. The behavior of
the IPR suggests that for all spin configurations pνα ≡
|Cνα|2 = D−1 is uniformly distributed, such that the am-
plitudes Cνα are almost structureless and contain only
a phase information, Cνα = D−1/2eiϕνα . After suffi-
ciently many Floquet cycles, this phase information is
randomized and scrambled by the unitary evolution, ex-
cept when ν = µ, projecting the operator to the so-called
diagonal ensemble [31]. Thus, for n → ∞ one obtains
V (nτ) → D−1

∑
α λα1. Here, D−1

∑
α λα = D−1TrV

is equivalent to the infinite-temperature average, which
yields a vanishing value for the considered total magneti-
zation. In other words, the operator becomes completely
scrambled over the full Hilbert space.

Within the localized phase, the amplitudes Cνα
contain more structure than only the phase information,
which yields a nonzero value for the OTO correlator.
For small systems, such as for N = 10 in Fig. 2b,
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one can observe additional structures in the crossover
region, which vanish for larger N . We attribute these to
individual quantum many-body resonances, which can
be resolved in small systems, but which merge for large
N .

Robustness of local observables
While the corrections due to time discretization are weak
on a Hamiltonian level, as seen in the Magnus expansion
in Eq. (4), there is a priori no guarantee that the long-
time dynamics is equally well reproduced. It is, e.g.,
well known for classical chaotic systems that even weak
perturbations can grow quickly in time. Here, we pro-
vide numerical evidence that in the localized regime the
dynamics of observables remains constrained and con-
trolled, even in the long-time limit.

In Fig. 3a, we show the asymptotic long-time value
M of the magnetization, M̂(t) = N−1

∑
l S

z
l (t). One

can clearly observe that the many-body quantum chaos
threshold identified in the IPR and OTO correlator has
a substantial influence on the long-time Trotter error
of observables such as M(t). For large Trotter steps
τ , the magnetization acquires its infinite-temperature
value, perfectly consistent with the above analysis of
the fully delocalized quantum chaotic phase. Remark-
ably, however, for small Trotter steps the error ∆M
relative to the targeted dynamics exhibits a quadratic
dependence in τ , as we show in Fig. 3b. The origin
of these weak Trotter errors can already be identified
from the dynamical trajectories of the magnetization
shown in the inset of Fig. 1b, where we plot the error
∆M(t) for different Trotter steps normalized with
respect to (hτ)2. We observe a collapse of trajectories
corresponding to different τ , with the overall magnitude
of the error remaining bounded in time. This finding
suggests that in the localized phase the discretization
error on observables itself behaves regular, in the sense
that different perturbation strengths as measured by τ
do not yield fast diverging expectation values.

Simulation accuracy
In the previous sections, we have provided evidence for
a sharp threshold between a delocalized and a localized
regime with controllable Trotter errors. We now aim to
understand the influence of the regular regions onto the
dynamics of observables. We identify as the underlying
reason for the weak Trotter errors a dynamical constraint
due to an emergent stroboscopic constant of motion in
the effective time-periodic problem, which is the Floquet
Hamiltonian HF . Although this integral of motion is dif-
ferent from the desired energy conservation of the target
Hamiltonian H, the perturbative expansion in Eq. (4)
suggests a close connection. It is therefore natural to
quantify the accuracy of a DQS by measuring how far
the system deviates from the desired constant of motion
H via

QE(nτ) ≡ Eτ (nτ)− E0

ET=∞ − E0
. (8)
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Figure 3: Trotter errors for local observables in the
infinite long-time limit for the Ising model. Both the
magnetizationM (a) and simulation accuracy QE (c) exhibit
a sharp crossover from a regime of controllable Trotter errors
for small Trotter steps τ to a regime of strong heating at larger
τ . The dashed line in (a) refers to the desired case of the
ideal evolutionMτ=0. The Trotter error exhibits a quadratic
scaling at small τ for both the deviation of the magnetization,
∆M =M−Mτ=0, (b) and QE (d). The solid lines in (b)
and (d) represent analytical results obtained perturbatively
in the limit of small Trotter steps τ . These results indicate the
controlled robustness of digital quantum simulation against
Trotter errors, in the long-time limit and largely independent
of N .

