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Simulation and Measurements of Single and Coupled Coaxial Qubits

Superconducting circuits are promising candidates to serve as a platform for the devel-
opment of quantum computing. A new coaxial circuit QED architecture, the coaxmon,
is presented in which qubit and resonator are fabricated on opposing sides of a single
chip while control and readout wiring are provided by coaxial wiring running perpen-
dicular to the chip plane. This thesis focuses on the simulation of these devices with
the aim of estimating all important qubit and resonator parameters such as frequency,
lifetime, anharmonicity and coupling strength. Two di�erent simulation approaches
are used. The �rst method is using the �nite element solver High Frequency Structure
Simulator (HFSS) in combination with the black-box quantization theory (Nigg et al.
[2012]). Alternatively, the Hamiltonian can be derived from the lumped element model
of the circuit. Good agreement with the experiment is achieved in both cases, hence
demonstrating that optimisation of the device can be achieved at the design stage. This
results in the fabrication of a single coaxmon, which experimental characterisation
is published in (Rahamim et al. [2017]). Finally, exploiting these techniques allows to
propose the design of the �rst two-qubit device with the desired qubit-qubit coupling to
enable the Cross-Resonance gate. In this thesis, the experimental characterisation of
the very �rst coupled coaxmons is presented and discussed showing a promising future
for the coaxmon architecture.

Simulation und Messung einzelner und gekoppelter coaxialer Qubits

Supraleitende Schaltkreise sind vielversprechende Kandidaten zur Entwicklung von
Quantencomputern. Eine neue koaxiale Schaltkreis-Quantenelektrodynamik Architek-
tur, das Coaxmon, wird vorgestellt. In dieser werden Qubit und Resonator auf den zwei
gegenüberliegenden Seiten eines Saphir-Chips aufgebaut. Die Kontroll- und Auslesean-
schlüsse werden durch Koaxialkabel senkrecht zum Chip realisiert. Der Schwerpunkt
dieser Arbeit liegt auf der Simulation dieser Schaltungen, mit dem Ziel alle wichtigen
Qubit- sowie Resonatoreigenschaften wie Frequenz, Lebensdauer, Anharmonizität und
Kopplungsstärke vorherzusagen. Für die Simulation werden zwei Ansätze verfolgt. Dem
ersten Anstatz liegt die Finite-Elemente Software für Hochfrequenzen in Kombination
mit der Black-Box Quantisierung nach (Nigg et al. [2012]) zu Grunde. Im zweiten Fall
wird der Hamiltonian für die elektrische Schaltung unter Annahme konzentrierter
Schaltelemente berechnet. Die Ergebnisse beider Simulationen zeigen gute Übereinstim-
mung mit den experimentellen Messungen, sodass diese bereits in der Designphase eine
Optimierung des Coaxmons ermöglichen. Dies erlaubt die Herstellung eines Coaxmons,
dessen experimentelle Charakterisierung in (Rahamim et al. [2017]) beschrieben ist.
Außerdem erlauben die Simulationen den Entwurf des ersten zwei-Qubit Elements dieser
Bauart, wobei die Qubit-Qubit Kopplung für das Cross-Resonance Gatter ausgelegt wird.
Die experimentellen Messungen des ersten gekoppelten Coaxmons werden beschrieben
und diskutiert. Sie zeigen die vielversprechende Eignung der Coaxmon-Architektur für
künftige Anwendungen in Quantencomputern.





Contents

1 Introduction 1

2 Motivation 5
2.1 Motivating the Coaxmon . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 State of the Art: Superconducting Qubits . . . . . . . . . . . . . . . . . . 7

3 Superconducting �bit Theory 11
3.1 Quantum Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The Josephson Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The Cooper Pair Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 The Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Noise and Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Circuit QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Black-Box Quantisation Theory . . . . . . . . . . . . . . . . . . . . . . . 18

3.7.1 Single Junction Device . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.2 Multi-Junction Device . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Optimising the Single Coaxmon 25
4.1 The Coaxmon Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 The Coaxmon Electric Circuit . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Simulating the Coaxmon . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Ansys Electronics Desktop . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 The Coaxmon Design in Ansys . . . . . . . . . . . . . . . . . . . 30

4.4 Derivation of the Qubit Properties . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Variation of the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 Resonator Width . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.2 Resonator Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.3 Control Pin Distance . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.4 Sample Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Quantifying the Simulation Error . . . . . . . . . . . . . . . . . . . . . . 43
4.7 The Lumped Element Model . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 The Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9 Comparison to Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 50



Contents

5 Design and Simulation of Two Coupled Coaxmons 53
5.1 Two Qubit Gate Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 MAP Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Cross-Resonance Gate . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Simulation of the Cross-Resonance Gate . . . . . . . . . . . . . . . . . . 57
5.2.1 The Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 The CR Gate Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Gate Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Optimising the Gate Fidelity . . . . . . . . . . . . . . . . . . . . . 66

5.3 The Coupled Coaxmon Design . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 The Lumped Element Model for the Coupled Coaxmon . . . . . . 68
5.3.2 The Qubit-Qubit Coupling Strength . . . . . . . . . . . . . . . . . 69

5.4 Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Experiments on the Coupled Coaxmons 71
6.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 The Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Basic Characterisation of the Coupled Coaxmons . . . . . . . . . . . . . 74
6.4 Qubit-Qubit Coupling Strength . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.2 Comparison to Simulation . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5.1 The Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.2 Comparison to Simulation . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Conclusion on the Experiments . . . . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion and Outlook 89

Appendix: Publication 95

Lists 101
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105

Deposition 111



1 Introduction

Nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make it
quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.

Simulating Physics with Computers
Richard P. Feynman

Superconducting circuits are well established as a strong candidate to build a quantum

computer. In the last few years, superconducting quantum bits (qubits) have advanced to

systems consisting of �ve to ten qubits operating at high enough �delities for quantum

computing. Several research groups are working hard to improve on di�erent architec-

tures and their performances. In April 2017, John Martinis announced that his group

working on superconducting quantum bits would achieve quantum supremacy by the

end of the year. This means that these devices will be able to perform calculations that

are impossible on a classical computer in reasonable time. This would be a milestone

in the �eld of quantum computing which was initiated at the end of the 20th century

by physicists such as Charles H. Bennet from IBM, Paul A. Bieno� of Argonne National

Laboratory in Illinois, David Deutsch of the University of Oxford and Richard Feynman

of the California Institue of Technology (see Feynman [1982]). At that time, (Shor [1999])

discovered that quantum algorithms can solve certain problems exponentially faster than

the best known classical counterpart. This potential revolution of information processing

has motivated physicists to work on the realisation of quantum computing devices ever

since. The prospect of high computational power as well as of the decryption of today’s

secure RSA (Rivest, Shamir and Adleman) keys used in �nance and private security,

motivates governments and industry to provide the necessary research money.

Various approaches towards quantum computing devices have been undertaken since

then. The quantum mechanical counterpart of the classical bit, the qubit, is a two-

state quantum system, which cannot only be zero or one but also a superposition of

both. In general, there are two di�erent approaches to realise a qubit: the use of real
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CHAPTER 1. INTRODUCTION

atoms versus ‘arti�cial atoms’ engineered in solid-state devices. An example for real

atoms are trapped ions that exploit two selected hyper�ne-states as their two-level

quantum bit and are controlled and manipulated by laser light and radio frequency

microwave. These types of qubits so far exhibit the longest coherence times and highest

gate �delities but do not easily scale to larger systems with more than one qubit and

fast switching rates because of the small dipole moment of atoms. In contrast, quantum

electric circuits enable the creation of an ‘arti�cial atom’ the parameters of which can

be tailored arbitrarily. The advantage of high dipole moments and consequently fast

switching rates stand in contrast to smaller coherence times. Nevertheless, due to the

promising scalability of these quantum circuits plus the sophisticated semi-conductor

technology industry, superconducting qubits are promising candidates for quantum

computing devices. The work of this thesis has been carried out on such superconducting

quantum circuits.

It could be stated that the �eld of superconducting quantum computing started in 1999

when (Nakamura et al. [1999]) showed for the �rst time that a single Cooper-Pair box

qubit could be coherently controlled. Five years later, in 2004, (Wallra� et al. [2004])

proved that a single photon in a resonator could be strongly coupled to a superconducting

qubit. The �rst successful coupling of two qubits was demonstrated by (Sillanpaa et al.

[2007]). Since then, many di�erent architectures have been explored. High �delity control

and lifetimes up to a few hundreds microseconds have been realised in a single qubit

device (see Ofek et al. [2016]). For future quantum computing devices, combination of

scalable designs with long lifetimes and high �delities of two or more qubit operations

(also referred to as gates) is still required.

In the group of Dr. Peter Leek at the University of Oxford this challenge is tackled with

a new coaxial transmon architecture, named the coaxmon, which is simple to fabricate,

exploits only capacitive coupling and implements qubit control and readout entirely out

of the plane of the qubit. The motivation for this design and a comparison to state of the

art superconducting qubits is given in Chapter 2. In Chapter 3, basic superconducting

qubit theory relevant for this thesis is explained. An introduction into quantum bits is

given and the Josephson junction, the Cooper-pair box and the transmon (Koch et al.
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[2007]) are presented. Furthermore, the black-box superconducting circuit quantisation

(Nigg et al. [2012]) is explained in Section 3.7. Based on this theory, coaxmon simulation

and estimation of the important device parameters such as qubit and resonator frequency,

lifetime, anharmonicity, dispersive shift and resonator-qubit coupling are carried out.

The explicit design of the single coaxmon is then presented in Chapter 4. For the single

cell, simulations with the High Frequency Structure Simulator (HFSS) are performed and

all important system parameters are determined. Based on these numbers, the single

coaxmon design is optimised. A second method to calculate the device parameters, the

so called lumped element method, is presented afterwards. In Section 4.9, comparison of

both methods to experimental data shows good agreement and the experimental results of

the optimised single coaxmon are published in (Rahamim et al. [2017]). This publication

can be found in the appendix.

Since the �rst single superconducting charge qubit (Nakamura et al. [1999]), almost

two decades have passed and now many architectures have realised addressable coherent

qubits. Today’s challenge lies in coupling many single cells and carrying out high �delity

control on those. In Chapter 5, the focus is on the coupling of two single coaxmon cells.

Di�erent methods for performing two qubit gates are studied and their suitability for the

coaxmon architecture are discussed. Two promising candidates, the Cross-Resonance

(CR) gate (Chow et al. [2011]) and the microwave-activated conditional phase (MAP)

gate (Chow et al. [2013]) are presented in Section 5.1. In order to fully understand the

dynamics and working principle of the favoured CR gate, the gate is simulated with a

Master Equation in Section 5.2. E�ects of lifetimes and imperfect selectivity are studied

and the CR gate time for these cases is optimised. Following this, the necessary device

parameters for the favoured CR gate are determined and the double coaxmon design is

accordingly adjusted in Section 5.3 using the lumped element method for the coupled

coaxmons. In particular, an additional capacitance in between two single coaxmon cells

is introduced. For two qubit gates the addressability of a single qubit is important; this

means the ability to drive a single qubit without a�ecting the other. This qubit drive

selectivity is calculated in Section 5.4 and the simulated selectivity for the proposed

coupled coaxmon design is about 2%.

3



CHAPTER 1. INTRODUCTION

With the newly determined device parameters for the coupled coaxmon, the �rst

coupled coaxmon was fabricated and measured. The measurements are presented in

Chapter 6. At �rst, the coupled coaxmons are treated separately and each of them

is characterised. Afterwards, their interaction is explored and coupling strength and

selectivity measurements are performed and compared to simulation.

The work of this thesis suggests the exciting future of the coaxmon. Coherence

times are shown to be of the order of leading superconducting qubit research groups. A

summary and future prospects for the coaxmon are discussed in the �nal Chapter 7.

4



2 Motivation

The �rst successful superconducting qubit was built almost two decades ago (Nakamura

et al. [1999]). Since then several di�erent architectures have been investigated and

improved. Today, the challenge lies no longer in making a single cell work but to achieve

long enough qubit lifetimes and to realise high �delity single and multi-qubit gates. In

addition, the focus lies on achieving these combined with the requirement of scalability for

future quantum computers with thousands of unit cells. So far, all of these requirements

have been ful�lled, but not yet in the same architecture. For example, transmons in 3D

cavities exhibit long lifetimes of almost 0.1 ms (Rigetti et al. [2012]) but are di�cult to

scale due to the large bulky 3D cavity itself. In contrast to that, 2D micro-fabricated

devices are easier to scale to the tens of qubits, but su�er from lower coherence and wiring

complexity and larger scale. Therefore, new architectures are still being investigated.

In this Chapter, the coaxmon is presented as a possible new candidate architecture for

quantum computing that would satisfy all requirements. Following in Section 2.2, a

review of the current state of the art in superconducting qubits, that are similar to the

coaxmon, is given.

2.1 Motivating the Coaxmon

The name ‘coaxmon’ is composed of two shortcuts. The �rst part ‘coax’ refers to the

coaxial geometry of the circuit, whereas ‘mon’ corresponds to the transmon regime in

which the device is set. The combination of a coaxial geometry with the advantages of the

transmon regime provides various bene�ts as explained in the following and as illustrated

in Figure 4.3. For a detailed introduction into the transmon regime (Koch et al. [2007])

please refer to Section 3.4. Here, only the properties of such a regime will be addressed.

5



CHAPTER 2. MOTIVATION

transmon regime

1. low noise sensitivity

2. su�cient anharmonicity

3. large qubit photon-coupling

1. 3D design keeps 2D plane
free for coupling qubits

2. coaxial architecture
decreases coupling to the
environment

coaxial geometry

The coaxmon as a scalable qubit design.

Figure 2.1: Advantages of the transmon regime and the coaxial geometry combined in
the scalable coaxmon architecture.

The transmon regime o�ers the following advantages. First of all, very low charge noise

sensitivity is provided while a su�cient anharmonicity of the energy levels is maintained

to be able to address individual transitions. Furthermore, a strong qubit-photon coupling

is o�ered by this regime. Exploiting the transmon regime already showed that lifetimes of

nearly 0.1 ms can be achieved (Rigetti et al. [2012]). In this explicit example, the downside

is the scalability of 3D cavities. The coaxial geometry of the coaxmon as follows in

Chapter 4 tries to overcomethis issue.

The coaxmon, as will be explained more detailed in Section 4.1, consists of a qubit

fabricated on one side of a sapphire chip with a through chip coupled resonator on the

other side of the chip. With coaxial addressing pins from the top and the bottom of the

chip, the resonator and the qubit are addressed in the o�-plane dimension. Hence, this

frees up the chip plane to use for later scaling to multi qubits since no wiring is needed

here anymore. Furthermore, the qubit, the resonator as well as the addressing pins are all

coaxial, hoping to reduce unwanted electromagnetic coupling to the nearby environment.

At the design state of the coaxmon this only is an assumption. Nevertheless, simulation

in Section 5 validate this assumption.

6



2.2. STATE OF THE ART: SUPERCONDUCTING QUBITS

Finally, the coaxmon design will be �xed in frequency. No magnetic �elds are intended

to tune the qubit’s frequency, which gives a stable platform for the new architecture. All

in all, the presented architecture promises to combine important advantages to obtain a

scalable qubit device.

2.2 State of the Art: Superconducting �bits

This Section focuses on the qubit designs close or in competition to the coaxmon architec-

ture. The coaxmon architecture neither is the only one making use of coaxial geometries

nor the �rst geometry using the third dimension for readout and control. The question

whether one can learn from them and which lifetime and scalability have to be achieved

to keep up with the current state of the art is addressed in the following. Therefore, a

summary of selected state of the art experiments on superconducting charge qubits is

given below.

Coaxial geometries in superconducting qubits can be found in other qubit architectures

besides the coaxmon. On one hand (Brecht et al. [2017]) present a coaxial transmon qubit

coupled to a 3D micro-machined cavity as it is illustrated in Figure 2.2 (b). In this case,

the advantage of large coherence times in 3D cavities is exploited but scaling requires

development of a hybrid network of qubits and cavities. On the other hand in Figure 2.2

(c), (Braumüller et al. [2016]) show a 2D approach, the so-called concentric transmon

qubit. The coaxial transmon qubit can be frequency tuned via a �ux bias line in the

qubit plane. The readout resonator is placed just next to the qubit in the same 2D plane.

Even though the transmon qubit resembles the coaxmon qubit, the third o�-chip plane

dimension is not used in this example and therefore loses space for scalability. A coaxial

cavity is implemented in (Axline et al. [2016]) and shown in Figure 2.2 (a). Multiple

transmons can be coupled within the same coaxial cavity. The qubit states are read

out via coupled microwave resonators and readout pins in the o�-chip plane. Progress

on this has already been achieved with four transmon qubits coupled to the same 3D

cavity enabling implementation and characterisation of the devices (Blumo� et al. [2016]).

Even though a 3D cavity is used, a multi qubit arrangement was successfully designed.

7



CHAPTER 2. MOTIVATION

There are further scalable transmon architectures that are worth looking at. One scalable

approach is a transmon placed in a multilayer whispering gallery mode resonator which

couples to a neighbouring whispering gallery mode resonator above and/or below (Minev

et al. [2016]). Another approach of combining a multi-qubit arrangement and 3D cavities

is shown in Figure 2.2 (d) (Paik et al. [2016]). Four transmons are mounted such that they

are coupled to their own readout resonator cavity as well as to one common resonator

bus. This setup allows the resonator-induced phase gates to entangle multi qubits with

an overall gate �delity of 97%. Architectures with more than a few coupled qubits with a

focus on scalability are presented in (Kelly et al. [2015]) and (Versluis et al. [2016]). In the

�rst paper, an array of nine qubits is used to demonstrate state preservation by repetitive

error detection. This demonstrates a step towards the 2D surface code scheme. In the

second paper, a scalable quantum circuit and control for a superconducting surface code

(Fowler et al. [2012]) is presented. Flux-tunable transmon qubits with nearest neighbour

coupling are implemented and eight qubits are used to form a unit cell.

In conclusion, these examples show the many exploitable degrees of freedom in super-

conducting qubit architectures. However, the aim of simultaneously achieving scalability

and high multi-qubit gate �delities is di�cult to reach. With the coaxmon architecture, a

new idea to tackle these challenges is to come.

8
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(a)

(c)

(b)

(d)

Figure 2.2: State of the art transmon architectures. (a) (Blumo� et al. [2016]) Four trans-
mons coupled to a 3D cavity. (b) (Brecht et al. [2017]) Coaxial transmon in 3D cavity. (c)
(Braumüller et al. [2016]) Concentric transmon with �ux-bias line and readout resonator
in plane. (d) (Paik et al. [2016]) Four transmon qubits each with its own readout cavity
coupled to a common cavity in the middle.
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3 Superconducting �bit Theory

This Chapter introduces the necessary superconducting qubit theory required to under-

stand this thesis. A short introduction to quantum bits, their motivation, purpose and

their requirements, is given in Section 3.1. Here, it will become clear that Josephson

junctions and their lossless non-linear behaviour is essential for a superconducting qubit.

The physics of a Josephson junction is explained in Section 3.2. The predecessor of charge

qubits is the so-called Cooper-pair box (CPB) (Nakamura et al. [1999]) and is presented

in Section 3.3. A detailed insight into the transmon regime is then given in Section 3.4

followed by a general introduction into noise and decoherence in Section 3.5 and into

circuit Quantum Electrodynamics (cQED) in Section 3.6. The focus of this thesis is on

the simulation of the coaxmon design. In order to obtain the desired qubit and resonator

parameters, the black-box quantisation theory (Nigg et al. [2012]) has to be applied to

the outcomes of the simulation. Section 3.7 explains this theory in detail.

