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Direct Observation of Tunneling and Nonlinear Self-Trapping
in a Single Bosonic Josephson Junction
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We report on the first realization of a single bosonic Josephson junction, implemented by two weakly
linked Bose-Einstein condensates in a double-well potential. In order to fully investigate the nonlinear
tunneling dynamics we measure the density distribution in situ and deduce the evolution of the relative
phase between the two condensates from interference fringes. Our results verify the predicted nonlinear
generalization of tunneling oscillations in superconducting and superfluid Josephson junctions.
Additionally, we confirm a novel nonlinear effect known as macroscopic quantum self-trapping, which
leads to the inhibition of large amplitude tunneling oscillations.
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FIG. 1 (color). Observation of the tunneling dynamics of two
weakly linked Bose-Einstein condensates in a symmetric
double-well potential as indicated in the schematics. The time
evolution of the population of the left and right potential well is
directly visible in the absorption images (19:4 �m� 10:2 �m).
The distance between the two wave packets is increased to
6:7 �m for imaging (see text). (a) Josephson oscillations are
observed when the initial population difference is chosen to be
below the critical value zC. (b) In the case of an initial population
difference greater than the critical value the population in the
potential minima is nearly stationary. This phenomenon is
known as macroscopic quantum self-trapping.
Tunneling through a barrier is a paradigm of quantum
mechanics and usually takes place on a nanoscopic scale.
A well known phenomenon based on tunneling is the
Josephson effect [1] between two macroscopic phase co-
herent wave functions. This effect has been observed in
different systems such as two superconductors separated
by a thin insulator [2] and two reservoirs of superfluid
helium connected by nanoscopic apertures [3,4]. In this
Letter we report on the first successful implementation of a
bosonic Josephson junction consisting of two weakly
coupled Bose-Einstein condensates in a macroscopic
double-well potential.

In contrast to all hitherto realized Josephson junctions in
superconductors and superfluids, in this new system the
interaction between the tunneling particles plays a crucial
role. This nonlinearity gives rise to new dynamical re-
gimes. Anharmonic Josephson oscillations are predicted
[5–7] if the initial population imbalance of the two wells is
below a critical value. The dynamics changes drastically
for initial population differences above the threshold of
macroscopic quantum self-trapping [8–10] where large
amplitude Josephson oscillations are inhibited. The two
different dynamical regimes have been experimentally in-
vestigated in the context of Josephson junction arrays [11–
13]. However, the small periodicity of the optical lattice
does not allow to resolve individual wells and thus the
dynamics between neighboring sites. Our experimental
implementation of a single weak link makes it possible
for the first time to directly observe the density distribution
of the tunneling particles in situ. Furthermore we measure
the evolution of the relative quantum mechanical phase
between both condensates by means of interference [14].

The experimentally observed time evolution of the
atomic density distribution in a symmetric bosonic
Josephson junction is shown in Fig. 1 for two different
initial population imbalances (depicted in the top graphs).
In Fig. 1(a) the initial population difference between the
two wells is chosen to be well below the self-trapping
05=95(1)=010402(4)$23.00 01040
threshold. Clearly nonlinear Josephson oscillations are
observed; i.e., the atoms tunnel right and left over time.
The period of the observed oscillation is 40(2) ms which is
much shorter than the tunneling period of approximately
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500 ms expected for noninteracting atoms in the realized
potential. This reveals the important role of the atom-atom
interaction in Josephson junction experiments with Bose-
Einstein condensates. A different manifestation of the
nonlinearity is shown in Fig. 1(b) exhibiting macroscopic
quantum self-trapping, which implies that the population
imbalance does not change over time within the experi-
mental errors. The only difference to the experiment shown
in Fig. 1(a) is that the initial population imbalance is above
the critical value.

The experimental setup and procedure to create the 87Rb
Bose-Einstein condensates is similar to that used in our
previous work [15]. A sufficiently precooled thermal cloud
is loaded into an optical dipole trap consisting of two
crossed, focussed laser beams and is subsequently evapo-
ratively cooled by lowering the light intensities. We pro-
duce pure condensates consisting of 1150� 150 atoms and
final trap frequencies of !x � 2�� 78�1� Hz, !y �

2�� 66�1� Hz, and !z � 2�� 90�1� Hz, with gravity
acting in the y direction. Subsequently we adiabatically
ramp-up a periodic one-dimensional light shift potential in
x direction to a depth of 2�� 412�20� Hz with periodicity
5:2�2� �m realized by a pair of laser beams at a wave-
length of 811 nm crossing at a relative angle of 9�. The
superposition of this periodic potential with the strong
harmonic confinement creates an effective double-well
potential in x direction with a barrier height of 2��
263�20� Hz, which splits the initial condensate into two
parts separated by 4:4�2� �m realizing a single weak link
(see schematics in Fig. 1).

