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Quantum statistics have a profound impact on the properties of systems composed of identical particles.
At the most elementary level, Bose and Fermi quantum statistics differ in the exchange phase, either 0
or π, which the wave function acquires when two identical particles are exchanged. In this Letter, we
demonstrate that the exchange phase can be directly probed with a pair of massive particles by physically
exchanging their positions. We present two protocols where the particles always remain spatially well
separated, thus ensuring that the exchange contribution to their interaction energy is negligible and that the
detected signal can only be attributed to the exchange symmetry of the wave function. We discuss possible
implementations with a pair of trapped atoms or ions.
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The symmetrization postulate of quantum mechanics
asserts that thewave function of a systemof identical particles
is either completely symmetric or antisymmetric under
particle exchange [1]. A plethora of physical phenomena
observed in experiments investigating atoms, molecules, and
solids, as well as the statistical properties of light supports
the (anti)symmetrization requirement. While more general
quantum statistics [2] are in principle conceivable, they seem
not to be realized by elementary particles in nature [3].
The influence of the wave function symmetry has been

spectacularly demonstrated in few-particle systems with
Hong-Ou-Mandel-like interference experiments [4–8], and
in many-body systems with ultracold quantum gases [9].
Spectroscopic experiments have also tested the symmetri-
zation postulate for massive particles [10–14] and for
photons [15,16] with high precision. Recently, exchange
interactions have been applied in engineered quantum
systems for entangling pairs of atoms or electrons [17–20].
At the most elementary level, the wave function sym-

metry manifests itself when two identical particles are
exchanged in position [Fig. 1(a)]: Their state acquires an
exchange phase φex, which is 0 for bosons but π for
fermions. Exchange of identical particles can naturally
occur in molecules where identical, distant nuclei may be
interchanged as a result of a rotation [21]. Prior experi-
ments [10–14] have exploited this naturally occurring
exchange of identical particles to show that only certain
rotational states are permitted by the symmetrization
postulate. However, a direct interferometric measurement
of the exchange phase φex has never been attempted. In this
Letter, we propose to use the high controllability of trapped
atoms or ions for a direct measurement of this phase. To this
end, we devise experiments where the two-particle wave
function is superposed with the wave function of the same

particles having swapped positions. We further request that,
if the interferometric sequence is interrupted at any time,
the two particles are always found at distant positions. This
condition of vanishing overlap between the two particles
ensures that the interference signal depends only on the
wave function symmetry.
Figure 1(b) schematically illustrates the general inter-

ferometric scheme we envision for detecting φex: Initially,
two identical particles are tightly localized by a confining
potential so that their wave functions have vanishing overlap.

FIG. 1. Detection of the wave function symmetry in a two-
particle interference experiment. (a) Exchanging two identical
particles multiplies the wave function by a global phase factor
eiφex ¼ �1, which—without a reference state—is not observable.
Dynamical and geometrical phases are assumed to vanish. (b) By
splitting the wave function into a reference path and another
path for which the particles’ positions are switched, φex can be
detected by correlation measurements after recombining the two
paths. The interference signal is controlled by an additional phase
φ, induced by a potential or by the geometry.
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Wave function symmetrization plays no role in the descrip-
tion of the initial state since the particles are initially
distinguishable by their positions. Next, by modifying the
confining potential, the two-particle wave function is split
into two parts, a reference state and a state for which the
positions of the particles are subsequently swapped. In the
final steps, the two parts of thewave function are recombined
and two-particle interference is measured.
The scenario sketched in Fig. 1(b) bears a close resem-

blance to Hanbury Brown–Twiss [22] and Hong-Ou-Mandel
[4] experiments. However, instead of measuring (anti)
bunching of particles as in the majority of these experiments,
we will focus on schemes where the two particles are
measured at distant sites and interference is detected by
correlating the internal or motional states of the atoms.
We present two conceptual ways of realizing the

exchange of particles and discuss possible experimental
implementations: (A) A state-dependent potential trans-
ports particles in a way that depends on their internal states;
(B) a state-independent potential confining the atoms is
adiabatically transformed. Simultaneously, long-range
repulsive interactions such as the Coulomb force between
a pair of charged particles correlate the atom motion in the
potential by keeping them apart.
Protocol A: state-dependent transport.—We consider a

pair of bosonic or fermionic atoms with two long-lived
internal states labelled j↑i and j↓i. Initially, one atom is
prepared at site S1 and the other at site S2, and both of them in
the same internal state j↑i. Their state reads a†S1;↑a