3.1 �antum Bits

Quantum bits (qubits) are the quantum mechanical counterparts of classical bits. While

classical bits can represent the states 0 and 1, a quantum bit can be in a superposition of

both states. A pair of qubits can be in any superposition of four quantum states, three

qubits in any superposition of eight quantum states. For a n qubit system, this results in

a possible superposition of 2n states simultaneously, compared to a classical computer,

which can only store one of these states at any one point.

Quantum algorithms bene�ting from quantum bits are proven to solve certain problems

much faster than known algorithms on classical computers. Examples are the Deutsch

11



CHAPTER 3. SUPERCONDUCTING QUBIT THEORY

algorithm (Deutsch and Jozsa [1992]) or the Shor algorithm (Shor [1999]). Deutsch’s

algorithm speeds up certain problems exponentially while the Shor algorithm solves fac-

torization of large integer numbers in polynomial time. Today’s public-key cryptography

is most commonly based on the RSA (Rivest, Shamir and Adleman) scheme, attributable

to the problem of prime factorization problems. Keys for decryption are simply made

long enough to make decryption without the key not achievable on classical computers

in short time. In contrast, a working quantum computer implementing Shor’s algorithm

would be able to solve them in a reasonable time. However, experts argue in which

time frame the quantum computer will be feasible. The current record of factorisation

using Shor’s algorithm was achieved in 2012 by (Martin-Lopez et al. [2012]). For the �rst

time the number 21 was factorized. Progress in fault-tolerant quantum computing on

many qubit devices is needed to achieve the next milestone. Nevertheless, there are other

applications of quantum computers that are more reasonably in the near future, problems

that could already bene�t from small quantum computers. Simulating molecules and

chemical reaction for example, which could help improving for examples batteries or

electronics, see (Simonite).

The requirements of such a quantum bit device are as follows. The ideal quantum

bit is an isolated two-level system without any dissipation that can be controlled and

read out fast and accurately. First of all, the system should be dissipationless. A suitable

candidate therefore are superconducting circuits. This automatically implies the use of

superconducting materials such as aluminium. Furthermore, thermal noise should not be

able to excite the qubit transitions at frequency ω/(2π), hence ~ω � kBT is required.

This means that for frequencies in the GHz range, temperatures of a few millikelvin are

needed. Therefore, all experiments have to be performed within a dilution refrigerator

well below the critical temperature for aluminium to be superconducting. Secondly,

the two-level system should be isolated. In an harmonic oscillator, the energy between

the ground and �rst excited state equals the transition energy of the �rst to the second

excited state. This makes selectively driving one transition impossible. To avoid this,

an anharmonic oscillator can be exploited as a qubit. The larger the anharmonicity, the

better the isolation to further transitions. To create an anharmonic energy level structure,

12



3.2. THE JOSEPHSON JUNCTION

a nonlinear superconducting element is needed. The only known one is the so-called

Josephson junction, which will be introduced in Section 3.2. Readout of the qubit state

can be realised for example via a coupled resonator. The frequency of the resonator

depends on the state of the qubit allowing one to deduce the qubit’s state by measuring

the resonator frequency. The control of the qubit and resonator can be simply achieved

by microwave control lines coupled to the qubit and resonator.

3.2 The Josephson Junction

Figure 3.1: A Josephson junction
consisting of a superconductor (SC)
coupled by a weak non-conductor
(NC) link.

A Josephson junction consists of two superconduc-

tors coupled by a weak link, for example a thin

insulating barrier as illustrated in Figure 3.1. The

equations exhibiting the dynamics of the Josephson

junction can be derived by a simple ansatz with the

coupled Schrödinger equations of the wave func-

tions on the left and right hand side of the barrier

i~
∂ΨR

∂t
= λRΨR + cΨL, i~

∂ΨL

∂t
= λLΨL + cΨR. (3.1)

Here, ΨR(L) is the wave function on the right (left) side, λR(L) the eigenenergy of the wave

function for the superconductors and c the coupling energy of the two wave functions.

With the following ansatz for the left and right wave function, the dynamics can be

obtained

ΨL =
√
ρLe

iΦL , ΨR =
√
ρRe

iΦR . (3.2)

In this case ρL(R) stands for the current density on either side of the junction and Φ

represents the phase di�erence across the junction. Plugging Equations 3.2 into the

13
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coupled Equations 3.1, the two Josephson equations follow

U =
~
2e

∂∆Φ

∂t
=

Φ0

2π

∂∆Φ

∂t
, I = IC sin (∆Φ). (3.3)

The voltage U across the junction depends on the derivative of the phase di�erence. The

current I through the junction is proportional to the critical current IC and it oscillates

with frequency given by the phase di�erence, which results in a time dependent oscillation.

Solving the �rst Equation in 3.3 for ∆Φ and plugging it into the current expression, the

time dependent, nonlinear Josephson current relation is obtained

I = IC sin

(
2πU

Φ0

t

)
. (3.4)

This nonlinearity allows the tailoring of an anharmonic potential suitable for a two-level

quantum system, the qubit. In combination with the superconductivity and low noise at

low temperatures, all requirements as discussed in Section 3.1 are ful�lled.

3.3 The Cooper Pair Box

The arti�cial two-level systems can be created in either the charge, phase or �ux space. A

very good introduction to the di�erent types of qubits is given in (You and Nori [2005]).

Here, the focus lies on the the Cooper-pair box (CPB), a type of charge qubit. It is the

predecessor of charge qubits nowadays and based on it the transmon regime (see Section

3.4) was discovered.

The electric circuit of the CPB is sketched in Figure 3.2 (a). The CPB itself is indicated

by the blue box. It is driven by the applied gate voltage Vg to induce an o�set charge ng
through the gate capacitor with capacitance C . The Josephson junction is denoted by

a cross through which Cooper pairs can tunnel in and out of the box. The electrostatic

energy and the Hamiltonian of the CPB (You and Nori [2005]) are given by

Ĥ = EC(n̂− ng)2 − EJ cos
(

Φ̂
)
, (3.5)

14
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(a) (b)

Figure 3.2: (a) The CPB is driven by the applied voltage V g to induce an o�set charge
ng through the gate capacitor C . Cooper pairs tunnel through the Josephson junction
depicted as the cross. (b) The electrostatic energy diagram for ng = 0.5 for which the
two lowest states are degenerate. Drawings adopted from (You and Nori [2005]).

E = EC(n− ng)2 =
(2e)2

2C
(n− ng)2 (3.6)

with the charging energy EC , the Josephson energy EJ and the phase di�erence Φ across

the junction.

The energy is plotted in Figure 3.2 (b). In the case of ng = 0.5, the two lowest

energy states are used as the qubit states. These are coupled via the Josephson energy

EJ = Φ0IC/(2π) of the junction that controls the tunnelling between them. Here, IC
stands for the critical current of the junction. The full Hamiltonian of the system is given

by equation 3.5. In the low-charging regime EC � EJ , the energy level diagram is as

illustrated in Figure 3.2 (b) and the system of the lowest states can be described with the

reduced Hamiltonian Ĥ = ε(ng)σ̂z − 1
2
EJ σ̂x, where ε(ng) = EC(ng − 1/2) and σx/z are

the Pauli matrices. Since EJ is a property of the Josephson junction, it can be tailored

with the fabrication of the junction area and hence adjusted as needed.

3.4 The Transmon

The transmon qubit is presented in (Koch et al. [2007]). Unlike the CPB, the transmon is

designed to operate in a regime with a signi�cantly increased ratio of Josephson energy

to charging energy EJ/EC . In this regime where EJ/EC ≥ 20, the energy levels �atten
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CHAPTER 3. SUPERCONDUCTING QUBIT THEORY

Figure 3.3: The eigenenergy as a function of the e�ective o�set charge for di�erent ratios
of EJ/EC . Large ratios lead to low noise sensitivity. Figure taken from (Koch et al.
[2007]).

as illustrated in Figure 3.3 such that they become insensitive to the charge ng , in contrast

to the CPB. The energy level �atten exponentially but the anharmonicity only decreases

with a low power law such that su�cient anharmonicity remains. The coherence time

T2, which is associated to the presence of noise, increases signi�cantly in comparison

to the CPB.

3.5 Noise and Decoherence

The qubit’s lifetime is a crucial parameter allowing one to perform operations on it.

In general, there are two measures of decoherence in a quantum system, T1 and T2.

T1 is the characteristic time in which the qubit decays from its �rst excited state to

the ground state. The time T1 of a qubit can be measured by initializing the qubit in

the excited state and then measure the population of the excited state as a function of

time. T2 is the phase-coherence of the system and measures the relaxation. This T2

can be measured by a Ramsey experiment. Applying two π
2
-pulses with a time delay in
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between allows one to measure the decay of the Ramsey fringes referring to the phase

coherence of the system. The dephasing time Tpure in absence of deexcitation is then

given by
1

Tpure
=

1

T2

− 1

2T1

, (3.7)

as derived in (Zagoskin [2011]). This means that in general 2T1 ≥ T2, the relaxation time

T2 is limited by the decay time T1.

3.6 Circuit QED

The physics of a two-level system coupled to an harmonic oscillator, here a resonator

with frequency ωr, is described by the Jaynes-Cummings Hamiltonian (Walls and Milburn

[2008])

Ĥ = ~ωr
(
â†â+

1

2

)
+

~
2
ω01σ̂z + g~

(
â†σ̂− + âσ̂+

)
(3.8)

with the qubit-resonator coupling strength g. The operators â† and â create and annihilate

a photon in the resonator and σ̂+/σ̂− excite or de-excite the qubit. The frequency ω01

refers to the ground to �rst excited state transition of the qubit and g is the resonator-

qubit coupling. The �rst term describes the resonator Hamiltonian, the second the qubit,

and the third describes their interaction. In the dispersive limit, where the qubit is far

detuned from the resonator g � ∆ = ω01 − ωr, the rotating wave-approximation can

be applied to transfer the Hamiltonian into the rotating frame (Bianchetti et al. [2009]).

The Hamiltonian then becomes

Ĥdisp = ~ (ωr + χσ̂z) â
†â+

~
2

(ω01 + χ) σ̂z where χ =
g2EC

∆(∆− EC)
(3.9)

where χ is referred to as the dispersive shift. From this Hamiltonian it becomes clear

that the resonator frequency shifts by 2χ if the qubit is excited compared to the ground

state since the eigenvalues of σz are ±1. The same is true for the qubit’s frequency as

each photon in the resonator shifts the qubit’s frequency by 2χ. This shift is essential to

perform dispersive readout. By measuring the frequency of the resonator, one can deduce
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the qubit’s state as will be demonstarted in Section 6.3. As discussed, the transmon qubit

behaves as an anharmonic oscillator. In order to treat the qubit as a two-level system,

the anharmonicity α ≈ −EC (Koch et al. [2007]) needs to be su�ciently large compared

to the linewidth of the qubit transition.

3.7 Black-Box �antisation Theory

The main aim of this thesis is to simulate the single and coupled coaxmon architec-

ture. The fabrication of superconducting qubit devices is time consuming and very

expensive. Therefore, it is desirable to be able to predict all qubit parameters before-

hand. The interesting parameters are the qubit and resonator frequency, the dispersive

shift, the charging energy EJ , the Josephson energy EJ , the qubit-resonator coupling

as well as the qubit lifetime. The architecture can be simulated with the Ansys HFSS

software, a �nite element solver for electric �elds inside an arbitrary structure. Ansys

software, as it will be introduced in Section 4.3.1, does not directly give all the interest-

ing parameters of a system. For example, it does not inlcude any quantum mechanics

responsible for the nonlinear behaviour of the Josephson junction, the key element

of a superconducting qubit. Therefore, solutions of the simulation software have to

be post-processed to give the user the parameters of interest. Speci�cally, quantisa-

tion has to be manually introduced. How this evaluation is performed is explained

by the black-box quantisation theory published by (Nigg et al. [2012]). In this Section

this theory is explained following closely this mentioned paper. For simplicity, the

single junction case is treated �rst in order to apply it to a single coaxmon. In Sec-

tion 3.7.2, the multi-junction case is introduced with focus on the application on two

coupled qubits.

3.7.1 Single Junction Device

In the single junction case one Josephson junction is in parallel to a linear electric

environment consisting of arbitrary linear circuit elements. With the junction denoted
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as a red cross, this circuit is shown in Figure 3.4 (a). Note that in the following any

dissipation is neglected. In this case, the physics of this system is described by Equation

3.5. In the transmon regime at EJ � EC , the �uctuation in phase Φ is small compared to

π. Therefore, it is reasonable to expand around Φ such that the circuit is approximately

represented as shown in 3.2 b) with the linear junction inductance LJ = Φ2
0/EJ , the

junction capacitance CJ = e2/(2EC) and with the reduced �ux quantum Φ0 = ~/(2e).

The energy associated to the nonlinear component of the junction is given by Enl =

−Φ2
0φ

4/(24LJ) and is illustrated as the red spider symbol. All linear parts of the junction

can now be combined with the environment. They are then represented by the impedance

at the junction as shown in Figure 3.4 (c). According to Forster’s theorem, the equivalent

circuit can be constructed from a series of parallel LRC-circuits as illustrated in Figure

3.4 (d). The total impedance is given by

Z(ω) =
M∑
p=1

(
jωCp +

1

jωLp
+

1

Rp

)−1

(3.10)

where M is the number of modes. The resonance frequencies of these linear modes are

the real parts of the poles of Z(ω). Alternatively, since Y (ω) = 1/Z(ω), the modes are

given by the real part of the zeros of the linear admittance spectrum. The total admittance

spectrum is the sum of the admittance of the environment and the junction admittance

Y (ω) = YE(ω) + YJJ(ω) (3.11)

where the linearised admittance of the junction is given by YJJ = jωCJ + 1/(jωLJ).

Note that this will become important for the following evaluation of the admittance

spectrum given by HFSS. In the software, the admittance from the point of view of

the junction will only include the admittance of the environment YE . This means, the

linearised admittance of the junction has to be added manually before calculating further

properties using the total admittance Y (ω).

For weak dissipationRp �
√
Lp/Cp, it can be shown (Spring [2016]) that the frequency

of mode p is given by ωp = (LpCp)
−1/2, the resistance by Rp = 1/ReY (ωp) and the
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Figure 3.4: The black-box quantisation model. (a) A Josephson junction coupled to a
linear environment can be split up (b) into its linear junction inductance and junction
capacitance and its nonlinear part here in red. (c) The environment combined with
the linear parts of the junction is represented by the impedance Z(ω). According to
Foster’s theorem, the impedance has an equivalent circuit consisting of many coupled
LCR-circuits. Figure taken from (Nigg et al. [2012]).

capacitance by Cp = (1/2)ImY ′(ωp). Here and in the following, all primes stand for

the derivative with respect to the frequency ω. With these, one can now determine the

quality factor of each mode, which is given by

Q = ω
Energy stored

Power loss . (3.12)

The energy stored in a parallel LC-circuit is CV 2 with an averaged squared voltage, and

there is no power loss in the ideal case. In contrast to this, the resistor has an average

power loss of V 2/R and it does not store energy. With use of the approximation of weak

dissipation the quality factor of the modes can be calculated:

Qp =
ωp
2

ImY ′(ωp)
ReY (ωp)

. (3.13)
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Following from that, the lifetime of mode p is given by

Tp =
Qp

ωp
=

1

2

ImY ′(ωp)
ReY (ωp)

. (3.14)

This gives an estimate for the Purcell limited lifetime Tp (the lifetime due to spontaneous

emission into the electromagnetic environment) of the mode p since the environment

with the resonator is included in the admittance spectrum.

Note that until now the treatment was purely classical and nonetheless the frequencies

of the modes and their quality factor or lifetime could be estimated. To proceed further

and to obtain desired values for the anharmonicity α and the dispersive shift χ, the

system has to be quantised. First, the circuit is assumed to be dissipationless, meaning

Rp →∞. Then, the classical Hamiltonian of Equation 3.5 is quantised in the canonical

way. The Hamiltonian including the Josephson junction is given by Ĥ = Ĥ0 + Ĥnl where

Ĥ0 =
∑

p ~ωpâ†pâp is the Hamiltonian of the harmonic oscillators and Ĥnl is the nonlinear

part of the Josephson junction. Treating this nonlinear contribution as a perturbation

leads to the anharmonic Hamiltonian of the system

Ĥ = Ĥ ′0 +
1

2

∑
pp′

χpp′n̂pn̂p′ (3.15)

where n̂p = â†pâp is the bosonic number operator and Ĥ ′0 = Ĥ0 +
∑

p ∆pn̂p is the

unperturbed Hamiltonian H0 plus a the Lamb shift ∆p given by

∆p =
−e2

2LJ

[
2

ωpImY ′(ωp)
∑
q

2

ωqImY ′(ωq)
− 2

ωpImY ′(ωp)2

]
. (3.16)

Here, LJ is the junction inductance and χpp′ is the generalised χ-shift between the modes

p and p′. For example, χpp′=χp′p with p 6= p′ is the so called cross-Kerr shift of mode p

due to a single excitation in mode p′. In circuit QED, the χ-shift often refers to the shift of

the resonator (mode p) due to an excited qubit (mode p′) as it was already introduced in

Section 3.6. For p = p′, χpp is the self-Kerr shift representing the anharmonicity α ≡ χpp.
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The self- and cross-Kerr shift are given by

χpp′ = −2
√
χppχp′p′ and χpp = −Lp

LJ

CJ
Cp
EC . (3.17)

And χpp can be written as

χpp = −8

[
e2

~ωpImY ′(ωp)

]2

EJ . (3.18)

From Equation 3.15, the Lamb shifted resonator and qubit frequencies can be determined.

For each mode, its frequency is given by

hfp = ~ωp + ∆p +
χpp
2

(3.19)

with the Lamb shift ∆p. For a complete description of the qubit-resonator system one

needs to estimate the coupling strength g between both elements. As derived in (Bianchetti

et al. [2009]), this coupling can be calculated as

g =

√
−χ∆(∆ + α)

−α
, (3.20)

where ∆ = ω01 − ωr is the qubit-resonator detuning, α = χpp and χ = χqr/~. This

allows estimation of g from the results of the simulation.

At this point, the necessary theoretical background knowledge is given to simulate a

single coaxmon device. Solving the �elds and knowing the admittance spectrum from the

point of view of the junction combined with the just described black-box quantisation

theory allows one to fully characterise any qubit-resonator system before fabrication.

3.7.2 Multi-Junction Device

As a next step, the theory is generalised for a multiple junction case as it is desired to sim-

ulate multi-qubits as well. The necessary black-box quantisation theory is also described

in (Nigg et al. [2012]). In the general case for n qubits, in lowest order perturbation and
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in approximation of Φ4, the anharmonicity, self- and cross-Kerr shift are found to be

χqp = −24βqqpp′ for q 6= p, and αp = −12βpppp (3.21)

with the Lamb-shift ∆p = 6βpppp − 12
∑

q βqqpp where β and ξ are de�ned as

βqq′pp′ =
N∑
s=1

e2

24L
(s)
J

ξsqξsq′ξspξsp′ (3.22)

ξsp =
Zs1(ωp)

Z11(ωp)

√
Ze�

1p (3.23)

and L(s)
J is the junction inductance of qubit s, Ze�

kp = 2/[ωpImY ′k(ωp)] and k = 1 is chosen

as a reference port.

