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Nonlinear dressed states at the miscibility-immiscibility threshold
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The dynamical evolution of spatial patterns in a complex system can reveal the underlying struc-
ture and stability of stationary states. As a model system we employ a two-component rubidium
Bose-Einstein condensate at the transition from miscible to immiscible with the additional control
of linear interconversion. Excellent agreement is found between the detailed experimental time
evolution and the corresponding numerical mean-field computations. Analysing the dynamics of
the system, we find clear indications of stationary states that we term nonlinear dressed states. A
steady state bifurcation analysis reveals a smooth connection of these states with dark-bright soliton
solutions of the integrable two-component Manakov model.

Bose-Einstein condensates have been established over
the past two decades as a prototypical testbed for ex-
citing developments ranging from nonlinear dynamics
and wave phenomena to superfluid features and quan-
tum phase transitions [IH5]. Especially two-component
ultracold gases are ideal for the study of the connection
of topological solutions of integrable systems and their
variants in the presence of different types of perturba-
tions.

The properties of multi-component Bose Einstein con-
densates have been studied in numerous contexts. In par-
ticular, early experimental efforts produced binary mix-
tures of two different hyperfine states of 23Na [6] and
of 8"Rb [7]. The progressively improving experimental
control has enabled detailed observations of phase sep-
aration phenomena and associated multi-component dy-
namics [8HI3]. More recently, the mixing-demixing dy-
namics has been controlled both in pseudo-spinor (two-
component) [14] and spinor systems [15] via external cou-
pling fields. As a result, formation of domain walls has
been observed. In these systems additional topological
excitations such as dark-bright solitons do exist. These
have been experimentally realized building on dynamical
instabilities present in the regime of two counterflowing
superfluids [I6]. The ability of phase imprinting offers
a controlled path for the generation of individual such
topological states [I7]. All these observations are ade-
quately captured by the mean-field description. Thus,
the well established integrable Manakov model [I§], i.e.
two nonlinearly interacting classical fields in one dimen-
sion at the miscibility-immiscibility threshold, forms a
basis for understanding the corresponding characteris-
tics. This model is also examined in other physical sys-
tems such as nonlinear polarization optics where multiple
dark-bright and dark-dark soliton solutions can be sys-
tematically constructed [19].
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FIG. 1: (Color online) Comparison of observed and numer-
ically calculated time dynamics of an elongated two compo-
nent condensate in the presence of a dressing field of different
amplitudes 2. The asymmetry in the intra-species scatter-
ing lengths pushes component |1) to the wings of the trap
for Q@ = 0. The trend reverses for Q = 27 x 6Hz. As Q
increases further, the amplitude of the oscillatory dynamics
decreases and in the large coupling limit the system is well
approximated by stationary dressed states.

Here, we study the nonlinear dynamics of a two-
component Bose gas at the transition from miscible to im-
miscible, arising through linear interconversion between
the two components. In particular, we utilize a Rabi cou-
pling between two hyperfine states of 8"Rb and identify
its significant impact on the dynamics as shown in Fig.
The comparison of experimental results with theoretical
predictions shows excellent agreement. A more system-
atic analysis discussed below reveals that these observa-
tions can be understood as a consequence of the presence



of stable nonlinear stationary states. These we will term
“nonlinear dressed states” (NDS). Additionally, this new
class of states is found to be interconnected as a function
of the linear coupling strength via a series of Hamilto-
nian saddle-node, as well as Hopf bifurcations [20]. A
key observation is that the resulting rich bifurcation dia-
gram connects the NDS with two previously studied lim-
its. For vanishing linear coupling we recover the sequence
of dark-bright solitonic states of the integrable Manakov
model [19] and in the limit of dominating interconversion
we identify the known dressed states in the homogeneous
miscible regime [21].

In our experiment we initially prepare the gas in a
product of single particle dressed states, i.e. an equal su-
perposition of the two components, for given Rabi cou-
pling strength characterized by €2. This is achieved by
realizing a fast 7/2 pulse with strong coupling and a
subsequent phase-adjusted driving (¢ = —m/2) at the
coupling strength of interest. It is important to note
that with this procedure the higher excited states of the
system are prepared. Fig. [1] illustrates the comparison
of the spatial dynamics for the two components, after a
quench to different values of 2. The theoretical dynam-
ics is based on the non-polynomial Schrédinger equation
(NPSE) [22]. This confirms the quantitative relevance of
utilizing the mean-field model in the regime under study
as a suitable tool for predicting the dynamics.