The initial population difference between the left and
right component is obtained by loading the Bose-Einstein
condensate into an asymmetric double-well potential,
which is created by a displacement of the harmonic con-
finement with respect to the periodic potential. The asym-
metry can be adjusted by shifting the focussed laser beam
which realizes the harmonic confinement in x direction.
This is done by means of a piezo actuated mirror mount. A
relative shift of only 350 nm leads to a relative population
difference corresponding to the self-trapping threshold.
This demands high passive stability of the mechanical
setup and makes it necessary to actively stabilize the phase
of the periodic potential. With our setup we can adjust any
initial population imbalance with a standard deviation of
�z � 0:06. The Josephson dynamics is initiated at t � 0
by nonadiabatically (with respect to the tunneling dynam-
ics) changing the potential to a symmetric double well (see
schematics in Fig. 2). After a variable evolution time the
potential barrier is suddenly ramped-up and the harmonic
potential in x direction is switched off. This results in
dipole oscillations of the atomic clouds around two neigh-
boring minima of the periodic potential. Thus by imaging
at the time of maximum separation (1.5 ms) we can ob-
serve clearly distinct wave packets with a distance of
6:7�5� �m. The atomic density is deduced from absorption
images with a spatial resolution of 2:2�2� �m. In previ-
01040
ously reported realizations of Bose-Einstein condensates in
double-well potentials [16,17] the time scale of tunneling
dynamics was in the range of thousands of seconds. In
contrast, our small interwell distance combined with a
negligible thermal atomic fraction allows the realization
of tunneling times on the order of 50 ms, which makes the
direct observation of the nonlinear dynamics in a single
bosonic Josephson junction possible for the first time.

The physics of Josephson junctions is based on the
presence of two weakly coupled macroscopic wave func-
tions separated by a thin potential barrier. Insight into the
dynamics of the system can be gained by employing a two
mode approximation which characterizes the wave func-
tion by only two parameters, the fractional relative popu-
lation z � �Nl � Nr�=�Nl � Nr� and the quantum phase
difference � � �r ��l between the left (l) and right (r)
component. In this framework the resulting quantum dy-
namics in a symmetric double-well potential is described
by two coupled differential equations

_z � �
��������������
1� z2

p
sin� (1)

_� � �z�
z

��������������
1� z2

p cos�;

where � is proportional to the ratio of the on-site interac-
tion energy and the coupling matrix element given in [9].
These equations represent the nonlinear generalization of
the sinusoidal Josephson oscillations occurring in super-
conducting junctions. An intuitive understanding of the
rich dynamics of this system can be gained by considering
a descriptive mechanical analog. The equations given
above describe a classical nonrigid pendulum of tilt angle
�, angular momentum z, and a length proportional to��������������
1� z2

p
. In the following discussion we will only consider

the case of vanishing initial phase difference ��0� � 0. If
the initial population imbalance is below the critical value
[10] jz�0�j< zC (from our experimental results we deduce
zC 
 0:5 corresponding to � 
 15), Eq. (1) describes
oscillations in z and �. In the limit of jz�0�j � zC this
reduces to a harmonically oscillating mathematical pendu-
lum. In the context of Josephson junctions this behavior is
known as plasma oscillations. A different dynamical phe-
nomenon arises if the initial population imbalance is above
the critical value. This implies that the difference between
the two on-site interaction energies becomes larger than
the tunneling energy splitting [18]. In this case the relative
phase rapidly increases in time leading to a rapidly alter-
nating tunneling current according to Eq. (1). This results
in a population imbalance which performs small oscilla-
tions around the initial value (self-trapping, running phase
modes [10]).

In this case the population difference is self-locked to
the initial value and the relative phase is increasing mono-
tonically (running phase modes [10]). In the mechanical
analogue this critical imbalance corresponds to an initial
angular momentum sufficiently large that the pendulum
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reaches the top position and continues to rotate with a
nonvanishing angular momentum.

In order to fully characterize the evolution of the system
we measure not only the population imbalance but also the
relative phase of the macroscopic wave functions. This is
achieved by releasing the Bose-Einstein condensates from
the double-well potential after different evolution times.
After a time of flight of 5 ms in the Josephson and 8 ms in
the self-trapping regime the wave packets interfere, unveil-
ing the relative phase in a direct way since the resulting
atomic fringes are similar to a double slit diffraction
pattern.