†
S2;↑

j0i,
where a†Si;s are the creation operators for the site Si and
pseudospin state jsi. We assume that the spatial wave
functions ψSiðrÞ ¼ hr; sja†Si;sj0i of the two atoms do not
overlap. A π=2 spin rotation pulse subsequently mixes the
internal states and puts the two atoms in a superposition of
even- and odd-spin-parity states, ðjΨeveni − jΨoddiÞ=

ffiffiffi
2

p
,

defined by

jΨeveni ¼ 2−1=2
�
a†S1;↑a

†
S2;↑

þ a†S1;↓a
†
S2;↓

�
j0i; ð1Þ

jΨoddi ¼ 2−1=2
�
a†S1;↑a

†
S2;↓

þ a†S1;↓a
†
S2;↑

�
j0i: ð2Þ

Crucially, a physical transport operation conditionally
switches the positions of the atoms if they are in, say, j↑i,
while it maintains them at the original location if they are
in j↓i,

a†S1;↑ → a†S2;↑; a
†
S2;↑

→ a†S1;↑; a
†
Si;↓

→ eiφ=2a†Si;↓; ð3Þ
where we also allow for a precisely adjustable dynamical
phase φ acquired during the process. To ensure vanishing
exchange interactions, the exchange process must be realized
such that ψSiðr; tÞ remain disjoint for all times t, i.e.,
ψS1ðr; tÞψS2ðr; tÞ ¼ 0.
The evolution of jΨeveni under the transformation in

Eq. (3) realizes the situation sketched in Fig. 1(b). The

correspondence is apparent once the different terms are
reordered according to the commutation rules a†S1;sa

†
S2;s

¼
eiφexa†S2;sa

†
S1;s

, yielding

jΨeveni →
1ffiffiffi
2

p
�
eiφexa†S1;↑a

†
S2;↑

þ eiφa†S1;↓a
†
S2;↓

�
j0i: ð4Þ

Thus, the exchange phase φex now appears in the descrip-
tion of the internal state as a relative phase, which can be
detected by correlating local measurements of the particles’
internal state [23]: after applying a second π=2 spin rotation
pulse, the expectation value of the spin parity operator Π
[24] yields hΠi ¼ cosðφ − φexÞ. Recording Π for different
values of φ allows one to measure φex. The evolution of
jΨoddi is different, though, and leads to a state with two
atoms in the same location, where the exchange phase
(as well as the dynamical phase) has no influence on spin
correlations between the two particles. If not discarded
through postselection, these events would halve the vis-
ibility of the parity signal. If state jΨeveni is directly
prepared using an entangling scheme for distant particles,
see Refs. [25,26], full visibility of the spin-parity fringe can
be ideally obtained without postselection.
Implementation with a pair of neutral atoms in an optical

lattice.—Protocol A can be realized using a pair of distant
neutral atoms that are transported in spin-dependent optical
lattices [27–30]; other forms of state-dependent transport
with microwave-dressed potentials in atom chips [31] or
with spin-dependent optical tweezers are also conceivable.
We propose a two-particle Ramsey interferometer as is