We observe that for {2 = 0, i.e. no linear coupling, com-
ponent |1) is pushed to the edge of the cloud. This results
from the fact that the repulsive interaction of compo-
nent |1) is larger than for the other component a;; > aso
([a11, a2z, a12] = [100.4,95.0,97.7]apon: |9, 23]); here,
azy represents the scattering length between the x, y com-
ponents. It is important to note that this is not due to
demixing dynamics resulting from an instability corre-
sponding to A < 1 [28] but has to be regarded as ener-
getic separation of the two components. For the exper-
iment described here, A = ajjasa/al, = 0.998(2) ~ 1.
This trend is reversed as € is increased, where the more
strongly interacting component |1) is compressed dur-
ing the dynamics initiated by the quench (see Fig. [1] for
1 = 27 x 6 Hz). This is a consequence of the finite size of
the system and is well captured by the numerical calcu-
lations. For higher values of linear coupling we observe
faster oscillatory dynamics which on average is reminis-
cent of the strongly dressed state regime [21] reported in
the context of miscibility control by linear interconver-
sion [14].

Before bringing these results into a more general con-
text we briefly discuss the experimental and numerical
methods used to monitor the system at hand. We cre-
ate a Bose-Einstein condensate of 5600 8"Rb atoms in
an elongated optical dipole trap with a longitudinal trap
frequency w, = 27 x 23.4Hz and a transverse confine-
ment of w; = 27 x 490Hz. The atoms are initially in
state |[1) = |F = 1,mpr = —1) of the ground state hy-

perfine manifold and can be linearly coupled to state
|2) = |F = 2,mp = 1) via two-photon microwave and
radio frequency radiation. The detuning from the inter-
mediate |2,0) level is —27 x 200 kHz. A fast Qr = /2
pulse with Q = 27 x 600 Hz creates a spatially homoge-
neous equal superposition of the two states. Within 5 us
the phase of the coupling field is changed by —m/2 and
the amplitude is reduced to realize coupling strengths €2
in the range of 2 x 0...60 Hz. The magnetic field value
of B = 3.23 G is chosen such that the differential Zeeman
shift of states |1) and |2) is equal to second order and the
influence of magnetic field fluctuations is minimized. The
mean field shift due to the different intra-species scatter-
ing lengths a1; # aso is compensated with a detuning
of 6 = —2m x 16 Hz. The time evolution is obtained by
repeating this procedure and detecting the atomic clouds
after different evolution times past the initial 7/2 pulse
using state-selective absorption imaging with a spatial
resolution of 1.1 pm.

Our quantitative theoretical analysis is based on both
a study of the system’s time evolution and on the ex-
ploration of its stationary states and their Bogoliubov-
de Gennes stability analysis. The time evolution of
the linearly coupled atomic clouds is performed via the
NPSE [22]. The simulation is initialized with the mean
field ground state of N = 5600 atoms in state |1) cal-
culated via a Newton scheme. It subsequently replicates
the experimental procedure described above. For the dy-
namical evolution in Figure [I} we have also incorporated
in the NPSE two- and three-body losses where the most
important contribution comes from the spin relaxation
loss of F' = 2.
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FIG. 2: (Color online) Stationary states in the presence of
a linear coupling field, exhibiting an intriguing cascade of
branches. The right columns show the theoretically obtained
density profiles for the two components |1) (blue) and |2)
(green) for five characteristic values corresponding to the pa-
rameters of Fig. [T}

To shed light on the complex sequence of dynamical



features observed for different values of €2, we proceed
to compute the stationary states of the coupled NPSE
system in Fig.[2] These are obtained by means of a fixed
point (Newton) method, capable of also capturing dy-
namically unstable states, a feature critical to our dis-
cussion below. The stationary solutions are constructed
by means of a small change to the parameter €2, using
the previously converged stationary state as a seed. This
parametric continuation approach reveals a sequence of
branches which appear to be disconnected from each
other, as can be seen in Fig.[2] These form part of a pro-
gression whereby an increasing number of spatial density
modulations (and number of maxima) of each component
is present in each higher branch; see Fig. b). Notice, in
particular, how component |2) evolves from single hump
for vanishing  (top panel of Fig. b)) to double and
multi-humped as 2 is increasing.

We now show that these stationary states are inti-
mately connected to the averaging of the experimental
and numerical dynamical observations, as is illustrated
in Fig. 3] For comparison, the population differences of
the components are averaged over the respective period
of the temporal evolution. Fig. a) represents the ex-
perimental observations, panel (b) the direct numerical
time dynamics (via the NPSE) while panel (c) depicts the
corresponding stationary stable nonlinear dressed states;
see also the discussion below. We find excellent agree-
ment between time-averaged NPSE and the stationary
NDS state predictions. Describing the observed dynam-
ics as interference of different stationary states at the
same (2 with different chemical potential, we expect that
the averaging reveals the strongest populated state. In
our preparation procedure of a smooth density distribu-
tion, this is given by the stable nonlinear dressed states.