Here, we have introduced Eτ (nτ) = 〈H(nτ)〉τ and E0 =
Eτ→0(nτ) = 〈ψ0|H |ψ0〉, where the subindex τ refers to
the used Trotter step for the dynamics. In QE(t), we
normalize the errors using the system’s energy at infinite-
temperature, ET=∞ = D−1TrH. In the idealized limit
τ → 0, where the integral of motion HF → H, one
has QE(t) = 0. In the opposite limit of large Trotter
steps, i.e., in the many-body quantum chaotic region,
we expect full delocalization over all eigenstates, yielding
QE(t) → 1 in the long-time limit. Thus, QE(t) defines
a system-independent measure for the simulation accu-
racy. From an alternative perspective, QE(t) quantifies
heating in the effective periodically driven system, as it
has been studied previously in the context of energy lo-
calization [19].

In Fig. 3c, we show numerical data for the long-time
average QE . Again, we find a sharp threshold between
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the localized and quantum chaotic regimes. Importantly,
for small Trotter steps QE acquires only a weak quadratic
dependence on τ , see Fig. 3d, yielding

QE ≡ QE(t→∞) = (τ/τE)α, τ � τE , (9)

with α = 2. While τE depends on the microscopic de-
tails of the system, we find from our numerics that there
is no notable dependence on N even in the asymptotic
long-time limit, with potential corrections in the thermo-
dynamic limit N →∞ that are discussed further below.

To obtain an analytical understanding for the obser-
vations of weak Trotter errors on local observables, let
us start by considering the Magnus expansion for the
Floquet Hamiltonian in Eq. (4), which quantifies the
leading-order corrections due to time discretization on
a Hamiltonian level. From our numerical results for QE ,
we anticipate that the target Hamiltonian H is an almost
conserved quantity, which motivates us to study the per-
turbative corrections to strict energy conservation. Using
time-dependent perturbation theory up to second order
in the Trotter step size τ , we find

QE = qE (hτ)2 +O
[
(hτ3)

]
. (10)

The explicit derivation and the final formula for qE are
given in the Methods. For the considered parameters,
we estimate qE = 0.18. As it can be seen in Fig. 3d, this
analytical value matches well the numerical results.

To test whether the errors on other local observables
are also controlled by the emergent constant of motion
in the localized regime, we exemplarily study the cor-
rections to the targeted magnetization dynamics. From
time-dependent perturbation theory, we obtain ∆M =
m(Jτ)2 + O

[
(Jτ3)

]
with m = 0.05. This theoretical

prediction is again very close to the numerical data (see
Fig. 3b). As these findings indicate, in the regular region
at small Trotter steps the discretization error on local
observables can be captured by time-dependent pertur-
bation theory in the Trotter step size τ — even in the
asymptotic long-time limit.

Our observations give a smaller error on local observ-
ables than suggested by general considerations on Flo-
quet dynamics in high-frequency regimes (corresponding
to small Trotter steps) [32, 33]. In these works, it is
shown that there exists always a static local Hamilto-
nian H̃, different from H, which approximates the stro-
boscopic Floquet long-time dynamics. Our results show
that the evolution of local observables is approximated
by H itself, as desired within DQS.

Discussion

As we have shown, intrinsic Trotter errors in DQS
are controllable for local observables, with a sharp
threshold separating a localized from a many-body
quantum chaotic regime. While we show data here for
one specific model, we observe similar behavior also
for other generic systems with sufficiently short-ranged

interactions [26]. In addition, also certain systems with
long-range interactions can exhibit controllable Trotter
errors [26] including also the recently experimentally
realized Lattice Schwinger Model as we discuss in
the Supplementary Materials. Our numerical studies
are based on up to N = 20 qubits, which is within
realized and expected size ranges of digital quantum
simulators [4–13, 34–37].

For experiments, it is of particular interest to assess the
precise value of the threshold scale τ∗. Theoretically pre-
dicting τ∗ is in general as difficult as solving the desired
time-evolution. Nevertheless, one can estimate τ∗ as fol-
lows. Before running an experiment, one can numerically
calculate QE for small N , yielding a first estimate on τ∗.
From this starting point, experiments can find an optimal
Trotter step at larger N by decreasing τ until sufficient
convergence is reached. Once in the perturbative regime,
one can use data at non-zero τ to extrapolate to the ideal
dynamics in a well-defined way.