shown in Fig. 2, which, instead of probing first-order
coherence, detects second-order coherence revealing φex:
A pair of atoms is initially prepared in well-separated lattice
sites, denoted L1 and R1, with their pseudospin states in
j↑ij↑i. The lattice depth is chosen sufficiently high to
suppress tunneling to neighboring sites [29]. Importantly,
both atoms must be cooled to the lowest vibrational state of
their respective lattice potential well [30,32,33], in order to
make them indistinguishable in the motional degree of
freedom, see Supplemental Material [34]. The first π=2
Ramsey pulse puts both atoms in a superposition of j↑i
and j↓i states. Subsequently, each atom is split in space and
transported conditioned upon its pseudospin state [30] to both
end sites L2 and R2. Each shift operation can be performed
fast on the time scale of 10 μs per lattice site [29]. In
particular, polarization-synthesized optical lattices [30] allow
one to state-dependently transport atoms in a single operation
over few tens of lattice sites,while at the end leaving the atoms
in the lowest vibrational state [38]. Finally, the second π=2
Ramsey pulse erases the information about which way the
atoms traveled to reach the end sites. Focusing our attention
on atoms detected at distant sites [39,40], local spin mea-
surements yield an equal probability to find j↑i or j↓i,
meaning that each atom probed individually is found in a
statistical mixture of both spin states. However, a parity
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measurement of the spin state [24] yields nontrivial
correlations, showing, for example, perfect spin alignment
for bosonic and antialignment for fermionic atoms. An
interference fringe can be recorded by precisely adjusting
the phase difference φ between the outermost and inner-
most paths, for example, by controlling the relative phase
of the position-dependent [34] pulse acting at sites L3 and
R3. With 90% of atoms prepared in the lowest vibrational
state, we expect a visibility of the spin parity signal of
≈80% [34]. Note that while the Ramsey scheme in Fig. 2
preserves the connectedness of the abstract protocol
sketched in Fig. 1(b), it is designed to be robust against
dephasing mechanisms. Stochastic dynamical phases
caused by fluctuating magnetic fields, magnetic field
gradients, and state-dependent transport operations cancel
out owing to time and space refocusing [34].
Remarkably, nontrivial correlations are predicted in the

proposed scheme even though the two particles have never
met nor interacted with each other. These correlations are
purely quantum and, as such, incompatible with a macro-
realistic worldview [44] where atoms travel either the
outermost or the innermost paths. Correlations from acci-
dental interactions between the two atoms at the intersec-
tion point in the center can be made vanishingly small by
increasing the transport velocity and by softening the
transverse confinement; in a two-dimensional scheme
using two-dimensional spin-dependent optical lattices
[45], interactions are completely avoided, see Ref. [34].
Conceptually, the closest analog to this scheme is the

Franson interferometer [46] suggested to test local
hidden-variable theories with two photons independently
emitted at consecutive times. However, here the massive
particles are “emitted” (namely, transported) simultaneously.

It also shares a resemblance with Fano’s interpretation [22]
of the Hanbury Brown–Twiss experiment, although here we
detect spin correlations instead of (anti)bunching of particles.
As a potential application, the proposed interference scheme
would allow one to test nonlocal correlations [47,48]
between macroscopically distant atoms [19]. We expect that
entangling atoms separated by macroscopic distances on the
scale of few thousands of lattice sites should be doable with
currently available technology [30].
Suitable atomic species for such experiments are dis-

cussed in detail in Ref. [34]: Rb [28] and Cs [29] for bosons,
and alkali-earth-like atoms [49] for fermions. Moreover,
aluminum is an attractive atomic species for a direct
comparison of the exchange phase of fermionic (26Al) and
bosonic (27Al) isotopes with the same experimental setup.
Protocol B: long-range interactions.—In the presence

of a confining potential, long-range repulsive interactions
turn two particles into a moleculelike quantum rotor. We
assume a potential that is strongly confining in one
dimension, effectively freezing out the rotor’s motion in
this direction, and that has a single minimum in the
orthogonal plane. As in the case of homonuclear diatomic
molecules, the symmetry of the spin state here also
controls the symmetry of the spatial wave function
ΨðθÞ of the rotor [50,51] with orientation angle θ in
the weakly confining plane. For clarity, we focus on the
case of fermionic particles. If the particles are prepared in,
for example, j↓ij↓i, the rotor’s wave function must
be antisymmetric, ΨðθÞ ¼ −Ψðθ þ πÞ, as sketched in
Fig. 3(a). Apart from that, the spin state plays no role
in this protocol in contrast to the previous one. Although
the wave function can be completely specified by limiting
the angle to a range of 0 ≤ θ < π, it is convenient to
represent it over the full range 0 ≤ θ < 2π.
We assume that the rotor is initially prepared in the ground