Narrowing down the search for a two junction case (N = 2) simpli�es these expressions

signi�cantly. Careful rewriting leads to the cross-Kerr shift and the anharmonicity as a

function of the impedance Z(ω)

χqp = −e2Ze�
1pZ

e�
1q

[
1

L
(1)
J

+
1

L
(2)
J

(
Z21(ωq)

Z11(ωq)

Z21(ωp)

Z11(ωp)

)2
]

(3.24)

αp = −e
2

2

(
Ze�

1p

)2

[
1

L
(1)
J

+
1

L
(2)
J

(
Z21(ωp)

Z11(ωp)

)4
]
. (3.25)

To insert the admittance spectra from simulation, it is useful to rewrite the impedance

with the reactance. From [Y ] = [Z]−1 it follows that

Y −1 =
1

|Y |

 Y22 −Y12

−Y21 Y11

 =

Z11 Z12

Z21 Z22

 = Z. (3.26)

Using this relation, Equations 3.24 and 3.25 can be rewritten as

χqb = −e2 2

ωpImY ′1(ωp)

2

ωqImY ′1(ωq)

[
1

L
(1)
J

+
1

L
(2)
J

(
Y21(ωq)

Y22(ωq)

Y21(ωp)

Y22(ωp)

)2
]

(3.27)
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αp =
−2e2

(ωpImY ′1(ωp))2

[
1

L
(1)
J

+
1

L
(2)
J

(
Y21(ωp)

Y22(ωp)

)4
]
. (3.28)

In addition to the Lamb-shift, all necessary device parameters are then theoretically given

to characterise a two qubit device from simulation. One would then be able to fully

characterise the device prior to fabrication. However, simulations for a multi-qubit device

exceeds the for this thesis available computation power.
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4 Optimising the Single Coaxmon

With all necessary knowledge about qubit theory and the black-box quantisation, this

Chapter introduces the single coaxmon architecture. First of all, the coaxmon design

is presented in detail in Section 4.1. To better understand the working principle of the

coaxmon device, the equivalent electrical circuit is explained in Section 4.2. Since the

focus of this thesis is the simulation of the coaxmon device, Section 4.3.1 introduces

the software ‘Ansys Electronics Desktop’, which is then used to simulate the coaxmon

in Section 4.3.2. Following that, the derivation of all important properties is presented

in Section 4.4. Section 4.5 shows how simulations allow optimisation of the coaxmon

parameters. Here, changes in the resonator width and length as well as changes in the

pin distance, sample holder and the qubit position relative to the centre are discussed.

Given all simulation results, their error and accuracy is discussed in Section 4.6. In

Section 4.8, another approach besides HFSS to derive the qubit-resonator coupling, the

network analysis, is described. This method will later also allow the derivation of the

selectivity in a multi qubit device as well as the qubit-qubit couplings. Finally, in Section

4.9 experimental data is compared to the simulations.

4.1 The Coaxmon Design

The coaxmon design is shown in Figure 4.1. This illustration is taken from the Ansys

HFSS simulation, which is later described in Section 4.3. Two coaxial cables are addressing

either side of a C- cut sapphire chip of dimensions (5×5×0.5)mm3. The inner conductor

is a copper pin (brown) and the outer conductor is the aluminium sample holder depicted

in Figure 4.4 (a). The micro-machined aluminium sample holder has a recess for the chip

and a hollow is machines such that the pins do not touch it. The coaxmon itself consists
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(a)

1

2

(b)

(c)

Figure 4.1: (a) Single coaxmon design. Illustration taken from the HFSS simulation. Two
copper pins (brown) address the qubit (blue) at the top of the sapphire chip (grey) and
the LC resonator (green) at the bottom. Aluminium sample holder not shown here. The
Figure is drawn to scale, with a square sapphire chip of (5× 5× 0.5)mm3. (b) The qubit
consists of a capacitively coupled inner and outer aluminium island which are connected
through a thin line including a Josephson junction in the middle. (c) The resonator is
formed by capacitively coupled inner and outer islands connected by an inductor spiral.

(a)

1d

d

G2

2

d

2

P2d
P1

d

dG1
(b)

dQ1 dQ2

dQ3

(c)

dR1
dR2

dR3

Figure 4.2: The single coaxmon dimensions. (a) The sapphire chip (dark grey) in the
sample holder. View from the side. Line 1 refers to the qubit pin and line 2 to the resonator
pin. The distance of each pin to the qubit and resonator is d1 and d2 respectively. The
distance dG1 is the distance between chip and sample holder at the top and bottwom, dG2

refers to the distance between chip and sample holder at the sides. dP1 and dP2 are the
thicknesses of the copper pin and its hollow. (b) The qubit dimensions. (c) The resonator
dimensions. All values after optimisation are listed in Table 4.1.
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of a transmon qubit (blue) on one side of the chip and the resonator (green) fabricated

on the opposite side of the chip. The qubit is built out of two capacitively coupled 80nm

thick aluminium islands, which are connected by a Josephson junction. The qubit is

fabricated on top of the chip. The LC-resonator is fabricated on the opposite side of the

chip coaxially aligned to the qubit. As for the qubit, the capacitance is realised by the

two island pads and the thin spiral forms the inductance of the resonator. All elements

are coupled capacitively with each other. A simpli�ed electric circuit is given in Section

4.2. The single coaxmon device parameters as they result after optimisation described

in Section 4.5 are given in Table 4.1. To emphasise the motivation and novelty of this

architecture, one has to revisit the geometrical advantage of this architecture: addressing

the qubit and resonator from either side of the chip without the need of wiring frees up

the 2D plane around the qubit for future coupling to other qubits in multi qubit devices.

Exploitation of this advantage in coupling two coaxmons was achieved for the �rst time

within this project, see Chapter 5.

The aimed parameters for the single coaxmon follow the common range of 2D circuit

QED architectures. This means, that the qubit-resonator detuning ∆ and the qubit-

resonator coupling g are chosen such that the dispersive limit g � ∆ is satis�ed, but

the resulting χ-shift (Equation 3.9) remains big enough to allow dispersive readout as

later shown in Section 6.3. Furthermore, to be in the transmon regime, the target value

for the ratio of Josephson energy EJ and charging energy EC is 50− 100. A common

value for the anharmonicity α is about 300 MHz. Due to a 8 GHz to 12 GHz band pass

�lter on the output line in the experiment setup (see Section 6.2), resonator frequencies

are aimed to be within this range. The qubit frequency is chosen to be smaller than the

resonator frequency such that the higher levels of the qubit have even smaller frequency

transitions and do not interfere with the resonator.

4.2 The Coaxmon Electric Circuit

In order to better understand the coaxmon architecture it is useful to look at the e�ective

electric circuit shown in Figure 4.3. Left to right corresponds top to bottom in Figure 4.1.
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L C2

transmon LC-resonator

EJ C1

line 1 line 2

Figure 4.3: The simpli�ed electric circuit representing the single coaxmon. The transmon
qubit consists of the Josephson junction with energy EJ and a capacitance C1 in parallel.
It is capacitively coupled to line 1, the coaxial qubit cable consisting of qubit pin and
ground. The LC-resonator on the other side of the chip is capacitively coupled to the
qubit and to the resonator coaxial cable, line 2.

The inner conductor of the coaxial line 1 on the left hand side is capacitively coupled to

the transmon, the outer conductor represents ground. Next, the transmon consisting of a

Josephson junction with energy EJ and capacitance CJ is in parallel to the capacitance

C1 between the inner and outer island of the qubit. The qubit then is capacitively coupled

through the sapphire chip to the LC resonator which can be controlled by the capacitively

coupled coaxial line 2. It is important to mention that this diagram shows the e�ective

circuit. Note that not all the capacitances are drawn in order to preserve simplicity.

Speci�cally, a capacitance between every two elements had to be drawn. In fact, there are

seven potential islands resulting in a complete 7x7 capacitance matrix. Capacitances such

as the input pin to resonator capacitance are not drawn but combined in the e�ective

equivalent. In Sections 4.8 and 4.7, the complete capacitance matrix will play an important

role and a simulation software is used to simulate and solve the complete circuit.

4.3 Simulating the Coaxmon

Since fabrication is costly and time consuming, it is desirable to simulate the presented

coaxmon architecture prior to fabrication. Preferably, a device with an optimised geom-

etry is directly fabricated. The software Ansys HFSS o�ers the possibility to solve for

high frequency �elds and for example �nd the admittance spectra. Given the latter, the
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(a) (b)

Figure 4.4: Single coaxmon. (a) Design including the sample holder. (b) Illustration of the
�nite mesh on the chip created with Ansys HFSS.

black box quantisation theory, presented in Section 3.7, delivers the necessary theory to

calculate all desired qubit and resonator parameters. At �rst, the mentioned softwares

Ansys HFSS and Maxwell are introduced in Section 4.3.1. Following in Section 4.3.2, it is

explained how the coaxmon is constructed using Ansys. The application of the black-box

quantisation onto the results from these simulations is then described in Section 4.4.

4.3.1 Ansys Electronics Desktop

The software Ansys Electronics Desktop enables electromagnetic analysis, circuit and

system simulation. It includes a High Frequency Structure Simulator (HFSS) as well as

a static solver called Maxwell for electrostatic or magneto-static problems besides other

solution types. Here, we will focus on the �rst two. In all cases, the solver is based on the

�nite element method. A mesh consisting of triangles is spanned across the system and

the �elds are solved within each triangle. This mesh can be seen in Figure 4.4 (b). Its size

is decreased stepwise until the solution converges according to manually selected con-

vergence criteria. In the following, the solution types HFSS and Maxwell are explained in

more detail. It is worth mentioning at this point that Ansys software and especially HFSS

require a large amount of random access memory capacity. To perform the simulations

described in this thesis, cluster capacity of up to 256 GB memory was necessary.
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HFSS

The High Frequency Structure Simulator (HFSS) solves high frequency electromagnetic

problems. Any arbitrary system can be constructed in the program by intuitive handling.

To each object within the system a material and boundary conditions are assigned. All

common elements and their electric properties are listed in a library and custom made

materials can be added. Furthermore, wave ports and lumped ports allow excitations to

be introduced to the system. In order to ensure all objects of di�erent length scales are

taken care of when running the simulation, mesh restrictions on selected objects can

be added. Note, that this will become of importance when re�ning solutions. Finally,

once manually chosen convergence criteria are de�ned, the simulation can be run. If no

mesh restrictions are implemented, the �rst mesh size orientates itself along the entered

solution frequency. The solutions of the HFSS simulations give electromagnetic �elds,

transmission, re�ection and impedance spectra, and a lot more.

Maxwell

Ansys Maxwell is constructed analogously to HFSS. In contrast to HFSS, Maxwell is

a static solver for either magneto-static or electrostatic problem. The design can be

constructed exactly in the same way and objects can even be copied from one to the other

solution type. In addition, materials and boundary conditions need to be de�ned. The

types of excitation are di�erent from HFSS’s ones. Instead of wave ports, static current

or voltage excitations can be added. Furthermore, the mesh and convergence criteria can

be handled as discussed for HFSS. After a completed simulation, �elds or for example the

coupling capacitances between selected objects can be plotted.

4.3.2 The Coaxmon Design in Ansys

The coaxmon architecture constructed in Ansys is shown in Figures 4.1 and 4.4. All

objects of the design, as discussed in Section 4.1, are drawn to scale by using rectangles,

circles, cylinders, cubes. All important lengths are de�ned as variables in the setup to

allow easy variation and sweeps of those quantities at a later stage.
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(a) (b)

Figure 4.5: Resonator (a) without and (b) with mesh. The mesh size is restricted to 1 µm
on the resonator to account for the thin inductor spiral.

Resonator Spiral

The resonator inductor is formed by a central island connected to an outer ring by

an Archimedean spiral de�ned as r = a + bθ with a, b ∈ R and the angle θ. Here, a

represents the o�set from the centre and b is the spiral parameter. The spiral does not

directly start at the centre island or outer ring, on both ends it is connected by a straight

10 µm connection. A close look in Figure 4.7 (a) shows this. In the following, the length

of the spiral serves as reference. The length L is calculated as:

L(f) =

∫ θ2

θ1

|f ′(θ)|dθ =

∫ θ2

θ1

√
(1 + θ2)b2dt =

∫ r2

r1

√
(1 + r2)/b2dr (4.1)

with the spiral function f : [θ]→ R2 with θ → (bθ cos θ, bθ sin θ) where θ1/2 =
r1/2
b

are the start and end angles of the spiral with the start and end radius r1/2.

Materials

The copper pins and the vacuum parts are de�ned with the copper and vacuum values

from Ansys library. Due to the fact that aluminium becomes a superconductor in the

experiment, the aluminium pads of the qubit and resonator as well as the sample holder

are assumed to be a perfect conductor in the simulation. This automatically adds perfect
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conducting boundaries to these objects. In contrast to this, the sapphire system values

need to be modi�ed. First of all, the dielectric loss tangent needs to be corrected to

10−7 (Kusunoki et al. [2002]) instead of the zero found in the system library. This is

important because a parameter of interest is the lifetime of the qubit that strongly

depends on the electromagnetic energy loss in the whole system. Besides this, C-sapphire

exhibits an anisotropic relative permittivity, which is not included in the system library.

Following (The New Value Frontier [2016]) and (Antula [1967]) the relative permittivity

is extrapolated to be 7.308 for the parallel C-axis and 10.100 for the vertical one at

millikelvin temperatures. Simulation shows that the latter in�uences results strongly,

hence should always be included.

Wave Ports

In this design, two copper pins address the qubit and resonator from either side of the

chip. As these are the wave ports, the end surface of the coaxial pins are each assigned to

be a wave port. Speci�cally, the vacuum ring between the copper pin and the sample

holder corresponding to ground is assigned. This allows looking at transmission and

re�ection spectra from the qubit and resonator pin.

Lumped Port

The essential component of a superconducting qubit is the Josephson junction. However,

the quantum mechanical properties of a junction cannot be modelled in a classical simu-

lator such as Ansys HFSS. Nevertheless, as explained in Section 3.7, with the knowledge

of the admittance spectrum at the Josephson junction, all characteristic qubit properties

can be determined. To simulate the Josephson junction and to obtain its admittance

spectrum, a lumped port is de�ned as follows. The gap in between the �ngers reaching

from the qubit inner island to the outer island is where the junction is placed in reality.

In the simulation, this area is selected and declared to be a lumped element port with a

resistance of 50 GΩ and zero reactance. This assignment allows the user to later look at
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Figure 4.6: Transmission spectrum for di�erent maximal mesh size restrictions on the
resonator. The smaller the mesh, the more the transmission peak shifts towards smaller
frequencies. It seems as if the peaks converges to a frequency below 10 GHz. Due to the
fact that a mesh restriction of 1 µm is the minimum, the simulated resonator frequency is
bigger than in experiment for the same resonator length.

the admittance or reactance spectrum at this point, providing all necessary information

to apply the black-box quantisation theory.

The Mesh

Building the architecture with length scales of mainly millimetres automatically sets

the unit of the simulation to millimetre. According to this length scale and the selected

solution frequency of a simulation, the �rst mesh is created. The size is then reduced in

every iteration step. This works well as long as no objects are much smaller than the unit

length scale. However, the resonator spiral in the coaxmon architecture with a width

of 1 µm to 5 µm is much smaller than most of the other features in the design. When

plotting the mesh after a simulation, one soon realises that the automatic mesh is not

at all taking care of the small spiral inductor. In this case, it is necessary to manually

de�ne the mesh size on the small objects. A maximal mesh size can be set and hereby
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Figure 4.7: Transmission and re�ection spectra. (a) Transmission spectrum from resonator
pin to qubit pin. (b) Re�ection spectrum at qubit pin.

the mesh cannot miss the small object anymore. For a mesh restriction to 20 µm, the

mesh is plotted in Figure 4.7. Furthermore, re�ning the mesh size in general results in a

signi�cant change of the simulation results. Figure 4.6 shows the transmission spectra for

the same coaxmon but di�erent mesh size restrictions on the resonator and qubit. The

transmission frequency decreases with a smaller mesh and seems to converge. Whereas

the change in frequency from no mesh restriction to 20 µm is still about 2 GHz, it only

changes a fraction of that when re�ning the mesh from 5 µm to 1 µm. Unfortunately,

even 256 GB memory are not su�cient to further decease the mesh size. Requesting only

one converging pass, a 1 µm mesh restriction results already in 106 solved elements. This

is why all following simulations will be performed with this 1 µm mesh restriction. Note,

that this is further discussed in Sections 4.6 and 4.9 when quantifying simulation errors

and comparing results to experiment. Since the thickness of both resonator and qubit

is about 80 nm and it is much smaller than the smallest possible mesh size, simulation

shows no di�erence for a 2D or 2D design.

Convergence Criteria

When adding a frequency sweep for a simulation several options are o�ered. First of

all, the solution frequency has to be set according to which the initial size is chosen. In

addition, a maximum and minimum number of passes, a minimum number of converged

mesh re�nement passes, a percentage mesh re�nement per pass and a maximum ∆S for

the solution accuracy can be set. The latter is the maximum error in the model based
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Figure 4.8: Admittance spectra at the Josephson junction. (a) From HFSS without the
junction properties. Only the resonance of the resonator at about 9.5 GHz is evident. (b)
After adding the admittance of the junction, a second zero crossing appears. This one
refers to the qubit frequency.

calculated S-parameters. The smaller the ∆S, the more converged passes are required and

the more accurate the simulation is. But again, more costly are the simulations in terms

of times and memory capacity. In this thesis for good simulation results, the solution

frequency is set to the expected resonator frequency and the mesh re�nement per pass is

left at its default setting of 30%. A maximum number of passes of 20 and a number of

converged passes of up to two and a ∆S in the range of 0.001− 0.1 was chosen. These

convergence criteria for the coaxmon design, which showed to give reasonable results,

need a RAM capacity of 32 GB to 256 GB and therefore are performed on an external

cluster. Performing simulations while sweeping a parameter of interest might take two

to twenty hours of calculation time. Once a simulation is �nished, it should always be

checked that the results are sensible. Two checks should always be performed. Firstly,

the simulation should converge according to the set criteria. Secondly, plotting the mesh

along the objects shows whether the mesh is reasonable also along small features.

4.4 Derivation of the �bit Properties

Following a successful simulation, evaluation of the results comes next. The transmission

and re�ection spectra presented in Figure 4.7 exhibit a �rst indication of the system

behaviour. Figure 4.7 (a) shows the simulated transmission spectrum corresponding

to a resonator frequency of about 9.5 GHz. In Figure 4.7 (b), the simulated re�ection
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spectrum is shown. The re�ection signal stays close zero as long as the excitation

is detuned from the resonator frequency. In case of zero detuning, the re�ected sig-

nal decreases where the transmission increases. From these graphs, one can draw the

conclusion that the resonator works as expected and the resonator frequency can be

determined.

In order to evaluate all important qubit and resonator parameters, the black-box

quantisation must be applied. Therefore, the admittance spectrum obtained from HFSS is

required and plotted in Figure 4.8. The imaginary and real part are plotted separately.

The admittance as obtained from HFSS is shown in Figure (a). Only the resonator mode

can be seen, which refers to the zero crossing of the imaginary part of the admittance

(see Nigg et al. [2012]). Manually adding the junction properties as described in Section

3.7, shifts the admittance spectrum such that a second zero crossing of the imaginary part

appears and this refers to the qubit frequency. From this data, Im[Y (ωp)] and Re[Y (ωp)]

of both qubit and resonator mode as well as from their derivatives, all qubit-resonator

parameters can be calculated.

Note, that the derivative of the imaginary part of the admittance at the resonator

frequency is strongly dependent on the accuracy of the simulation and especially on the

number of frequency points. It is therefore important to choose the frequency step size

as small as possible. For accurate simulations it therefore might be useful to take a very

�ne sweep just around the resonator to obtain the accurate derivative.