While our results appear to be robust upon increas-
ing the number of degrees of freedom, a quantitative
extrapolation to N → ∞ would require the numerical
study of larger systems. In this context, recent works
have argued that in the thermodynamic limit generic
periodically driven systems will eventually heat up in-
definitely [20–22]. This might leave a rather pessimistic
impression, but, as we explain now, time discretization
errors still remain controllable. Even in the worst-case
scenario where such an indefinite heating takes place, the
energy growth can still be bounded on general grounds
via |E(t) − E0| ≤ Ce−τ0/τ t for τ � τ0 [21, 22, 32, 33].
Here, C denotes a constant of dimension energy squared
and τ0 a constant of dimension time, both of which are
independent of N . Thus, for a given total simulation
time t, one can ensure a maximum allowed error ∆ on
the simulation accuracy QE(t) by choosing τ according
to τ = τ0/ log(ct/∆) with c = C|ET=∞ − E0|. In this
worst-case scenario, the Trotter step size to reach a given
accuracy therefore acquires at most a logarithmic depen-
dence on t but remains independent of N . This is still
an exponential improvement over the global wave func-
tion bounds such as given in Eq. (2). In practice, since
it is tunable via τ , this extremely slow intrinsic heating
can always be adjusted such that the associated heating
rate is smaller than that of other error sources, such that
Trotter errors become insignificant.

Therefore, the accuracy of DQS experiments on local
observables is limited mainly by extrinsic error sources.
While these may in the future be eliminated by error cor-
rection [38, 39], for relevant system sizes to solve many-
body problems full error correction is still out of reach
with currently available resources. In the Supplementary
Materials, we discuss in detail two typical extrinsic error
sources, timing errors on individual gates and slow drifts
of gate couplings over various shots of the experiment.
The slow drifts turn out to be relatively benign, leading
only to an effective average over an ensemble of target
Hamiltonians. Individual timing errors, however, induce



6

in the limit of small τ a time scale beyond which the
accuracy of the DQS is severely affected. In addition, a
realistic system will suffer from qubit decoherence as well
as faulty pulses such as imperfect swaps between internal
levels. Both of these make it highly preferable to use as
few gates as possible. In view of these, our results be-
come particularly relevant: as they show, intrinsic errors
in a DQS remain controlled even with relatively large
Trotter steps. This makes it possible to reach a desired
simulation time with a reduced number of gates, thus di-
minishing the influence of extrinsic errors and enhancing
the accuracy of the DQS for local observables.
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Materials and Methods

Numerical methods and gate sequences
In the main text, we show numerical data for a quantum
Ising chain with the Hamiltonian

H = HZ +HX , (11)

where

HZ = J

N−1∑
l=1

Szl S
z
l+1 + h

N∑
l=1

Szl , HX = g

N∑
l=1

Sxl . (12)

Many of the involved contributions in this model Hamil-
tonian mutually commute. Therefore, only a small set
of elementary quantum gates is required to simulate the
Trotterized dynamics. We use the following sequence of
two gates:

U (1) = U1U2, U1 = e−iτHZ , U2 = e−iτHX . (13)

For the presented simulations of observables, we have
computed the real-time evolution for 2 · 104 periods, ex-
cept otherwise noted, using a Lanczos algorithm with full
reorthogonalization. Because for a finite-size system ob-
servables still show remaining temporal fluctuations, we
extract the asymptotic long-time limit of the presented
quantities by performing a stroboscopic time average over
the last 104 periods.

The inverse participation ratio shown in Fig. 2 can, in
principle, be obtained either by exact diagonalization or
by use of a dynamical evolution. We have chosen the
latter because it allows us to reach larger systems and is,
in principle, an experimentally accessible approach. Dy-
namically, the inverse participation ratio can be obtained
by a stroboscopic mean,

IPR = lim
n→∞

1

n

n∑
l=1

Pl, Pl =
∣∣∣〈ψ0|e−ilHF τ |ψ0〉

∣∣∣2 , (14)

as one can prove by expanding Pl in the eigenbasis of
HF , followed by a summation of the resulting geometric
series. Note that Pl is nothing else than the Loschmidt
echo, a common indicator for quantum chaotic behavior
in single-particle systems [27].