state of the potential Vðθ; t ¼ 0Þ ¼ V0 cos2 θ. If the initial
potential well located, e.g., at θ ¼ π=2 is adiabatically split
into a double well, the Gaussian wave packet of the ground
state will be transformed into an even superposition of wave
packets. By slowly separating the two minima of the double
well (and of the double well at θ ¼ 3π=2 as well), the wave
packets originating from opposite sides of the ring will
eventually meet and merge into a wave packet with uneven
parity. The final potential again consists of a single well,
but now located at θ ¼ π (or θ ¼ 2π). Importantly, for
spatial wave functions that are antisymmetric under particle
exchange, the adiabatic transport maps the even states of the
initial potential onto odd states of the final potential and vice
versa, whereas for spatially symmetric wave functions the
state’s parity is preserved. Because of this property, bosonic
and fermionic atoms can be distinguished by measuring
whether the parity of themotional state has changed at the end
of the adiabatic transport. The analysis of the rotor’s angular
motional state is equivalent to a correlation measurement of
local modes of motion of the two atoms.

FIG. 2. Two-atom Ramsey interferometer sequence probing
quantum statistics with two distant neutral atoms. A spin parity
measurement produces a two-atom Ramsey-like fringe, whose
phase depends on φex. To recombine the atoms, a position-
dependent π pulse [41–43] is applied to the outermost sites, L3,
R3, see Ref. [34]. The arrows indicate the spin state for the
different paths, n denotes the initial separation, and time is
expressed in units of shift operations. A two-dimensional variant
is presented in the Supplemental Material [34], which ensures
that the two atoms always stay far apart.
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Such a rigid ion rotor behaves similarly to homonuclear
diatomic molecules, where techniques such as pendular state
spectroscopy or rotational coherence spectroscopy reveal the
effect of the exchange symmetry on allowed rotational states.
In contrast, in the experiment proposed here, complete control
over the rotor enables exchanging the particles without
rotating their electronic wave function [21] and, most
importantly, a direct measurement of the exchange phase.
Implementation with a pair of trapped ions.—For the

realization of protocol B, we consider a linear radio-
frequency (rf) trap confining the ions in a harmonic
potential with oscillation frequencies ωx, ωy in the radial
directions and ωz in the axial direction. The difference
between the radial oscillation frequencies can be controlled
by a static voltage Udc. A pair of laser-cooled ions forms a
crystal in the radial plane if ωz > ωx;ωy. At the ions’
equilibrium positions, the trapping force is balanced by the
ions’ mutual Coulomb repulsion.
Because of the harmonic confinement, the ion dynamics

separates into the center-of-mass motion and the relative
motion r ¼ r1 − r2. The latter is governed by theHamiltonian

Hr ¼ −
ℏ2

2μ
∇2

r þ
μ

2
ðω2

xr2x þ ω2
yr2yÞ þ VcoulðrÞ;

where μ is the ions’ reducedmass and rx, ry are the transverse
components of r. Because of the micromotion of the ions in
the radial plane, one has to time average the Coulomb energy
over one period of the rf-driving field, leading to a modified
Coulomb potential

Vcoulðr⃗Þ ¼
e2

4πϵ0jr⃗j
�
1þ 3

16
q2cos2ð2θÞ

�

where q is the trap’s q parameter [52] and θ denotes the
orientation of the crystal in the radial plane (see Fig. 3(b) and
Ref. [34]). For the casewhereωx ¼ ωy, the asymmetry of the
micromotion lifts the rotational symmetry of the potential and
leads to two equivalent sets of equilibrium orientations of the
crystal under θ ¼ �π=4 [53,54].
This effect opens up the prospect of implementing

protocol B with a pair of ions by ramping Udc from
positive to negative voltages. The relative motion is
described by two normal modes, which we assume to be
cooled to the ground state. If initially Δω ¼ ωy − ωx > 0,
the ion crystal is aligned with the x axis [Fig. 3(b), top].
Lowering Δω by reducing Udc softens the normal mode
perpendicular to the crystal’s axis (the rocking mode) while
hardly affecting the other mode. At the critical value