4.5 Variation of the Design

The very �rst characterisation of the single coaxmon was made in (Spring [2016]). Start-

ing from this design, further variations with the aim of optimisation are of interest.

Furthermore, the experimental results shall be compared to simulations. For further

optimisation, the spiral parameters length, thickness and the connection to the inner and

outer resonator pad are investigated in simulations. Since the experiment exhibits much

smaller lifetimes than simulation, investigations on how to improve lifetimes are made.

In addition, the sample holder material and geometry is varied. Finally, experimental
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Qubit and Resonator [mm] Sample Holder [mm]
dQ1 0.125 dP1 0.38
dQ2 0.3895 dP2 0.90
dQ3 0.49 dG1 0.20
dR1 0.25 dG2 0.025
dR2 0.3895 d1 0.70
dR3 0.49 d2 0.40
Spiral Length 1.70 Sapphire Chip 5× 5× 0.5
Spiral Width 3× 10−3

Pad Thickness 80× 10−6

Table 4.1: Single coaxmon parameters after optimisation and resulting in the qubit-
resonator values as presented in Section 4.9 and in (Rahamim et al. [2017]). The de�nition
of parameters follows Figure 4.2.

and simulation results are compared and found to agree well. All variations and their

results are presented and discussed in the following. The varied parameters refer to the

labelling in Figure 4.2.

4.5.1 Resonator Width

The �rst resonator design proposed by (Spring [2016]) has a width of 1 µm and a length

of 1.5 mm. However, the spiral as well as the qubit and resonator pads are supposed to

be fabricated using photolithography. The length scale limit of this technique is exactly

one micrometer. It is therefore preferably to increase the width slightly to 3 µm to not

work at this limit.

For this reason, variations and their e�ect on the resonator frequency are investigated.

Apart from this, the connection of the spiral to the islands was changed slightly to

improve fabrication steps. A vertical connection of 10 µm length and of same thickness

as the spiral is added between the islands and the spiral start and end respectively. The

adjusted spiral is shown in Figure 4.7. In general, a superconducting inductor exhibits

two types of inductance, namely the self inductance and the kinetic inductance. However,

only the self inductance can be estimated without the knowledge of the current in the
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Spiral Width 1 µm 2 µm 3 µm

fres (1.7 mm length) 10.70 11.30 11.72
fres (2.2 mm length) 9.38 9.90 10.24

Table 4.2: Resonator width variations for two resonator spiral lengths of 1.7 mm and
2.2 mm.

inductor. The dependence of the spiral self inductance on its dimensions is

Lself (l, w, t) = 2l ×
(

ln

(
2l

w + t

)
+ 0.5 + 0.2235

w + t

l

)
× 10−7H (4.2)

with width w, length l and thickness t, each given in millimetre (Wadell [1991]). For

widths of the order of a few micrometres, the logarithmic term dominates when the

width is varied. Therefore, when broadening the spiral a decrease in the self inductance

is expected. Since the resonator frequency is ωr =
√

1
LC

, with the assumption that

L ∝ Lself, an increase in frequency is expected. Simulations verify this assumption and

the obtained frequencies are presented in Table 4.2. As the aim is again to have a resonator

frequency close to 10 GHz, a second sweep for a longer spiral is performed in order to

compensate the increase in frequency due to the spiral widening. More about variations

of the length follow in the next section.

4.5.2 Resonator Length

Changing the resonator width changes the resonator frequency. In order to readjust

the frequency, the length is varied. One has to keep in mind that for later multi-qubits

experiments di�erent resonator frequencies are needed. Therefore, the e�ect of di�erent

resonators lengths is studied and the results are plotted in Figure 4.9. The values obtained

from simulation are the blue data points. Using Equation 4.1 and ωr =
√

1
LC

allows one

to �t the data as shown by the blue curve. As expected, increasing the length increases

the inductance resulting in a decrease in frequency. The spiral length is calculated as

described in equation 4.1. Start and end point are the spiral start and end, adding the

10 µm connection to the islands gives the total resonator length The length is varied such

38



4.5. VARIATION OF THE DESIGN

1.5 2.0 2.5 3.0
8

9

10

11

12

Resonator Length [mm]

R
es
on
at
or
F
re
qu
en
cy
[G
H
z]

Figure 4.9: Resonator length variation. Blue are simulation data points �tted by the blue
line. The obtained �t is then shifted to go through the experiment data point in red. The
o�set of simulation and experiment is caused by the limit in mesh size. All values for
a 3 µm wide spiral, the resonator pin at 0.4 mm and the qubit pin at 0.7 mm. (b) Table
with the values listed. Error bars discussed in Section 4.6.

that frequencies between 9 GHz to 12 GHz are obtained. Band pass �lters from 8 GHz to

12 GHz limit the range being used in the experiment. However, comparison to experiment

shows that the experimental resonator frequency is smaller than in simulation. This is in

agreement with the assumption made in Section 4.3.2, that the frequency is expected to

converge to even smaller values for a �ner mesh. Under the assumption that a �ner mesh

would only shift the resulting frequency to smaller values, the experimental data point is

used to shift the �tted curve to the left, through the experimental data point in red. This

way, the simulated behaviour can be projected onto the real experimental values. This

allows one to estimate the frequencies for future resonators.

4.5.3 Control Pin Distance

Apart from dielectric loss, the control pins are expected to be the main contribution

to loss. Varying the distance between the qubit and the control pin next to it shows

a very strong dependence on the qubit lifetime T1 in simulation. Table 4.3 shows all

parameters dependent on the distance d1 between qubit and qubit control pin. Here,
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d1 fres f01 ∆ χ g α EJ T1

mm [GHz] [GHz] [GHz] [MHz] [MHz] [MHz] [GHz] [µs]
0.1 10.19 7.11 3.08 5.53 438 302 20.15 1.90
0.2 10.20 7.23 2.97 7.38 482 311 20.15 7.3
0.3 10.21 7.21 3.0 7.53 491 309 20.15 21.2
0.4 10.21 7.21 3.0 7.63 495 309 20.15 50.0
0.5 10.21 7.21 3.0 7.67 497 309 20.15 103.9
0.6 10.21 7.21 3.0 7.64 496 309 20.15 159.1
0.7 10.21 7.20 3.1 7.59 496 308 20.15 206.5
0.8 10.21 7.20 3.1 7.68 498 308 20.15 205.2
0.9 10.21 7.21 3.0 7.69 497 309 20.15 203.4
1.0 10.21 7.21 3.0 7.72 489 309 20.15 199.1

Table 4.3: Qubit pin distance d1 variation and the e�ect on the qubit-resonator parameters.
Resonator pin at 0.4 mm.

fres is the resonator frequency, f01 the qubit frequency from ground to �rst excited

state, ∆ the qubit-resonator detuning, χ the dispersive or Stark shift representing the

resonator shift when the qubit is excited or in the ground state, g the resonator-qubit

coupling, α the anharmonicity of the qubit, EJ the Josephson energy, EJ /EC the ra-

tio of Josephson and capacitance energy and T1 the qubit lifetime. None except the

qubit lifetime seems to be dependent on the distance. One exception is at the closest

pin distance of 0.1 mm. At this distance, the pin is exactly at the same height as the

sample holder. For all other cases, the pin vanishes slightly into the control pin cylin-

der in the sample holder. It might be, that here, the capacitances between the pin and

the qubit and resonator islands are more e�ected by the change, resulting in a change

in qubit and resonator frequency and hence slightly di�erent qubit and resonator be-

haviour.

In Figure 4.10, T1 is plotted as a function of the pin distance. Clearly, the qubit lifetime

increases when pulling the pin away from the chip. This shows that the qubit pin seems

to be a major contribution as a loss channel. However, at a distance of 0.7 mm the lifetime

levels out at 200 µs. At this point, it seems that another loss channel overcomes. This

might be the resonator pin, as it is 0.65 mm distant from the qubit with the sapphire chip

in between. In order to investigate this, the resonator pin distance d2 is varied as well,
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Figure 4.10: Qubit lifetime T1 as a function of qubit pin distance d1. Up to 0.7 mm., the
larger the distance the higher T1. For d1 > 0.7 mm levels out at 200 µs.

d2 fres f01 ∆ χ g α EJ EJ /EC T1

mm [GHz] [GHz] [GHz] [MHz] [MHz] [MHz] [GHz] - [µs]
0.2 10.19 7.22 2.97 6.89 475 311 20.15 65 107.5
0.3 10.22 7.22 3.00 6.92 474 311 20.15 65 201.9
0.4 10.24 7.19 3.05 6.72 473 308 20.15 65 193.0
0.5 10.24 7.23 3.01 7.00 471 310 20.15 65 194.7
0.6 10.24 7.22 3.02 6.95 464 311 20.15 65 189.7

Table 4.4: Resonator pin distance d2 variation and the e�ect on the qubit-resonator
parameters. Qubit pin at 0.7 mm.
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while the qubit pin is kept �xed. Table 4.4 shows the results. Here, it looks like the qubit

lifetime is not e�ected by it as long as the resonator pin is at least 0.3 mm away from

the resonator. From this, the conclusion can be drawn, that at least 0.3 mm resonator

pin distance and 0.7 mm qubit pin distance should be kept, such that the experiment

lifetime is not limited by the pins. To check this, a test experiment could be performed

without any qubit control pin at all and solely driving the qubit and resonator though

the resonator control pin.

4.5.4 Sample Holder

The sample holder is another object that can be optimised. One question is whether a

di�erent material or di�erent size of the hole for the sapphire chip a�ects the qubits’

properties. At �rst, investigations of the e�ect of copper instead of aluminium for the

sample holder are made. Whereas the qubit and resonator frequencies do not seem

to change at all, a change in the qubit’s lifetime can be observed. The simulation was

performed for two di�erent qubit pin distances. For both cases the lifetime for a copper

sample holder did not reach 35% of the same simulation with aluminium instead. The

assumption is, that copper as a non-superconductor allows the electromagnetic �elds to

penetrate relatively far into the material compared to the Landau penetration depth of a

superconductor such as aluminium. A bigger loss is therefore expected and the results

can be seen in the qubits’ lifetimes.

Another question is, whether the distance dG1 between sapphire chip and sample

holder plays a role for the qubit lifetimes. Eventually, a larger distance reduced the

fraction of �elds within the dielectric sapphire and hence reduces dielectric loss resulting

in an increasing qubit lifetime. This is tested with simulation. The results are listed in

Table 4.5. Widening the gap dG1 does only seem to have an e�ect on the qubit lifetime

at very close distances. Once it is 0.1 mm away, there is no systematic increase in the

lifetime anymore. Therefore, the distance is recommended to be at least 0.1 mm wide.
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dG1 fres f01 ∆ χ g α EJ EJ /EC T1

mm [GHz] [GHz] [GHz] [MHz] [MHz] [MHz] [GHz] - [µs]
0.05 10.21 7.24 2.97 7.61 492 307 20.37 66 166
0.10 10.24 7.22 3.02 6.70 467 307 20.37 66 193
0.15 10.24 7.27 2.97 6.81 462 311 20.37 66 180
0.20 10.23 7.27 2.96 6.75 458 311 20.37 66 170
0.25 10.23 7.28 2.95 6.77 458 312 20.37 66 189
0.30 10.23 7.26 2.97 6.68 458 310 20.37 66 184

Table 4.5: Sample holder optimisation: Distance variation between chip and sample holder
dG1.

4.6 �antifying the Simulation Error

In this Section, the error of the simulation is quanti�ed. A quanti�cation of the statistical

error as well as of a systematic error is given in the following.

In general, the convergence criteria and accuracy of the simulation are set in HFSS

manually. The convergence criteria is determined by the value ∆S, which describes the

change in the calculated S-matrix of the system. In case of the coaxmon simulation, this is

set to ∆S = 0.001, the smallest possible value allowing the simulations to still run on the

external cluster. From this error, it is not feasible to determine the errors resulting on the

qubit and resonator parameters. The error of the S-matrix would have to be transferred

on to the admittance spectrum and this error would then have to be propagated through

the black-box quantisation calculations. Another more reasonable way to �nd a statistical

error of the simulation is given by the following. As experience with HFSS shows, the

error on the simulation results is strongly given by the mesh. As already noticed in Section

4.3.2, the mesh is the crucial factor determining the accuracy of the simulation values such

as the resonator frequency. This is why, in order to �nd the statistical uncertainty of the

simulation results a slightly di�erent mesh is enforced by slightly varying the geometry.

For relatively small variation, the simulation should result in negligible di�erences in the

physical values, but instead give an idea of the statistical error. The standard deviation

of these variations is calculated and is taken as a statistical error due to the mesh.
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fres f01 ∆ χ g α EJ/EC T1

[GHz] [GHz] [GHz] [MHz] [MHz] [MHz] - [µs]
σ [%] 0.04 0.08 0.2 0.5 0.2 0.2 0.2 4.0

Table 4.6: Statistical simulation errors on the qubit-resonator parameters obtained from
HFSS simulation.

For example, to �nd the standard deviation for the simulation results of the resonator

variations at 3 µm, the width is very slightly varied to be 2.98 mm, 2.99 mm, 3.00 mm,

3.01 mm and 3.01 mm. From this change of less than 1%, only a small change in the

results is expected but variation of the results then give a chance to estimate the statistical

simulation error for the resonator width caused by the mesh. The standard deviation

of the �ve numbers is then calculated and given in percentage of the mean value of

the resonator frequency. This testing was performed for all optimisation procedures

described in this Chapter. For example, for the qubit pin distance, simulation results

of a qubit pin distance of 0.698 mm, 0.699 mm, 0.700 mm, 0.701 mm and 0.702 mm are

taken to calculate a standard deviation. Analogously, this was done at the qubit pin

distance of 0.4 mm. It turns out, that the errors for the di�erent types of optimisations do

not vary, hence one set of statistical errors is given here for all simulations. The hereby

obtained errors in percentage of all qubit-resonator parameters are given in Table 4.6.

The statistical error in most cases is fairly small, below 1%. Only the qubit lifetime shows

a slightly larger error of 4%.

However, the assumption is, that the overall error is dominated not by the statistical

error but by a systematic one. As discussed in Section 4.3.2, the resonator frequency can

not be simulated accurately due to a limit in mesh size. Since all qubit-resonator parame-

ters are strongly dependent on a correct resonator frequency, a calibration is performed

to correct for this o�set in the resonator frequency. In speci�c, the resonator spiral

in the simulation is intentionally increased such that the resonator frequency attained

from simulation with a mesh size of 1 µm corresponds to the experimentally determined

value. This calibration to experiment matches with an approximate extrapolation of the

frequency, to which the transmission peak in Figure 4.6 converges to. In order to now
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1 µm mesh 5 µm mesh deviation [%]
fres [GHz] 10.23 10.23 0.0
f01 [GHz] 7.23 7.23 0.0
∆ = (f01 − fres) [GHz] -3.00 -3.0 0.0
χ/(2π) [MHz] -6.70 -6.90 3.0
EJ [GHz] 20.31 21.7 6.8
EC [MHz] 309 286 7.5
EJ/EC 65.8 75.9 15.4
g/(2π) [MHz] 467 486 4.1
T1 [µs] 210 332 58

Table 4.7: Systematic error derivation of the single coaxmon parameters by comparing
simulation results of 1 µm and 5 µm mesh size.

obtain the systematic error due to the limited mesh size the following comparison is made.

Plotting the obtained resonator frequency as a function of mesh size, gives an idea of

the frequency to which simulation converges to. The obtained frequency of a simulation

with a 1 µm mesh is then approximately 1 GHz larger than the convergence value. In the

other direction, a 1 GHz di�erence in the simulated resonator frequency is also obtained

by setting the mesh length to 5 µm. For this reason, simulation of 1 µm mesh length

and 5 µm for the resonator frequency of 10.23 GHz are compared and the di�erence is

taken as the systematic error due to the limited mesh size. The resulting values from

this are listed in Table 4.7 for comparison with experiment and the HFSS results. The

obtained values clearly show that the assumption is correct, that this error overcomes

the statistical one. The qubit and resonator frequencies are calibrated to match, hence

their deviation is zero. The other values show an error of a percent. A large systematic

error is found for the EJ/EC ratio and the qubit lifetime, stating that these values have

to treated carefully.

Besides the derived statistical and systematic error of the simulation, more error sources

have to be named of which no quanti�cation is possible. For example, there are additional

errors resulting from the neglection of the third dimension of the aluminium pads in

the simulation. Additionally, imperfect material properties of sapphire, aluminium and

copper such as dirty chip surfaces are not considered. Also imperfections in fabrication

of the circuit remain neglected. Furthermore, the values taken for the anisotropy of the
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sapphire are extrapolation values, hence resulting in a simulation error as well. These

additional error sources cannot be quanti�ed easily but should be kept in mind when

comparing simulations to experimental results.

4.7 The Lumped Element Model

Another approach to calculate the coaxmon properties is to exploit the lumped element

method. For any lumped element electric circuit the quantised Hamiltonian can be found.

Applying perturbation theory onto the obtained Hamiltonian allows determination of

parameters such as the qubit-resonator coupling strength and cross- and self-Kerr shift

between circuit components. This method is described in (Zagoskin [2011]). Here, the

steps to derive the Hamiltonian for the single coaxmon are discussed. The detailed

description of how to e�ectively solve for it in mathematica will be described in the

future thesis (Patterson [2018]). Using this theory allows one to derive all qubit-resonator

parameters dependent on the capacitances of the system. Inserting these from Maxwell,

all parameters can be calculated and compared to HFSS simulations and experiments.

First of all, the Lagrangian L = T − U with the kinetic energy T and potential

energy U of any circuit can be derived. The contribution of common circuit elements are

∆L = 1
2
CΦ̇2 for a capacitor C and node voltage Φ̇, ∆L = −Φ2

2L
for the inductor L, and

∆L = EJ cos 2πΦ
Φ0

for a Josephson junction with energyEJ and the �ux quantum Φ0. The

Lagrangian L = L(Φ, Φ̇) is then a function of the node �uxes Φ and voltages Φ̇ where

the �ux is the integral in time of the potential di�erence across one circuit element.

Introducing the canonical momentum conjugate Π to the variable Φa allows one to write

the Hamiltonian of the circuit as:

H(Π,Φ) =
∑
a

ΠaΦ̇a − L(Φ, Φ̇) with Πa =
∂L
∂Φ̇a

. (4.3)

For the single coaxmon circuit the resulting Hamiltonian is:

HC(Π,Φ) = L (Φ1 − Φ2)2 + EJ cos
2π(Φ3 − Φ4)

Φ0

+
∑
i

∑
j

2Cij (Πi − Πj)
2 . (4.4)
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The �rst term describes the inductor with a �ux di�erence Φ1−Φ2, the second represents

the Josephson junction across which the �ux di�erence is Φ3 − Φ4, and the last term

sums up all contributions due to the capacitances between the nodes i, j where Πi − Πj

is the charge di�erence across a capacitance between the nodes i and j.