For the computation of the OTO correlator F(t) de-
fined in Eq. (6), we have decomposed F(nτ) as

F(nτ) = 〈ψ1(nτ)|ψ2(nτ)〉 , (15)

where the two states

|ψ1(nτ)〉 = WeiHFnτV e−iHFnτ |ψ0〉 , (16)

|ψ2(nτ)〉 = eiHFnτV e−iHFnτW |ψ0〉 , (17)

can be obtained from forward and backward evolving
the quantum many-body state with appropriate inser-
tions of the W and V operators. Since the backward
evolution has to be performed for every Trotter step n,
the overall runtime of this approach scales proportional
to n2. This limits the accessible total simulation time
t = nτ , such that we have used n = 103 for the
simulations shown in the main text, and we have per-
formed a stroboscopic average over the last 300 periods
to obtain an estimate for the asymptotic long-time value.

Trotter errors on local observables from pertur-
bation theory
As mentioned in the main text, the Trotter errors for
local observables can be captured using time-dependent
perturbation theory in the limit of sufficiently small τ .
In the following, we outline how to obtain the analytical
expressions for the coefficients qE and m for QE andM,
respectively. First, we consider the simulation accuracy
QE and afterwards the Trotter errors on the magnetiza-
tion M.

For the derivation of the corrections appearing in QE ,
we can use that the energy of the target Hamiltonian
H and therefore the simulation accuracy QE exhibit a
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substantial overlap with the emergent conserved quantity
HF :

〈HF (nτ)〉τ = 〈HF 〉 = const. (18)

Here, 〈O(nτ)〉τ = 〈ψ0|eiHFnτOe−iHFnτ |ψ0〉 denotes the
full Trotterized time evolution with Trotter step size τ
as in the main text. Moreover, we define the expectation
values in the initial state via 〈O〉 = 〈ψ0|O|ψ0〉 and under
the ideal time evolution as 〈O(t)〉 = 〈O(t)〉τ=0.

In order to obtain all corrections to the desired order,
we first have to express HF using the Magnus expansion
up to second order in the Trotter step size,

HF = H + τC1 + τ2C2 +O(τ3) , (19)

with

C1 =
i

2
[HX , HZ ], C2 = − 1

12
[HX −HZ , [HX , HZ ]] .

(20)
For convenience, we restrict the presentation from now on
to a sequence of two elementary gates within one period,
as we have for the case of the simulated quantum Ising
chain. Using the above expansion for HF in combination
with the conservation of HF , one obtains for the energy
deviation

∆E(nτ) =〈H(nτ)〉τ − 〈H〉 , (21)

=τ∆C1(nτ) + τ2∆C2(nτ) .

where

∆Cν(nτ) = 〈Cν〉 − 〈Cν(nτ)〉τ , ν = 1, 2 . (22)

As a next step, we use time-dependent perturbation the-
ory to determine the leading order in τ corrections of
∆Cν(nτ). For this purpose, we write

e−iHF t = e−iHtW (t), W (t) = T e−i
∫ t
0
dt′ V (t′) , (23)

with T denoting the time-ordering prescription and

V (t) = eiHtV e−iHt, V = τC1 + τ2C2 . (24)

For the corrections to ∆E(nτ) quadratic in τ , we need
to perform time-dependent perturbation theory to first
order in τ for C1 and can neglect any τ -dependent con-
tributions for C2.

Let us first consider ∆C1(nτ), which gives

∆C1(nτ) = 〈C1〉−〈C1(nτ)〉− iτ
∫ nτ

0

dt′ 〈[C1(t′), C1(nτ)]〉 .

(25)
The time integral can be conveniently evaluated by rec-
ognizing that

C1 =
i

2
[HX , HZ ] =

i

2
[H,HZ ] , (26)

since H = HX +HZ , and thus

C1(t) =
1

2

d

dt
HZ(t) . (27)

This gives

∆C1(nτ) = 〈C1〉−〈C1(nτ)〉− iτ
2
〈[HZ(nτ)−HZ , C1(nτ)]〉 .