Δωcrit ¼ 3
4
q2ω⊥, with ω⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

x þ ω2
yÞ=2

q
, the rocking

mode potential becomes quartic and subsequently splits
into a double well. The wells separate and move to
θ ¼ �π=4 when Udc becomes zero [Fig. 3(b), bottom,
and Fig. 3(c)]. At this point, the ion rotor is in a coherent
superposition of two perpendicular orientations. Ramping
Udc to negative values combines a different pair of wells
which will finally merge, resulting in an ion rotor oriented
along the y axis. In this way, the two possible paths of
rotating the ion rotor clockwise or counterclockwise
interfere, and a measurement by sideband spectroscopy
of the motional state [55] of the rocking mode reveals the
bosonic or fermionic character of the ions. For further
information, see Ref. [34].
The quantum coherence of the process can be checked by

initially preparing the internal state of the ions in a Bell state
ðj↑ij↓i þ eiϕj↓ij↑iÞ= ffiffiffi

2
p

. The phase ϕ controls the sym-
metry of the spatial wave function [56], which for the special
case ϕ ¼ 0 (π) is antisymmetric (symmetric). As a conse-
quence, this phase determines whether the protocol maps the
rocking mode’s state onto the ground or first excited state.
The experiment could be carried out with ion species like

the fermionic 40Caþ or the bosonic 43Caþ, for which ground
state cooling and Bell state generation are routinely done
[57,58]. A numerical simulation of the time-dependent
Schrödinger equation suggests that an adiabatic transfer is
achievable in less than 2 ms [34], much shorter than the time
scale on which heating of the relative ion motion occurs.
In the absence of imperfections, this protocol constitutes an

interferometer with completely symmetric arms. Therefore, it
should be immune against dynamical phases. A nonzero

(a) (b) (c)

FIG. 3. Trapped-ion protocol. (a) The two-ion wave function is
treated as a one-dimensional quantum rotor (shown for fermions
in the same internal state). An adiabatic transformation splits a
single-well (1) into a double well potential (3) that is sub-
sequently merged again into a single well, but at a different
position (5). In the case of fermions (bosons), the final state (5)
has opposite (same) parity as compared to that of the initial state
(1). (b) In the radial rf-quadrupolar potential of a linear trap, a
two-ion rotor (yellow spheres) can be aligned with the x axis by
dc voltages reducing the confinement along the x axis (top). For
zero dc voltage, the radial symmetry of the confining potential is
broken by the orientation of the micromotion (red arrows) with
respect to the rotor axis [34]. The rotor will align under an angle
θ ¼ �π=4with respect to the x axis (bottom). (c) Contour lines of
the time-averaged Coulomb and trapping potential as a function
of the relative position vector r for three different potentials.
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magnetic flux through the circle on which the ions move,
however, would lift the symmetry and give rise to a small, but
measurable geometric Aharonov-Bohm phase [59].
An experimental challenge is to suppress stray electric

field gradients, which, by breaking the symmetry of the
confining potential, would cause dynamical phases or even
compromise the process of splitting the minimum of the
potential into two. After compensation of such fields, it
should be possible to independently measure the remaining
dynamical phases (see Ref. [34]) in order to extract φex
from the measured signal.
The proposed protocol shows that quantum statistics can

become important for trapped ions [60] in experimentally
accessible parameter regimes. A quantum gate entangling
the pair of ions based solely on particle exchange could be
realized by first carrying out the protocol and then running it
backwards again after a suitable waiting time. Since triplet
and singlet states have different symmetry, and therefore are
transiently mapped to different motional states, they pick up
different phase factors. In this way, a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate could be

realized as used for solid-state quantum computing based
on exchange interactions [20,61,62] (and for linear-optical
quantum information processing [63]). The protocol could
even be applied to a pair of molecular ions. In addition, it
could lead to ion-based quantum sensors complementing
single-particle interferometry schemes based on structural
phase transitions [64,65].
Conclusions.—The proposed experiments show that the

exchange phase can be precisely measured with massive
particles. By ensuring that the particles’ wave functions
have vanishing overlap, a situation not encountered so far
in Hong-Ou-Mandel-like experiments [4–8,66,67], these
experiments would demonstrate the effect of exchanging
two identical particles at the most elementary level.
Moreover, the two protocols open novel perspectives for
entanglement generation and sensing applications based on
a pair of identical particles.
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