So far, the Hamiltonian is purely classical. However, before performing the second

quantisation, a new set of coordinates should be chosen such that the later introduced

ladder operators then have a clear physical meaning as for example the creation or

annihilation of a photon in the resonator. To do so, the �ux and charge di�erences in

Equation 4.4 are rede�ned with Φ̃i = Φi − Φj and Π̃i = Πi − Πj respectively. Now, the

second quantisation can be performed with the introduction of the creation operator a†

and annihilation operator a:

ˆ̃Φi =
âi + â†i

2
Λ, ˆ̃Πi = ~

âi − â†i
iΛ

. (4.5)

In this case, Λ is an arbitrary constant. Taking [â, â†] = 1, the commutation relation

[ ˆ̃Φ, ˆ̃Π] = i~ is satis�ed. With the new set of coordinates, â1 and â†1 now describes creating

and annihilating a photon in the resonator. Further, expanding the cosine in Equation 4.4

to fourth order in Φ allows one to take the anharmnicity of the Josephson junction into

account. Finally, choosing Λ such that the �rst order anharmonic term drops out allows

one to bring the Hamiltonian into the common form, where the resonator is harmonic

and its frequency is proportional to â†â. All interesting qubit-and resonator parameters

can be calculated from the obtained Hamiltonian. The harmonic resonator frequency

can be found by looking at the term proportional to â†â. The anharmonicity is given

by the â†ââ†â term as this is equal to n̂2. Furthermore, the qubit-resonator coupling

strength is refers to the coe�cient of the term â†i âj + â†j âi, where i, j stand for the qubit

and resonator. At last, the qubit-qubit coupling in the case of a multi-coaxmons circuit is

given by the term â†i âj + â†j âi where i, j are qubit one and two.

Using Maxwell, the complete capacitance matrix of the single coaxmon can be evaluated

and substituted into Equation 4.4. The capacitances for the optimised single coaxmon

can be found in Table 4.8. With the additional knowledge of the Josephson energy EJ
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In Out Qinner Qouter Rinner Router Ground
In - 3.34× 10−5 0.1409 0.1579 0.02577 0.02846 587.5
Out 3.34× 10−5 - 0.01235 0.04838 1.355 0.4706 605.4
Qinner 0.1409 0.01235 - 20.83 11.83 9.036 9.830
Qouter 0.1579 0.04838 20.83 - 26.87 63.38 143.1
Rinner 0.02578 1.355 11.83 26.87 - 59.35 25.05
Router 0.02846 0.4706 9.036 63.38 59.35 - 136.9
Ground 587.5 605.4 9.830 143.1 25.05 136.9 -

Table 4.8: Capacitance matrix for the single coaxmon. All values in femtofarad. Maxwell
computes the capacitances to an accuracy of 0.1%.

and the inductance L of the resonator, all circuit parameters can be derived except for

the qubit lifetime. The results of the lumped element model are listed in Table 4.9 and

further discussed in Section 4.9 when comparing to experiment.

4.8 The Network Analysis

An alternative approach to determine the qubit-resonator coupling is done by a simple

network analysis. This analysis provides a second theoretical reference and later is

essential to calculate multi-qubit selectivities. Here, the analysis is introduced for the

case of a single coaxmon. By considering the electric circuit and applying Kirchho�’s

laws, a set of coupled equations can be written down and then solved for parameters

of interest. The procedure is shown for a simple capacitance network in Figure 4.11. A

voltage is applied to two capacitors in series. The voltage drop across each capacitor

must sum to the applied voltage V . On opposite sides of each capacitor the absolute

value of charge is the same but with opposite signs. On the isolated island in between

the capacitors, the charge sums to zero. In addition for each capacitor its charge Qi is

equal to CiVi Therefore, the set of equations to be satis�ed is

Qi = CiVi, i = 1, 2 (4.6)

V = V1 + V2, (4.7)

Q2 −Q1 = 0. (4.8)
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−
+V

C1,V1

C2,V2

+Q1

-Q1

+Q2

-Q2

Figure 4.11: Simple circuit example for network analysis. A voltage V is applied to two
capacitor in series. The charge on each side of the capacitors is the opposite. The charge
on the island in between the capacitors sums up to zero.

Now, for example the voltage drop across the �rst capacitor can be compared to the

applied voltage with the knowledge of the capacitances from Maxwell:

V1

V
=

C2

C1 + C2

. (4.9)

Analogously, the coupled equations can be found in case of the coaxmon circuit shown in

Figure 4.12. Neglecting the capacitance of the junction (< 1 fF) and the resonator spiral,

it is possible to compute the voltage drop across the qubit for a given applied voltage

across the resonator. The ratio of the these voltages corresponds to the coupling of the

resonator to the qubit. According to (Koch et al. [2007]) the qubit resonator coupling

then is given by

g =
2

~

√
1

2
(βeVrms)

(
EJ

8EC

) 1
4

with Vrms =

√
~ωr
2Cr

. (4.10)

Here, β refers to the relative voltage drop across the qubit when a voltage is applied to

the resonator, ωr and Cr are the resonator frequency and capacitance respectively and

EJ and EC the Josephson and charging energy. With the capacitance matrix in Table 4.8,

the resonator-qubit coupling strength is calculated to be g = 488 MHz.

As shown in Table 4.9, the measured coupling strength is 462 MHz. Even though, this

simulation was purely static, the Josephson junction is neglected and there is no inductive

coupling taken into account, the calculated and measured values are of the same order.

Discrepancy to experiment is assumed to be due to the approximations as stated. This

analysis not only o�ers another way to calculate the resonator-qubit coupling strength,
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−+

qubit pin

resonator pin

LC-resonator

transmon

Figure 4.12: The coaxmon electric circuit for the network analysis. The qubit in blue
consists of the Josephson juncton in parallel to a capacitor. The resonator in green serves
as a imaginary voltage source. All islands are capacitively coupled. Capacitances to
ground are not shown.

but also opens the way to estimate the selectivity in a multi-qubit experiment as discussed

in Section 5.4.

4.9 Comparison to Experiment

The optimised single coaxmon device has been fabricated by another member of the

group. Its experimental characterisation is o�cially presented in (Rahamim et al. [2017]).

This publication can be found in the appendix. The qubit and resonator parameters are

presented in Table 4.9, both experimentally determined values and the ones resulting

from HFSS/black-box quantisation model and the lumped element model are listed.

Note, that for the HFSS simulation the inductor was lengthened to achieve the same

resonator frequency as in the experiment as the simulations are limited in the mesh size

as discussed in Section 4.3.2. The inductance of the spiral and the Josephson energy
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are added in the lumped element model such that the frequencies of the resonator

and qubit match the experimental ones. In contrast to this, the resonator frequency

in the HFSS model comes purely from the simulation, but the qubit frequency is also

matched to the experimental one by tuning the Josephson energy which is added in the

black-box quantisation. Hence, the frequencies for all three models are nearly identical.

The χ-shift is of the same order of magnitude, whereas the HFSS value is closer to

experiment than the lumped element model. The same holds true for the Josephson

energy EJ . Remember that this value is adjusted such that the qubit frequencies match.

The discrepancy in the values of EJ demonstrates that in either case the junction is

not modelled perfectly. Note that in HFSS and the black-box quantisation model, the

system is assumed to be dissipationless. In the lumped element model, only static �elds

neglecting for example inductive couplings are considered. The capacitance energy

EC shows that the assumptions made in the lumped element model seem to have an

higher impact, since the value is o� by a third. However, the qubit-resonator coupling

again is of the same order and agrees well for HFSS and the experiment. As discussed

before, the qubit lifetime in the simulation are a lot greater than in experiment. Further

investigations concerning experimental loss channels are under way. The lumped element

model does not allow one to calculate the qubit lifetime since no dissipation is taken

into account.

The HFSS method demonstrates to be a powerful tool to simulate the single coaxmon

device. All qubit parameters can be estimated before fabrication and thus allowing for

device optimisation prior to fabrication. However, running these simulations is compu-

tationally intense and can take two to twenty-four hours, which is time consuming and

costly. Furthermore, the mesh can not be reduced enough to obtain the correct resonator

frequency even with 256 GB memory. Only the knowledge of the systematic shift from

comparison to experiment allows one to estimate the frequencies correctly in the future.

Nonetheless, the method provides the possibility to make good predictions. In compar-

ison, the lumped element model can be applied fairly easily, since Maxwell simulations

can be run within a few minutes. However, since this model makes more rudimental

assumptions such as only considering static �elds, the estimated values do not agree
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Experiment Exp. Error HFSS HFSS Error LEM
Resonator length [mm] 1.7 - 2.2 - -
fres [GHz] 10.22876 0.00005 10.24 - 10.23
f01 [GHz] 7.2297 0.0005 7.23 - 7.23
∆ = (f01 − fres) [GHz] -2.9991 0.0005 -3.01 - -3.00
χ/(2π) [MHz] -6.34 0.07 -6.7 2 -7.79
EJ [GHz] 24.05 0.08 20.3 1.4 16.07
EC [MHz] 294 1 309 23 406
EJ/EC 81.8 0.6 68 10 39.6
g/(2π) [MHz] 462 2 467 19 416
T1 [µs] 4.1 0.01 210 122 -

Table 4.9: Comparison of experiment to HFSS simulation and the lumped element model
(LEM) values. In HFSS, the resonator frequency is calibrated by the resonator length to
match experiment. The qubit frequency is adjusted by EJ . In the LEM, EJ and LJ are
set to give the aimed qubit and resonator frequency. Errors for the LEM result from the
assumption of this method such as only considering static �elds and therefore cannot be
estimated with the same method.

as well as the others predicated by the HFSS model. However, this model will become

important for two-qubit simulations as HFSS simulations become too computationally

intense.
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5 Design and Simulation of Two Coupled

Coaxmons

In order to perform entangling operations on two qubits, it is necessary to introduce a

coupling between them. The next step for the coaxmon is to design such a two-coaxmon

device and to implement a two-qubit logic gate. This Chapter starts with the investigation

of available two-qubit gates. Two suitable two-qubit gates for the coaxmon architecture

are explained and discussed in Section 5.1 and the necessary requirements are determined.

According to the desired device parameters, the two coaxmon device has to be designed.

The double coaxmon is presented in Section 5.3. In order to adjust the additional coupling

capacitance correctly, a lumped element model (Section 5.3.1) is used to calculate the

expected qubit-qubit coupling strength. In Section 5.3.2, the capacitance is then iteratively

adjusted by using this model and simulating the capacitance matrix via Maxwell. The

resulting coupled design then ful�ls all gate requirements.

Being able to selectively address each single qubit is also a key requirement for the

implementation of a full set of quantum logic gates in a multi-qubit device. The question

is how selective the qubits in the coupled coaxmon device can be driven without driving

the second qubit as well. This question is answered in Section 5.4 showing that the

coupled two coaxmon design achieves highly selective qubit control. Based on these

investigations, the �rst coupled design was fabricated and measured.

5.1 Two �bit Gate Theory

In this Section, two di�erent two-qubit gates are presented. Their working principle is

explained and their requirements are determined. Various two-qubit gates have been
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discovered but only a few ful�l the requirements given by the coaxmon architecture. A

general introduction into quantum gates for superconducting qubits can be found in

(Rigettir [2009]). The gate for coaxmons has to be realised with a microwave control setup,

�xed frequency qubits and a non-tunable qubit-qubit coupling. Furthermore, we are

limited in the precision of the fabrication of the devices, especially of their qubit frequency,

which can only be fabricated with an accuracy of ±1 GHz. The Cross-Resonance (CR)

gate in (Chow et al. [2011]) and the microwave-activated conditional phase (MAP) gate

in (Chow et al. [2013]) ful�l these requirements and are therefore taken into closer

consideration.

5.1.1 MAP Gate

The microwave-activated conditional phase (MAP) gate relies on a speci�c energy level

alignment. For the MAP gate, the qubit transitions |12〉 and |03〉 are designed to be

degenerate. This is shown in Figure 5.1. Here, the �rst number represents the state of

qubit one and the second the state of qubit two. In this case, the interaction between

them causes a shift to new eigenfrequencies. With the original degenerate energy levels,

the transition frequencies |11〉 → |12〉 and |01〉 → |02〉 have the same energy EA. Due

to the coupling of the degenerate states, this is not the case for the shifted energy levels,

and the transition energy EB for |11〉 → |12〉 is di�erent to EA. Hence, this arti�cially

introduced coupling of two states causes a di�erence in the transition frequency for qubit

two to go from the �rst to the second excited state dependent on the state of qubit one.

If qubit one is in its ground state, the frequency is EA/h. If qubit one is excited, the

frequency is EB/h with EA 6= EB . This state dependent di�erence for the transition

frequency can be exploited to realise the state dependent gate. An o� resonant drive on

|11〉 gives rise to a di�erent phase compared to the other states in the computational

basis, denoted in grey in Figure 5.1. The MAP gate acts as a controlled NOT gate. This

means, that the state of qubit two is changed if and only if the qubit one is excited.

To summarise the requirements, the MAP gate works due to the degeneracy of the

energy levels |12〉 and |03〉. This allows the introduction of the state dependent transition
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Figure 5.1: MAP gate working principle. The red numbers indicate the state of qubit one
whereas blue represents qubit two. The qubits are designed such that the frequencies
|12〉 and |03〉 are the same. Due to new shifted eigenenergies, the ground to excited state
transition of qubit two is dependent on the state of qubit one. If this is in its ground
state, the energy EA is needed to excite qubit two, otherwise it is shifted to EB . Figure is
adapted from (Chow et al. [2013]).

frequency used for the gate. Furthermore, the weak coupling limit J � |ω2 − ω1|= ∆

where J is the qubit-qubit coupling and ∆ the detuning of the qubit frequencies, is

required as well as a small drive strength Ω� ∆. If J is of the same order of the detuning

or larger a resonant coupling would yield into a continuous swapping of the two qubits’

states. If the drive is too large, the second qubit is driven o�-resonantly and not due to

the gate.

Due to the fact, that fabrication has an uncertainty of±1 GHz on the qubit frequencies,

the degeneracy of the transitions |12〉 and |03〉 is very di�cult to achieve. This is why the

focus will lie on the following Cross-Resonance gate. However, if this speci�c alignment of

the qubit energies is realised, the MAP gate o�ers an elegant way to perform a two-qubit

gate and is listed here as a possible two-qubit gate for the coaxmon architecture.

5.1.2 Cross-Resonance Gate

Another two-qubit gate for �xed-frequency and non tunable qubit-qubit coupling devices

is the Cross-Resonance (CR) gate as presented in (Chow et al. [2011], Rigetti and Devoret
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(a) (b)

Figure 5.2: The Cross-Resonance working principle. (a) The target qubit’s frequency
is applied to the control qubit. (b) The dressed state picture of the qubits’ states. The
applied frequency causes a shift of the energy levels such that the transitions |b(N1)〉 →
|b(N1− 1)〉 and |a(N1)〉 → |a(N1− 1)〉 have exactly the splitting of the applied, which
is the target qubit’s frequency, allowing to excite the target qubit through spontaneous
emission. A phase dependence on the control qubit state is acquired and shown when
deriving the e�ective drive Hamiltonian in Equation 5.1. Pictures taken from (Rigetti and
Devoret [2010]).

[2010]). The principle of the CR gate is depicted in Figure 5.2. The dressed state picture

used here allows one to understand its basic working principle. For a full understanding,

including the phase dependence of the gate, the Hamiltonian has to be derived as done

in (Rigetti and Devoret [2010]). Here, only the resulting drive Hamiltonian is discussed.

For the CR gate, the control and the target qubit have two di�erent frequencies, see

Figure 5.2 (a). Applying a microwave drive to the control qubit with the frequency of

the target qubit introduces an e�ective interaction between the qubits. The dressed state

picture of the energy levels is shown in Figure 5.2 (b). The applied drive causes the

energy levels to shift and separate by the e�ective Rabi frequency η =
√

Ω2 + ∆2 with

the Rabi frequency Ω and detuning ∆ of the drive to the qubit frequency. This separation

is independent of the state of the control qubit but only depends on the drive strength and

its detuning. The transitions |b(N1)〉 → |b(N1 − 1)〉 and |a(N1)〉 → |a(N1 − 1)〉

have exactly the frequency of the drive, namely the frequency of the target qubit,

here denoted as ωrf1 . Assuming that a(N1) or b(N1) decays, the emitted frequency

is resonant with the target qubit and can excite it. This means, that by applying
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the target qubit’s frequency to the control qubit, a qubit-qubit interaction is intro-

duced.

An additional phase is acquired dependent on the state of the control qubit, which is

important when implementing the two-qubit gate. This becomes clear when the e�ective

Hamiltonian is derived. The e�ective drive Hamiltonian (Chow et al. [2011]) is

ĤD = ε(t)

(
σ̂x,1 +

J

∆12

σ̂z,1σ̂x,2

)
. (5.1)

Here, ε(t) is the drive strength, ∆12 the qubit-qubit detuning and J the qubit-qubit

coupling strength. The �rst term describes the direct drive of the control qubit. The

second term shows that the target qubit is driven as well with a drive strength that is

reduced by the prefactor J/∆12. Additionally, as noted before the drive of the target

qubit acquires a phase which is dependent on the state of the control qubit. σz,1, which

can be ±1, changes the e�ective drive of the target qubit.

The requirements for the CR gate are similar to the MAP gate requirements. A weak

coupling limit as well as a small drive is needed for the same reasons. In contrast to the

MAP gate, no speci�c energy level alignment is required. It is important to note that for

the CR gate the selectivity plays an signi�cant role. A non-selective drive rotates the

second qubit directly without acquiring the same state dependent phase, hence making it

harder to see the cross-resonance interaction.

5.2 Simulation of the Cross-Resonance Gate

By reading the CR papers (Chow et al. [2011], Rigetti and Devoret [2010]) the actual

implementation of this gate in the experiment is not obvious, i.e. which pulse sequence

is applied. Therefore, the idea here is to simulate the gate and thereby gather more

knowledge about its behaviour. The gate �delity is the crucial value describing the

gate performance and therefore should be optimised. It depends on device parameters

such as the qubit lifetimes and the selectivity of the system. The latter describes the

unwanted drive felt by the second qubit when applying a drive to the �rst qubit. In order
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to understand and later optimise the gate �delity for the coaxmon for di�erent lifetimes

of the qubits and selectivities, the gate can be simulated using the Master Equation.

To do so, the Master Equation introduced in Section 5.2.1 is solved for the CR Hamilto-

nian described in Section 5.2.2. The simulation results then are presented in Section 5.2.3

and possible optimisation steps are discussed in Section 5.2.4.

5.2.1 The Master Equation

The Lindblad form of the Master Equation given in 5.2 describes the dynamics of an open

quantum system. With the Markovian assumption that the environment has no memory,

the Master Equation 5.2 can be written as

L :=
dρ

dt
= − i

~
[H, ρ]︸ ︷︷ ︸

evolution of
closed system

+
∑
j

hn,m

[
LjρL

†
j −

1

2

{
L†jLj, ρ

}]
︸ ︷︷ ︸

Lindblad operators
representing coupling

of system to environment

. (5.2)

The �rst term represents the simple von Neumann equation, namely the evolution of the

density matrix ρ of a closed system with a time-dependent Hamiltonian H . The second

term with the coe�cient matrix hn,m and the Lindblad operators Lj adds any interaction

of the system with the environment. For any quantum system, this term allows one to

introduce relaxation and dephasing due to interaction with the environment.

With the decay rate γ1 = 1/T1 as coe�cient and the Lindblad operator L1 = σ̂− =

1
2
(σ̂x − iσ̂y) and L†1 = σ̂+ = 1

2
(σ̂x + iσ̂y) the decay of the qubit can be introduced to the

dynamics of the system. Analogously, the pure dephasing time Tpure as de�ned in Equation

3.7 can be added with coe�cient γ2 = 1/Tpure and Lindblad operator L2 = σ̂z = L†2.

Hence, the Master equation can be used to describe the dynamics of a multi qubit system

including interaction with the environment, relaxation and dephasing of the system.