(28)
In the limit of n → ∞, we can use the general property
that expectation values of operators are governed by the
so called diagonal ensemble [31]

〈O(nτ)〉 n→∞−→
∑
λ

pλ〈λ|O|λ〉 , (29)

where pλ = |〈λ|ψ0〉|2 and |λ〉 is a full set of eigenstates for
the target Hamiltonian H. Using particular properties
of the considered protocol, the above result for ∆C1(nτ)
can be simplified considerably. We can use, for example,
that 〈C1〉 = 0 and 〈[HZ , C1(nτ)]〉 = 0, because |ψ0〉 is an
eigenstate for HZ , which finally yields

∆C1(nτ)
n→∞−→ −τ

4

∑
λ

pλ〈λ|[HZ , [HZ , HX ]]|λ〉 . (30)

For the contributions to ∆E(nτ) that are second or-
der in τ stemming from ∆C2(nτ), we can restrict to the
zeroth order in time-dependent perturbation theory for
〈C2(nτ)〉τ , i.e., we can replace 〈C2(nτ)〉τ → 〈C2(nτ)〉.
This yields

∆C2(nτ)
n→∞−→ 〈C2〉 −

∑
λ

pλ〈λ|C2|λ〉 . (31)

Collecting all contributions, we finally obtain

QE =
∆E

ET=∞ − E0
= qE(hτ)2 +O[(hτ)3] (32)

with

qE =
1

J2E0

[
〈C2〉 −

∑
λ

pλ〈λ|C2|λ〉−

−1

4

∑
λ

pλ〈λ|[HZ , [HZ , HX ]]|λ〉

]
, (33)

where we have used that ET=∞ = 0. This expression
can be evaluated using full diagonalization, which pro-
vides access to all eigenstates |λ〉. For the considered
parameters of our simulations, we find qE = 0.18, which
is consistent with the full dynamical calculation in the
small Trotter step limit, see Fig. 3d.

For estimating the lowest-order corrections in τ for
other observables such as the magnetization M, we can-
not make direct use of the emergent conserved quantity
HF as we could for the energy of the target Hamilto-
nian. Still, we can perform time-dependent perturbation
theory, which we now have to carry out up to second or-
der. Following the same steps as before, we obtain for
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the magnetization the following expression

∆M(nτ) = 〈M(nτ)〉τ − 〈M(nτ)〉 =

=
τ2

12

[
〈{H2

Z(nτ),M(nτ)}〉 − E2
Z〈M(t)〉

]
+ i

τ2

6
〈[C1(nτ)− C1,M(nτ)]〉

− 5τ2

12

∫ nτ

0

dt〈C1(t)HZ(t)M(nτ) + h.c.〉 .

(34)

Here, {A,B} = AB + BA denotes the anticommutator
and EZ is given by HZ |ψ0〉 = EZ |ψ0〉. In the limit
n → ∞, we can again use that expectation values can
be evaluated in the diagonal ensemble. In addition, the
expression involving the time integral can be formally
solved by using the Lehman representation. Finally, we
obtain

∆M(nτ)
n→∞−→ m(hτ)2 +O[(hτ)3] , (35)

with

m =
1

12J2

∑
λ

pλ〈λ|{H2
Z ,M}− E2

ZM|λ〉

− 1

6J2

∑
λ

pλRe
[
〈λ|[HX ,M ]HZ |λ〉

]
+

1

6J2

∑
λ,λ′

pλ
Eλ − Eλ′

Re
[
〈λ|[HZ , HX ]HZ |λ′〉〈λ′|M|λ〉

]
+

1

6J2

∑
λ,λ′

〈λ|M|λ〉
Eλ − Eλ′

Re
[
CλC

∗
λ′〈λ|[HZ , HX ]HZ |λ′〉

]
,

(36)

where Cλ = 〈λ|ψ0〉 and Eλ denotes the eigenenergies of
the target HamiltonianH corresponding to the eigenstate
|λ〉. Using full diagonalization, we can again evaluate this
expression yielding for our model a value of m = 0.05,
which we have used in Fig. 3b for the asymptotic small
τ prediction and which matches well the result from the
full dynamics.
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Supplementary Materials to

Quantum localization bounds Trotter errors in digital quantum
simulation

In these Supplementary Materials, (i) we provide numerical data for a second benchmark
model for ditigal quantum simulation (DQS), the lattice Schwinger model; (ii) and we discuss
the influence of two typical extrinsic sources for imperfections on digital quantum simulators.