In accordance with bifurcation theory, the depicted
endpoints for our stationary solutions (see Fig.[2]) cannot
be isolated, but rather have to be continued. To reveal
this structure we utilize the method of pseudo-arclength
continuation [24] enabling the following of the branches
around these apparent endpoints. For this analysis we
employed the one dimensional Gross-Pitaevskii equation
to facilitate the stability computations, yet the qualita-
tive observations reported below are unaffected by this.
Corresponding results including the spatial profile at se-
lected points along one branch are shown in Fig. [d This
illustrates that the nonlinear dressed states are smoothly
connected to solutions of the dark-bright soliton type for
vanishing 2 that are known to exist in the context of
the Manakov model [I9]. The depicted branch connects
the state consisting of eight topological excitations to the
one with ten; similar features arise for lower, as well as
for higher branches (with corresponding soliton multi-
plicities). The symmetry of our initial guess selects the
states with an even number of excitations. The observed
pattern in the experiment corresponds to the segment of
the branch between the panels 2 and 3 in Fig. [d] The
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FIG. 3: (Color online) Detailed comparison of the time-
averaged density difference profiles with the stationary states.
We extract the time averaged density profiles from the ex-
perimentally observed dynamics shown in Fig. The same
procedure is repeated for the numerical simulations and com-
pared to the stationary states from Fig. 2] for the respective
values of 2. The agreement reveals that the time averaged
profiles are accurately captured by the corresponding station-
ary nonlinear dressed states.

numerical Bogoliubov-de Gennes (linearization) stability
analysis confirms that this segment is stable. The stabil-
ity regime is delimited by a saddle node bifurcation at the
lower corner (see e.g. marker 3 in Fig. . This is charac-
terized by a turning point of the branch connected with a
zero crossing of an eigenfrequency in the Bogoliubov-de
Gennes analysis. The upper limit of the stability seg-
ment (see e.g. marker 4 in Fig. [4) is associated with a
Hamiltonian Hopf bifurcation (see e.g. [20] for a recent
discussion), whereby quartets of eigenfrequencies emerge
and destabilize the branch. Both unstable parts of the
branch connect in the limit of 2 = 0 to a train of dark-
bright solitons but with different even multiplicity. We
emphasize that the stable stationary solutions naturally
connect to the linear dressed states in the limit of large
Q [2I]. The amplitude of the spatial structure as well
as its length scale decreases as ) approaches this limit
in accordance with the Bogoliubov-de Gennes analysis of
the uniform state [25].

We note that for small linear couplings both the profile
and the energy is strongly influenced by the finite size of
the system. Especially the observed interchange of the
components between 2 = 27 x 4Hz and 2 = 27 x 6 Hz



(see Fig.|l)) can be attributed to the turning point of the
lowest branch shown in Fig.[d The lower two branches
in Fig. 4| represent solutions whose spatial extent (even
with a single hump) induces competition with the spatial
length allowed by the trap, hence their “unusual” shape.
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FIG. 4: (Color online) The bifurcation loop structure for the
stationary states. The left graph shows the energy of the
stationary states as a function of the linear coupling. The
states are stable only along the linear parts, e.g. between
markers 2 and 3, while the loops are unstable. The graphs
at the right illustrate the spatial structure of the probability
amplitudes of the corresponding stationary states. Following
one specific loop we find that the nonlinear dressed states
are smoothly connected to dark-bright soliton trains at 2 =
0 characterized by zero crossings of one component and a
corresponding amplitude maximum for the other component.
The location of one of the dark-bright solitons in the state
identified by marker 5 is indicated by the vertical line. Within
each branch two additional topological excitations are added
as the energy increases.

In the present work, we have studied experimentally
and theoretically the extension of the Manakov model by
introducing linear coupling between the two components.
We find stable stationary solutions for any value of the
linear coupling which we term nonlinear dressed states.
The theoretical identification is found to be in excellent
agreement with our experimenal observations. Further-
more, we establish a connection to limiting solutions in
the form of dark-bright soliton trains in the vanishing
linear coupling limit and to linear dressed states in the
large coupling limit. The associated branches reveal sta-
ble and unstable segments separated by saddle-node and
Hamiltonian Hopf bifurcations.

Our results reveal a previously unidentified connec-
tion between highly nonlinear stationary states and the
weakly interacting regimes reached via a controlled per-
turbation. Identifying the nature of perturbations lead-
ing to such a smooth connection may provide critical in-
sights into a physical system revealing universal charac-
teristics for highly excited states. The translation of our
findings to spin models, e.g. in our case the mapping
to a transverse Heisenberg model [26], can prove fruitful
in characterizing the high energy part of the excitation
spectrum. This might have consequences on the recently
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discussed excited state quantum phase transitions [27].
Moreover, it would be interesting to explore how such
phenomenologies may extend to higher dimensional set-
tings, potentially forming a multi-dimensional analog of
nonlinear dressed states and a set of branches connecting
different spatially modulated states.
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