The Lindblad equation can be converted into a superoperator description as shown in

(Cappellar [2012]). If the Hamiltonian H = −i (H ⊗ I − I ⊗H) is time-independent,
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using the generator

G = −
M∑
m=0

(
L̄m ⊗ Lm −

1

2
I ⊗

(
L†mLm

)
− 1

2

(
L̄†mL̄m

)
⊗ I
)

(5.3)

the Lindblad equation turns into a linear equation, namely ρ̇ = (H + G)ρ. This allows

us to solve the Master Equation easily via

ρ(t) = exp[(H + G)t]ρ = S(t)ρ. (5.4)

Here, S(t) is a linear superoperator on the space of density matrices and describes

the evolution of state ρ(t) at any time t ≥ 0. If the Hilbert space of the system is N-

dimensional, ρ(t) is a N ×N matrix and S(t) is a N ×N ×N ×N tensor. In order to

simulate the CR gate pulse or even a pulse sequence, the Hamiltonian H describing the

pulse as well as the relaxation and dephasing times have to be plugged into Equation

5.4. The CR Hamiltonian is discussed in the following Section. If more than one pulse

is applied to the system, the total superoperator can be put together piecewise whereas

pulse i is represented by the Hamiltonian Hi, which is applied for a time Ti

S =
∏
i

Si(Ti) =
∏
i

exp[(H i + G)Ti]. (5.5)

In this case, the right most superoperator refers to the �rst pulse applied, and the left

most to the last one.

5.2.2 The CR Gate Hamiltonian

The two-qubit CR gate is realised by applying microwave excitations resonant with the

target qubit’s transition frequency directly onto the target qubit. The e�ective CR gate

drive Hamiltonian is (Chow et al. [2011]):

ĤD = Ω(t)

(
σ̂x,1 +

J

∆12

σ̂z,1σ̂x,2

)
(5.6)
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When applying the microwave with the amplitude Ω(t), the control qubit is driven o�-

resonantly around the x-axis. At the same time, the target qubit is driven dependent

on the state of the control qubit and it is reduced by the factor of J
∆12

. Here, J is the

qubit-qubit coupling and ∆12 the qubit detuning. In the drive frame, the Hamiltonian

describing the simple drive of one qubit is

Ĥ ′D =
∆

2
σ̂z +

Ωx

2
σ̂x. (5.7)

Here, ∆ is the detuning of the drive from the qubit’s frequency and Ωx is the applied drive

frequency. The detuning causes a rotation around the z-axis whereas the resonant drive

rotates the qubit around the x-axis. In this frame, the complete Hamiltonian necessary to

describe the CR gate pulse can be written as

ĤCR,1 =
∆1

2
σ̂z,1 +

Ω1

2

(
σ̂x,1 +

J

∆12

σ̂z,1σ̂x,2 + Sσ̂x,2

)
. (5.8)

A pulse resonant to the target qubit is applied to the control qubit. The detuning to

the control qubit is ∆1. This results in a σz-rotation of the control qubit relative to the

target one since the drive is o�-resonant. Ω1 represents the drive strength of the CR

pulse resulting in a σx rotation of the control qubit as well as on the target qubit with a

strength reduced by J/∆12. Since the setup is expected to be imperfect S represents the

selectivity, the fraction of drive applied to the control qubit that is also felt by the target.

This results into an additional drive of the target qubit directly around the x-axis. In a

perfect system with an ideal selectivity one would have no crosstalk and S = 0.

5.2.3 Gate Simulation Results

To simulate the Cross-Resonance gate, the Master Equation 5.2 can be solved for the

derived Hamiltonian in Equation 5.8. Applying the derived formalism allows one to

simulate the e�ect of a given pulse sequence onto an initial input state. By doing so, the

behaviour of the CR gate is understood and tested. The total CR pulse sequence results

in a π
2
-pulse applied to the target qubit followed by the actual CR pulse applied to the
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Figure 5.3: CR gate simulation without any dissipation and perfect selectivity. Each letter
represents a di�erent initial state: (a) |00〉 (b) |01〉 (c) |10〉 (d) |11〉. Column shows the
probability to end in the depicted state and column 2 shows the resulting density matrices.
Here, the gate time is TG =0.5 µs.
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control qubit. The CR pulse is a pulse of the target qubit’s frequency applied on the

control qubit as discussed in Section 5.1.2. The simulation result of the CR gate pulse

sequence onto a two-qubit device is presented in the following.

First of all, the perfect gate is simulated. The perfect gate does not have any crosstalk

(S=0) and in�nite qubit lifetimes. One expects the gate to be a CNOT type gate, meaning

that when the control qubit is in its ground state, the initial state is projected onto itself.

In contrast to this, when the control qubit is excited, the state of the target is �ipped after

the gate is applied.

The results are presented in Figure 5.3.They prove the working principle of the CR

gate. For this simulation the coupling J is set to be 40 MHz and the qubit-qubit detuning

is 250 MHz. Each row presents the results of the gate on di�erent input states. In (a),

|00〉 is the input state, (b) refers to |01〉 as input, (c) to |10〉 and (d) shows the results for

the input |11〉. In column 1, the probability to end in the labelled state after the gate is

plotted as a function of the gate time. Note, that the π
2

-pulse necessary to perform the CR

gate is applied beforehand. The second column shows the real and imaginary part of the

density matrix at the gate time TG =0.5 µs. For example, (a1) shows that the target qubit

population oscillates. After 0.5µs, the state has returned to the ground state, meaning

that |00〉 goes back to |00〉. In (b1), the input state is |01〉. After 0.5µs, the output is the

same as the input. In both cases so far, the control qubit was in its ground state, so the

target qubit is expected not to change its state after the gate. In contrast to this, the last

two rows show the opposite. Now, the �rst qubit is excited, so the target qubit is expected

to �ip. This is proven in (c1), where after the 0.5µs gate time, the state then is |11〉. For

the input |11〉 in (d1), the expected output |10〉 is veri�ed in the plot. For each input state

the output density matrix after the gate time 0.5µs again veri�es the CNOT behaviour.

The gate �delity can be determined by the de�nition of the �delity

F(ρ, σ) = Tr
[√√

ρσ
√
ρ

]
(5.9)

given two matrices ρ and σ. This corresponds to a comparison of the two matrices ρ and

σ. In case of ρ = σ, the �delity reaches its maximum of 1. To �nd the �delity for a given
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Figure 5.4: CR gate simulation results including dissipation and imperfect selectivity.
Each letter represents a di�erent initial state: (a) |00〉 (b) |01〉 (c) |10〉 (d) |11〉. column
1 shows the probability to end in the depicted state and column 2 shows the resulting
density matrices. Here, the gate time is TG =0.125 µs.
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Figure 5.5: CR gate �delity for the four input states |00〉, |01〉, |10〉 and |11〉 as a function
of gate time for in�nite qubit lifetimes and perfect selectivity S = 0. Small gate times
decrease the �delity due to a �nite drive strength. For longer gate times, the �delity
converges to F = 100%.

input state, the simulated output matrix has to be compared to its ideal output. For the

Cross-Resonance gate as a CNOT type gate, |00〉 ideally is projected onto itself, same is

valid for |01〉. In contrast to this, the simulated output matrix for the input state |10〉 has

to be compared to |11〉. This then gives the �delity for the input state |10〉. For the case

of |11〉 as input, the ideal output is |10〉.

Using Equations 5.9, the CR gate �delity can be calculated for any input state. For

the ideal case of perfect selectivity and in�nite qubit lifetimes, the �delities for the four

input states |00〉, |01〉, |10〉 and |11〉 are the same and the result is plotted in Figure 5.5.

For small gate times of TG < 0.2 µs, the �delity rapidly increases and for TG > 0.2 µs

it converges to 100%. The reason of the decrease in �delity for short gate times is the

�nite drive speed of the rotation. In this example, a gate time of TG = 0.6 µs results in a

�delity of F = 99.97%. A faster drive could allow shorter gate times for the same �delity.

However, as discussed in Section 5.1.2 the small drive limit must remain ful�lled.

So far, this simulation gives a proof of principle. It is more interesting to determine the

e�ect of �nite qubit lifetimes and imperfect selectivity onto the gate and its �delity. There-

fore, the lifetimes of the current two-qubit device are used. Qubit 1 has a T1 = 13.28 µs
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Figure 5.6: CR gate �delity for the input states |00〉, |01〉, |10〉 and |11〉 as a function of gate
time. The �rst number represents the state of the control qubit and the second the target
qubit. The target qubit lifetimes are T (t)

1 = 13.28 µs, T (t)
2 = 6.75 µs and T (c)

1 = 8.76 µs,
T

(c)
2 = 5.1 µs for the control qubit, and the selectivity is set to S = 2%. Short gate times

exhibit small �delities due to the �nite drive strength of the rotations. The �delity of
long gate times decreases because of the �nite qubit lifetimes.

and T2 = 6.75 µs, whereas qubit two exhibits T1 = 8.76 µs and T2 = 5.1 µs. A selectivity

of S = 2% (Section 5.4) is assumed while the coupling J and the detuning ∆12 were kept

the same as in the perfect gate simulation. Again, the results are presented in Figure

5.4. As before, the letter A-D present the di�erent input states |00〉, |01〉, |10〉 and |11〉.

Column 1 shows the probability to end in the labelled state as a function of the gate time.

Going through each input and output state as before, it becomes clear, that the CR gate acts

as a CNOT gate. The added decoherence damps the state probability as visible in the plots.

Optimisation of the CR gate time can be performed by varying the gate time and

maximizing the �delity. This process is shown in Figure 5.6. For short gate times, the

same argument as before applies. A �nite speed of J/∆12 of the target qubit’s rotation

due to the CR gate limits the �delity. Fidelities for long gate times decrease due to �nite

qubit lifetimes. This means that for each drive strength as well as set of qubit lifetimes

the gate time has to be optimised individually.
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5.2.4 Optimising the Gate Fidelity

The gate �delity can be optimised in several ways. First of all, increasing the qubits’

lifetimes and optimising the selectivity increases the gate �delity. Furthermore, the ratio

J/∆12 could be varied to see whether this results in a better sweet spot when varying

the gate times as shown in Figure 5.6. Increasing this ratio in order to decrease gate

times is a trade-o� with the requirement of still being in the weak-coupling limit where

J � |ω2 − ω1| = ∆12. Lastly, the gate �delity can be improved by correcting for the

imperfect selectivity. By applying a cancellation pulse to the target qubit, the unwanted

rotation of the target qubit due to bad selectivity can be cancelled out. The needed

amplitude is decreased by the selectivity S compared to the CR pulse amplitude. This in

turn, again leads to unwanted in�uence on the target qubit. However, this second-order

e�ect now is only proportional to S2. In the best case, this cancellation pulse is applied

simultaneously to the CR gate itself to keep the control qubit corrected at all times and

to not increase the overall gate time.

The gate simulation using the superoperator formalism to solve the Master Equation

works well. For �nite lifetimes and imperfect selectivities, the gate and its �delity can be

simulated and further optimised. However, optimising the �delity including cancellation

and other optimisation pulses cannot be easily simulated in this way. These techniques

require simultaneous pulses at di�erent frequencies such that the total gate time does

not increase resulting in a decrease of �delity due to decoherence. Further, it is the best

to correct for the imperfect selectivity simultaneously to prevent error propagation. To

do so, time-dependent Hamiltonian would need to be simulated.

5.3 The Coupled Coaxmon Design

The advantage of having the 2D plane free on the chip can now be exploited to couple

to a second qubit. Naively, the �rst idea is to simply copy a second coaxmon next to

the �rst one. However, simulations show that even at the closest possible separation of
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(a) (b)
Aim

f 1
res [GHz] 9.5
f 2
res [GHz] 10.5
f 1

01 [GHz] 7.0
f 2

01 [GHz] 7.5
∆ [MHz] 500
g [MHz] ≈ 300
J [MHz] ≈ 18
J/∆ 0.04

Figure 5.7: (a) Design of the two coupled coaxmons. Additional capacitance arms give
the necessary coupling. (b) Aimed coupled coaxmons parameters.

a = 1.5 mm, which is limited by the wiring on top of the sample holder, the qubits do

not couple strongly enough. This is why the capacitance between the qubits is increased

by introducing arms to the qubits. The double coaxmon design including these arms

is shown in Figure 5.7 (a). This picture again is taken from the HFSS simulations. Of

course, the qubit frequencies and resonator frequencies are adjusted as well to give

non-degenerate frequencies. This is simply done by adjusting the Josephson junction

area as well as the resonator inductor length.

The aimed parameters ful�lling all requirements for the CR gate are listed in Figure 5.7

(b). The resonator frequencies are aimed to be within the range of the 8 GHz to 12 GHz

band pass �lter on the output line in the experiment. The qubit frequencies are chosen to

be smaller than the resonator such that the higher levels of the qubit are even smaller in

frequency and not interfere with the resonators. The qubit-qubit coupling J and detuning

∆12 are chosen to have a ratio of 0.04, following a previous successfull realisation of the

CR gate in (Chow et al. [2011]). At last, the qubit-resonator coupling g is not changed

from the single coaxmon device since it proved to exhibit a good coupling. The exact way

of adjusting the capacitance arms to result in the aimed qubit-qubit coupling is explained

in Section 5.3.2. At �rst, the lumped element model is extended to two qubits and then
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(a) (b)
b [mm] J [MHz] S [%]
no arms 0.4 0.11
-0.4 0.5 0.14
-0.2 1.3 0.25
0.0 3.5 0.51
0.15 7.7 0.98
0.24 9.5 1.16
0.36 12.8 1.48
0.44 15.9 1.73
0.5 19.2 2.00

Figure 5.8: a) The coupling capacitance is characterised as a function of the overlap b
of the two arms. The arms are 0.04 mm wide and the qubit-qubit distance is a. b) The
coupling capacitance a�ects the qubit-qubit coupling strength J and the selectivity S, here
a = 1.5 mm.

the capacitance is adjusted iteratively by simulating the capacitances and calculating the

coupling via the lumped element model.

As presented in Section 3.7, HFSS and the black-box quantisation model is theoretically

also able to calculate the parameters of interest for multi-qubit devices. However, it turns

out, that already for the two-qubit case, HFSS exceeds the available calculation power.

Therefore, the lumped element model is used in the following. Nevertheless, if computing

power is available, HFSS is expected to give good results as comparison of HFSS and the

lumped element model already showed good agreement in the case of a single coaxmon.

5.3.1 The Lumped Element Model for the Coupled Coaxmon

The lumped element model introduced in Section 4.7 can also be applied to the coupled

coaxmons. To do so, the extended electric circuit for two coaxmons has to be considered.

The single coaxmon circuit, as shown in Figure 4.12 has to be duplicated such that all

islands are capacitively coupled with each other. Analogously to the single device, the

Hamiltonian of the coupled coaxmons can be derived allowing to determine the qubit-

qubit coupling from the capacitance matrix of the system. This is used to adjust in

qubit-qubit coupling strength in the following Section.
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Figure 5.9: (a) The qubit-qubit coupling strength J as a function of the overlap b. (b) The
selectivity S as a function of the overlap b.

5.3.2 The �bit-�bit Coupling Strength

In order to obtain the desired qubit-qubit coupling strength the additional capacitance

arm lengths are adjusted iteratively. The capacitances are simulated with Maxwell

and the qubit-qubit coupling J is calculated with the lumped element model. The

aim for the qubit-qubit coupling is J ≈ 18 MHz in order to maintain the aimed ra-

tio J/∆12 ≈ 0.04 together with ∆12 = 250 MHz. The arms are adjusted such that

the aimed coupling strength is realised. Figure 5.8 (a) shows the qubits from the top.

Distance a equals 1.5 mm and is the closest distance possible due to the wiring con-

straints outside the sample holder. Length b represents the overlap of the additional

capacitance arms which is varied. A negative value means that the arms are not yet

overlapping. Both arms are 0.04 mm wide. The results for the qubit-qubit coupling

strengths are listed in Figure 5.8 (b) and the values are plotted in Figure 5.9 (a). To

obtain the desired coupling strength of about 18 MHz, an overlap of 0.47 mm is esti-

mated.

5.4 Selectivity

The selectivity of a multi qubit device represents how well one qubit can be addressed

without interfering with the others at the same time. In this thesis, the selectivity is

de�ned as the ratio of amplitude drop across the target qubit when a voltage is applied
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V

Qubit 1 Qubit 2

Figure 5.10: The simpli�ed circuit of two coupled coaxmons for the selectivity estimation.
A voltage is applied to the qubit pin of qubit one, and the capacitances in between the
two qubits are taken into account in order to estimate the selectivity corresponding to
the ratio of voltage drop across qubit two and across qubit one.

to the control qubit. This means that a small number S stands for a well selective setup

and its range goes from zero to one. The selectivity is important due to the fact that a

non-selective drive disturbs the perfect gate Hamiltonian as described in Section 5.2.2.

This is why, the selectivity of the coupled coaxmons is simulated using the network

analysis introduced in Section 4.8 for the network presented in Figure 5.10. To estimate

the selectivity, the double coaxmon circuit is simpli�ed to only consider the qubit islands

and the control pin of qubit one as well as the ground represented by the sample holder.

A whole circuit analysis would require taking into account thirteen islands resulting into

78 capacitances and a corresponding number of coupled equations. With the assumption,

that the main contribution to the selectivity comes from the just introduced additional

capacitance, only the qubits, the control pin of qubit one and the ground are considered

here.

The resulting values for the qubit selectivity are listed in Figure 5.8 (b) and plotted in

Figure 5.9 (b). No arms allow a selective addressing of 0.11 % and even with the additional

capacitance to achieve a qubit-qubit coupling strength of 18 MHz, only a selectivity of

S = 2% is estimated. Thus, the design is chosen to be as presented in Figure 5.8 (b) with

an overlap of b = 0.47 mm. The device can now be fabricated with con�dence on the

estimated parameters.
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6 Experiments on the Coupled Coaxmons

In this Chapter, the experiments on the �rst coupled coaxmons are presented. First of all,

a description of their fabrication procedure is given in Chapter 6.1 and the measurement

setup is described in Section 6.2. The �rst measurements on the coupled coaxmon device

are a basic characterisation of each coaxmon performed by treating each of them as

a single coaxmon. This gives an overview of the device parameters as presented in

Chapter 6.3. Following this, the qubit-qubit interactions are investigated. A coupling

strength measurement is presented in Section 6.4 and the result is compared to simulation.

Afterwards in Section 6.5, the selectivities of the coupled and uncoupled coaxmons are

measured and compared to simulation. Finally, a conclusion on the experiments of the

�rst coupled coaxmons is given in Section 6.6.

6.1 Fabrication

Fabrication of all devices is carried out by another member of the group. A detailed

description can be found in (Peterer [2016]) or (Rahamim [2016]). Here, only a short

summary is given. The coaxmon is fabricated in two steps using electron-beam lithog-

raphy. At �rst, the whole resonator is fabricated on one side of a sapphire chip with

a straight, one-angle evaporation of aluminium. After �ipping the chip, the qubit is

fabricated on the other side of the chip. In contrast to the resonator, the qubit is fabricated

with a double-angle evaporation using the Dolan-bridge technique in order to create the

Josephson junction.

Fabricating the qubit and resonator on each side follows a similar recipe. First of all, the

chip is cleaned with acetone and dimethyl sulfoxide (DMSO). While the resonator can be

cleaned with accetone in an ultrasonic bath, this is not possible for the qubit side anymore
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Figure 6.1: The experiment setup. Figure adapted from (Peterer [2016]). The input
signal is attenuated by 60 dB before reaching the sample to prevent room-temperature
noise getting to the device. The output signal is �ltered and ampli�ed at the 3 K stage.
Measuring in transmission means sending the signal through input line 1, whereas
re�ection measurements are performed with the input line 2. The drawing shows the
setup for a single qubit measurement. For the four qubit sample, four input lines ‘in1’
are implemented. Two output lines ‘out’ and two input lines ‘in2’ allow one to measure
two qubits simultaneously. A microwave switch on each of the output lines allows one
to choose all four qubits, coupled pairs are placed on separate output lines to allow
simultanous measurement.