S1. TROTTER ERRORS IN THE LATTICE SCHWINGER MODEL

In order to demonstrate the generality of our results, we provide in this Section of the Supplementary Materials an
analysis of a second benchmark example – the lattice Schwinger model of 1+1D quantum electrodynamics (QED),
which has recently been realized in a DQS [13]. In order to map the lattice Schwinger model to a pure spin system,
this model can be described by the Hamiltonian

HSM = H± +HZ , (S1)

where

H± =

N−1∑
l=1

H l
±, H l

± =
w

2

[
σxl σ

x
l+1 + σyl σ

y
l+1

]
, (S2)

with

HZ =
m

2

N∑
l=1

(−1)lσzl + J

N∑
l=1

L2
n, Ln =

1

2

n∑
l=1

[σzl + (−1)l]. (S3)
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Figure S1: Inverse participation ratio for the DQS of the lattice Schwinger model. The data is shown for different
system sizes N . As for the Ising model, a sharp crossover divides a perturbative region at small τ from a fully quantum-chaotic
regime at large τ .

Here, m is the rest mass of the fermionic particles and anti-particles, and w describes their kinetic energy. The
term ∝ J is the energy of the U(1) gauge fields. Using the Gauss law, these have been integrated out at the cost of
introducing asymmetric long-range interactions between the fermions. The model describes a full, interacting lattice
gauge theory, and no general analytic or numeric method exists to exactly compute its real-time dynamics, except in
limiting cases or for small systems. This makes it a relevant target for DQS.

In our numerical simulations using exact diagonalization, we have choose the following gate sequence to mimic the
DQS:

U (1) = U1U2U3, (S4)

with

U1 = e−iτHZ , U2 = e−iτ
∑N/2
l=1 H

2l−1
± , U3 = e−iτ

∑N/2
l=1 H

2l
± . (S5)

Following the recent experiment [13], we initialize the system in the bare vacuum, which in the spin-1/2 language
corresponds to a simple Neel state,

|ψ0〉 = | ↑↓ . . . ↑↓〉. (S6)

As for the Ising model in the main text, we compute the dynamics of observables for 2 · 104 periods numerically
using a Lanczos algorithm with full reorthogonalization and extract the long-time value of the studied quantities by
performing a stroboscopic mean over the last 104 periods. For all the shown data, we use a fixed parameter set with
w/J = m/J = 1.

Again, we find a sharp quantum many-body chaos threshold in the inverse participation ratio (IPR), which we plot
in Fig. S1. For large Trotter steps τ , we find that λIPR → λD implying full delocalization over all accessible states,
whereas for small τ the system remains constrained and localized. For λD = −N−1 log(D), with D the number of
accessible states in Hilbert space, we have incorporated the leading-order finite-size corrections as follows. Random
matrix theory predicts that for a finite-sized system, the IPR is given by

IPR =
2

D
. (S7)

The lattice Schwinger model, however, exhibits an additional U(1)-symmetry—the conservation of the total spin—
which is absent in the Ising chain considered in the main text. In the zero magnetization sector fixed by the initial
condition, this implies that the total number of accessible states D is given by

D =
N !

[(N/2)!]2
, (S8)
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Figure S2: Trotter errors for the DQS of the lattice Schwinger model. In (a) we show the long-time value of the
particle production ν and in (c) the simulation accuracy QE . For small steps τ the Trotter error scales quadratically with τ
for both quantities as shown for the deviation from the ideal result ∆ν for the particle production in (b) and the simulation
accuracy QE in (d).

which is the value used for λD in Fig. S1.

Moreover, in Fig. S2a,b, we display the asymptotic long-time value ν of an important local observable of the lattice
Schwinger model, the particle number relative to the bare vacuum

ν(t) =
1

2N

∑
l

[(−1)l〈σzl (t)〉+ 1]. (S9)

This quantity has also been measured in the recent experiment of Ref. [13]. Complete scrambling corresponds to
〈σzl (t)〉 → 0 for t→∞ and therefore ν(t)→ 1/2. In agreement with our results for the IPR in Fig. S1, the quantum
many-body chaotic phase for large Trotter steps leads to uncontrolled Trotter errors. In the localized phase on the
other hand, the error becomes controllable, again with a quadratic dependence of the deviation ∆ν from the ideal
result on the Trotter step size τ , see Fig. S2b. As it can be seen in Figs. S2c and S2d, the simulation accuracy QE
signals the quantum many-body chaos threshold in a similar way.