In Fig. 2 we present the quantitative analysis of our
experimental results. The measured fractional population
imbalance and the relative phase in the regime of
Josephson oscillations �z�0� � 0:28�6�< zC
 are shown
in Fig. 2(a). As expected for a symmetric double-well
potential the relative population oscillates around its
mean value hzi � 0. The relative phase of the two Bose-
Einstein condensates oscillates with a finite amplitude of
� � 0:5�2�� around h�i � 0. The self-trapping regime
can be reached by simply increasing the initial asymmetry
of the double-well potential as indicated in the schematic
diagram in Fig. 2(b) realizing z�0� � 0:62�6�> zC. In this
case theory predicts that z exhibits only small amplitude
evolution time [ms]
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FIG. 2 (color online). Detailed analysis of the time dependence of
top graphs depict the experimental preparation scheme implemented
initiated at t � 0 by switching nonadiabatically to the symmetric
behavior of both the population imbalance and the relative phase in th
by numerically integrating the nonpolynomial Schrödinger equation
The shaded region shows the theoretically expected scattering of the d
for large evolution times due to different oscillation frequencies
representative atomic interference patterns obtained by integrating th
evolution times. In graph (b) the totally different dynamics in the reg
population imbalance exhibits no dynamics within the experimental
the phase is unbound and winds up over time. The error bars in th
uncertainty of the initial population imbalance.
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oscillations which never cross z � 0, i.e., hzi � 0.
Additionally, the relative phase � is unbound and is sup-
posed to wind up in time. In Fig. 2(b) these characteristics
of macroscopic quantum self-trapping are evident. The
population difference does not change over time within
the experimental errors and the phase increases monotoni-
cally. The initial deviation from the linear time dependence
of the phase is due to the finite response time of the piezo
actuated mirror.

The experimentally obtained results can be understood
quantitatively by going beyond the two mode model which
assumes stationary wave functions in the individual wells
which is only justified for Nl � Nr � 1000 atoms [8].
Therefore, we numerically integrate the nonpolynomial
Schrödinger equation [19] using the independently mea-
sured trap parameters and atom numbers. The calculations
also include the fact that the piezo actuated mirror initiat-
ing the Josephson dynamics reaches its final position only
after 7 ms. It is remarkable that all experimental findings
are in excellent quantitative agreement with our numerical
simulation without free parameters.

The distinction between the two dynamical regimes—
Josephson tunneling and macroscopic self-trapping—be-
comes very apparent in the phase-plane portrait of the
dynamical variables z and �. For our experimental situ-
evolution time [ms]
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the two dynamical variables z and � describing the system. The
to realize different initial atomic distributions. The dynamics is

double-well potential. Graph (a) shows the familiar oscillating
e Josephson regime. The solid lines represent the results obtained
, and are in excellent agreement with our experimental findings.
ata due to the uncertainties of the initial parameters and broadens
for different initial population imbalances. The insets depict

e absorption images along the y and z direction after the indicated
ime of macroscopic quantum self-trapping becomes obvious. The
errors and reveals the expected nonzero average hzi � 0. Clearly
e phase measurements denote statistical errors arising from the
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FIG. 3. Quantum phase-plane portrait for the bosonic
Josephson junction. In the regime of Josephson oscillations the
experimental data are represented with filled circles and in the
self-trapping regime with open circles. The shaded region, which
indicates the Josephson regime, and the solid lines are obtained
by solving the coupled differential Eq. (1) with our specific
experimental parameters. The two mode model explains the
observed z��� dependence reasonably in both dynamical re-
gimes. The error bars represent the statistical error and mainly
result from the high sensitivity of the relative phase on the initial
population imbalance especially for long evolution times.
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ation this is shown in Fig. 3 where we compare our results
with the prediction of the simple two mode model. From
our experimental observations the critical population im-
balance can be estimated to zC � 0:50�5�. In the frame-
work of the two mode model [10] this yields � � 15�3�.
The corresponding solutions of Eq. (1) are depicted with
solid lines. Clearly the basic features of the dynamics are
well captured by this approach. In the nonlinear Josephson
tunneling regime (z < zC) the dynamical variables follow a
closed phase-plane trajectory as predicted by the simple
model. Very recently a variable tunneling two mode model
has been discussed by Ananikian and Bergeman [20]
which is in quantitative agreement with our experimental
observations.

The successful experimental realization of weakly
coupled Bose-Einstein condensates adds a new tool to
quantum optics with interacting matter waves. It opens
up new avenues ranging from the generation of squeezed
atomic states [21] and entangled number states
(Schrödinger cat states) [22] to applications such as atom
interferometry [23]. Moreover, the detailed investigation of
the self-trapping phenomenon could provide a test of the
validity of the mean field description in atomic gases in the
strong nonlinear regime [24].
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