72



6.2. THE MEASUREMENT SETUP

since at that point the resonator is already on the chip and a sonictron would damage the

circuit. Afterwards, the chip is spin-coated with two layers, one of copolymer and one of

polymethyl methacrylate (PMMA) photoresist. Next, the electron-beam lithography is

carried out to pattern the chip with the circuit. In the development, the exposed resist is

then removed with a 1:3 mixture of methyl isobutyl ketone (MIBK) and isopropyl alcohol

(IPA) and then pure IPA. An evaporation of 80 nm aluminium onto the whole chip follows

to create the circuit layer. A following lift-o� step with hot acetone removes all remaining

photoresist including the aluminium on top. Only where the aluminium is sitting directly

on the chip, the aluminium stays. Since this is exactly where the e-beam patterned the

circuit, only the latter remains. In order to not damage the already fabricated resonator

while fabricating the qubit, the chip is sitting on top of washers or specially designed

sample holders to protect the bottom side.

6.2 The Measurement Setup

All experiments are carried out in a dilution refrigerator at about 10 mK. This low

temperature is not only needed to reach the superconducting phase of aluminium, which

is below Tc = 1.2 K, but it is also required to reduce the thermal noise below the frequency

of the qubit’s ground to excited state transition, namely ~ω � kBT . For a qubit with

ω ≈ 2π × 10 GHz this gives ~ω
kB
≈ 0.5 K, which is one order of magnitude larger than

the fridge temperature of 10 mK. The experimental setup is illustrated in Figure 6.2. All

drives and pulses are generated by signal generators modulated by a �eld programmable

gate array (FPGA). Through coaxial cables they are then connected to the devices inside

the dilution refrigerator. To prevent room-temperature noise reaching the qubit, the

signal is attenuated by about 60 dB. On the way out, bandpass �lters and circulators

cut o� noise and ampli�ers at the cryogenic and room temperature amplify the signal

by about 70 dB. The signal is then measured by an analogue to digital converter (ADC).

Experiments can be performed in either transmission or re�ection. In the �rst case the

qubit and resonator pulse both are applied to input line 1 and the resonator is read out

via the output line. For re�ection measurements, line 2 is used as input for the resonator
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(a) (b)

Figure 6.2: The coupled coaxmon (a) sample holder and (b) chip. A and B form a coupled
pair, same as C and D. A and C have the same centre-to-centre distance as C and D but
are not intentionally coupled, same holds true for B and D.

pulse and a circulator allows one to also read out via the output line. The qubit pulse is

still applied to the input line 1 in re�ection measurements.

6.3 Basic Characterisation of the Coupled Coaxmons

Two pairs of coupled coaxmons were fabricated onto one sapphire chip. As depicted in

Figure 6.2, A and B form an intentionally coupled pair, same as for C and D. The estimated

selectivity of S = 0.1% and qubit-qubit coupling of J = 0.4 MHz for uncoupled pairs

allows one to put two coupled pairs on one chip. Furthermore, this experiment allows one

to experimentally verify the simulated numbers for selectivity and qubit-qubit coupling

for the coupled and uncoupled case. The centre-to-centre distance is a = 1.5 mm as

de�ned in Figure 5.8 for both coupled and also uncoupled pairs A-C and B-D. In the

following, a basic characterisation of coaxmons C and D is presented, as A and B turn out

to be only detuned by 129 MHz whereas the goal was 500 MHz. Furthermore, the qubit

lifetimes are only of the order of 1.5 µs. For the basic characterisation both coaxmons are

measured by treating them as a single qubit-resonator device. All coaxmon parameters

gained through the following measurements are listed in Table 6.1.

First of all, a resonator sweep is performed to determine the resonator frequency and its

quality factor. A single continous drive from a microwave signal generator is applied and
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Figure 6.3: Resonator frequency sweep for (a) coaxmon C at a drive power of −35 dBm.
A Lorentzian �t (red) gives fCR = 10.7278 GHz and a quality factor of Q = 4102. (b)
Resonator sweep for coaxmon D at a drive power of −60 dBm. The Lorentzian �t (red)
gives fDR = 9.6772 GHz and a quality factor of Q = 15500.

swept while the transmission signal is measured. Figure 6.3 shows the resonator sweeps

of coaxmon C and D in transmission. Each point is an average of many experiments.

Fitting a Lorentzian allows one to �nd the resonator frequencies to be fCR = 10.7278 GHz

and fDR = 9.6772 GHz with quality factors QC = 4102 and QD = 15500 respectively. A

linear response of the resonator for coaxmon C is possible at -35dBm, whereas coaxmon

D needs a lower power of -60dBm. Linearity of the resonator response ensures to be in

the small drive regime. Due to the lower power measurement of resonator D, the noise is

higher even though the number of averages is increased relative to C.

In the following measurements, the dispersive readout of the qubit is used. The

dispersive readout allows one to measure the state of the qubit by measuring the resonator

frequency. In the dispersive regime (Equation 3.9), the resonator shifts by −2χ when the

qubit is excited in comparison to when it is in the ground state. Exploiting this, qubit

spectroscopy of each coaxmon is performed. While a single tone is sent to read out the

resonator, the second drive close to the frequency of the qubit is swept. This allows

spectroscopy of the qubit transitions. From this measurement onwards, the resonators

are measured in re�ection. In the setup this means, that the resonator drive is applied

through the resonator pin from which it is also read out, without interfering with the

qubit. And the qubit drive is directly applied to the qubit pin. The spectroscopy of qubit

C is shown in Figure 6.4. Figure 6.4 (a) presents the qubit spectroscopy at varying qubit
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Figure 6.4: Qubit spectroscopy of coaxmon C. (a) Power-dependent spectroscopy. (b)
Single trace at −15 dBm showing the f01 and f02

2
transition. (c) Low power trace at

−25 dBm showing only the ground to �rst excited state transition f01.

drive powers. For low drive powers, only the ground to �rst excited state transition fC01

is driven as can be seen in the extracted single trace at −25 dBm in Figure 6.4 (c). For

higher powers, the two photon transition fC02
2

is additionally driven as it can be seen in

Figure 6.4 (b) for −15 dBm. At even higher powers at 0 dBm, a third dip arises on the

left of fC02
2

, which refers to the three-photon transition fC03
3

. From these measurements,

the mentioned transition frequencies can be determined as they are listed in Table 6.1.

Furthermore, as −αC = fC01 − fC12 = 2(fC01 −
fC02
2

), the anharmonicity of the qubit can be

determined to be −285.8 MHz.

An interesting observation in the spectroscopy is the additional dip at fX = 7.864 GHz,

26 MHz (at −15 dBm) above the fC02
2

dip. As the frequency of a qubit does not shift with

qubit drive power, it can be excluded to be the fC02
2

transition. Apart from that, the two-

photon transition fC02
2

arises about half way between the fC01 and fC03
3

transition. This holds

true for the already identi�ed fC02
2

peak. Missing so far is an explanation for this additional

dip at frequency fX . Presumably, it refers to a two qubit interaction.

Qubit spectroscopy is performed also for coaxmon D and is shown in Figure 6.5. Figure

6.5 (a) is the power-dependent qubit spectroscopy. Two traces for high (−15 dBm) and low
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Figure 6.5: Qubit spectroscopy of coaxmon D. (a) Power-dependent spectroscopy. (b)
single trace at −15 dBm showing the f01 and f02

2
transition. (c) Low power trace at

−35 dBm showing only the ground to �rst excited state transition.

(−35 dBm) power are plotted in Figures 6.5 (b) and (c). For low power, only the ground

to �rst excited state transition fD01 is driven. Higher power also excites the two-photon

transition fD02
2

. this gives an anharmonicity of αD = −270 MHz for coaxmon D.

In order to understand the presence of the dip in the spectroscopy of coaxmon C, it

is useful to draw the level diagram of the two qubits as illustrated in Figure 6.6. The

frequency fX does not match a frequency of the coupled qubit D. However, the spec-

troscopy of D shows, that fD01 di�ers only by 40 MHz from fC12. A possible explanation

for the unidenti�ed dip could be that for high driving powers the two-photon transition

at (fD01 + fC01)/2 = 7.858 GHz can be driven. However, in this calculation the airising

shift in the qubit frequency due to the coupling to another qubit is neglected. To clarify

the nature of fX to experiments could be performed. First, a two tone spectroscopy

would allow one to identify if the transition is a two-photon process. In this case, two

qubit drives of the same frequency are applied to the qubit. Sweeping these qubit fre-

quencies simultaneously allows one to assign all transitions to single-, two- or more

photon processes. Alternatively, the qubit spectroscopy in Figure 6.5 could be repeated

including frequencies up to fX . If fX = (fD01 + fC01)/2, then the transition must be visible
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Figure 6.6: Energy level diagram for the coupled coaxmons C and D. All frequencies in
GHz. Note, that fC12 and fD01 are only detuned by 41.4 MHz.

in both qubit spectroscopies, coaxmon C and D. However, due to the fact that the nature

of the additional dip fX is not important in the following, these measurements are not

performed at this point.

With the knowledge of the qubit frequencies it is possible to measure the χ-shift

because the resonator frequency shifts by −2χ when the qubit is excited to its �rst

excited state. Hence, by measuring the resonator, the qubit state can be concluded. The

measurements of the χ-shifts are presented in Figure 6.7. Figure 6.7 (a) shows the χ-shift

of qubit C. In this case, the qubit is excited continuously. A continuous drive saturates

the excited qubit state with a maximum of 50% probability, while the rest remains in the

ground state, hence two resonator peaks are visible, separated by 2χC = 8.78 MHz. The

di�erent depths of the dips mean that the ground and �rst excited state are not populated

by the same amount. This is due to not fast enough driving of the qubit; as while driving,

the qubit is already decaying.

Alternatively, the χ-shift can be measured once the π-pulse length is known after a

Rabi-experiment. In this case, the qubit can be fully excited such that the resonator peak

appears shifted completely for many averaged data points. This is how the χ-shift is

measured for coaxmon D in Figure 6.7 (b) resulting in 2χD = 14.37 MHz.

As the Hamiltonian in Equation 3.9 shows, the qubit frequency also shifts linearly with

the number of photons in the resonator. Each extra photon n = a†a in the resonator
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Coaxmon C Error on C Coaxmon D Error on D
fres [GHz] 10.7288 0.0001 9.6772 0.0001
f01 [GHz] 7.980 0.001 7.736 0.001
∆/(2π) = (f01 − fres) [GHz] 2.749 0.001 1.941 0.01
f12 [GHz] 7.695 0.001 7.466 0.001
f02
2

[GHz] 7.838 0.001 7.601 0.001
EC [MHz] 285.8 1.4 270.0 1.4
2χ/(2π) [MHz] 8.78 0.36 14.37 2.9
g/(2π) [MHz] 356 7 338 7
T1 [µs] 4.73 0.08 7.27 0.08

Table 6.1: Experimental parameters of the coupled coaxmon C and D.

shifts the qubit frequency by −2χ and this is referred to as number splitting. This kind

of χ-shift measurement is performed for coaxmon D and it is shown in Figure 6.7 (c),

yielding the same value for χD as from b).

With the knowledge of the qubit frequencies, Rabi oscillation can be measured to �rst

of all show the two level dynamics and to further determine the π-pulse length. The Rabi

pulse sequence is a qubit pulse of varying length directly followed by a measurement

pulse of the resonator. The measured Rabi oscillations are presented in Figure 6.8 with a

damped sinusoidal �t in red. Driving coaxmon C at −5 dBm results in a Rabi frequency

of 33.96 MHz. And driving coaxmon D at 0 dBm gives a Rabi frequency of 68.84 MHz.

A π-pulse now allows one to measure the lifetime T1 of the qubits. At �rst, the qubit is

fully excited and after a variable length of waiting time, the measurement pulse follows.

With an increase of the delay of the measurement pulse, the probability of the qubit to

decay to its ground state increases. This T1 measurement for both qubits C and D is

presented in Figure 6.9. The data is �tted with an exponential decay as shown by the

red line in the plots. The lifetime of coaxmon C is determined to be TC1 = 4.7µs and

TD1 = 7.3µs for coaxmon D.
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Figure 6.7: χ-shift measurements for coaxmon C and D. (a) Continuously driving coaxmon
C shifts the resonator by 2χ and two peaks appear. Measurement in re�ection. (b) π-
pulsed excitation of qubit D shifts the resonator by 2χ (blue) compared to when it is in
its ground state (yellow). Measurement in re�ection. (c) Number splitting of coaxmon D,
in transmission.
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Figure 6.8: Rabi oscillations for coaxmon C and D. (a) Driving coaxmon C at −5 dBm
results in a Rabi frequency of 33.96 MHz. (b) Driving coaxmon D at 0 dBm results in
a Rabi frequency of 68.84 MHz. The points represent the data while the red line is a
damped sinusoidal �t.

(a)

●

●●
●

●
●
●
●

●
●●

●
●
●●

●●●●
●●

●●

●●
●●●

●●●
●●

●●●
●●●

●●●
●●●●●

●●●●●●●
●●

●●
●●●●●●

●
●●●●●●●

●●●●
●●●

●●●
●
●
●
●●●●

●
●
●●●●

●

●
●●

●
●
●
●●

●

●
●●●●●●●●●

●●
●
●●

●

0 5 10 15 20 25 30
2.

2.4

2.8

3.2

Measurement pulse delay [ns]

S
ig
na
l[
m
V
]

(b)

●

●

●

●

●

●

●
●

●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50
8.5

9.0

9.5

10.0

Measurement pulse delay [ns]

S
ig
na
l[
m
V
]

Figure 6.9: Qubit lifetime of coaxmon C and D. Dots represent the experimental data,
the red line is an exponential �t. (a) coaxmon C exhibits a lifetime of TC1 = 4.7 µs. (b)
coaxmon D shows a qubit lifetime of TD1 = 7.3 µs.
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CHAPTER 6. EXPERIMENTS ON THE COUPLED COAXMONS

6.4 �bit-�bit Coupling Strength

Having characterised each single coaxmon on its own, the interaction is to be investigated.

The coupling strength of the qubits is characterised through a Rabi measurement for

di�erent detunings and is shown in Section 6.4.1. A comparison to simulation follows in

Section 6.4.2.

6.4.1 Measurements

To measure the strength of the qubit-qubit coupling, the frequency of qubit C is measured

in two cases: qubit D is in its ground or excited state. This is achieved by measuring

Rabi oscillations of qubit C as a function of the detuning ∆C as it is shown in Figure

6.10. Since the e�ective Rabi frequency is Ω′C =
√

Ω2
C + ∆2

C with the Rabi frequency

ΩC , the qubit’s frequency is the value with the slowest Rabi oscillations. This frequency

is marked in Figure 6.10 by a white dotted line. Figure 6.10 (a) shows Rabi oscillations on

qubit C is in its ground state. Figure 6.10 (b) shows the case for D in its �rst excited state.

It is clear, that the qubit frequency shifts by ∆f = 9.5 MHz when D is excited.

In order to calculate the qubit-qubit coupling strength from the shift ∆f , the complete

two-qubit Hamiltonian is needed:

Ĥ = ĤC + ĤD + Ĥint. (6.1)

Ĥ consists of each single qubit-resonator Hamiltonian for coaxmon C and D plus the inter-

action term Ĥint, that includes the qubit-qubit interaction as well as potential resonator-

resonator and cross qubit-resonator interactions. Here, only the qubit-qubit interaction

is considered, which is

Ĥint = J~(σ̂+
C σ̂
−
D + σ̂−C σ̂

+
D) (6.2)

with the qubit-qubit interaction strength J. Analogously to Equation 3.8, diagonalizing

and applying rotating wave approximation allows one to rewrite this Hamiltonian

Ĥ ′ =
ω′C
2
σ̂zCI +

ω′D
2
Iσ̂zD +

J2

∆CD

σ̂zC σ̂
z
D (6.3)
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Figure 6.10: Rabi measurements on coaxmon C for di�erent detunings ∆C to qubit C
with a) qubit D in its ground state b) qubits D excited. The qubit’s frequency shifts by
9.5 MHz.

with the two renormalized qubit frequencies ω′i, their coupling J and the qubit-qubit

detuning ∆CD. Here, the �rst operator in each term acts on the �rst qubit and the second

on qubit two respectively. Analogue to the χ-shift measurement of the resonator, the

frequency of qubit one shifts by 2J2/∆CD when the the second qubit is excited in contrast

to when it is in its ground state. This refers to the measurement presented in Figure 6.10

where a shift of ∆f = 9.5 MHz in the Rabi frequency. Given that ∆CD = 244 MHz the

corresponding qubit-qubit coupling strength results in J =
√

(∆CD∆f)/2 = 34 MHz.

Another aspect that should be mentioned in this context is the drastic damping in the

measurement signal for increasing detunings. This is unusual and so far this is the only

device exhibiting this behaviour. No explanation has been found yet.

6.4.2 Comparison to Simulation

Comparing the experimental value for the qubit-qubit coupling of J = 34 MHz to the

aimed value of 18 MHz shows, that in the experiment the coupling is about twice as

strong. The discrepancy could result from an inaccuracy of the capacitance values used

in the lumped element model to calculate J. Since the capacitances are simulated to an

accuracy of 1% and since the resonator-qubit coupling strength in the network analysis

in Section 4.8 gives a result of only 5.5% o� the experimental value, the estimation of
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CHAPTER 6. EXPERIMENTS ON THE COUPLED COAXMONS

capacitance values are assumed to not be the source of this error. Another error source

could be the Lumped Element Model (LEM) itself. The model calculates all values solely

based on static �eld simulations. In this model, any inductive couplings that increase the

real value for J are neglected. However, when comparing the lumped element model for

the single coaxmon in Section 4.9, the resonator-qubit coupling is indeed smaller than the

experimental one but only by 10% and not 50% as it is the case for J here. Nevertheless, it

is possible that the qubit-qubit inductive coupling is underestimated and are comparable

to the capacitive coupling. However, this is still an assumption. At the moment a second

set of coupled coaxmons on a new chip is currently being measured. Here, the same

geometry of capacitances results in a J of 11 MHz. The question is what the di�erence

between this new device and the �rst device with coaxmon C and D is. Apart from

slightly di�erent frequencies and a di�erent detuning, the qubit transitions in the new

device are further apart. Due to this, the hypothesis is that the experimental measured J

for coaxmon C and D is increased because that transitions are close. When driving Rabi

on coaxmon C while D is excited, indeed D can decay and excite fC12 and thus couple both

coaxmons. The same is true the other way around. When coaxmon C is excited, and Rabi

oscillations are driven on coaxmon D at high enough power, coaxmon C might be driven

simultaneously into its second excited state. This additional coupling could explain the

discrepancy in J between simulation and experiment. In future experiments, where all

qubit frequencies are well separated, this deviation should not be a problem anymore.

6.5 Selectivity

The selectivity S of a multi-qubit device refers to how well one qubit can be driven

through its own port without driving the surrounding qubits as well. The ratio of the

voltage drop across the neighbouring qubit divided by the drop across the intentionally

driven qubit is the selectivity. Hence, the lower S the better a qubit can be driven without

interfering with the others. In this Section, the selectivities of the coupled as well as

the uncoupled qubits on the sapphire chip as depicted in Figure 6.2 are measured and

compared to simulation results.
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Figure 6.11: Rabi oscillation amplitude as a function of Rabi frequency on qubit D through
the di�erent qubit ports A, B, C and D.