S2. IMPERFECTIONS

As mentioned in the main text, realistic experimental realizations of DQS not only face imperfections due to
Trotterization but are also subject to various other error sources. In this Section, we address two generic error sources
and discuss their implications. First, a timing error which results from inaccurate gate lengths, and, second, an
ensemble error originating from slow drifts of the gate couplings.
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Figure S3: Timing errors in the dynamics of the simulation accuracy QE(t) for the Ising model. This data has
been obtained for N = 18 and varying noise strengths η by averaging over 100 noise realizations. The time axis has been
rescaled with η2 leading to a collapse of the data. As this shows, the time scale at which the timing error becomes relevant is
proportional to η−2.

A. Timing error

Suppose that the gate length τ cannot be implemented perfectly but slightly fluctuates at each pulse. The gates
performed at time step p = 1 . . . n are then not the desired τHl but rather gates of slightly different strength,
τ(1 + ξpl )Hl, where ξpl are independent random variables with vanishing mean and variance ∝ η.

In Fig. S3, we show an example numerical simulation for the Ising model used in the main text, with such an
additional timing noise drawn from a uniform distribution of width η. When rescaling the time axis with η2, we find
a good collapse of the dynamics with slight deviations for large values of η. This finding implies that the accuracy of
the DQS is not affected on a time scale proportional to η−1 but rather on a much longer time scale proportional to
η−2.

This scaling behavior can be understood by mapping the timing errors to a Master equation. With tim-
ing errors, the effective Hamiltonian of Eq. (3) of the main text depends on the time step p and reads Hp =∑
lHl + i τ2

∑
l>m[Hl, Hm] +

∑
l ξ
p
l Hl + O((τ + ξ)2). Assuming the fluctuations to be uncorrelated between time

steps and gates, 〈ξpl ξ
p′

l′ 〉 = δl,l′δp,p′η
2, and extending the definitions to continuous time ξl(t) = ξpl , t ∈ [p, p+ 1)τ , the

fluctuating gates can be described as noise with power spectrum

S(ω) = lim
T→∞

1

T

∫ T

0

dt

∫ T

0

dt′eiω(t−t
′) 〈ξl(t)ξl′(t′)〉

=
2(1− cos(ωτ))

(ωτ)2
η2τ . (S10)

If the relevant frequencies in the many-body system are small compared to τ−1, i.e., in the fast-driven regime that
we are interested in, the power spectrum becomes flat, S(ω) = η2τ(1 +O((ωτ)2)), corresponding to white noise. In
that regime, averaging over timing-error realizations, the time evolution of the system is to leading order described
by an effective Markovian Master equation with Lindblad operators Hl, [40]

ρ̇ = −i[H + τ
∑
l>m

[Hl, Hm] , ρ ]

+
η2τ

2

∑
l

(
2HlρHl −H2

l ρ− ρH2
l

)
. (S11)

The first term describes the controlled time evolution under the effective Hamiltonian discussed in the main text,
consisting of the time-averaged Hamiltonian H as well as the perturbation induced by Trotterization of strength
∼ τ ||

∑
l>m[Hl, Hm]||. The fluctuating gate strengths, instead, lead to a heating of the system with a rate

∼ η2τ ||
∑
lH

2
l ||, i.e., suppressed by an additional factor η2. Thus, for times t � 1/(τη2) the influence of the

timing error onto the dynamics is insignificant whereas for t & 1/(τη2) it becomes severe.
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B. Ensemble error

While the timing error leads to fast fluctuations of gate strengths, gate errors may also be correlated over long times
due to slowly drifting experimental parameters. In the limit of very slow drifts, the gate strength can be taken as
constant within one experimental run but as randomly changing between runs. Such errors can be taken into account
by sampling the time evolution over a family of Hamiltonians H̃l = Hl + ∆lHl, where ∆l are independent random
variables with vanishing mean that are assumed constant for each run. Each of these Hamiltonians will generate a
time evolution under slightly modified gates Ũl = exp(−iH̃lt). As opposed to the timing error, this ensemble error,
however, does not lead to heating, but only averages the resulting expectation values over a range of slightly different
Hamiltonians. In particular in the perturbative regime, this error will be rather benign, except when working in
hypersensitive regimes where observables do not behave smoothly, such as close to quantum phase transitions.
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