6.5.1 The Experiment

To determine the selectivity for the four qubit device as shown in Figure 6.2, Rabi oscilla-

tions on each qubit were driven through all qubit ports at di�erent drive strengths. For

example, qubit D was driven through its own qubit port with a driving strength ranging

from −40 dBm to 0 dBm in steps of 10 dBm. Since the Rabi frequency is Ω = ~E · ~d/~,

where ~E is the applied electric �eld and ~d the qubit dipole moment, Ω is proportional to

the amplitude of the driving �eld. The Rabi frequency is measured for driving qubit D

through all four ports as a function of amplitude and the result is plotted in Figure 6.11.

The data is �tted to the model A = k · fRabi and results in a Table for kij :

kij A B C D

A 12.9 1030 1810 1260

B 99.0 11.3 931 2510

C 1780 905 14.4 422

D 862 2250 85.5 14.5

(6.4)

where i is the driven qubit and j is the driving qubit port with i, j = A,B,C,D. Ratios

of these determined k-values refer to the ratio of amplitudes to drive the same Rabi

oscillations on the driven qubit. This is exactly, what selectivity means. De�ning the drive
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CHAPTER 6. EXPERIMENTS ON THE COUPLED COAXMONS

of one qubit through its own port as 100% selectivity, the ratio of k-values Sij = kii/kij

then refers to the percentage of amplitude that is needed to achieve the same Rabi

oscillations frequency.
Sij A B C D

A 100 1.3 0.72 1.00

B 11 100 1.2 0.45

C 0.81 1.6 100 3.4

D 1.70 0.64 17 100

(6.5)

Partially, the selectivity might depend on the fact that the ports couple with di�erent

strengths to their own port. Their distance to the qubits is critical and their distances

might not be set very accurate. Therefore, the coupling Cij of each port to any qubit

can be calculated as Cij = kjj/kii where the coupling to the own port is normalized to 1.

This can then be taken into account into the selectivity calculation.

Cij A B C D

A 1.00 0.88 1.11 1.12

B 1.14 1.00 1.27 1.28

C 0.90 0.79 1.00 1.01

D 0.89 0.78 0.99 1.00

(6.6)

Now, the port coupling can be taken into account when calculating the scaled selectivity

with Sscaled
ij = Cij · Sij

Sscaled
ij A B C D

A 100 1.10 0.79 1.20

B 13 100 1.50 0.58

C 0.73 1.3 100 3.4

D 1.5 0.5 17 100

(6.7)

From this, it can for example be concluded that the uncoupled pair AC(CA) exhibits a

selectivity of 0.79% (0.73%) and the pair BD(DB) 0.5%(0.58%). Strangely, the diagonal pairs,
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which are separated further apart, show a slightly higher selectivity of 1.2-1.5%. The

coupled pairs AB(BA) and CD(DC) show a asymmetric selectivity behaviour of 1.10%(13%)

and CD(DC) even 3.4%(17%). These results are discussed in comparison to experiment in

the following Section.

6.5.2 Comparison to Simulation

The simulation predictions to compare to the selectivity Table 6.7 are listed in Table

5.8. In all cases, the measured selectivity is greater than in simulation. Whereas all

uncoupled pairs show a relative symmetric behaviour, the coupled pairs cleary do not.

For example, the pair CD in one way exhibits a selectivity of 17% and in the other

only 3.4%. This strongly leads to the conclusion, that the selectivity measurement is

a�ected by the Cross-Resonance drive. Indeed, when measuring the Rabi oscillations

on one qubit driven through another qubit’s port, this exactly equals driving of the

Cross-Resonance gate. Therefore, the second qubit’s frequency has to be applied to the

�rst qubit. Hence, when performing the selectivity measurements, the CR gate is driven

and this obviously increases the measured selectivity. To get the corrected value for the

selectivity which is only caused by the (non) selective qubit ports, the CR drive would

have to be subtracted from these measured values. This could be done, once the CR gate

is driven and characterised. Until then, the measured values for selectivity only give an

upper bound and do not mean that simulation values are underestimated.

6.6 Conclusion on the Experiments

At this point, a conclusion on the experiments performed on the coaxmons CD can be

made. The characterisation of the coupled coaxmon shows similar behaviour to the �rst

single coaxmon device as published in (Rahamim et al. [2017]) and appended to this

thesis. This shows that the fabrication of the coaxmon design is stable and well repeatable.

The �rst coupled measurements on intentionally coupled coaxmons are performed and

discussed. Unfortunately, it is impossible to realise the CR gate on the presented device,
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as the qubit transitions fC12 and fD01 are too close in frequency. A second set of coupled

coaxmons on a new chip is already fabricated, promises to exhibit the aimed value for

qubit-qubit detuning of 500 MHz and is currently being measured. As measurements of

this new device exceed the period of this Master’s thesis, the realisation of the CR gate on

a coupled coaxmon device cannot be demonstrated here. However, everything indicates

that a successful experiment can be performed if fabrication successfully realises the

design with the aimed parameters.
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7 Conclusion and Outlook

This thesis presents simulation and measurement of both single and coupled coaxial

superconducting qubits. The work has been carried out on the new coaxmon architecture,

which is simple to fabricate, exploits only capacitive coupling and implements qubit

control and readout entirely out of the plane of the qubit.

At �rst, the single coaxmon design is optimised and the corresponding single coaxmon

is fabricated, measured and the results are published in (Rahamim et al. [2017]) (see

appendix). Good agreement between HFSS simulations and experiments is achieved

and demonstrates the power of the black-box quantisation method. Using this theory,

predictions about device parameters before fabrication are possible, allowing for devices

with target parameters to be fabricated with con�dence. However, it must be said that

simulations are very time consuming. Many mesh re�nements are necessary to simulate

the resonator frequency and even when using the external cluster, the smallest possible

mesh is not enough to obtain the correct resonator frequency. Once the knowledge is

gained on how to use the mesh re�nements and on how to calibrate the simulation to

correct for this error, this method o�ers reliable predictions for optimising the device

properties. The second presented method, the lumped element model, allows one to

overcome the problem of long simulations since Ansys Maxwell solves static �elds

relatively fast. Comparison with experiment is found to be good, but not as accurate as

for the HFSS method. This is due to the solely static simulation and neglection of any

high frequency related interactions.

Following the single coaxmon characterisation, the thesis then focuses on the coupling

of two coaxmons. For this reason, a review on two-qubit gates is performed and the

Cross-Resonance (CR) gate is chosen as a suitable candidate. In order to gain knowledge

on how to realise the CR gate experimentally, simulations of this gate are performed.
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This enables choosing a set of desired qubit and resonator parameters. Exploiting the

lumped element model allows adjusting the additional qubit-qubit capacitance needed to

achieve the desired qubit-qubit coupling. Estimation of the selectivity below 2% for the

coupled coaxmon device con�rms the suitability of such a design for individual control

of qubits.

In addition, the very �rst coupled coaxmon is realised and measured. Measurements

show that this �rst device exhibits a problematic qubit energy level spacing to realise

the Cross-Resonance gate as both qubits have a transition similar to the same frequency.

Moreover, only an upper bound for the selectivity can be measured. A second coupled

coaxmon has subsequently been fabricated and still needs to be measured completely. If

fabrication has achieved the aimed qubit and resonator parameters on this device, the

Cross-Resonance gate should be demonstrated soon. Once realised, the gate can also

be optimised by applying cancellation pulses. The recent publications on the CR gate,

namely (Sheldon et al. [2016]) and (Kirchho� et al. [2017]), present several optimisation

procedures that can be tested in the future.

After a two-qubit gate is implemented in the coaxmon architecture, the next step is to

realise gates on more than two-qubit devices. In order to achieve this, several challenges

have to be faced. First of all, qubit lifetimes have to be increased with improvement in

fabrication and progress in material research. Secondly, a better control in fabrication is

needed to attain the desired qubit and resonator parameters. Lastly, when it comes to

large number of coupled coaxmons, the accidental degeneracy of qubit and resonator

frequencies becomes likely. As a long-term goal, the implementation of a tunable coupling,

for example using a tunable bus resonator as done in (McKay et al. [2016]), might come

of importance. Since the �eld of superconducting qubits is rapidly progressing, one may

expect that the stated di�culties to realise multi-coaxmon devices are overcome within

the next couple of years. In this context, this thesis provides two powerful tools that not

only can be exploited to design and optimise single- and two-qubit devices, but can also

be extended to design multi-qubit devices in the future.
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Double-sided coaxial circuit QED with out-of-plane wiring
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Superconducting circuits are well established as a strong candidate platform for the development of
quantum computing. In order to advance to a practically useful level, architectures are needed which
combine arrays of many qubits with selective qubit control and readout, without compromising on
coherence. Here, we present a coaxial circuit quantum electrodynamics architecture in which qubit and
resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided
by coaxial wiring running perpendicular to the chip plane. We present characterization measurements
of a fabricated device in good agreement with simulated parameters and demonstrating energy
relaxation and dephasing times of T1¼ 4.1 ls and T2¼ 5.7 ls, respectively. The architecture allows for
scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring
being out of the plane. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984299]

The realization of technological devices that harness
quantum superposition and entanglement to perform compu-
tational tasks that are difficult with classical computers is a
major research goal that may revolutionize computing.1

Superconducting circuits have advanced to become a strong
candidate platform for building such quantum computers,2

with recent demonstrations of circuit operation at the thresh-
old for fault tolerance,3 quantum error detection4,5 and cor-
rection,6 and rudimentary quantum simulations.7–9 While the
scale required for full fault tolerant universal quantum com-
putation is still far away,10 current devices are not far from
the complexity required for a demonstration of computation
that is beyond the reach of the best classical supercom-
puters.11 To reach beyond this scale (of order 50 qubits) in a
single monolithic quantum circuit, it is desirable to develop
circuit architectures that implement good connectivity
among arrays of many qubits, along with selective control
and readout wiring, without compromising on qubit coher-
ence. This is difficult to achieve if the circuit is constrained
to a single 2D plane, since the number of control and readout
connections scales linearly with the number of qubits N,
while the edges of a 2D array scale as

ffiffiffiffi
N
p

. This problem can
only be overcome by incorporating 3D connectivity.

The challenge of incorporating control wiring out of the
plane of a superconducting quantum circuit has been
approached so far from several directions. A recent proposal
suggests the use of through-chip microwave silicon vias, as
part of a monolithic architecture to implement the surface
code.12 Bump bonding between multiple circuit layers,13 and
spring-loaded microwave contacts14 are also under develop-
ment. Pursuing a modular (as opposed to monolithic) quan-
tum computing architecture is an alternative route, and some
promising steps have been made in this direction with super-
conducting circuits, through integration with high quality 3D
microwave resonators.15–17

In this letter, we present a single unit cell of an architec-
ture for quantum computing with superconducting circuits
that is simple to fabricate, requires no bonds, exploits only

capacitive couplings, and implements qubit control and read-
out entirely out of the plane of the qubit, without relying on
complex through-chip fabrication.18

By virtue of the out-of-plane readout and wiring elements,
the device may be physically scaled to large 2D qubit arrays
without any alteration to the wiring design. Additionally, the
double-sided structure and absence of wiring elements in the
circuit design avoids crowding on the chip, hence reducing
sources of crosstalk.

The device is depicted in Fig. 1. It consists of a super-
conducting charge qubit in the transmon regime19 with

FIG. 1. (a) CAD design of the unit cell, with transmon qubit and lumped ele-
ment resonator on opposing sides of a substrate, and control and measure-
ment ports perpendicular to the chip plane. (b) Designs of the transmon and
resonator. In the transmon, the two electrodes are connected by a single
Josephson junction, whereas the electrodes of the resonator are connected by
an inductor line. (c) Equivalent circuit of the device, showing the resonator
inductance and capacitance, LR and CR, the junction Josephson energy EJ,
and effective capacitance over the junction CR.

0003-6951/2017/110(22)/222602/4/$30.00 Published by AIP Publishing.110, 222602-1
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coaxial electrodes, which we call the coaxmon (similar to
the concentric20 and aperture16 transmons) coupled to a
lumped element LC microwave resonator fabricated on the
opposite side of the chip, realising dispersive circuit quantum
electrodynamics21 (QED). The device is controlled and mea-
sured via coaxial ports, perpendicular to the plane of the chip
[see Fig. 1(a)], whose distance from the chip can be modified
to change the external quality factor of the circuits. These
ports can be used for independent control of the qubit and
measurement of the resonator in reflection, or to measure the
device in transmission.

The device is fabricated through two stages of electron
beam lithography, patterning either side of a 0.5 mm thick
sapphire chip with an aluminum LC resonator and coaxmon.
During fabrication, the bottom of the chip is protected with a
spin-coated layer of polymer resist, and chip holders are used
to ensure the bottom of the device is suspended throughout.
The process could be further improved in the future by pro-
ducing the LC resonators with photolithography, thus enabling
batch production of devices that only require one electron-
beam step. The device is then mounted in an aluminum sam-
ple holder and thermally anchored to the 10 mK base plate of
a dilution refrigerator. The control and measurement ports
consist of copper-beryllium wire passing through a cylindrical
hole in the sample holder, soldered to the center conductor of
a microwave connector in order to connect to external micro-
wave wiring. In this experiment, the distance from the qubi-
t(resonator) to the control(measurement) port is 0.6(0.4) mm.
The device is embedded in a standard circuit QED measure-
ment setup, in which input signals are heavily cryogenically
attenuated (by approximately 70 dB) to reduce thermal noise,
and measurements are made via cryogenic circulators and a
low noise HEMT amplifier, the signal finally being recorded
as a voltage VADC with an analog-to-digital converter (ADC).

We first measure the device transmission spectrum S21 at
a low drive power of Pr¼ –50 dBm, finding the Lorentzian
response of the LC resonator22 at fr0¼ 10.23 GHz, with qual-
ity factor Q¼ 2080 [see Fig. 2(a)]. Far from resonance, S21

remains 30 dB below the LC resonance over the 8–12 GHz
measurement bandwidth. We next fix the measurement drive
at the LC resonance, and add an additional drive at frequency
fdq to port 1, to carry out spectroscopy of the qubit using the
dispersive qubit state-dependent frequency shift of the LC res-
onator.23 The spectroscopy is carried out with an 8 ls drive
pulse immediately followed by an 8 ls measurement pulse at
frequency fr0 and power Pr¼ –35 dBm, averaging the data 106

times. In Fig. 2(b), we show such spectroscopy at two differ-
ent drive powers. At low drive power PL¼ –45 dBm, we
observe only the qubit transition at f01¼ 7.23 GHz, whereas at
higher power PH¼ –5 dBm, we observe two additional spec-
tral lines below f01, as expected of a transmon qubit. We
observe a two-photon transition at f02/2¼ 7.08 GHz and a
three-photon transition at f03/3¼ 6.93 GHz to higher energy
levels of the transmon, as illustrated in the inset of Fig. 2(b).
Note that the broadening of the f01 peak at the higher drive
power originates from strong Rabi driving of the transition.
From these parameters, we calculate a detuning between qubit
and resonator of D0/(2p)¼ –3.00 GHz, Josephson energy EJ/
h¼ 24.1 GHz, charging energy EC/h¼ 294 MHz, and EJ/
EC¼ 81.8.

We next characterize the interaction between qubit and
resonator by measuring the qubit-state-dependent resonator
frequency shift v. In order to do this, we repeat the transmis-
sion measurement of the LC resonance after preparing the
qubit in its first excited state prior to a measurement pulse
[see Fig. 2(a), orange curve]. The resonance is seen to shift
from fr0 to fr1¼ 10.217 GHz. In addition to the shifted peak at
fr1, a residual peak at fr0 is also visible due to the excited state
population partly decaying during the measurement pulse.
The response is fitted to the weighted sum of two Lorentzians
in the complex plane, from which we extract the dispersive
shift of the resonator 2v/(2p)¼ fr0 – fr1¼ –12.68 MHz. We
then use this to derive the qubit-resonator coupling g/
(2p)¼ 462 MHz from the relation

v " # g2 EC=!hð Þ
D0 D0 # EC=!hð Þð Þ ; (1)

valid for a transmon in the dispersive regime.19 Since our
implementation of cQED consists entirely of lumped ele-
ments, we can calculate the expected parameters using a finite
element electrostatic simulation (Ansys Maxwell) of the cir-
cuit. The circuit representation can be quantized to give
expressions for the qubit and resonator frequencies, f01 and
fr0, and the coupling g between them, as a function of the
capacitance network, as well as the resonator inductance LR

and Josephson energy EJ which we match to the experimen-
tally measured values. Such a simulation predicts a coupling
g/2p" 420 MHz. The discrepancy between the estimated and
measured value may be due to the use of a static solver,
which neglects any inductive coupling in the circuit. We have

FIG. 2. (a) Resonator spectroscopy in the low photon number limit !n & 1.
Transmitted signal amplitude at the ADC measured with a 1 ls pulse at fd,
with (orange) and without (blue) a p-pulse applied to the qubit immediately
prior to the measurement pulse (pulse scheme inset). The data (circles) are
fitted (solid lines) as described in the main text. (b) Pulsed qubit spectros-
copy for two different qubit drive powers. At –45 dBm only the
f01¼ 7.23 GHz transition is visible. At a drive of –5 dBm, two multi-photon
transition frequencies f02/2 and f03/3 become visible and the f01 is broadened.
Inset: the energy level diagram of a transmon qubit illustrating the multi-
photon transitions.
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also used this model to simulate the coupling between control
(measurement) port and qubit (resonator), and its dependence
on the displacement of the port axis from the qubit and reso-
nator centers. We find that for the circuit geometry presented
here, the coupling falls to '5% at a displacement of 1 mm,
indicating that good selectivity should be achievable between
control and measurement signals in adjacent cells in a grid of
multiple qubits.

We now move on to time resolved qubit measurements
which are performed by measuring the resonator in reflection
on port 2 and applying qubit drive pulses to port 1. In
Fig. 3(a) we first show Rabi oscillations of the qubit state,
measured by first applying a short microwave pulse of length
s to the qubit in its ground state at frequency f01, followed by
a resonator readout pulse of length 16 ls and frequency fr0 at
a low photon number. The population P1 of the qubit excited
state j1i is recovered from the weighted integral of the reso-
nator response by comparing it to the integral of simulated
Cavity-Bloch traces24 using parameters independently deter-
mined by the other characterization experiments, and includ-
ing a correction to take into account interference with the
directly reflected measurement pulse.

We determine the qubit relaxation time T1¼ 4.10 ls and
phase coherence time T2¼ 5.65 ls using standard techniques
[see Figs. 3(b) and 3(c)]. A spin echo pulse sequence reveals
an extended T2E¼ 6.67 ls. To further evaluate the perfor-
mance of the device, we perform Clifford-based randomized
benchmarking and find the average fidelities of primitive
gates to be 99.5% using half-DRAG pulses.25 We also deter-
mine an upper bound for the qubit temperature by measuring
the amplitude of Rabi oscillations on the f12 transition both

with and without an initial p-pulse on the f01 transition.26 We
find the qubit temperature to be Tq( 70 mK corresponding
to an initial ground state population of P0) 99.3%. Hence,
our single-qubit unit cell displays promising performance for
an initial demonstration.

We have presented a double-sided coaxial implementa-
tion of circuit QED. We summarize the device parameters in
Table I. We anticipate this architecture to be easily extend-
able to arrays of nearest-neighbor coupled qubits by virtue of
the out-of-plane readout and control wiring, and so will be a
good candidate architecture for the next generation of multi-
qubit devices for quantum simulation and computation.
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